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The increasing rate of the Birkhoff sums in the infinite iterated function systems with polynomial decay of the derivative (for example the Gauss map) is studied. For different unbounded potential functions, the Hausdorff dimensions of the sets of points whose Birkhoff sums share the same increasing rate are obtained.

Introduction

Denote by N = {1, 2, . . . } the set of positive integers. Consider the socalled Gauss infinite iterated function system {T n } n∈N on the unit interval [0, 1] defined by

T n (x) := 1 x + n for x ∈ [0, 1].
It is well-known that the limit set of the Gauss iterated function system is the set of all irrational numbers in the unit interval [0, 1]. In fact, for any x ∈ [0, 1] \ Q, there exists a unique infinite sequence (a 1 , a 2 , . . . ) ∈ N N satisfying

x = lim n→∞ T a 1 • • • • • T an (1) = 1 a 1 + 1 a 2 + 1 a 3 + . . .
. The latter is the regular continued fraction expansion of x. The digits a j = a j (x) are called the partial quotients of x in its continued fraction expansion.

For any n ≥ 1, denote S n (x) = n j=1 a j (x). In the literature, we are interested in the sum S n (x) of partial quotients which is a special Birkhoff sum with respect to the Gauss iterated function system {T n } n≥1 . In fact, the functions T n are inverse branches of the Gauss transformation T : [0, 1] → [0, 1] defined by T (0) := 0, and T (x) := 1 x (mod 1), for x ∈ (0, 1].

Then a 1 (x) = ⌊x -1 ⌋ (⌊•⌋ stands for the integer part) and a j (x) = a 1 (T j-1 (x)) for j ≥ 2. Thus

S n (x) = n j=1 a j (x) = n j=1 a 1 (T j-1 x)
is a Birkhoff sum of the potential function x → a 1 (x) with respect to the Gauss transformation.

In 1935, Khintchine [START_REF] Ya | Metrische Kettenbruchprobleme[END_REF] showed that S n (x)/(n log n) converges in measure (Lebesgue measure) to the constant 1/ log 2. In 1988, Philipp [START_REF] Philipp | Limit theorems for sums of partial quotients of continued fractions[END_REF] proved that there is no normalizing sequence Φ(n) such that S n (x)/Φ(n) converges to a positive constant Lebesgue almost surely. Motivated by such a phenomenon, people then turn to study the sums S n (x) from the point of view of multifractal analysis. Precisely, one is concerned with the Hausdorff dimension of the sets

E(Φ) = x ∈ (0, 1) : lim n→∞ S n (x) Φ(n) = 1 ,
where Φ : N → R + is an increasing function. When Φ(n)/n has a finite limit as n → ∞, E(Φ) is the classical level set of Birkhoff averages, and its Hausdorff dimension has been determined by Iommi and Jordan [START_REF] Iommi | Multifractal analysis of Birkhoff averages for countable Markov maps[END_REF].

The particular attention is thus paid to the cases when the sums S n (x) are bigger, that is, when

lim n→∞ Φ(n) n = ∞.
In this direction, if Φ(n) = n a with a ∈ (1, ∞) or Φ(n) = exp(n α ) with α ∈ (0, 1/2), Wu and Xu [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF] proved that dim H E(Φ) = 1. Here and in what follows, dim H stands for the Hausdorff dimension. Later, Xu [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF] proved that if Φ(n) = exp(n α ) with α ∈ [1, ∞) then dim H E(Φ) = 1/2; and if Φ(n) = exp(β n ) with β > 1 then dim H E(Φ) = 1/(β + 1). The gap for the case Φ(n) = exp(n α ) with α ∈ [1/2, 1) was finally filled by the authors in [START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF] where we proved that dim H E(Φ) = 1/2 for all α ∈ [1/2, 1). Hence there is a jump of Hausdorff dimension from 1 to 1/2 for the class Φ(n) = exp(n α ) at α = 1/2.

The present paper aims at generalizing the above results on the Birkhoff sums of the potential x → a 1 (x) in Gauss infinite iterated function system associated to continued fractions to Birkhoff sums of a general potential function in some general infinite function systems. We are especially interested in big Birkhoff sums. Before stating our main results, let us give some notations and definitions. Definition 1.1. Let d > 1 be a real number. A family {f n } n∈N of C 1 maps from the interval [0, 1] to itself is called a d-decaying Gauss like iterated function system if the following properties are satisfied:

(1) for any i, j ∈ N,

f i ((0, 1)) ∩ f j ((0, 1)) = ∅; (2) ∞ i=1 f i ([0, 1]) = [0, 1); (3) if f i (x) < f j (x)
for all x ∈ (0, 1) then i < j; (4) there exists m ∈ N and 0 < A < 1 such that for all (a 1 , ..., a m ) ∈ N m and for all x ∈ [0, 1]

0 < |(f a 1 • • • • • f am ) ′ (x)| ≤ A < 1;
(5) for any δ > 0, we can find two constants

K 1 = K 1 (δ), K 2 = K 2 (δ) > 0 such that for i ∈ N there exist constants ξ i , λ i such that ∀x ∈ [0, 1], K 1 i d+δ ≤ ξ i ≤ |f ′ i (x)| ≤ λ i ≤ K 2 i d-δ .
We have a natural projection Π :

N N → [0, 1] defined by Π(a) = lim n→∞ f a 1 • • • • • f an (1).
The image Π(N N ) is called the limit set of the iterated function system. The set Π(N N ) is always equal to [0, 1] minus an at most countable set. Moreover, the map Π is bijective, except possibly at a countable set of points where it can be 2-to-1. See [12, Chapter 1] for more details. The inverse of Π gives for points x ∈ [0, 1] their symbolic expansions in N N . The symbolic expansion is unique for most points, but there can exist countably many points that have zero or two symbolic expansions. When the symbolic expansion is unique, we write x = (a 1 (x), a 2 (x), . . .) the expansion of x ∈ [0, 1].

For each n ∈ N, and each word

a 1 • • • a n ∈ N n , the set I n (a 1 , • • • , a n ) = f a 1 • • • • • f an ([0, 1])
is called a basic interval of order n or an n-basic interval. Except for a countable set, the n-basic interval

I n (a 1 , • • • , a n ) is identical with the set of points x ∈ [0, 1] whose symbolic expansions begin with a 1 , • • • , a n . Write I n (x) the n-basic interval containing x ∈ [0, 1].
Denote by |I| the diameter of an interval I. We say the d-decaying Gauss like iterated function system {f n } n∈N satisfies the bounded distortion property if there exist positive constants K 3 and K 4 such that for any two finite words

a 1 a 2 • • • a n ∈ N n and b 1 b 2 • • • b m ∈ N m , we have K 3 ≤ |I n+m (a 1 , • • • , a n , b 1 , • • • , b m )| |I n (a 1 , • • • , a n )| • |I m (b 1 , • • • , b m )| ≤ K 4 . (1.1)
We remark that the bounded distortion property is usually stated as that there exists a constant K 5 > 0 such that for any word a 1 • • • a n ∈ N n and any x, y ∈ I n (a 1 , . . . , a n ),

1 K 5 ≤ (f a 1 • • • • • f an ) ′ (x) (f a 1 • • • • • f an ) ′ (y) ≤ K 5 . (1.2)
By the Mean Value Theorem, one can easily check that if (1.2) holds then (1.1) holds with K 3 = 1/K 2 5 , and

K 4 = K 2 5
. The bounded distortion is satisfied for any finite or countable conformal iterated function systems, in particular it is satisfied for the classical Gauss infinite iterated function system. However, it is usually not satisfied for nonuniformly hyperbolic iterated function systems, like the iterated function systems associated to the Manneville-Pomeau map and the backward continued fraction map.

