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Abstract—On September 20th, 2016, Mirai struck the Internet
in a massive surprise attack. This is just but one example
of unknown botnets, not detected nor mitigated at the time
they happened. Current anomaly detection techniques can only
detect them after they have spread. However such attacks are
generally preceded by several stages, including infection of hosts
or fingerprinting of devices. Being able to capture this activity
would allow their early detection. In this paper, we propose
a strategy aimed at the early detection of unknown botnets,
which acts by (i) splitting and merging distributed monitoring
data and related metrics, (ii) monitoring at the port-level, with
a simple yet efficient change-detection algorithm based on a
modified Z-score measure. The analysis of port usage is first
split over different parts of the network, and then merged to
retain only similar anomalies. This ensures detection of large-
scale attacks and drastically reduces false positives. We validate
the approach on the MAWI data set, which provides daily traces
of a transpacific backbone link. We demonstrate that the solution
generates a very low number of false positives. We show how it
detects some main attacks (including Mirai) arisen the last three
years that traditional anomaly detectors have not seen. Details
about noticed anomalies are provided to help the administrator
qualifying them through specific features.

I. INTRODUCTION

In 2016, the Mirai botnet [1] launched a massive attack
towards DNS servers of major Internet providers, cutting
access to high-profile websites during several hours. Before-
hand, it reunited nearby 50,000 devices in its bot army,
but has not been detected until too late. Mirai acted like a
revolutionary IoT-based malware since the release of its source
code [2] that led to huge increase in other botnets development.
Actually, malware that targets Internet-of-Things (IoT) devices
is responsible for many Distributed Denial-of-Service (DDoS)
attacks. It exploits the lack of security of connected objects
to create botnets, spreading extremely fast. We expect to see
an increase in such IoT attacks, along with the explosion of
IoT devices that could grow up to 125 billion by 2030 [3].
Recently, DDoS attacks significantly increased in terms of
number and duration; indeed, the first half of 2018 saw seven
times more large attacks (higher than 300 Gbps) compared to
the same period in 2017, as noted in a Kaspersky report [4].
Furthermore, these botnets slightly propagate and affect whole
networks without even being noticed, until they reach their
real target. There is thus an urgent need to detect this kind of
threats as soon as possible.

Designed to ensure cyber-security in networks, Intrusion
Detection Systems (IDSs) aim to identify malicious activities
and related threats. However, as a matter of fact most botnets

go under the radars. Indeed, current IDSs work at differ-
ent traffic granularities, e.g., flow, host or packet, to detect
anomalies. However, they miss global changes on application
ports that are involved during the infection and propagation
of botnets. Ports can be scanned to fingerprint the target
machine, to exploit known vulnerabilities or to communicate
with a Command-and-Control (C&C) server [5], and therefore
new attempts on one port can be observed simultaneously in
the whole Internet. Moreover, current IDSs work on small
variations of traffic, generally using time-sliding windows that
last a few seconds. Therefore, they cannot build long-term
profiles for port and detect major changes in their usage.
Finally, current IDSs are usually deployed at a single point
in the network, while ISP-scale attacks are only visible by
looking at a holistic view of a wide area network.

In this paper, we propose an anomaly detection technique
that watches network trends and spots main changes in the
usage of a single port. This aims at detecting botnets that
use protocols in a particular way during their lifecycle. A
split-and-merge technique ensures that changes in one port
are distributed and not due to random traffic variations (that
can be caused by ephemeral ports). Local detections modules,
geographically split in the network, collect traffic and send
anomalies to a central controller in charge of aggregating them,
like a Collaborative IDS (CIDS) would do (Figure 1b). The
number of false positives can hence be significantly lower as
only anomalies detected in several places are confirmed.

Intuitively, the most obvious way to identify an attack is to
observe a sudden rise in traffic towards a port. However, this
may be inefficient as it can be a well-known vulnerable port,
already massively scanned. Actually, some stealthy changes in
its behavior can be identified as anomalies. In our algorithm,
several features representing port usages are computed. Large
packets batches picked at a frequency of several days enable
to profile the evolution of features over time, then simple
statistical measures spot anomalies in the features time-series.
In addition, our solution does not require parsing packets
payload, contrary to most botnet detection tools. Therefore
it can be used in a network with end-to-end encryption.

