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BIG BIRKHOFF SUMS IN d-DECAYING GAUSS LIKE
ITERATED FUNCTION SYSTEMS

LINGMIN LIAO AND MICHAŁ RAMS

Abstract. The increasing rate of the Birkhoff sums in the infinite it-
erated function systems with polynomial decay of the derivative (for
example the Gauss map) is studied. For different unbounded potential
functions, the Hausdorff dimensions of the sets of points whose Birkhoff
sums share the same increasing rate are obtained.

1. Introduction

Denote by N = {1, 2, . . . } the set of positive integers. Consider the so-

called Gauss infinite iterated function system {Tn}n∈N on the unit interval

[0, 1] defined by

Tn(x) :=
1

x+ n
for x ∈ [0, 1].

It is well-known that the limit set of the Gauss iterated function system

is the set of all irrational numbers in the unit interval [0, 1]. In fact, for

any x ∈ [0, 1] \Q, there exists a unique infinite sequence (a1, a2, . . . ) ∈ NN

satisfying

x = lim
n→∞

Ta1 ◦ · · · ◦ Tan(1) =
1

a1 +
1

a2 +
1

a3 +
. . .

.

The latter is the regular continued fraction expansion of x. The digits aj =

aj(x) are called the partial quotients of x in its continued fraction expansion.

For any n ≥ 1, denote Sn(x) =
∑n

j=1 aj(x). In the literature, we are

interested in the sum Sn(x) of partial quotients which is a special Birkhoff

sum with respect to the Gauss iterated function system {Tn}n≥1. In fact, the

functions Tn are inverse branches of the Gauss transformation T : [0, 1] →

[0, 1] defined by

T (0) := 0, and T (x) :=
1

x
(mod 1), for x ∈ (0, 1].
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Then a1(x) = ⌊x−1⌋ (⌊·⌋ stands for the integer part) and aj(x) = a1(T
j−1(x))

for j ≥ 2. Thus

Sn(x) =

n∑

j=1

aj(x) =

n∑

j=1

a1(T
j−1x)

is a Birkhoff sum of the potential function x 7→ a1(x) with respect to the

Gauss transformation.

In 1935, Khintchine [8] showed that Sn(x)/(n logn) converges in measure

(Lebesgue measure) to the constant 1/ log 2. In 1988, Philipp [14] proved

that there is no normalizing sequence Φ(n) such that Sn(x)/Φ(n) converges

to a positive constant Lebesgue almost surely. Motivated by such a phe-

nomenon, people then turn to study the sums Sn(x) from the point of view

of multifractal analysis. Precisely, one is concerned with the Hausdorff di-

mension of the sets

E(Φ) =

{
x ∈ (0, 1) : lim

n→∞

Sn(x)

Φ(n)
= 1

}
,

where Φ : N → R+ is an increasing function. When Φ(n)/n has a finite

limit as n → ∞, E(Φ) is the classical level set of Birkhoff averages, and

its Hausdorff dimension has been determined by Iommi and Jordan [5].

The particular attention is thus paid to the cases when the sums Sn(x) are

bigger, that is, when

lim
n→∞

Φ(n)

n
= ∞.

In this direction, if Φ(n) = na with a ∈ (1,∞) or Φ(n) = exp(nα) with

α ∈ (0, 1/2), Wu and Xu [16] proved that dimH E(Φ) = 1. Here and in what

follows, dimH stands for the Hausdorff dimension. Later, Xu [17] proved

that if Φ(n) = exp(nα) with α ∈ [1,∞) then dimH E(Φ) = 1/2; and if

Φ(n) = exp(βn) with β > 1 then dimH E(Φ) = 1/(β + 1). The gap for the

case Φ(n) = exp(nα) with α ∈ [1/2, 1) was finally filled by the authors in

[10] where we proved that dimH E(Φ) = 1/2 for all α ∈ [1/2, 1). Hence there

is a jump of Hausdorff dimension from 1 to 1/2 for the class Φ(n) = exp(nα)

at α = 1/2.

The present paper aims at generalizing the above results on the Birkhoff

sums of the potential x 7→ a1(x) in Gauss infinite iterated function system

associated to continued fractions to Birkhoff sums of a general potential

function in some general infinite function systems. We are especially inter-

ested in big Birkhoff sums. Before stating our main results, let us give some

notations and definitions.
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Definition 1.1. Let d > 1 be a real number. A family {fn}n∈N of C1 maps

from the interval [0, 1] to itself is called a d-decaying Gauss like iterated

function system if the following properties are satisfied:

(1) for any i, j ∈ N, fi((0, 1)) ∩ fj((0, 1)) = ∅;

(2)
⋃∞

i=1 fi([0, 1]) = [0, 1);

(3) if fi(x) < fj(x) for all x ∈ (0, 1) then i < j;

(4) there exists m ∈ N and 0 < A < 1 such that for all (a1, ..., am) ∈ Nm

and for all x ∈ [0, 1]

0 < |(fa1 ◦ · · · ◦ fam)
′(x)| ≤ A < 1;

(5) for any δ > 0, we can find two constants K1 = K1(δ), K2 = K2(δ) >

0 such that for i ∈ N there exist constants ξi, λi such that

∀x ∈ [0, 1],
K1

id+δ
≤ ξi ≤ |f ′

i(x)| ≤ λi ≤
K2

id−δ
.

We have a natural projection Π : NN → [0, 1] defined by

Π(a) = lim
n→∞

fa1 ◦ · · · ◦ fan(1).

The image Π(NN) is called the limit set of the iterated function system. The

set Π(NN) is always equal to [0, 1] minus an at most countable set. Moreover,

the map Π is bijective, except possibly at a countable set of points where it

can be 2-to-1. See [12, Chapter 1] for more details. The inverse of Π gives for

points x ∈ [0, 1] their symbolic expansions in NN. The symbolic expansion is

unique for most points, but there can exist countably many points that have

zero or two symbolic expansions. When the symbolic expansion is unique,

we write x = (a1(x), a2(x), . . .) the expansion of x ∈ [0, 1].