Consider a potential function ϕ : [0, 1] → R + , such that ϕ is a constant on the interior of I 1 (j) for all j ∈ N. For all j ∈ N, for simplicity, in what follows, we denote by ϕ(j) the constant value of ϕ on the interior of 1-basic interval I 1 (j). Without confusion, we also consider ϕ as a function from N to R + . For n ∈ N, the n-th Birkhoff sum of ϕ at x ∈ (0, 1) is defined by

S n ϕ(x) = n k=1 ϕ(a k ), if x ∈ I n (a 1 , • • • , a n ).
We remark that except for a countable set, the above Birkhoff sums are well defined.

For a positive growth rate function Φ : N → R + , we are interested in the following set

E ϕ (Φ) := x ∈ (0, 1) : lim n→∞ S n ϕ(x) Φ(n) = 1 . (1.3)
We will calculate dim H E ϕ (Φ). As in the Gauss iterated function system, when Φ(n)/n has a finite limit as n → ∞, the set E ϕ (Φ) is the classical level set of Birkhoff averages and its Hausdorff dimension has been well studied in [START_REF] Pollicott | Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation[END_REF][START_REF] Kesseböhmer | A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates[END_REF][START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF][START_REF] Iommi | Multifractal analysis of Birkhoff averages for countable Markov maps[END_REF][START_REF] Fan | Rams Multifractal analysis for expanding interval maps with infinitely many branches[END_REF][START_REF] Kim | Multifractal analysis of the Birkhoff sums of Saint-Petersburg potential[END_REF], and many other papers. In this paper we will consider the case when Φ(n)/n → ∞ as n → ∞, thus necessarily the potential function ϕ is unbounded in [0, 1].

We obtain the following multifractal analysis results on the Hausdorff dimension of E ϕ (Φ), according to different choices of ϕ and Φ. We will see that as in the case of Gauss iterated function system, the jump of Hausdorff dimension also happens but at different places.

Theorem 1.2. Suppose ϕ(j) = j a for all j ≥ 1, with a > 0. (I) When Φ(n) = e n α with α > 0, we have

β = 1+ 0 α = 1 2 1 d 1 dim H E ϕ (Φ) 1 dβ-β+1 exponential e n α super-exponential e β n Figure 1. dim H E ϕ (Φ) for ϕ(j) = j a . (I-1) dim H E ϕ (Φ) = 1 if α < 1 2
and the distortion property (1.1) holds;

(I-2) dim H E ϕ (Φ) = 1/d if α > 1 2 . (II) When Φ(n) = e β n with β > 1, we have dim H E ϕ (Φ) = 1 dβ-β+1 . Theorem 1.3. Suppose ϕ(j) = e (log j) b for all j ≥ 1, with b > 1. (I) When Φ(n) = e n α with α > 0, we have (I-1) dim H E ϕ (Φ) = 1 if α < b
b+1 and the distortion property (1.1) holds;

(I-2) dim H E ϕ (Φ) = 1/d if α > b b+1 . (II) When Φ(n) = e β n with β > 1, we have dim H E ϕ (Φ) = 1 dβ 1 b -β 1 b +1
. Theorem 1.4. Suppose ϕ = e j c for all j ≥ 1, with 0 < c < 1. (I) When Φ(n) = e n α with α > 0, we have (I-1) dim H E ϕ (Φ) = 1 if α < 1 and the distortion property (1.1) holds;

(I-2) dim H E ϕ (Φ) = 1-c d if α > 1. (II) When Φ(n) = e β n with β > 1, we have dim H E ϕ (Φ) = 1-c d . (III) When Φ(n) = e e γ n with γ > 1, we have dim H E ϕ (Φ) = 1-c dγ-(1-c)(γ-1) .
Theorem 1.5. Suppose ϕ(j) = e j c for all j ≥ 1, with c ≥ 1. When Φ(n) = e n α , with α > 0, we have (I-1) dim H E ϕ (Φ) = 1 if α < 1 and the distortion property (1.1) holds;

(I-2) dim H E ϕ (Φ) = 0 if α ≥ 1.
The Hausdorff dimensions in Theorems 1.2-1.5 are depicted in Figures 1234.

β = 1+ 0 α = b b+1 1 d 1 dim H E ϕ (Φ) 1 dβ 1 b -β 1 b +1 exponential e n α super-exponential e β n Figure 2. dim H E ϕ (Φ) for ϕ(j) = e (log j) b . β = 1+ 0 α = 1 2 γ = 1+ 1-c d 1 dim H E ϕ (Φ) 1-c dγ-(1-c)(γ-1)
exponential e n α super-exp e β n sup-sup-exp e e γ n Figure 3. dim H E ϕ (Φ) for ϕ = e j c with 0 < c < 1.

Remark 1.6. The critical cases α = 1 2 in Theorems 1.2, α = b b+1 in Theorem 1.3, and α = 1 in Theorems 1.4 and 1.5 are not investigated in this paper. However, Theorem 1.2 in [START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF] suggests that the Hausdorff dimension function has jumps at these points.

Remark 1.7. Theorem 1.2 was announced in [10, Theorem 4.1], but with an erroneous formula in the part (iii) (now part II).

Remark 1.8. For simplicity, in our proofs, we assume δ = 0 in the condition (5) of Definition 1.1 of the d-decaying Gauss like iterated function system. For the general case, the proofs are the same. We need only to replace d by

α = 1 0 1 dim H E ϕ (Φ) exponential e n α Figure 4. dim H E ϕ (Φ) for ϕ = e j c with c ≥ 1.
d + δ for the lower bound and by dδ for the upper bound, then take the limit δ → 0.