For our evaluation, we use the MAWI dataset [6], containing
daily traffic traces of a transpacific backbone link. The dataset
is restricted to a single ISP, hence corresponds to what could be
used at the ISP-level. We do not use it as background traffic
but aim at detecting real attacks from it, providing a better
knowledge of the dataset at the same time. Our source code
is publicly available at [7]. We present the intrusion detection



(a) Local collection and central detection.

(b) Centralized CIDS: local collection and detection,
and central correlation.

Fig. 1: Two possible approaches for large-scale NIDS.

results against known attacks arisen the last three years, not
detected by the MAWILab detection algorithm [8], and also
what appear as unknown events. Subsequently, we demonstrate
that our algorithm greatly reduces the number of false positives
compared to a single IDS running on the whole dataset.

This paper is structured as follows. Section II addresses
related work. Section III presents our methodology to detect
distributed changes in port usages. In Section IV, we present
the evaluation, highlighting the benefits of our method in terms
of false detection rate and detection accuracy, and proposing
a classification of the detected anomalies. Finally, Section V
concludes the paper.

II. RELATED WORKS

In this section, we propose a classification of intrusion
detection techniques and review related works.

A. Intrusion detection methodologies

Many algorithms are proposed in the literature for network
intrusion detection [9]. We can classify them in two main
families: knowledge-based and anomaly-based techniques.

Knowledge-based (or signature-based) solutions such as
Snort [10] and Bro [11] rely on a signature database to find
attacks that match given patterns, such as malicious byte
sequences or known malware signatures. Up to now, most
companies rely on signature-based IDSs as they are expressive
and understandable by network administrators, with precise
information about the detection logic. Nevertheless, they are
not able to detect zero-day attacks, i.e., attacks exploiting
unknown vulnerabilities, for which no patch is available.

Anomaly-based approaches attempt to detect zero-day at-
tacks, in addition to known ones. They model the normal net-

work traffic and qualify an anomaly as a significant deviation
from it, with statistical or machine learning techniques. Bot-
Sniffer [12] utilizes statistical methods to detect C&C botnets,
by observing coincident behaviors among hosts, like messages
to servers, network scan or spam. Machine learning techniques
can be classified in three families: (i) Supervised ones learn
from a labelled dataset what constitutes either normal traffic or
attacks (ii) Unsupervised approaches learn by themselves what
is normal or abnormal – among them, MAWILab [13] finds
anomalies by combining detectors that operate at different
traffic granularities (the results against the MAWI dataset are
in [13]); numerous works compare themselves to MAWILab,
as for instance change-detection techniques [14], [15] (defining
an anomaly as a sudden change compared to a model), and
ORUNADA [16] (relying on a discrete time-sliding window to
continuously update the feature space and cluster events); (iii)
Hybrid approaches benefit from only a small part of labelled
traffic, meant to be enough to learn from.

B. Large-scale intrusion detection

Coordinated attacks arise in multiple networks simultane-
ously and include large-scale stealthy scans, worm outbreaks
and DDoS attacks [17]. Traditional IDSs tend to fail at
detecting these attacks as they commonly monitor only a
limited portion of network. Large-scale IDSs, instead, have
a global view over the network, and they better scale by
distributing the computational load between several detection
agents. Two large-scale IDS approaches can be identified.

The first IDS approach consists in distributing flow collec-
tors split in different subnetworks and in running a central de-
tection engine against aggregated data, as shown in Figure 1a.
Raw packets are transmitted from the flow collectors to the
detection engine [18]. Solutions exist to avoid the collection
traffic overhead, as done by Jaal [19], which creates and sends
concise packets summaries to the detector - with Jaal, one
reaches a 35 % bandwidth overhead to get an acceptable true
positive rate, which is still important.

The second IDS approach consists in the already mentioned
CIDS, that is a two-level anomaly detection system where
monitors are physically split in the network to perform local
detection. They generate low-level alerts then aggregated to
produce a high-level intrusion report. There are three types of
CIDSs depending on their communication architecture:

1) Centralized CIDSs are composed of several monitors
that transmit the alerts to a central correlation engine,
as illustrated in Figure 1b.

2) Hierarchical CIDSs use a pyramidal structure of moni-
tors to achieve an increasingly higher alert aggregation
until the alerts reach the top correlation engine.

3) Distributed CIDSs share the detection and correlation
tasks between all monitors. This approach can be set up
by a peer-to-peer network.