For each n ∈ N, and each word a1 · · · an ∈ Nn, the set

In(a1, · · · , an) = fa1 ◦ · · · ◦ fan([0, 1])

is called a basic interval of order n or an n-basic interval. Except for a

countable set, the n-basic interval In(a1, · · · , an) is identical with the set of

points x ∈ [0, 1] whose symbolic expansions begin with a1, · · · , an. Write

In(x) the n-basic interval containing x ∈ [0, 1].

Denote by |I| the diameter of an interval I. We say the d-decaying Gauss

like iterated function system {fn}n∈N satisfies the bounded distortion prop-

erty if there exist positive constants K3 and K4 such that for any two finite

words a1a2 · · · an ∈ Nn and b1b2 · · · bm ∈ Nm, we have

K3 ≤
|In+m(a1, · · · , an, b1, · · · , bm)|

|In(a1, · · · , an)| · |Im(b1, · · · , bm)|
≤ K4.(1.1)
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We remark that the bounded distortion property is usually stated as that

there exists a constant K5 > 0 such that for any word a1 · · · an ∈ Nn and

any x, y ∈ In(a1, . . . , an),

1

K5

≤

∣∣∣∣
(fa1 ◦ · · · ◦ fan)

′(x)

(fa1 ◦ · · · ◦ fan)
′(y)

∣∣∣∣ ≤ K5.(1.2)

By the Mean Value Theorem, one can easily check that if (1.2) holds then

(1.1) holds with K3 = 1/K2
5 , and K4 = K2

5 .

The bounded distortion is satisfied for any finite or countable conformal

iterated function systems, in particular it is satisfied for the classical Gauss

infinite iterated function system. However, it is usually not satisfied for

nonuniformly hyperbolic iterated function systems, like the iterated func-

tion systems associated to the Manneville-Pomeau map and the backward

continued fraction map.

Consider a potential function ϕ : [0, 1] → R+, such that ϕ is a constant

on the interior of I1(j) for all j ∈ N. For all j ∈ N, for simplicity, in what

follows, we denote by ϕ(j) the constant value of ϕ on the interior of 1-basic

interval I1(j). Without confusion, we also consider ϕ as a function from N

to R+. For n ∈ N, the n-th Birkhoff sum of ϕ at x ∈ (0, 1) is defined by

Snϕ(x) =
n∑

k=1

ϕ(ak), if x ∈ In(a1, · · · , an).

We remark that except for a countable set, the above Birkhoff sums are well

defined.

For a positive growth rate function Φ : N → R+, we are interested in the

following set

Eϕ(Φ) :=

{
x ∈ (0, 1) : lim

n→∞

Snϕ(x)

Φ(n)
= 1

}
.(1.3)

We will calculate dimH Eϕ(Φ). As in the Gauss iterated function system,

when Φ(n)/n has a finite limit as n → ∞, the set Eϕ(Φ) is the classical level

set of Birkhoff averages and its Hausdorff dimension has been well studied in

[15, 7, 4, 5, 3, 9], and many other papers. In this paper we will consider the

case when Φ(n)/n → ∞ as n → ∞, thus necessarily the potential function

ϕ is unbounded in [0, 1].

We obtain the following multifractal analysis results on the Hausdorff

dimension of Eϕ(Φ), according to different choices of ϕ and Φ. We will see

that as in the case of Gauss iterated function system, the jump of Hausdorff

dimension also happens but at different places.

Theorem 1.2. Suppose ϕ(j) = ja for all j ≥ 1, with a > 0.

(I) When Φ(n) = en
α

with α > 0, we have
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β = 1+0 α = 1
2

1
d

1

dimH Eϕ(Φ)

1
dβ−β+1

exponential en
α

super-exponential eβ
n

Figure 1. dimH Eϕ(Φ) for ϕ(j) = ja.

(I-1) dimH Eϕ(Φ) = 1 if α < 1
2

and the distortion property (1.1) holds;

(I-2) dimH Eϕ(Φ) = 1/d if α > 1
2
.

(II) When Φ(n) = eβ
n

with β > 1, we have dimH Eϕ(Φ) =
1

dβ−β+1
.

Theorem 1.3. Suppose ϕ(j) = e(log j)
b

for all j ≥ 1, with b > 1.

(I) When Φ(n) = en
α

with α > 0, we have

(I-1) dimH Eϕ(Φ) = 1 if α < b
b+1

and the distortion property (1.1) holds;

(I-2) dimH Eϕ(Φ) = 1/d if α > b
b+1

.

(II) When Φ(n) = eβ
n

with β > 1, we have dimH Eϕ(Φ) =
1

dβ
1
b −β

1
b +1

.

Theorem 1.4. Suppose ϕ = ej
c

for all j ≥ 1, with 0 < c < 1.

(I) When Φ(n) = en
α

with α > 0, we have

(I-1) dimH Eϕ(Φ) = 1 if α < 1 and the distortion property (1.1) holds;

(I-2) dimH Eϕ(Φ) =
1−c
d

if α > 1.

(II) When Φ(n) = eβ
n

with β > 1, we have dimH Eϕ(Φ) =
1−c
d

.

(III) When Φ(n) = ee
γn

with γ > 1, we have dimH Eϕ(Φ) =
1−c

dγ−(1−c)(γ−1)
.

Theorem 1.5. Suppose ϕ(j) = ej
c
for all j ≥ 1, with c ≥ 1. When Φ(n) =

en
α
, with α > 0, we have

(I-1) dimH Eϕ(Φ) = 1 if α < 1 and the distortion property (1.1) holds;

(I-2) dimH Eϕ(Φ) = 0 if α ≥ 1.

The Hausdorff dimensions in Theorems 1.2-1.5 are depicted in Figures

1-4.
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β = 1+0 α = b
b+1

1
d

1

dimH Eϕ(Φ)

1

dβ
1
b −β

1
b +1

exponential en
α

super-exponential eβ
n

Figure 2. dimH Eϕ(Φ) for ϕ(j) = e(log j)
b
.