To prove our main theorems, we give four technical lemmas in Section 2. Lemma 2.2 is useful to prove full Hausdorff dimension results. Lemma 2.3 is mainly devoted to proving a lower bound of Hausdorff dimension (sometimes, we can also use it for upper bound). Lemmas 2.4 and 2.5 are two combinatorial lemmas serving for the upper bounds of Hausdorff dimension. We believe that our lemmas have independent interests for the future study on multifractal anlysis and Diophantine approximation in infinite iterated function systems or interval maps with infinitely many branches which are often associated to some expansions of numbers. We also stress that though some preliminary versions of our lemmas have already appeared in [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF], [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF], [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF] and [START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF], some more efforts are needed to make them applicable for more general settings. Our lemmas are non-trivial generalizations of the corresponding results in [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF], [START_REF] Xu | On sums of partial quotients in continued fraction expansions[END_REF], [START_REF] Fan | On Kintchine exponents and Lyapunov exponents of continued fractions[END_REF] and [START_REF] Liao | Subexponentially increasing sum of partial quotients in continued fraction expansions[END_REF].

The rest of the paper is organized as follows. In Section 3, we give the proofs for (I-1) of Theorems 1.2-1.5 and (I-2) of Theorem 1.5. The remaining proofs are given in the last section.

In the whole paper, for simplicity, for two real sequences {f (n)} n≥1 and {g(n)} n≥1 , we will use the symbol

f (n) ≈ g(n) to denote f (n)/g(n) = 1 + o(1), or more precisely lim n→∞ f (n) g(n) = 1.
The symbol f (n) ≍ g(n) means that there exist two positive constants C 1 and C 2 such that

C 1 ≤ f (n) g(n) ≤ C 2 .

Technical lemmas

In this section, we will prove four technical lemmas. Before giving the four technical lemmas and their proofs, let us first state a variant of Mass Distribution Principle ([1, Principle 4.2]), sometimes called Billingsley Lemma in the literature, which is a main tool for the lower bound estimation of Hausdorff dimension.

Denote by B r (x) the ball with center x ∈ R and radius r > 0.

Lemma 2.1 (see [START_REF] Falconer | Techniques in fractal geometry[END_REF] Proposition 2.3). Let E ⊂ R be a Borel set and let µ be a finite Borel measure. If the local dimension

lim inf r→0 log µ(B r (x)) log r ≥ s for all x ∈ E and µ(E) > 0, then dim H E ≥ s.
Now, let us go to the four technical lemmas. The first technical lemma serves for the proof of full dimension in the theorems, i.e., the proofs for (I-1) of Theorems 1.2-1.5.

Recalling Remark 1.8, we remind that we assume δ = 0 in the condition (5) of Definition 1.1 through all of our proofs.

Let (n k ) k≥1 be a positive sequence satisfying

n k /k → ∞ and n k+1 /n k → 1 as k → ∞. Let (u k ) k≥1 be a positive sequence such that u k → ∞ as k → ∞ and (2.1) lim k→∞ 1 n k k j=1 log u j = 0.
For each M ∈ N, set

E M := {x ∈ (0, 1) : a n k (x) = u k , and 1 ≤ a j (x) ≤ M if j = n k }.
Then we have the following lemma whose idea comes from the proof of [START_REF] Wu | On the distribution for sums of partial quotients in continued fraction expansions[END_REF]Theorem 1.4].

Lemma 2.2. Suppose the d-decaying Gauss like iterated function system {f n } n∈N satisfies the distortion property (1.1). Let (n k ) k≥1 , (u k ) k≥1 and E M be defined as above. Then we have

lim M →∞ dim H E M = 1. Proof. For any k ≥ 1, let I n k (a 1 • • • a n k ) be an n k -basic interval intersecting E M .
By the condition (5) of Definition 1.1 and the distortion property (1.1), we have

|I n k | ≥ K 2k-1 3 K k 1 k j=1 |I n j -n j-1 -1 (a n j-1 +1 , • • • , a n j -1 )| • a -d n j ,
where by convention n 0 = 0.

Let s(M) be the Hausdorff dimension of the set of points x such that all a j (x) ≤ M. Then s(M) is increasing to 1 as M → ∞, see for example, [START_REF] Mauldin | Dimensions and measures in infinite iterated function systems[END_REF]Theorem 3.15]. Further, there exists a probability measure ν living on [0, 1] and a positive constant C M such that for any basic interval I n (a 1 , . . . , a n ) we have

ν(I n (a 1 , . . . , a n )) ≤ C M |I n (a 1 , . . . , a n )| 2s(M )-1 .
Define a probability measure µ on each basic interval

I n k intersecting E M by µ(I n k ) = k j=1 ν(I n j -n j-1 -1 (a n j-1 +1 , • • • , a n j -1 )).
By Kolmogorov Consistence Theorem, µ is well defined and is supported on

E M .
Then for each x ∈ E M , we have

|I n k (x)| 2s(M )-1 ≥ (K 2k-1 3 K k 1 ) 2s(M )-1 C -k M µ(I n k (x)) k j=1 a -d n j 2s(M )-1 . (2.2)
Observe that (2.1) means that lim k→∞

1 n k k j=1 log a n j = 0, while the part (4) of of Definition 1.1 implies that (2.3) log |I n k (x)| ≤ log A m n k .
Thus, using (2.2) and (2.3), by simple calculations, we have

(2.4) log µ(I n k (x)) log |I n k (x)| ≥ 2s(M) -1 -o(1)
for large k. This allows us to estimate the local dimension lim inf r→0 log µ(Br (x)) log r of the measure µ at x. Let us first observe the following two facts.

Fact 1. Let x ∈ E M . For r = |I n k (x)|, B r (x) ∩ E M ⊂ I n k (x). Indeed, note that for x ∈ E M , a n k (x) = u k and f u k ([0, 1]) = I 1 (u k ).
By Mean Value Theorem and the condition (5) of Definition 1.1, the basic interval I 1 (u k ) has length ≍u -d k (remind that we assume δ = 0). Further by conditions ( 2) and (3) of Definition 1.1, on the left of I 1 (u k ), there are all

I 1 (j) with 1 ≤ j ≤ u k -1. Thus the distance of I 1 (u k ) to 0 is ≍ u k -1 j=1 j -d ≍ 1.
While on the right of I 1 (u k ), there are all I 1 (j) with j ≥ u k + 1. Thus the distance of

I 1 (u k ) to 1 is ≍ ∞ j=u k +1 j -d ≍ u -d+1 k .
Therefore I 1 (u k ) lies in distance larger than ≍u -d+1 k from the endpoints {0, 1}. Now, notice that the pair

(I n k (x), I n k -1 (x)) is the image of the pair (I 1 (u k ), [0, 1]) under the map f a 1 • . . . • f a n k -1 .
Moreover, by the bounded distortion property (1.1), we have

u k -1 j=1 |I n k [a 1 , • • • , a n k -1 , j]| ≍ u k -1 j=1 |I 1 (j)| • I n k -1 [a 1 , • • • , a n k -1 ],
and

∞ u k +1 |I n k [a 1 , • • • , a n k -1 , j]| ≍ ∞ u k +1 |I 1 (j)| • I n k -1 [a 1 , • • • , a n k -1 ].
Thus, the distance of I n k (x) from the endpoints of I n k -1 (x) is at least a constant multiplied by

u -d+1 k u -d k |I n k (x)| = u k |I n k (x)|, which, by the assumption lim k→∞ u k = ∞, is much larger than 3 • |I n k (x)|. Hence, the ball B r (x) with r = |I n k (x)| will never intersect another (n k -1)- basic interval.
By the definition of E M , inside

I n k -1 (x) there is only one n k -basic interval (which is I n k (x)) intersecting E M .
Thus we obtain the assertion of the fact.