For instance, [20] presents a centralized CIDS framework
composed of IDS clusters implementing both the detection
and the correlation; Snort signatures are therein used to de-
tect known attacks, while an unsupervised learning algorithm



detects unknown attacks. [21] proposes a sort of distributed
CIDS, composed of Intrusion Prevention Systems forming
rings around the hosts to protect, in order to collaborate and
forward the traffic adaptively depending on their findings.

C. Alert correlation design

A common issue behind CIDS is its alerts correlation. Alert
correlation algorithms can be divided into three categories
[22]: (i) similarity-based algorithms compute the similarity
between an alert and a cluster of alerts, and based on the
result either merge it with the cluster or create a new one;
(ii) knowledge-based algorithms rely on a database of attacks
definitions; (iii) probabilistic algorithms use similar statistical
attributes to correlate attacks.

In our work, we leverage on the CIDS principles to build
our system, and in particular centralized CIDS, and in terms
of alert correlation we attempt at simplifying the search space
using application ports, and more precisely destination ports.
Up to our knowledge, we are the first to use the CIDS
concept applied to port-centric detection. Aggregating alerts
based on destination ports as we propose can strongly ease
the aggregation challenge, avoiding too complex algorithms
for that purpose.

A few works specifically focus on port-based detection but
they do not apply to CIDS. In [5], the authors propose a
survey of the current methods to detect port scans. [23] aims
to show the correlation between port scans and attacks. [24]
analyzes the period during the release of a zero-day attack
and its patching. [23], [24] analyze port-usage, but they do
not use destination ports as primary key. Actually, this last
setting generates a high number of false positives, which can
be mitigated by CIDS.

III. SPLIT-AND-MERGE PORT-CENTRIC NETWORK
ANOMALY DETECTION

We present our anomaly detection proposal, detailing the
reference CIDS architecture and the features design.

A. Rationale

We already anticipated some of our key modeling choices:
we aggregate traces based on destination ports, in a distributed
CIDS setting, and target to design features minimizing the
degree of arbitrarity in their choice and interpretation. Our
objective is to model the usage of each port, by computing
features each time the same day at the same daytime slot,
in order not to be influenced by weekly or daily variations.
The features characterize the port usage, e.g., if it is mainly
targeted by port scan or not, if the hosts are numerous or not,
etc. We work on a limited time window over a day, which we
assume to represent port usages this day.

In our reference distributed CIDS setting, several detection
module agents run on different subnetworks so that they can
capture subnetwork peculiarities and cover the CIDS network
context completely. Based on the time evolution of the features
of a port, the detection modules detect anomalies and report
them to a correlation module. Hereafter we provide in details

Notation Definition
Nbatch Number of packets collected per day
Nmin Minimum number of packets per analyzed port
Ndays Number of days in the sliding window
Ti Threshold to spot an anomaly for feature i

TABLE I: Notations.

the different steps of the detection module logic, as well as the
anomaly aggregation logic of the correlation module. At each
daytime slot, every detection module performs several tasks
in a row (each task is then further detailed in the following
subsections):

Data collection: incoming packets are collected in a single
group of Nbatch elements; only the following data is stored:
the source and destination IP addresses and ports, the packet
size and the TCP flags configuration.

Features computation: packet references are aggregated by
destination port, filtering out those ports with less than Nmin

packets in order not to be influenced by very light traffic on
one port. Features are then computed for the remaining ports.

Anomaly detection: lastly, the local detection module ana-
lyzes the port-specific features time series over Ndays in order
to detect an anomaly with a change-detection algorithm. When
an anomaly is spotted, based on a warning threshold Ti on a
given feature i, an alert is created and transmitted to the central
correlation module.

The collection and detection parameters resumed in Table
I are to be customized. At the end of the detection process,
the correlation module aggregates the alerts received from all
detection modules. It is then able to deduce and qualify an
attack by noticing the distributed alerts.

B. Features design

To observe an anomaly on a port, looking at the number of
packets over time is not sufficient. Indeed, subtle changes in
the nature of packets can happen on a port already massively
scanned. Therefore, we need to design significant features.

Our features choice is resumed in Table II. srcDivIndex and
destDivIndex highlight significant variations in the proportion
of unique source and destination IP addresses. An increase
in srcDivIndex may be an attack perpetrated by bots, while
its decrease can indicate an attack led by only a few actors.
portDivIndex reflects the diversity in source ports. A variation
in the meanSize feature suggests a change of packets nature,
like crafted packets sent by bots. A variation in the stdSize
feature can be caused by a change of packets nature as well,
and in addition is not easy to fool for an attacker: if it
increases, the diversity among packets is higher, so probably
there are suddenly both crafted and regular packets; if it
decreases, the diversity among packets is lower, hence the
traffic more specific. This can be caused by a malicious
software which kills other processes bound to the same port.
Finally, a variation in perSYN implies an increase or decrease
in port scan.