β = 1+0 α = 1
2

γ = 1+

1−c
d

1

dimH Eϕ(Φ)

1−c
dγ−(1−c)(γ−1)

exponential en
α

super-exp eβ
n

sup-sup-exp ee
γn

Figure 3. dimH Eϕ(Φ) for ϕ = ej
c

with 0 < c < 1.

Remark 1.6. The critical cases α = 1
2

in Theorems 1.2, α = b
b+1

in The-

orem 1.3, and α = 1 in Theorems 1.4 and 1.5 are not investigated in this

paper. However, Theorem 1.2 in [10] suggests that the Hausdorff dimension

function has jumps at these points.

Remark 1.7. Theorem 1.2 was announced in [10, Theorem 4.1], but with

an erroneous formula in the part (iii) (now part II).

Remark 1.8. For simplicity, in our proofs, we assume δ = 0 in the condition

(5) of Definition 1.1 of the d-decaying Gauss like iterated function system.

For the general case, the proofs are the same. We need only to replace d by
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α = 10

1

dimH Eϕ(Φ)

exponential en
α

Figure 4. dimH Eϕ(Φ) for ϕ = ej
c

with c ≥ 1.

d+ δ for the lower bound and by d− δ for the upper bound, then take the

limit δ → 0.

To prove our main theorems, we give four technical lemmas in Section

2. Lemma 2.2 is useful to prove full Hausdorff dimension results. Lemma

2.3 is mainly devoted to proving a lower bound of Hausdorff dimension

(sometimes, we can also use it for upper bound). Lemmas 2.4 and 2.5 are two

combinatorial lemmas serving for the upper bounds of Hausdorff dimension.

We believe that our lemmas have independent interests for the future study

on multifractal anlysis and Diophantine approximation in infinite iterated

function systems or interval maps with infinitely many branches which are

often associated to some expansions of numbers. We also stress that though

some preliminary versions of our lemmas have already appeared in [16],

[17], [4] and [10], some more efforts are needed to make them applicable

for more general settings. Our lemmas are non-trivial generalizations of the

corresponding results in [16], [17], [4] and [10].

The rest of the paper is organized as follows. In Section 3, we give the

proofs for (I-1) of Theorems 1.2-1.5 and (I-2) of Theorem 1.5. The remaining

proofs are given in the last section.

In the whole paper, for simplicity, for two real sequences {f(n)}n≥1 and

{g(n)}n≥1, we will use the symbol f(n) ≈ g(n) to denote f(n)/g(n) =

1 + o(1), or more precisely

lim
n→∞

f(n)

g(n)
= 1.
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The symbol f(n) ≍ g(n) means that there exist two positive constants C1

and C2 such that

C1 ≤
f(n)

g(n)
≤ C2.

2. Technical lemmas

In this section, we will prove four technical lemmas. Before giving the four

technical lemmas and their proofs, let us first state a variant of Mass Dis-

tribution Principle ([1, Principle 4.2]), sometimes called Billingsley Lemma

in the literature, which is a main tool for the lower bound estimation of

Hausdorff dimension.

Denote by Br(x) the ball with center x ∈ R and radius r > 0.

Lemma 2.1 (see [2] Proposition 2.3). Let E ⊂ R be a Borel set and let µ

be a finite Borel measure. If the local dimension

lim inf
r→0

log µ(Br(x))

log r
≥ s

for all x ∈ E and µ(E) > 0, then dimH E ≥ s.

Now, let us go to the four technical lemmas. The first technical lemma

serves for the proof of full dimension in the theorems, i.e., the proofs for

(I-1) of Theorems 1.2-1.5.

Recalling Remark 1.8, we remind that we assume δ = 0 in the condition

(5) of Definition 1.1 through all of our proofs.

Let (nk)k≥1 be a positive sequence satisfying nk/k → ∞ and nk+1/nk →

1 as k → ∞. Let (uk)k≥1 be a positive sequence such that uk → ∞ as

k → ∞ and

(2.1) lim
k→∞

1

nk

k∑

j=1

log uj = 0.

For each M ∈ N, set

EM := {x ∈ (0, 1) : ank
(x) = uk, and 1 ≤ aj(x) ≤ M if j 6= nk}.

Then we have the following lemma whose idea comes from the proof of [16,

Theorem 1.4].

Lemma 2.2. Suppose the d-decaying Gauss like iterated function system

{fn}n∈N satisfies the distortion property (1.1). Let (nk)k≥1, (uk)k≥1 and EM

be defined as above. Then we have

lim
M→∞

dimH EM = 1.
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Proof. For any k ≥ 1, let Ink
(a1 · · ·ank

) be an nk-basic interval intersecting

EM . By the condition (5) of Definition 1.1 and the distortion property (1.1),

we have

|Ink
| ≥ K2k−1

3 Kk
1

k∏

j=1

|Inj−nj−1−1(anj−1+1, · · · , anj−1)| · a
−d
nj
,

where by convention n0 = 0.

Let s(M) be the Hausdorff dimension of the set of points x such that all

aj(x) ≤ M . Then s(M) is increasing to 1 as M → ∞, see for example, [12,

Theorem 3.15]. Further, there exists a probability measure ν living on [0, 1]

and a positive constant CM such that for any basic interval In(a1, . . . , an)

we have

ν(In(a1, . . . , an)) ≤ CM |In(a1, . . . , an)|
2s(M)−1.

Define a probability measure µ on each basic interval Ink
intersecting

EM by

µ(Ink
) =

k∏

j=1

ν(Inj−nj−1−1(anj−1+1, · · · , anj−1)).

By Kolmogorov Consistence Theorem, µ is well defined and is supported on

EM .