Fact 2. When k → ∞, log |I n k+1 (x)| log |I n k (x)| → 1.
Indeed, by the condition (5) of Definition 1.1, and the distortion property (1.1), we have

|I n k+1 (x)| |I n k (x)| ≥ K 3 n k+1 -n k • (K 1 M -d ) n k+1 -n k • K 1 • u -d k+1 . (2.5)
By the hypothesis n k+1 /n k → 1, we have (n k+1n k )/n k → 0. Then the statement follows from the formulae (2.1), (2.3) and (2.5).

The first fact implies that when r = |I n k (x)| we can use (2.4) in the local dimension calculation. The second fact implies that we do not need to check any r not of the form r = |I n k (x)|. Thus, by Lemma 2.1, we have

dim H E M ≥ 2s(M) -1.
Passing with M to infinity, we complete the proof of the lemma. 

For N ∈ N, let B({s n }, {t n }, N) := x ∈ (0, 1) : s n -t n ≤ a n (x) ≤ s n + t n , ∀n ≥ N .
We remark that when n is large, by the assumption t n → ∞, we can always have integers choices for a n in the interval [s nt n , s n + t n ]. However, for the first terms, there might be no positive integer in the interval [s nt n , s n + t n ], and hence the set B({s n }, {t n }, N) is empty. There is no interest to study such an empty set. Without loss of generality, by modifying the values of finitely many first terms, we always assume that our sequences {s n }, {t n }) are such that B({s n }, {t n }, N) is nonempty. Further, we will see from our formula of the Hausdorff dimension of B({s n }, {t n }, N) that the modification of the first finite number of terms of the sequences will not change the Hausdorff dimension.

Lemma 2.3. We have

dim H B({s n }, {t n }, N) = lim inf ℓ→∞ ℓ i=1 log t i d ℓ+1 i=1 log s i -log t ℓ+1
.

Proof. Within this proof, we write f (n) e ∼ g(n) if f (n) and g(n) differ by at most an exponential factor, that is

lim sup n→∞ 1 n log f (n) g(n) < ∞.
We give the proof for the case N = 1. For the general case, note that

B({s n }, {t n }, N) = a 1 •••a N-1 ∈N N-1 f a 1 • • • • • f a N-1 (B({s n+N -1 }, {t n+N -1 }, 1))
is a countable union of bi-Lipschitz images of B({s n+N -1 }, {t n+N -1 }, 1).

Since the bi-Lipschitz maps preserve the Hausdorff dimension, we have

dim H B({s n }, {t n }, N) = dim H B({s n+N -1 }, {t n+N -1 }, 1).
On the other hand, notice that the dimensional formula of the lemma we will obtain does not depend on the finite number of first terms of the two sequences {s n } and {t n }, we then have

dim H B({s n }, {t n }, N) = dim H B({s n }, {t n }, 1).
Fix ℓ ≥ 1. Let I ℓ (a 1 , . . . , a ℓ ) be an ℓ-basic interval with nonempty intersection with B({s n }, {t n }, 1). Then for each

1 ≤ k ≤ ℓ, a k ∈ [s k -t k , s k + t k ]. Define D ℓ (a 1 , . . . , a ℓ ) := x ∈ I ℓ (a 1 , . . . , a ℓ ) : a ℓ+1 (x) ∈ [s ℓ+1 -t ℓ+1 , s ℓ+1 + t ℓ+1 ] .
We have .

B({s n }, {t n }, 1) = ∞ ℓ=1 a 1 ,...,a ℓ a i ∈[s i -t i ,s i +t i ] I ℓ (a 1 , . . . , a ℓ ) = ∞ ℓ=1 a 1 ,...,a ℓ a i ∈[s i -t i ,s i +t i ] D ℓ (a 1 , . . . ,
To get the lower bound, we consider a probability measure µ uniformly distributed on B({s n }, {t n }, 1), in the following sense. By the definition of B({s n }, {t n }, 1), when a 1 , . . . , a ℓ-1 are fixed, a ℓ can only take finitely many values s ℓt ℓ , . . . , s ℓ + t ℓ . Then the conditional probability of every possible value of a ℓ (conditioned on a 1 , . . . , a ℓ-1 ) is chosen to be equal, that is equal to 1/(2t ℓ + 1). The basic intervals I ℓ (a 1 , . . . , a ℓ ) and corresponding D ℓ (a 1 , . . . , a ℓ ) have the measure e ∼ ℓ i=1 t -1 i .

Our goal is to apply Lemma 2.1, hence we need to calculate the local dimension of the measure µ at a µ-typical point x ∈ B({s n }, {t n }, 1). Fix any x ∈ B({s n }, {t n }, 1). Denote by r ℓ the diameter of the set D ℓ (a 1 (x), . . . , a ℓ (x)) and by r ′ ℓ the diameter of I ℓ (a 1 (x), . . . , a ℓ (x)). When r = r ℓ , we have log µ(B r (x)) log r = log µ(B r ℓ (x)) log r ℓ = log µ(D ℓ (a 1 (x), . . . , a ℓ (x))) log r ℓ .

Since For r ℓ < r < r ′ ℓ , the ball B r (x) still does not intersect any point from B({s n }, {t n }, 1) \ D ℓ (a 1 (x), . . . , a ℓ (x)), hence it has the same measure as B r ℓ (x), but a larger diameter. Thus, for r ℓ < r < r ′ ℓ , log µ(B r ℓ (x)) log r ℓ < log µ(B r (x)) log r .

Finally, since each basic interval I ℓ+1 (a 1 (x), . . . , a ℓ (x), j) contained in D ℓ (a 1 (x), . . . , a ℓ (x)) has the same measure and approximately the same diameter, we have for r ′ ℓ+1 < r < r ℓ ,

µ(B r (x)) ≤ 2r r ′ ℓ+1 • K 2 K 1 ( s ℓ+1 + t ℓ+1 s ℓ+1 -t ℓ+1 ) d • µ(B r ℓ (x)) 2t ℓ+1 . Since 2r ℓ r ′ ℓ+1 2t ℓ+1 ≤ 2 • K 2 K 1 ( s ℓ+1 + t ℓ+1 s ℓ+1 -t ℓ+1 ) d , we have µ(B r (x)) ≤ 2 • K 2 K 1 ( s ℓ+1 + t ℓ+1 s ℓ+1 -t ℓ+1 ) d 2 • µ(B r ℓ (x)) • r r ℓ .
By (2.6), there is a constant K 6 > 0, such that