We denote the time series of feature i on N days (i.e.,
Ndays) for port p as f pi,N = (xp

i,1, ..., x
p
i, j , ..., x

p
i,N ), with xp

i, j



Feature Description
srcDivIndex Percentage of unique source IP addresses
destDivIndex Percentage of unique destination IP addresses
portDivIndex Percentage of unique source ports
meanSize Mean packets size
stdSize Standard deviation of packets sizes
perSYN Percentage of SYN packets
nbPackets Number of packets

TABLE II: Split-and-Merge features.

being the value of feature i for port p on day j. The detection
modules dispose of features tables to save the vectors. The
tables constantly contain N entries so that for every new
capture, the former value is deleted and the new one added.

C. Local anomaly detection

Assuming a feature is more or less likely to vary (standard
deviation) depending on its type, and usually around the
same (mean) value, the normal distribution logically quite
fits as its distribution. Hence we model the time series
f pi,N = (xp

i,1, ..., x
p
i,N ) over N days as a normal distribution

N (µp ,σp2
) of mean µp and standard deviation σp such that:

µp =

N∑
j=1

xp
i, j and σp =

√√√
1
N

N∑
j=1

(xp
i, j − µ

p )2. (1)

In order to automatically detect a change in the time series
of a port-specific feature, Z-score is a well-known simple
statistical-based algorithm. More precisely, the Z-score is the
measure of how many standard deviations below or above the
mean a data point is. Basically, a Z-score equal to zero means
that the data point is equal to the mean. The larger the Z-score,
the more unusual the value. For the given time series f pi,N , the
Z-score of the new value xp

i,N+1 of feature i at time N + 1 is
computed as follows:

Z p
i,N+1 =

xp
i,N+1 − µ

p

σp
. (2)

However, the Z-score is computed from the mean, a metric
influenced by outliers and especially extreme values. Alterna-
tively, the modified Z-score uses the median and the median of
the standard deviation from the median, instead of the classical
mean and the standard deviation, respectively, which makes it
outlier-resistant [25]. Given the time series median f̃ pi,N , the
modified Z-score M p

i,N+1 of the new value xp
i,N+1 of feature i

at N + 1 is computed as:

M p
i,N+1 =

0.6745 · (xp
i,N+1 − f̃ pi,N )

median(|xp
i,N+1 − f̃ pi,N |)

(3)

An anomaly is then detected if the absolute value of the
modified Z-score exceeds a threshold Ti . For all i, we adopt
a threshold value of 3.5 as recommended in [25].

Therefore, the modified Z-score is used to identify anoma-
lies on all features, except nbPackets: it is only used to spot
emerging ports, i.e., ports that were not in use before. That is,
an anomaly is spotted if at least a given number of packets

Fig. 2: Split-and-Merge example. Local modules run at dif-
ferent points in the network and send alerts to the central
correlation module, which spots an anomaly on port 23.

Nmin is collected on one port for the first time in Ndays , so
that xp

i,N+1 ≥ Nmin and xp
i, j < Nmin for each jε[1,N].

Once all features of all ports are analyzed, the detection
module sends the content of the anomalies to the correlation
module as alerts. For each alert, the module specifies its ID
m, the anomalous port p, the involved feature i, the time
series f pi,N and the new anomalous value xp

i,N+1. An alert is
so defined by a 5-tuple {p,m, i, f pi,N , x

p
i,N+1}. For example, in

Figure 2, the detection module B notices an anomaly on port
89 for feature srcDivIndex. It also provides the time series of
feature f pi,N and xp

i,N+1, though not written on the Figure.

D. Central correlation

The correlation module receives the low-level alerts from all
detection modules. The distinction between localized (noticed
in one subnet) and distributed (noticed in several subnets)
alerts is made here. As we are searching for distributed attacks,
the correlation module groups the low-level alerts to keep only
the ones reported by at least k subnets; we set k = 2 in this
work. In the example of Figure 2, several detection modules
send alerts to the correlation module; among them, two subnets
report a change in the portDivIndex feature on port 23. Hence
the correlation module spots an anomaly on port 23.