Then for each x ∈ EM , we have

|Ink
(x)|2s(M)−1 ≥ (K2k−1

3 Kk
1 )

2s(M)−1C−k
M µ(Ink

(x))

(
k∏

j=1

a−d
nj

)2s(M)−1

.(2.2)

Observe that (2.1) means that limk→∞
1
nk

∑k
j=1 log anj

= 0, while the

part (4) of of Definition 1.1 implies that

(2.3) log |Ink
(x)| ≤

logA

m
nk.

Thus, using (2.2) and (2.3), by simple calculations, we have

(2.4)
log µ(Ink

(x))

log |Ink
(x)|

≥ 2s(M)− 1− o(1)

for large k.

This allows us to estimate the local dimension lim infr→0
log µ(Br(x))

log r
of the

measure µ at x. Let us first observe the following two facts.

Fact 1. Let x ∈ EM . For r = |Ink
(x)|,

Br(x) ∩ EM ⊂ Ink
(x).

Indeed, note that for x ∈ EM , ank
(x) = uk and fuk

([0, 1]) = I1(uk).

By Mean Value Theorem and the condition (5) of Definition 1.1, the basic

interval I1(uk) has length ≍u−d
k (remind that we assume δ = 0). Further by
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conditions (2) and (3) of Definition 1.1, on the left of I1(uk), there are all

I1(j) with 1 ≤ j ≤ uk − 1. Thus the distance of I1(uk) to 0 is

≍
uk−1∑

j=1

j−d ≍ 1.

While on the right of I1(uk), there are all I1(j) with j ≥ uk + 1. Thus the

distance of I1(uk) to 1 is

≍
∞∑

j=uk+1

j−d ≍ u−d+1
k .

Therefore I1(uk) lies in distance larger than ≍u−d+1
k from the endpoints

{0, 1}.

Now, notice that the pair (Ink
(x), Ink−1(x)) is the image of the pair

(I1(uk), [0, 1]) under the map fa1 ◦ . . . ◦ fank−1 . Moreover, by the bounded

distortion property (1.1), we have

uk−1∑

j=1

|Ink
[a1, · · · , ank−1, j]| ≍

(
uk−1∑

j=1

|I1(j)|

)
· Ink−1[a1, · · · , ank−1],

and
∞∑

uk+1

|Ink
[a1, · · · , ank−1, j]| ≍

(
∞∑

uk+1

|I1(j)|

)
· Ink−1[a1, · · · , ank−1].

Thus, the distance of Ink
(x) from the endpoints of Ink−1(x) is at least a

constant multiplied by

u−d+1
k

u−d
k

|Ink
(x)| = uk|Ink

(x)|,

which, by the assumption limk→∞ uk = ∞, is much larger than 3 · |Ink
(x)|.

Hence, the ball Br(x) with r = |Ink
(x)| will never intersect another (nk−1)-

basic interval.

By the definition of EM , inside Ink−1(x) there is only one nk-basic interval

(which is Ink
(x)) intersecting EM . Thus we obtain the assertion of the fact.

Fact 2. When k → ∞,

log |Ink+1
(x)|

log |Ink
(x)|

→ 1.

Indeed, by the condition (5) of Definition 1.1, and the distortion property

(1.1), we have

|Ink+1
(x)|

|Ink
(x)|

≥ K3
nk+1−nk · (K1M

−d)nk+1−nk ·K1 · u
−d
k+1.(2.5)

By the hypothesis nk+1/nk → 1, we have (nk+1 − nk)/nk → 0. Then the

statement follows from the formulae (2.1), (2.3) and (2.5).
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The first fact implies that when r = |Ink
(x)| we can use (2.4) in the local

dimension calculation. The second fact implies that we do not need to check

any r not of the form r = |Ink
(x)|. Thus, by Lemma 2.1, we have

dimH EM ≥ 2s(M)− 1.

Passing with M to infinity, we complete the proof of the lemma.

�

The second technical lemma is an improved version of [4, Lemma 3.2],

[6, Proof of Theorem 1.3], [10, Lemma 2.2] and [11, Lemma 2.2]. We often

apply it for the lower bounds of Hausdorff dimension. However, we will see

that it is also useful for upper bounds.

Let {sn}n≥1, {tn}n≥1 be two positive real sequences. Assume that sn > tn,

sn, tn → ∞ as n → ∞, and

lim inf
n→∞

sn − tn
sn

> 0.(2.6)

For N ∈ N, let

B({sn}, {tn}, N) :=
{
x ∈ (0, 1) : sn − tn ≤ an(x) ≤ sn + tn, ∀n ≥ N

}
.

We remark that when n is large, by the assumption tn → ∞, we can always

have integers choices for an in the interval [sn − tn, sn + tn]. However, for

the first terms, there might be no positive integer in the interval [sn −

tn, sn+ tn], and hence the set B({sn}, {tn}, N) is empty. There is no interest

to study such an empty set. Without loss of generality, by modifying the

values of finitely many first terms, we always assume that our sequences

{sn}, {tn}) are such that B({sn}, {tn}, N) is nonempty. Further, we will see

from our formula of the Hausdorff dimension of B({sn}, {tn}, N) that the

modification of the first finite number of terms of the sequences will not

change the Hausdorff dimension.

Lemma 2.3. We have

dimH B({sn}, {tn}, N) = lim inf
ℓ→∞

∑ℓ
i=1 log ti

d
∑ℓ+1

i=1 log si − log tℓ+1

.

Proof. Within this proof, we write f(n)
e
∼ g(n) if f(n) and g(n) differ by

at most an exponential factor, that is

lim sup
n→∞

1

n

∣∣∣∣log
f(n)

g(n)

∣∣∣∣ < ∞.

We give the proof for the case N = 1. For the general case, note that

B({sn}, {tn}, N) =
⋃

a1···aN−1∈NN−1

fa1 ◦ · · · ◦ faN−1
(B({sn+N−1}, {tn+N−1}, 1))
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is a countable union of bi-Lipschitz images of B({sn+N−1}, {tn+N−1}, 1).