2 • K 2 K 1 ( s ℓ+1 + t ℓ+1 s ℓ+1 -t ℓ+1 ) d 2 ≤ K 6 .
Applying the obvious fact that

log z 1 z 2 log z 1 z 3 > log z 2 log z 3 for all z 1 < 1 and z 3 < z 2 < 1, we see that for r ′ ℓ+1 < r < r ℓ , log µ(B r ℓ (x)) log r ℓ < log(µ(B r ℓ (x)) • r/r ℓ ) log r ≤ log µ(B r (x)) -log K 6 log r .
Thus, the minimum of the function r → log µ(B r (x))/ log r for r ′ ℓ+1 < r < r ′ ℓ is equal to its value at r ℓ , up to an error term that vanishes as ℓ → ∞. Therefore,

lim inf r→0 log µ(B r (x)) log r = lim inf ℓ→∞ log µ(B r ℓ (x)) log r ℓ .
Applying Lemma 2.1, by (2.7), we obtain the lower bound

dim H B({s n }, {t n }, 1) ≥ lim inf ℓ→∞ ℓ i=1 log t i d ℓ+1 i=1 log s i -log t ℓ+1
.

The proof is thus completed.

The remaining two technical lemmas are generalizations of [10, Lemma 2.1]. They are the key to prove the upper bounds of Hausdorff dimension. In the proofs, the Riemann zeta function ζ(•) will be often used.

For m, n ∈ N, a > 0 and ε > 0, let

A(m, n, a, ε) := (i 1 , . . . , i n ) ∈ N n : n k=1 i a k ∈ [m, m(1 + ε)] . For s > 1/d, write G(m, n, a, ε, s) = i 1 •••in∈A(m,n,a,ε) n k=1 i -ds k .
Lemma 2.4. There exist positive constants C 1 = C 1 (a, s), C 2 = C 2 (s), and

C 3 = C 3 (a), such that for all C 3 • (m3 2-n ) -1/a < ε ≤ 1/3, we have G(m, n, a, ε, s) ≤ C 1 C n-1 2 εm 1-ds a .
Proof. The proof goes by induction. First consider the case n = 2. Note

that if i a 1 + i a 2 ∈ [m, m(1 + ε)] then at most one of i a 1 , i a 2 is strictly larger than m(1+ε) 2 . We divide the sum in the definition of G(m, n, a, ε, s) into two parts, one is i a 1 ≤ m(1+ε) 2 , the other is i a 1 > m(1+ε)

2

. However, by permuting i 1 and i 2 , the latter is smaller than the former. Thus,

G(m, 2, a, ε, s) ≤ 2 ( m(1+ε)
2

)

1 a k=1 k -ds (m -k a ) -ds a • N m,a,ε (k), with N m,a,ε (k) := ♯{i 2 : m -k a ≤ i a 2 ≤ m(1 + ε) -k a }. Assuming ε ≤ 1/3, we can estimate for a ≥ 1 N m,a,ε (k) ≤ ⌈a -1 εm(m -k a ) 1 a -1 ⌉ ≤ ⌈εm 1/a • a -1 3 1-1/a ⌉, while for a < 1 N m,a,ε (k) ≤ ⌈a -1 εm(m(1 + ε) -k a ) 1 a -1 ⌉ ≤ ⌈εm 1/a • a -1 (4/3) 1/a-1 ⌉.
That is, in both cases we will get an upper estimation in the form

⌈εm 1/a • C 4 (a)⌉. If z > 1, we can estimate ⌈z⌉ ≤ 2z. Thus, for ε > 1/(m 1/a • C 4 (a)) we have N m,a,ε (k) ≤ 2εm 1/a • C 4 (a).
Hence,

G(m, 2, a, ε, s) ≤2 ( m(1+ε) 2 ) 1 a k=1 k -ds ( m 3 ) -ds a • 2εm 1 a • C 4 (a) ≤4 • ζ(ds) • 3 ds a • C 4 (a) • εm 1-ds a .
(2.8)

Let

C 1 = 2 • 3 ds a C 4 (a), C 2 = 6 • 3 ds-1 a • ζ(ds).
Then by (2.8), we have

G(m, 2, a, ε, s) ≤ C 1 C 2 εm 1-ds a .
Assume now that the assertion is satisfied for all n < N for some N > 2, we will prove by induction that it holds for n = N as well.

As above, there is at most one i k such that i a k > m(1+ε)

2

. Thus the sum of G(m, N, a, ε, s) can be divided into two parts, one is i a 1 ≤ m(1+ε)

2
and the other is i a 1 > m(1+ε)

2

. Again, the latter is smaller than the former because we can permute i 1 and i 2 . Thus

G(m, N, a, ε, s) ≤ 2 ( m(1+ε) 2 ) 1 a k=1 k -ds i 2 •••in∈ A(m,n,k,a,ε) n k=2 i -ds k ,
where

A(m, n, k, a, ε) := (i 2 , . . . , i n ) ∈ N n : n k=2 i a k ∈ [m -k a , m(1 + ε) -k a ] .
Further, observe that 3(mk a )ε ≥ mε. Then the sum range

[m -k a , m(1 + ε) -k a ] in A(m, n, k, a, ε) is covered by the union of [m -k a , (m -k a )(1 + ε)], [(m -k a )(1 + ε), (m -k a )(1 + ε) 2 ],
and

[(m -k a )(1 + ε) 2 , (m -k a )(1 + ε) 3 ].
Hence,

G(m, N, a, ε, s) ≤ 2 ( m(1+ε) 2 ) 1 a k=1 k -ds 2 j=0 G (m -k a )(1 + ε) j , N -1, a, ε, s . Note that (m -k a )(1 + ε) j ≥ m 3 , for j = 0, 1, 2. (2.9)
Substituting the induction assumption, we get

G(m, N, a, ε, s) ≤ 6 • C 1 C N -2 2 ε( m 3 ) 1-ds a ( m(1+ε)
2

)

1 a k=1 k -ds ≤ 6 • 3 ds-1 a C 1 C N -2 2 εm 1-ds a ζ(ds) = C 1 C N -1 2 εm 1-ds a ,
where the last equality comes from the definition of C 2 . Remember, however, when we prove our lemma for the case n = 2, we have assumed

1 m 1/a C 4 (a) < ε ≤ 1/3.
So, by (2.9), when we conduct the induction we need to assume that

1 ( m 3 i ) 1/a C 4 (a) < ε ≤ 1/3, for i = 0, . . . , N -2.
That is, we need to assume

ε ∈ (m3 2-N ) -1/a (C 4 (a)) -1 , 1/3 .
Taking C 3 = 1/C 4 (a), we finish the proof.