It is even better if similar anomalies have been noticed on
the same port for several features. We define the anomaly
score as the number of anomalies noticed for one port by
all monitors and for all features; e.g., if one monitor detects
anomalies on two features, and another on six features, the
anomaly score is 8; or if nine monitors see an anomaly on a
single feature, the anomaly score is 9. A score higher than the
number of monitors is already concerning, but we can define
several levels of concern based on the anomaly score.

When the correlation module identifies top-level anomalies,
it warns all detection modules about the anomalous ports. Thus
they will analyze these ports as a priority next time. Ad-hoc
actions can also be taken, as a function of the programmability
of the local network, such as port blocking, mirroring, deep-
packet-inspection, for the sake of reporting in a possible
further detailed analysis.



IV. EVALUATION

In this section, we evaluate the performance of our split-
and-merge anomaly detection process using real traffic traces.
The detection accuracy is compared between two approaches:
split-and-merge detection and a central detection made at a
single point. We open source the source code used for split-
and-merge analysis in [7].

A. Network traffic dataset

The WIDE project provides researchers with daily traces of
a transpacific link, named the MAWI archive [6]. Traces are
collected between their network and the upstream ISP. Each
file contains 15 minutes of traffic flows, captured between
14:00:00 and 14:15:00 local time. This represents usually
between 4 and 10 GB of traffic for one file. Before being re-
leased, traces are anonymized so that no personal information
can be extracted. Specifically, the application data is removed
and IP addresses are scrambled with a modified version of
tcpdpriv following two principles: 1) it is collision-free so that
there is a one-to-one mapping between IP addresses before
and after anonymization; 2) it is prefix-preserving so that if
two IP addresses share k bits before anonymization, the two
anonymized IP addresses will also share k bits. This enables
to retrieve the subnetworks after anonymization.

However, the anonymization key changes everyday, so there
is a need to retrieve the same subnetworks each day. We notice
that from one day to another, several anonymizations of the
same subnetwork always share the same first byte. Using this
tip and a mapping with subnetworks masks, we can retrieve all
MAWI subnetworks whatever the period. Finally, we found 7
different AS totalling 17 subnetworks in MAWI. We use only
the 9 subnetworks containing incoming traffic, and apply our
algorithm as 9 distinct monitoring points.

B. Local anomaly detection

First, we launch the local detection modules simultaneously,
each of them being situated in a MAWI subnetwork. We pick
each Thursday from March 31 to Oct. 20, 2016. Thresholds
Ti for an anomaly are all set to 3.5. The minimum number of
packets Nmin is set to 20. The number of days in the model
is Ndays = 10. Therefore, the initialization stage needed to
compute the feature vectors the first time lasts 10 weeks, and
the detection begins on June 9. These parameters are used for
next simulations too, in Sections IV-C and IV-D.

Below on Figure 3 is an example of the modified Z-
score evolution for the srcDivIndex feature on port 3389. On
Sept. 29, the absolute value of the modified Z-score is over
the threshold for four detection modules situated in different
subnetworks, resulting in an anomaly. The subnetwork F
contains only a few points because most of the time, there
is little (less packets than Nmin) or no traffic on port 3389 in
this subnetwork. The same explanation applies to subnetworks
that do not appear at all in the legend.

Fig. 3: Evolution of the modified Z-score of feature srcDivIn-
dex on port 3389 over time (2016).

C. Split-and-Merge

This time, we run the split-and-merge detection on two
different periods and analyze the occurrences of anomalies.
The first period goes from March 31 to Oct. 20, 2016, and the
second period goes from Nov. 26, 2017, to April 26, 2018,
including the initialization stage.

Figure 4 and 5 show the occurrences of anomaly scores for
these two periods. In the squares are given the numbers of
ports with this anomaly score this day. The highest the score,
the most colored the case to highlight significant detections.
Note that the y-axis is not linear. We choose to describe
only anomalies whose score is strictly higher than 15. For
each of them, the port and the volume percentage of traffic
towards it are indicated: this highlights that our algorithm
notices anomalies even on ports with light traffic. Hereafter
we further described the detected anomalies, along with our
assumption about their cause.