Since the bi-Lipschitz maps preserve the Hausdorff dimension, we have

dimH B({sn}, {tn}, N) = dimH B({sn+N−1}, {tn+N−1}, 1).

On the other hand, notice that the dimensional formula of the lemma we

will obtain does not depend on the finite number of first terms of the two

sequences {sn} and {tn}, we then have

dimH B({sn}, {tn}, N) = dimH B({sn}, {tn}, 1).

Fix ℓ ≥ 1. Let Iℓ(a1, . . . , aℓ) be an ℓ-basic interval with nonempty inter-

section with B({sn}, {tn}, 1). Then for each 1 ≤ k ≤ ℓ, ak ∈ [sk−tk, sk+tk].

Define

Dℓ(a1, . . . , aℓ) :=
{
x ∈ Iℓ(a1, . . . , aℓ) : aℓ+1(x) ∈ [sℓ+1 − tℓ+1, sℓ+1 + tℓ+1]

}
.

We have

B({sn}, {tn}, 1) =
∞⋂

ℓ=1

⋃

a1,...,aℓ
ai∈[si−ti,si+ti]

Iℓ(a1, . . . , aℓ)

=
∞⋂

ℓ=1

⋃

a1,...,aℓ
ai∈[si−ti,si+ti]

Dℓ(a1, . . . , aℓ).

At level ℓ, we have
e
∼
∏ℓ

i=1 ti intervals Iℓ(a1, . . . , aℓ) and thus
e
∼
∏ℓ

i=1 ti

corresponding Dℓ(a1, . . . , aℓ). By the condition (5) of Definition 1.1, and

the assumption (2.6), each Iℓ(a1, . . . , aℓ) is of size
e
∼
∏ℓ

i=1 s
−d
i . Moreover,

|Dℓ(a1, . . . , aℓ)|

|Iℓ(a1, . . . , aℓ)|
e
∼

sℓ+1+tℓ+1∑

i=sℓ+1−tℓ+1

i−d e
∼ tℓ+1s

−d
ℓ+1.

Thus, using for a given ℓ the sets Dℓ(a1, . . . , aℓ) as a cover for B({sn}, {tn}, 1),

we need
e
∼
∏ℓ

i=1 ti of them, each of size
e
∼ tℓ+1

∏ℓ+1
i=1 s

−d
i . Therefore, by reg-

ular calculation, we can obtain the upper bound

dimH B({sn}, {tn}, 1) ≤ lim inf
ℓ→∞

∑ℓ
i=1 log ti

d
∑ℓ+1

i=1 log si − log tℓ+1

.

To get the lower bound, we consider a probability measure µ uniformly

distributed on B({sn}, {tn}, 1), in the following sense. By the definition

of B({sn}, {tn}, 1), when a1, . . . , aℓ−1 are fixed, aℓ can only take finitely

many values sℓ − tℓ, . . . , sℓ + tℓ. Then the conditional probability of every

possible value of aℓ (conditioned on a1, . . . , aℓ−1) is chosen to be equal, that

is equal to 1/(2tℓ + 1). The basic intervals Iℓ(a1, . . . , aℓ) and corresponding

Dℓ(a1, . . . , aℓ) have the measure
e
∼
∏ℓ

i=1 t
−1
i .
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Our goal is to apply Lemma 2.1, hence we need to calculate the local

dimension of the measure µ at a µ-typical point x ∈ B({sn}, {tn}, 1). Fix any

x ∈ B({sn}, {tn}, 1). Denote by rℓ the diameter of the set Dℓ(a1(x), . . . , aℓ(x))

and by r′ℓ the diameter of Iℓ(a1(x), . . . , aℓ(x)). When r = rℓ, we have

logµ(Br(x))

log r
=

log µ(Brℓ(x))

log rℓ
=

log µ(Dℓ(a1(x), . . . , aℓ(x)))

log rℓ
.

Since µ(Dℓ(a1, . . . , aℓ))
e
∼
∏ℓ

i=1 t
−1
i and rℓ

e
∼ tℓ+1

∏ℓ+1
i=1 s

−d
i , we have

lim inf
ℓ→∞

log µ(Brℓ(x))

log rℓ
= lim inf

ℓ→∞

∑ℓ
i=1 log ti

d
∑ℓ+1

i=1 log si − log tℓ+1

.(2.7)

For rℓ < r < r′ℓ, the ball Br(x) still does not intersect any point from

B({sn}, {tn}, 1) \ Dℓ(a1(x), . . . , aℓ(x)), hence it has the same measure as

Brℓ(x), but a larger diameter. Thus, for rℓ < r < r′ℓ,

logµ(Brℓ(x))

log rℓ
<

log µ(Br(x))

log r
.

Finally, since each basic interval Iℓ+1(a1(x), . . . , aℓ(x), j) contained in

Dℓ(a1(x), . . . , aℓ(x)) has the same measure and approximately the same di-

ameter, we have for r′ℓ+1 < r < rℓ,

µ(Br(x)) ≤
2r

r′ℓ+1

·
K2

K1
(
sℓ+1 + tℓ+1

sℓ+1 − tℓ+1
)d ·

µ(Brℓ(x))

2tℓ+1
.

Since
2rℓ

r′ℓ+12tℓ+1
≤ 2 ·

K2

K1
(
sℓ+1 + tℓ+1

sℓ+1 − tℓ+1
)d,

we have

µ(Br(x)) ≤ 2 ·

(
K2

K1

(
sℓ+1 + tℓ+1

sℓ+1 − tℓ+1

)d
)2

· µ(Brℓ(x)) ·
r

rℓ
.

By (2.6), there is a constant K6 > 0, such that

2 ·

(
K2

K1
(
sℓ+1 + tℓ+1

sℓ+1 − tℓ+1
)d
)2

≤ K6.