The next lemma is very similar. Let

A(m, n, b, ε) := (i 1 , . . . , i n ) ∈ N n : n k=1 e (log i k ) b ∈ [m, m(1 + ε)] ,
and for s > 1/d, write

G(m, n, b, ε, s) = i 1 •••in∈ A(m,n,b,ε) n k=1 i -ds k .
Lemma 2.5. There exists a positive constant C = C(s) such that for all e -(log(m3

2-n )) 1/b < ε ≤ 1/3, we have G(m, n, b, ε, s) ≤ 6 • C n-1 ε • e (1-ds)(log m) 1/b .
Proof. The proof goes again by induction. First, consider the case n = 2. Similar to the proof of Lemma 2.4, we have

G(m, 2, b, ε, s) ≤ 2 e (log(m(1+ε)/2) 1/b k=1 k -ds e -ds(log(m-e (log k) b )) 1/b • N m,b,ε (k), with N m,b,ε (k) := ♯ i 2 : m -e (log k) b ≤ e (log i 2 ) b ≤ m(1 + ε) -e (log k) b .
For ε ≤ 1/3, short calculations give us the following estimation

N m,b,ε (k) ≤ ⌈3ε • e (log m) 1/b ⌉. Hence, if ε > e -(log m) 1/b , N m,b,ε (k) ≤ 6ε • e (log m) 1/b .
Thus, by noting e log(m/3))

1/b ≥ 1 3 e (log m) 1/b , we obtain G(m, 2, b, ε, s) ≤ 12 • 3 ds ζ(ds)e (1-ds)(log m) 1/b .
Assume now that the assertion is satisfied for all n < N for some N > 2, we will prove by induction that it holds for n = N as well. We have

G(m, N, b, ε, s) ≤ 2 e (log(m(1+ε)/2) 1/b k=1 k -ds 2 j=0 G((m-e (log k) b )(1+ε) j , N-1, b, ε, s).

Substituting the induction assumption, we get

G(m, N, b, ε, s) ≤ 12 • 3 ds C N -2 εe (1-ds)(log m) 1/b ζ(ds).
Thus, we have proved the assertion for For these parts of proofs we suppose that the d-decaying Gauss like iterated function system satisfies the distortion property (1.1). We will apply Lemma 2.2.

C = 2 • 3 ds ζ(ds) under the assumption ε ∈ e -(log(m3 2-N )) 1/b , 1/3 .
Note that in all cases we are going to prove, the function Φ is taken as

Φ(n) = e n α . Let ε > 0. Take n k = k The sequence (n k ) k≥1 clearly satisfies lim k→∞ n k /k → ∞ and lim k→∞ n k+1 /n k = 1,
which we will need to eventually apply Lemma 2.2.

We can also check that E M ⊂ E ϕ (Φ). In fact, for any x ∈ E M we have

Φ(n k ) < S n k ϕ(x) < Φ(n k ) + n k ϕ(M).
Since Φ(n)/n → ∞, we see that

S n k ϕ(x) Φ(n k ) → 1.
However, as n k+1 /n k → 1 and S n ϕ is increasing, this is enough to have

lim n→∞ S n ϕ(x) Φ(n) = lim k→∞ S n k ϕ(x)
Φ(n k ) and we are done. Now we need only to check for each case of ϕ in Theorems 1.2-1.5, u k → ∞ as k → ∞, and the condition (2.1) is satisfied. First, notice that

Φ(n k ) -Φ(n k-1 ) = e k 1-ε -e (k-1) 1-ε .
Thus, when ϕ(j) = j a , by Mean Value Theorem, we have

(1 -ε)k -ε e (k-1) 1-ε 1/a ≤ u k ≤ (1 -ε)(k -1) -ε e k 1-ε 1/a ,
and lim k→∞ u k = ∞. Further, if α < 1/2 and ε is small enough,

lim k→∞ 1 n k k j=1 log u j = lim k→∞ k j=1 j 1-ε /a k 1 α (1-ε) = 0.
When ϕ(j) = e (log j) b , then

e (log((1-ε)k -ε e (k-1) 1-ε )) 1/b ≤ u k ≤ e (log((1-ε)(k-1) -ε e k 1-ε )) 1/b , and lim k→∞ u k = ∞. Further, if α < b
b+1 , and ε is small enough,

lim k→∞ 1 n k k j=1 log u j = lim k→∞ k j=1 j 1-ε b k 1 α (1-ε) = 0.
When ϕ(j) = e j c , we have

log((1 -ε)k -ε e (k-1) 1-ε ) 1/c ≤ u k ≤ log((1 -ε)(k -1) -ε e k 1-ε ) 1/c ,
and lim k→∞ u k = ∞. Further, if α < 1 and ε is small enough,

lim k→∞ 1 n k k j=1 log u j = lim k→∞ k j=1 1-ε c log j k 1 α (1-ε) = 0.
Hence, in all cases, lim k→∞ u k = ∞ and the condition (2.1) is satisfied.

Applying Lemma 2.2, we complete the proofs.

3.2. Proof for (I-2) of Theorem 1.5. We will use a natural covering. Suppose Φ(n) = e n α with α > 1. For each x ∈ E ϕ (Φ), for any small ε > 0, and for all large enough n, we have

(1 -ε)Φ(n) ≤ n k=1 ϕ(a k ) ≤ (1 + ε)Φ(n).
Thus

(1 -ε)Φ(n) -(1 + ε)Φ(n -1) ≤ ϕ(a n ) ≤ (1 + ε)Φ(n) -(1 -ε)Φ(n -1).
Note that for α > 1, we have

(1 + ε)Φ(n) -(1 -ε)Φ(n -1) = (1 + ε)e n α -(1 -ε)e (n-1) α ≤ (1 + ε)e n α ,
and

(1 -ε)Φ(n) -(1 + ε)Φ(n -1) = (1 -ε)e n α -(1 + ε)e (n-1) α ≥ (1 -2ε)e n α .
Then

(1 -2ε)e n α ≤ ϕ(a n ) ≤ (1 + ε)e n α .
However, for ϕ(j) = e j c with c ≥ 1, there is at most one j such that

(1 -2ε)e n α ≤ ϕ(j) ≤ (1 + ε)e n α .
Hence, E ϕ (Φ) is a countable set which has Hausdorff dimension 0.

Remaining proofs

We will divide the case I-2 of Theorem 1.2 into two subcases: subcase I-2a for 1/2 < α < 1, and subcase I-2b for α ≥ 1. Similarly, we will divide the case I-2 of Theorem 1.3 into subcase I-2a (b/(b + 1) < α < 1) and subcase I-2b (α ≥ 1).

Theorem 1.2, case II; Theorem 1.2, subcase I-2b; Theorem 1.3, case II; Theorem 1.3, subcase I-2b; Theorem 1.4, case I-2; Theorem 1.4, case II; Theorem 1.4, case III are all obtained by applying Lemma 2.3.

4.1.

Proof of Theorem 1.2, case II. Let x ∈ E ϕ (Φ). Fix some small ε > 0. Then there exists N ∈ N such that for all n > N,

Φ(n)(1 -ε) < S n ϕ(x) < Φ(n)(1 + ε). This implies ϕ(a n (x)) = S n ϕ(x) -S n-1 ϕ(x) ∈ Φ(n)(1 -ε) -Φ(n -1)(1 + ε), Φ(n)(1 + ε) -Φ(n -1)(1 -ε) (4.1)
for n ≥ N. Substituting the formula for Φ, we get ϕ(a n (x)) ∈ e β n (1 -2ε), e β n (1 + 2ε) .