2016 period. Four noticeable scores appear on Figure 4
depicting this first period.

i) The IoT Mirai botnet [1] is a major attack arisen in
2016. First, Mirai infected hosts send TCP SYN packets to
random IP addresses on Telnet ports 23 and 2323, except those
on a blacklist. Hosts whose Telnet port is open send back a
SYN/ACK packet. Then, infected hosts try to establish a Telnet
connection to them using a hard-coded list of credentials,
and send the credentials to another server if it is successful.
From there, a separate program determines the environment
and executes architecture-specific malware. The victim is now
infected by Mirai and listens for attack commands from the
C&C server, then starts scanning to infect other hosts. This is
how Mirai spread into connected objects and form a worldwide
army of bots. However, other IDSs did not detect it, while our
algorithm detected the scans as soon as they arose. Indeed, the
26-score on Aug. 4 corresponds to the Mirai scan on port 23
and the 28-score on Sept. 15 corresponds to the Mirai scan on
port 2323.

ii) The 20-score on June 30 corresponds to an exploit on
port 6379 Redis, an in-memory key-value store used as a



Fig. 4: Anomaly scores for the 2016 period. In the coloured
squares are given the numbers of ports with this anomaly score
this day.

database or a cache. This day a large SYN scan is detected
from the same source IP address, targeting numerous hosts
in several ASes of the MAWI network. This is either a large
scan targeting the whole IPv4 space, through a tool like the
ZMap tool [26] that performs Internet-wide network scan
in under 45 minutes, or someone who wants to penetrate
the MAWI network specifically. Redis servers do not require
authentication by default and therefore are easy victim of this
type of scan. Also, this happens only a few days after buffer
overflow vulnerabilities were discovered, leading to arbitrary
code execution (CVE-2016-8339, CVE-2016-10517).

iii) The 17-score on Sept. 29 reveals an anomaly on port
3389, of the Remote Desktop Protocol (RDP). This propri-
etary protocol enables a user to remotely connect to another
computer with a graphical interface over a network connection.
This day, as for the Redis anomaly, the same source IP address
exchanged TCP packets with numerous hosts in several AS
of MAWI network, with the same source port. It may be an
update by an administrator connected to all machines through
RDP, or a large scan to penetrate the network.

2018 period. Seven scores distinguish themselves during
this second period on Figure 5.

i) On Feb. 8 and March 8, exploits on port 81 are no-
ticed. These days almost the same IP address launched TCP
SYN scans from the same source port number, targeting all
MAWI subnetworks. This may be once again an Internet-wide
network scan (e.g., by ZMap) or an attacker that targets the
MAWI network specifically.

ii) The 16-score on Feb. 15 is actually a scan on port 5555. It
comes from the ADB.Miner botnet, which identifies Android
devices with Android Debug Bridge turned on, to control
them and make them execute commands [27]. Hence this day,
numerous IP addresses sent TCP SYN packets to various hosts
in the MAWI network using different source port numbers, as

Fig. 5: Anomaly scores for the 2018 period.

seen for the Mirai botnet in 2016.
iii) An 18-score on Apr. 5 corresponds to a large scan

on port 2000, coming from various source IP addresses with
different source port numbers, and targeting many IP addresses
from several ASes in the MAWI network. Cisco Skinny Call
Control Protocol (SCCP) is often bound to this port, allowing
terminal control for voice over IP. This scan is symptomatic
of an IoT botnet, willing to exploit the few vulnerabilities
disclosed last years for this protocol, and maybe IoTroop [28].

iv) An 19-score on Apr. 5 highlights a scan on port 8291,
carried out by Hajime bots. Hajime [29] is an IoT worm
revealed only a few days after the release of the source code for
Mirai. The botnet is continuously evolving, taking advantage
of newly released vulnerabilities. On May 2018, it exploits
a vulnerability (CVE-2018-7445) published 13 days before.
First, infected hosts scan random IP addresses on port 8291
to identify MikroTik devices. Once the bot has identified one
device, it tries to infect it with a public exploit package sent
via port 80 or an alternate port. If successful, the device infects
new victims in turn under the same protocol. This day, as for
the Mirai botnet, our program saw many IP addresses targeting
the MAWI network on port 8291, using various source port
numbers.

v) Finally, on Apr. 26 and March 3, two anomalies on
port 23 are detected. We observe that these days, meanSize
considerably rises while srcDivIndex and destDivIndex falls.
The number of packets is also lower than usual. Thus it looks
like there are less malicious scans towards this port these days.
Actually, botnets tend to use alternate ports instead of port 23
because vulnerabilities on this port are progressively patched
and devices are armed against possible exploits on this port.