Applying the obvious fact that

log z1z2
log z1z3

>
log z2
log z3

for all z1 < 1 and z3 < z2 < 1, we see that for r′ℓ+1 < r < rℓ,

logµ(Brℓ(x))

log rℓ
<

log(µ(Brℓ(x)) · r/rℓ)

log r
≤

log µ(Br(x))− logK6

log r
.
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Thus, the minimum of the function r → logµ(Br(x))/ log r for r′ℓ+1 <

r < r′ℓ is equal to its value at rℓ, up to an error term that vanishes as ℓ → ∞.

Therefore,

lim inf
r→0

logµ(Br(x))

log r
= lim inf

ℓ→∞

log µ(Brℓ(x))

log rℓ
.

Applying Lemma 2.1, by (2.7), we obtain the lower bound

dimH B({sn}, {tn}, 1) ≥ lim inf
ℓ→∞

∑ℓ
i=1 log ti

d
∑ℓ+1

i=1 log si − log tℓ+1

.

The proof is thus completed. �

The remaining two technical lemmas are generalizations of [10, Lemma

2.1]. They are the key to prove the upper bounds of Hausdorff dimension.

In the proofs, the Riemann zeta function ζ(·) will be often used.

For m,n ∈ N, a > 0 and ε > 0, let

A(m,n, a, ε) :=

{
(i1, . . . , in) ∈ Nn :

n∑

k=1

iak ∈ [m,m(1 + ε)]

}
.

For s > 1/d, write

G(m,n, a, ε, s) =
∑

i1···in∈A(m,n,a,ε)

n∏

k=1

i−ds
k .

Lemma 2.4. There exist positive constants C1 = C1(a, s), C2 = C2(s), and

C3 = C3(a), such that for all C3 · (m32−n)−1/a < ε ≤ 1/3, we have

G(m,n, a, ε, s) ≤ C1C
n−1
2 εm

1−ds
a .

Proof. The proof goes by induction. First consider the case n = 2. Note

that if ia1 + ia2 ∈ [m,m(1 + ε)] then at most one of ia1, i
a
2 is strictly larger

than m(1+ε)
2

. We divide the sum in the definition of G(m,n, a, ε, s) into two

parts, one is ia1 ≤ m(1+ε)
2

, the other is ia1 > m(1+ε)
2

. However, by permuting

i1 and i2, the latter is smaller than the former. Thus,

G(m, 2, a, ε, s) ≤ 2

(
m(1+ε)

2
)
1
a∑

k=1

k−ds(m− ka)−
ds
a ·Nm,a,ε(k),

with Nm,a,ε(k) := ♯{i2 : m− ka ≤ ia2 ≤ m(1 + ε)− ka}.

Assuming ε ≤ 1/3, we can estimate for a ≥ 1

Nm,a,ε(k) ≤ ⌈a−1εm(m− ka)
1
a
−1⌉ ≤ ⌈εm1/a · a−131−1/a⌉,

while for a < 1

Nm,a,ε(k) ≤ ⌈a−1εm(m(1 + ε)− ka)
1
a
−1⌉ ≤ ⌈εm1/a · a−1(4/3)1/a−1⌉.
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That is, in both cases we will get an upper estimation in the form

⌈εm1/a · C4(a)⌉.

If z > 1, we can estimate ⌈z⌉ ≤ 2z. Thus, for ε > 1/(m1/a · C4(a)) we

have

Nm,a,ε(k) ≤ 2εm1/a · C4(a).

Hence,

G(m, 2, a, ε, s)

≤2

(m(1+ε)
2

)
1
a∑

k=1

k−ds(
m

3
)−

ds
a · 2εm

1
a · C4(a)

≤4 · ζ(ds) · 3
ds
a · C4(a) · εm

1−ds
a .

(2.8)

Let

C1 = 2 · 3
ds
a C4(a), C2 = 6 · 3

ds−1
a · ζ(ds).

Then by (2.8), we have

G(m, 2, a, ε, s) ≤ C1C2εm
1−ds

a .

Assume now that the assertion is satisfied for all n < N for some N > 2,

we will prove by induction that it holds for n = N as well.

As above, there is at most one ik such that iak > m(1+ε)
2

. Thus the sum

of G(m,N, a, ε, s) can be divided into two parts, one is ia1 ≤
m(1+ε)

2
and the

other is ia1 >
m(1+ε)

2
. Again, the latter is smaller than the former because we

can permute i1 and i2. Thus

G(m,N, a, ε, s) ≤ 2

(
m(1+ε)

2
)
1
a∑

k=1

k−ds
∑

i2···in∈Ã(m,n,k,a,ε)

n∏

k=2

i−ds
k ,

where

Ã(m,n, k, a, ε) :=

{
(i2, . . . , in) ∈ Nn :

n∑

k=2

iak ∈ [m− ka, m(1 + ε)− ka]

}
.

Further, observe that 3(m− ka)ε ≥ mε. Then the sum range

[m− ka, m(1 + ε)− ka]

in Ã(m,n, k, a, ε) is covered by the union of

[m− ka, (m− ka)(1 + ε)], [(m− ka)(1 + ε), (m− ka)(1 + ε)2],

and

[(m− ka)(1 + ε)2, (m− ka)(1 + ε)3].
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Hence,

G(m,N, a, ε, s) ≤ 2

(
m(1+ε)

2
)
1
a∑

k=1

k−ds
2∑

j=0

G
(
(m− ka)(1 + ε)j, N − 1, a, ε, s

)
.

Note that

(m− ka)(1 + ε)j ≥
m

3
, for j = 0, 1, 2.(2.9)

Substituting the induction assumption, we get

G(m,N, a, ε, s) ≤ 6 · C1C
N−2
2 ε(

m

3
)
1−ds

a

(m(1+ε)
2

)
1
a∑

k=1

k−ds

≤ 6 · 3
ds−1

a C1C
N−2
2 εm

1−ds
a ζ(ds)

= C1C
N−1
2 εm

1−ds
a ,

where the last equality comes from the definition of C2. Remember, however,

when we prove our lemma for the case n = 2, we have assumed

1

m1/aC4(a)
< ε ≤ 1/3.