Hence, a further substitution of the formula for ϕ gives us e β n /a (1 -3ε/a) < a n (x) < e β n /a (1 + 3ε/a).

Put s n = e β n /a and t n = 3εe β n /a /a. Then

E ϕ (Φ) ⊂ N B({s n }, {t n }, N).
By Lemma 2.3, we have the upper bound

dim H E ϕ (Φ) ≤ lim inf ℓ→∞ ℓ j=1 log 3εe β j /a /a d ℓ+1
j=1 log e β j /alog 3εe β ℓ+1 /a /a

= lim inf ℓ→∞ ℓ j=1 β j /a d ℓ+1 j=1 β j /a -β ℓ+1 /a = 1 dβ -β + 1 .
On the other hand, let ε n be a sequence of positive numbers converging to 0. Let x ∈ B(e β n /a , ε n e β n /a , 1). For large n we have

e β n (1-ε n ) a < S n ϕ(x) < e β n (1+ε n ) a + n-1 i=1 (1+ε i ) a •e β i < e β n (1+aε n +o(1)).
Thus, E ϕ (Φ) ⊃ B(e β n /a , ε n e β n /a , 1).

Applying Lemma 2.3 and doing almost the same calculation as above, we obtain the lower bound. 4.2. Theorem 1.2, case I-2b. We can repeat the proof of Theorem 1.2, case II. From the formula (4.1), we get

ϕ(a n (x)) ∈ e n α (1 -2ε), e n α (1 + 2ε) .
Hence,

E ϕ (Φ) ⊂ N B(e n α /a , 3εe n α /a /a, N).
On the other hand, for a sequence of positive numbers ε n converging to 0, we have E ϕ (Φ) ⊃ B(e n α /a , ε n e n α /a , 1). Hence,

Applying Lemma 2.3, we have

E ϕ (Φ) ⊂ N B e β n/b , 3ε b β n(1/b-1) e β n/b , N .
On the other hand, for a positive sequence ε n converging to 0, we have

E ϕ (Φ) ⊃ B e β n/b , ε n β n(1/b-1) e β n/b , 1 .
Applying Lemma 2.3, we have Hence,

dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 β j/b d ℓ+1 j=1 β j/b -β (ℓ+1)/b = 1 dβ 1/b -β 1/b + 1 .
E ϕ (Φ) ⊂ N B e n α/b , 3ε b n α(1/b-1) e n α/b , N .
On the other hand, for a sequence of positive numbers ε n converging to 0, we have

E ϕ (Φ) ⊃ B e n α/b , ε n n α(1/b-1) e n α/b , 1 .
Applying Lemma 2.3, we have

dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 j α/b d ℓ+1 j=1 j α/b -(ℓ + 1) α/b = 1 d .
4.5. Theorem 1.4, case I-2. From the formula (4.1), we get

ϕ(a n (x)) ∈ e n α (1 -2ε), e n α (1 + 2ε) .
Hence,

E ϕ (Φ) ⊂ N B n α/c , 3ε c n α(1/c-1) , N .
On the other hand, for a sequence of positive numbers ε n converging to 0, we have

E ϕ (Φ) ⊃ B n α/c , ε n n α(1/c-1) , 1 .
We then apply Lemma 2.3 to obtain

dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 α(1/c -1) log j d ℓ+1 j=1 α/c log j -α(1/c -1) log(ℓ + 1) = 1 -c d .
4.6. Theorem 1.4, case II. From the formula (4.1), we get ϕ(a n (x)) ∈ e β n (1 -2ε), e β n (1 + 2ε) .

Hence, 1) , N .

E ϕ (Φ) ⊂ N B β n/c , 3ε c β n(1/c-
On the other hand, for a positive sequence ε n converging to 0, we have

E ϕ (Φ) ⊃ B β n/c , ε n β n(1/c-1) , 1 .
Applying Lemma 2.3, we obtain Hence,

dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 j(1/c -1) log β d ℓ+1 j=1 j/c log β -(ℓ + 1)(1/c -1) log β = 1 -c d . 4 
E ϕ (Φ) ⊂ N B e 1 c γ n , 3ε c e γ n (1/c-1) , N .
On the other hand, for a positive sequence ε n converging to 0, we have

E ϕ (Φ) ⊃ B e 1 c γ n , ε n e γ n (1/c-1) , 1 .
Applying Lemma 2.3, we get

dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 (1/c -1)γ j d ℓ+1 j=1 1/cγ j -(1/c -1)γ ℓ+1 = 1 -c dγ -(1 -c)(γ -1)
.

We also apply Lemma 2.3 for the lower bounds of Theorem 1.2, subcase I-2a and Theorem 1.3, subcase I-2a. But for the upper bounds we need Lemma 2.4 and Lemma 2.5 respectively. 4.8. Proof of Theorem 1.2, case I-2a. We first show the lower bound. Let x be points such that

ϕ(a n (x)) ∈ αn α-1 e n α (1 -ε n ), αn α-1 e n α (1 + ε n ) . where (ε n ) n≥1 is a summable positive sequence. Then n j=1 αj α-1 e j α (1 -ε j ) ≤ n j=1 ϕ(a j (x)) ≤ n j=1 αj α-1 e j α (1 + ε j ), which implies e n α -2 n j=1 αj α-1 e j α ε j ≤ n j=1 ϕ(a j (x)) ≤ e n α -2 n j=1 αj α-1 e j α ε j . Note that n/2 j=1 αj α-1 e j α ε j ≤ n/2 j=1 αj α-1 e j α ≤ e (n/2) α ,
and by the summability of (ε n ) n≥1 , n j=n/2 αj α-1 e j α ε j ≤ αn α-1 e n α n/2 j=1 ε j = o(e n α ).

Hence, these points x are all in E ϕ (Φ), that is

E ϕ (Φ) ⊃ B (αn α-1 e n α ) 1/a , ε n a (αn α-1 e n α ) 1/a , 1 .
Applying Lemma 2.3, we obtain the lower bound. Now we turn to the upper bound. Take a subsequence n 0 = 1, and n k = Φ -1 (e k ) = k 1/α (k ≥ 1). If x ∈ E ϕ (Φ) then for any ε > 0 there exists an integer N ≥ 1 such that for all k ≥ N, G(m(j), n(j), a, 1/3, s)

≤K sn k 2 C k 1 C n k -k-1 2 3 -k k j=1 m(j)
1-ds a .

As ds > 1, the right hand side is arbitrarily small for large k. This proves the s-dimensional Hausdorff measure H s (F ) = 0 for all s > 1/d. We thus obtain the wanted upper bound.