D. Comparison between central and split-and-merge detection

To evaluate the benefits in splitting the detection process,
we apply the same detection method under two different
approaches and compare the results. The two approaches are:

Split-and-merge detection: in the first case, we split the
detection between several detection modules, then we aggre-



gate the results. Here an anomaly is defined for one feature
if at least two detection modules compute a modified Z-score
higher than the threshold. Thus its anomaly score corresponds
to the number of detection modules that detected that.

Central detection: here we apply the same detection
method, but at a single point in the network. An anomaly is
defined for one feature if the modified Z-score is higher than
the threshold while working on packets of the whole network.
In this case, the anomaly score is equal to 1, else 0.

The evaluations below aim to compare both approaches by
considering two main aspects: the number of false positives
and the capacity to detect attacks.

1) Evaluation of the number of false positives: First, we
compare the number of anomalies between both approaches.
Table III shows the number of anomalies found for each
feature on a day randomly chosen, on Aug. 4, 2016.

Feature Central Split-and-merge
srcDivIndex 169 1
destDivIndex 175 3
portDivIndex 172 2
meanSize 170 2
stdSize 152 1
perSYN 16 1

TABLE III: Number of detected anomalies in central and split-
and-merge approaches on Aug. 4, 2016.

For all features, the number of anomalies for the split-
and-merge detection is significantly lower than for the central
detection. Indeed it appears that the split-and-merge approach
is very selective and enables to eliminate numerous alerts by
keeping only the distributed ones. Operators at the Security
Operation Center (SOC) of information systems are over-
whelmed by alarms and thus tend to under utilize detection
suites. Hence our solution could be considered in that case.

2) Evaluation of the detection accuracy of known attacks:
We now compare the detection accuracy between split-and-
merge and central detections on some attacks identified in the
previous subsection. Tables IV to VI show the results. The
two last columns show the total scores for all features. To
get an idea of the rarity detection, the number of ports that
notice a score higher or equal to the actual one is indicated
in cases #ports ≥S. The total number of ports corresponds to
the number of ports obtained after the filter on Nmin packets
is applied. It is then different each day.

We indicate also for each attack if MAWILab detected it
based on MAWILab anomaly reports. Indeed, these attacks are
not traditionally detected by current IDSs for several reasons:
• Current IDSs work on small variations of traffic, generally

using time-sliding windows that last a few seconds or less.
Therefore, they fail at detecting major but progressive
changes in the traffic.

• They aggregate packets either by source IP or destination
IP addresses, while these attacks focus on ports.

• ISP-scale attacks stay invisible at a single network scale.
Mirai botnet. Table IV presents the results of the Mirai

botnet detection, on port 23 on August 4th , 2016. With the

central detection, there are anomalies for five features, a score
noticed for 132 ports in total. For split-and-merge detection,
the score is equal to 26 out of 51, a score noticed only for
this port (see Figure 4), so this is very rare and visible by the
network administrator. The Mirai case is interesting since the
Telnet port was already massively scanned before the Mirai
scan. Therefore, it is not identifiable by sudden high traffic on
this port, but it requires the use of precise features to notice
a change. Moreover, MAWILab did not detect the scan.

ADB exploit. Table V presents the results of the ADB
exploit detection. The central detection produces a total score
of 4 out of 6. This score is not relevant enough since 455
other ports registered a score higher or equal to this one. On
the contrary, the split-and-merge detection produces a score
of 16 out of 51, a score highly relevant because noticed for
only this port (see Figure 5). The MAWILab report of this
day is not available, so we are not able to check if MAWILab
detectors detected the attack.

Hajime botnet. Table VI presents the results of the Hajime
botnet detection. The central detection produces a total score
of 5 out of 6. Despite its high value, this score cannot be
interpreted as relevant and distinct enough since 203 ports
registered a score higher or equal to this one. On the contrary,
the split-and-merge detection produces a score of 19 out of
51, which is truly relevant because noticed for only this port
(see Figure 5). Furthermore, this day MAWILab report did not
notify anything relatively to port 8291.

For all attacks, we observe that the split-and-merge detec-
tion is far more efficient than the central detection. There-
fore there is a benefit in detecting anomalies by subnetwork
and then aggregating low-level alerts, rather than performing
anomaly detection with packets from the whole network.