So, by (2.9), when we conduct the induction we need to assume that

1

(m
3i
)1/aC4(a)

< ε ≤ 1/3, for i = 0, . . . , N − 2.

That is, we need to assume

ε ∈
(
(m32−N)−1/a(C4(a))

−1, 1/3
]
.

Taking C3 = 1/C4(a), we finish the proof. �

The next lemma is very similar. Let

Â(m,n, b, ε) :=

{
(i1, . . . , in) ∈ Nn :

n∑

k=1

e(log ik)
b

∈ [m,m(1 + ε)]

}
,

and for s > 1/d, write

Ĝ(m,n, b, ε, s) =
∑

i1···in∈Â(m,n,b,ε)

n∏

k=1

i−ds
k .

Lemma 2.5. There exists a positive constant Ĉ = Ĉ(s) such that for all

e−(log(m32−n))1/b < ε ≤ 1/3, we have

Ĝ(m,n, b, ε, s) ≤ 6 · Ĉn−1ε · e(1−ds)(logm)1/b .
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Proof. The proof goes again by induction. First, consider the case n = 2.

Similar to the proof of Lemma 2.4, we have

Ĝ(m, 2, b, ε, s) ≤ 2

e(log(m(1+ε)/2)1/b∑

k=1

k−dse−ds(log(m−e(log k)b ))1/b · N̂m,b,ε(k),

with

N̂m,b,ε(k) := ♯
{
i2 : m− e(log k)

b

≤ e(log i2)
b

≤ m(1 + ε)− e(log k)
b
}
.

For ε ≤ 1/3, short calculations give us the following estimation

N̂m,b,ε(k) ≤ ⌈3ε · e(logm)1/b⌉.

Hence, if ε > e−(logm)1/b ,

N̂m,b,ε(k) ≤ 6ε · e(logm)1/b .

Thus, by noting elog(m/3))1/b ≥ 1
3
e(logm)1/b , we obtain

Ĝ(m, 2, b, ε, s) ≤ 12 · 3dsζ(ds)e(1−ds)(logm)1/b .

Assume now that the assertion is satisfied for all n < N for some N > 2,

we will prove by induction that it holds for n = N as well. We have

Ĝ(m,N, b, ε, s) ≤ 2

e(log(m(1+ε)/2)1/b∑

k=1

k−ds
2∑

j=0

Ĝ((m−e(log k)
b

)(1+ε)j, N−1, b, ε, s).

Substituting the induction assumption, we get

Ĝ(m,N, b, ε, s) ≤ 12 · 3dsĈN−2εe(1−ds)(logm)1/bζ(ds).

Thus, we have proved the assertion for

Ĉ = 2 · 3dsζ(ds)

under the assumption

ε ∈
(
e−(log(m32−N ))1/b , 1/3

]
.

�

3. Proofs for (I-1) of Theorems 1.2-1.5 and (I-2) of Theorem

1.5

3.1. Proofs for (I-1) of Theorems 1.2-1.5. For these parts of proofs we

suppose that the d-decaying Gauss like iterated function system satisfies

the distortion property (1.1). We will apply Lemma 2.2.

Note that in all cases we are going to prove, the function Φ is taken as

Φ(n) = en
α
. Let ε > 0. Take nk = k

1
α
(1−ε) and uk = ϕ−1(Φ(nk)− Φ(nk−1)).
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The sequence (nk)k≥1 clearly satisfies

lim
k→∞

nk/k → ∞ and lim
k→∞

nk+1/nk = 1,

which we will need to eventually apply Lemma 2.2.

We can also check that EM ⊂ Eϕ(Φ). In fact, for any x ∈ EM we have

Φ(nk) < Snk
ϕ(x) < Φ(nk) + nkϕ(M).

Since Φ(n)/n → ∞, we see that

Snk
ϕ(x)

Φ(nk)
→ 1.

However, as nk+1/nk → 1 and Snϕ is increasing, this is enough to have

lim
n→∞

Snϕ(x)

Φ(n)
= lim

k→∞

Snk
ϕ(x)

Φ(nk)

and we are done.

Now we need only to check for each case of ϕ in Theorems 1.2-1.5,

uk → ∞ as k → ∞, and the condition (2.1) is satisfied. First, notice that

Φ(nk)− Φ(nk−1) = ek
1−ε

− e(k−1)1−ε

.

Thus, when ϕ(j) = ja, by Mean Value Theorem, we have
(
(1− ε)k−εe(k−1)1−ε)1/a

≤ uk ≤
(
(1− ε)(k − 1)−εek

1−ε)1/a
,

and limk→∞ uk = ∞. Further, if α < 1/2 and ε is small enough,

lim
k→∞

1

nk

k∑

j=1

log uj = lim
k→∞

∑k
j=1 j

1−ε/a

k
1
α
(1−ε)

= 0.

When ϕ(j) = e(log j)
b
, then

e(log((1−ε)k−εe(k−1)1−ε
))1/b ≤ uk ≤ e(log((1−ε)(k−1)−εek

1−ε
))1/b ,

and limk→∞ uk = ∞. Further, if α < b
b+1

, and ε is small enough,

lim
k→∞

1

nk

k∑

j=1

log uj = lim
k→∞

∑k
j=1 j

1−ε
b

k
1
α
(1−ε)

= 0.

When ϕ(j) = ej
c
, we have

log((1− ε)k−εe(k−1)1−ε

)1/c ≤ uk ≤ log((1− ε)(k − 1)−εek
1−ε

)1/c,

and limk→∞ uk = ∞. Further, if α < 1 and ε is small enough,

lim
k→∞

1

nk

k∑

j=1

log uj = lim
k→∞

∑k
j=1

1−ε
c

log j

k
1
α
(1−ε)

= 0.

Hence, in all cases, limk→∞ uk = ∞ and the condition (2.1) is satisfied.

Applying Lemma 2.2, we complete the proofs.