4.9. Theorem 1.3, case I-2a. For the lower bound, we follow the proof of Theorem 1.2, case I-2a, by taking those points x such that ϕ(a n (x)) ∈ αn α-1 e n α (1ε n ), αn α-1 e n α (1 + ε n ) .

where (ε n ) n≥1 is a summable positive sequence. Then we still have that these points x are all in E ϕ (Φ). By applying the inverse of ϕ, we have E ϕ (Φ) ⊃ B e (n α +log α+(α-1) log n) 1/b , 2ε n b n α(1/b-1) e (n α +log α+(α-1) log n) 1/b , 1 .

Applying Lemma 2.3, we obtain the lower bound.

The proof of the upper bound is also similar to that of Theorem 1.2, case I-2a. The difference is that we need to apply Lemma 2.5 in place of Lemma 2.4.

As in the proof of Theorem 1.2, case I-2a, we take a subsequence n 0 = 1, and n k = Φ -1 (e k ) = k 1/α (k ≥ 1). Denote by A k the set of points for which the block of symbols a G(m(j), n(j), b, 1/3, s)

≤K sn k 2 • 6 k • C n k -k-1 • 3 -k k j=1
e (1-ds)(log m(j)) (here we used the symbol e ∼ appeared in the proof Lemma 2.3). As b+1 b > 1 α , this is the dominating term of (4.2). As ds > 1, this term, and the whole product (4.2), converge to 0 for k → ∞. This proves the s-dimensional Hausdorff measure H s ( F ) = 0 for all s > 1/d. We are done.
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 143 dim H E ϕ (Φ) = lim inf ℓ→∞ ℓ j=1 j α /a d ℓ+1 j=1 j α /a -(ℓ + 1) α /a = Theorem1.3, case II. From the formula (4.1), we get ϕ(a n (x)) ∈ e β n (1 -2ε), e β n (1 + 2ε) .

4. 4 .

 4 Theorem 1.3, case I-2b. From the formula (4.1), we get ϕ(a n (x)) ∈ e n α (1 -2ε), e n α (1 + 2ε) .

( 1 -

 1 ε/5)Φ(n k ) ≤ S n k ϕ(x) ≤ (1 + ε/5)Φ(n k ),and (asΦ(n k ) = e k ) (1-ε/5)e k -(1+ε/5)e k-1 ≤ S n k (x)-S n k-1 (x) ≤ (1+ε/5)e k -(1-ε/5)e k-1 .Observe that(1 + ε/5)e k -(1ε/5)e k-1 < (1ε/5)e k -(1 + ε/5)e k-1 • (1 + ε).

Fix ε = 1 / 3

 13 and denote by A k the set of points for which the block of symbolsa n k-1 +1 (x) • • • a n k (x) in the symbolic expansion of x from the position n k-1 + 1 to n k belongs to the set A (1ε/5)e k -(1 + ε/5)e k-1 , n kn k-1 , a, ε . Then E ϕ (Φ) ⊂ N k≥N A k .Now, we are going to estimate the upper bound of the Hausdorff dimension of F = k≥1 A k . For k≥N A k with N ≥ 2 we have the same bound and the proofs are almost the same. Let us now define n(k) = n k -n k-1 and m(k) = (1-ε/5)e k -(1+ε/5)e k-1 . By the assumption α > 1/2, we have lim k→∞ m(k) • 3 -n(k) = ∞. Thus we can apply Lemma 2.4 to calculate G(m(k), n(k), a, 1/3, s) for all s > 1/d and all k large enough. Hence In k (a 1 ,...,an k )∩F =∅ |I n k (a 1 , . . . , a n k )| s ≤K sn k 2 k j=1

  n k-1 +1 (x) • • • a n k (x) in the symbolic expansion of x from the position n k-1 + 1 to n k belongs to the set A (m(k), n(k), b, 1/3) , with n(k) = n kn k-1 and m(k) = 14 15 e k -16 15 e k-1 . Then E ϕ (Φ) ⊂ N k≥N A k .We need only to estimate the upper bound of the Hausdorff dimension of F = k≥1 A k . By the assumption α > b b+1 > 1 2 , we still havelim k→∞ m(k) • 3 -n(k) = ∞.Thus we can apply Lemma 2.5 to calculate G(m(k), n(k), b, 1/3, s) for all s > 1/d and all k large enough. Hence In k (a 1 ,...,an k )∩F =∅ |I n k (a 1 , . . . , a n k )| s ≤K sn k 2 k j=1

  1/b . (4.2) Note that log m(j) ≈ j and n k = k 1/α . Thus k j=1 e (1-ds)(log m(j)) 1/b e ∼ e (1-ds) b b+1 k b+1 b

  The second technical lemma is an improved version of [4, Lemma 3.2], [6, Proof of Theorem 1.3], [10, Lemma 2.2] and [11, Lemma 2.2]. We often apply it for the lower bounds of Hausdorff dimension. However, we will see that it is also useful for upper bounds. Let {s n } n≥1 , {t n } n≥1 be two positive real sequences. Assume that s n > t n , s n , t n → ∞ as n → ∞, and

	(2.6)	lim inf n→∞	s n -t n s n	> 0.

  a ℓ ). corresponding D ℓ (a 1 , . . . , a ℓ ). By the condition (5) of Definition 1.1, and the assumption (2.6), each I ℓ (a 1 , . . . , a ℓ ) is of size

	At level ℓ, we have		
					e ∼ ℓ i=1 s -d i . Moreover,
		|D s ℓ+1 +t ℓ+1	i -d e ∼ t ℓ+1 s -d ℓ+1 .
		i=s ℓ+1 -t ℓ+1
	we need	e ∼ ℓ i=1 t i of them, each of size	e ∼ t ℓ+1	ℓ+1 i=1 s -d i . Therefore, by reg-
	ular calculation, we can obtain the upper bound
		dim H B({s n }, {t n }, 1) ≤ lim inf ℓ→∞	ℓ i=1 log t i i=1 log s i -log t ℓ+1 d ℓ+1

e

∼ ℓ i=1 t i intervals I ℓ (a 1 , . . . , a ℓ ) and thus e ∼ ℓ i=1 t i ℓ (a 1 , . . . , a ℓ )| |I ℓ (a 1 , . . . , a ℓ )| e ∼ Thus, using for a given ℓ the sets D ℓ (a 1 , . . . , a ℓ ) as a cover for B({s n }, {t n }, 1),

  µ(D ℓ (a 1 , . . . , a ℓ ))

			e ∼ ℓ i=1 t -1 i	and r ℓ	e ∼ t ℓ+1	ℓ+1 i=1 s -d i , we have
	(2.7)	lim inf ℓ→∞	log µ(B r ℓ (x)) log r ℓ	= lim inf ℓ→∞	ℓ i=1 log t i i=1 log s i -log t ℓ+1 d ℓ+1	.

α (1-ε) and u k = ϕ -1 (Φ(n k ) -Φ(n k-1 )).
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