Fig. 6: Characterization of anomalies in 2016. In the squares
are given the numbers of subnetworks that detected a modified
Z-score over (+) or below (-) the threshold for each feature.

3) Detailed characterization of major anomalies: Each
anomaly is unique regarding the port usage before the anomaly
and the type of change, thus any classification of anomalies
would be non-exhaustive. However, looking at features con-
jointly enables insights on the anomalies. Figure 6 shows on
the y-axis the most noticeable anomalies discovered in 2016,
along with their destination port and date. For each one, the
number of monitors that detected an anomaly for the feature
in the x-axis is given in the coloured squares. We propose



Detection srcDivIndex destDivIndex portDivIndex meanSize stdSize perSYN 6 features
S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S

Central 1/1 169/20267 1/1 175 1/1 172 1/1 179 1/1 152 0/1 20267 5/6 132
Split-Merge 1/9 41/17781 5/9 1 7/9 1 5/9 1 8/9 1 0/9 17781 26/51 1

TABLE IV: Evaluation on port 23 (Mirai botnet) the 4th of August, 2016 for central and split-and-merge detections.

Detection srcDivIndex destDivIndex portDivIndex meanSize stdSize perSYN 6 features
S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S

Central 1/1 536/25400 1/1 515 0/1 25400 1/1 487 1/1 457 0/1 25400 4/6 455
Split-Merge 3/9 3/21999 3/9 3 4/9 1 4/9 1 1/9 218 1/9 14 16/51 1

TABLE V: Evaluation on port 5555 (ADB exploit) the 15th of February, 2018 for central and split-and-merge detections.

Detection srcDivIndex destDivIndex portDivIndex meanSize stdSize perSYN 6 features
S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S S #ports≥S

Central 1/1 256/25400 1/1 253 1/1 254 0/1 25400 1/1 224 1/1 30 5/6 203
Split-Merge 4/9 2/21999 5/9 1 5/9 1 1/9 122 3/9 4 1/9 16 19/51 1

TABLE VI: Evaluation on port 8291 (Hajime botnet) the 5th of April, 2018 for central and split-and-merge detections.

hereafter the description of three anomalies.
i) The anomalies on port 23 represent the Mirai scan. There

is no anomaly in perSYN, as this port was already known
for its vulnerabilities before Mirai, and thus largely scanned.
destDivIndex rises in a majority of subnetworks as there are
more hosts targeted by a scan than before. srcDivIndex rises
as well but not over the threshold, and thus does not appear
here. Also, meanSize decreases because crafted packets have
a lower size than regular ones. stdSize rises, as the difference
between Mirai and non-Mirai packets sizes expands. This is
not shown in the picture but some days later, stdSize falls in
several subnetworks as Mirai tends to stop other processes
bound to this port, thus the diversity among packets is lower.

ii) The qualification of the Mirai scan on port 2323 is quite
different. This time, perSYN rises because the port was not
popular before and is now highly scanned. srcDivIndex rises
as well since there are far more infected bots targeting port
2323 than previously.

iii) Finally, the RDP anomaly characteristics on port 3389
depict another kind of anomaly. We notice that srcDivIndex
falls in several subnetworks while destDivIndex rises, therefore
these are numerous connections coming from the same host.
We also note that the diversity among packets is lower by
observing stdSize, and that anomalous packets have a lower
size than regular ones with meanSize.

V. CONCLUSION

Our split-and-merge port-driven anomaly detection proce-
dure focuses on major attacks targeting servers and connected
objects around the world. We propose a collaborative scheme
to detect main changes in the usage of ports. The detection
results are very promising, since our algorithm detected a
number of world-wide attacks from 2016 to 2018, including
Mirai. It is also able to provide precise details about the
anomalies to help the administrator characterizing them. In
contrast, current IDSs, among which the notorious MAWILab,
have not detected them. Moreover, we demonstrate that our
algorithm produces a very low number of false positives. At

the same time, we provided a better knowledge of the MAWI
dataset, raising the main attacks that happened the last three
years, in open source.

In the future, we plan to implement a system that runs
in near real-time. Hence, instead of running the algorithm
at an appropriate frequency, we would have to remove the
seasonal trend from time-series. This way, a dimensioning of
our algorithm in terms of memory, storage and computing
power could be elaborated too. We also aim at doing a better
characterization of attacks by analyzing conjointly the features
evolution. Finally, one can refine the detection accuracy by
analyzing how the parameters impact the results.
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