BIG BIRKHOFF SUMS IN d-DECAYING GAUSS LIKE SYSTEMS 19

3.2. Proof for (I-2) of Theorem 1.5. We will use a natural covering.

Suppose Φ(n) = en
α

with α > 1. For each x ∈ Eϕ(Φ), for any small ε > 0,

and for all large enough n, we have

(1− ε)Φ(n) ≤
n∑

k=1

ϕ(ak) ≤ (1 + ε)Φ(n).

Thus

(1− ε)Φ(n)− (1 + ε)Φ(n− 1) ≤ ϕ(an) ≤ (1 + ε)Φ(n)− (1− ε)Φ(n− 1).

Note that for α > 1, we have

(1 + ε)Φ(n)− (1− ε)Φ(n− 1) = (1 + ε)en
α

− (1− ε)e(n−1)α ≤ (1 + ε)en
α

,

and

(1− ε)Φ(n)− (1 + ε)Φ(n− 1) = (1− ε)en
α

− (1 + ε)e(n−1)α ≥ (1− 2ε)en
α

.

Then

(1− 2ε)en
α

≤ ϕ(an) ≤ (1 + ε)en
α

.

However, for ϕ(j) = ej
c

with c ≥ 1, there is at most one j such that

(1− 2ε)en
α

≤ ϕ(j) ≤ (1 + ε)en
α

.

Hence, Eϕ(Φ) is a countable set which has Hausdorff dimension 0.

4. Remaining proofs

We will divide the case I-2 of Theorem 1.2 into two subcases: subcase

I-2a for 1/2 < α < 1, and subcase I-2b for α ≥ 1. Similarly, we will divide

the case I-2 of Theorem 1.3 into subcase I-2a (b/(b + 1) < α < 1) and

subcase I-2b (α ≥ 1).

Theorem 1.2, case II; Theorem 1.2, subcase I-2b; Theorem 1.3, case II;

Theorem 1.3, subcase I-2b; Theorem 1.4, case I-2; Theorem 1.4, case II;

Theorem 1.4, case III are all obtained by applying Lemma 2.3.

4.1. Proof of Theorem 1.2, case II. Let x ∈ Eϕ(Φ). Fix some small

ε > 0. Then there exists N ∈ N such that for all n > N ,

Φ(n)(1− ε) < Snϕ(x) < Φ(n)(1 + ε).

This implies

ϕ(an(x)) = Snϕ(x)− Sn−1ϕ(x)

∈
(
Φ(n)(1− ε)− Φ(n− 1)(1 + ε), Φ(n)(1 + ε)− Φ(n− 1)(1− ε)

)(4.1)

for n ≥ N . Substituting the formula for Φ, we get

ϕ(an(x)) ∈
(
eβ

n

(1− 2ε), eβ
n

(1 + 2ε)
)
.
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Hence, a further substitution of the formula for ϕ gives us

eβ
n/a(1− 3ε/a) < an(x) < eβ

n/a(1 + 3ε/a).

Put sn = eβ
n/a and tn = 3εeβ

n/a/a. Then

Eϕ(Φ) ⊂
⋃

N

B({sn}, {tn}, N).

By Lemma 2.3, we have the upper bound

dimH Eϕ(Φ) ≤ lim inf
ℓ→∞

∑ℓ
j=1 log 3εe

βj/a/a

d
∑ℓ+1

j=1 log e
βj/a − log 3εeβℓ+1/a/a

= lim inf
ℓ→∞

∑ℓ
j=1 β

j/a

d
∑ℓ+1

j=1 β
j/a− βℓ+1/a

=
1

dβ − β + 1
.

On the other hand, let εn be a sequence of positive numbers converging

to 0. Let x ∈ B(eβ
n/a, εne

βn/a, 1). For large n we have

eβ
n

(1−εn)
a < Snϕ(x) < eβ

n

(1+εn)
a+

n−1∑

i=1

(1+εi)
a ·eβ

i

< eβ
n

(1+aεn+o(1)).

Thus,

Eϕ(Φ) ⊃ B(eβ
n/a, εne

βn/a, 1).

Applying Lemma 2.3 and doing almost the same calculation as above, we

obtain the lower bound.

4.2. Theorem 1.2, case I-2b. We can repeat the proof of Theorem 1.2,

case II. From the formula (4.1), we get

ϕ(an(x)) ∈
(
en

α

(1− 2ε), en
α

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B(en
α/a, 3εen

α/a/a, N).

On the other hand, for a sequence of positive numbers εn converging to 0,

we have

Eϕ(Φ) ⊃ B(en
α/a, εne

nα/a, 1).

Applying Lemma 2.3, we have

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1 j

α/a

d
∑ℓ+1

j=1 j
α/a− (ℓ+ 1)α/a

=
1

d
.
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4.3. Theorem 1.3, case II. From the formula (4.1), we get

ϕ(an(x)) ∈
(
eβ

n

(1− 2ε), eβ
n

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B
(
eβ

n/b

,
3ε

b
βn(1/b−1)eβ

n/b

, N
)
.

On the other hand, for a positive sequence εn converging to 0, we have

Eϕ(Φ) ⊃ B
(
eβ

n/b

, εnβ
n(1/b−1)eβ

n/b

, 1
)
.

Applying Lemma 2.3, we have

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1 β

j/b

d
∑ℓ+1

j=1 β
j/b − β(ℓ+1)/b

=
1

dβ1/b − β1/b + 1
.

4.4. Theorem 1.3, case I-2b. From the formula (4.1), we get

ϕ(an(x)) ∈
(
en

α

(1− 2ε), en
α

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B
(
en

α/b

,
3ε

b
nα(1/b−1)en

α/b

, N
)
.

On the other hand, for a sequence of positive numbers εn converging to 0,

we have

Eϕ(Φ) ⊃ B
(
en

α/b

, εnn
α(1/b−1)en

α/b

, 1
)
.

Applying Lemma 2.3, we have

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1 j

α/b

d
∑ℓ+1

j=1 j
α/b − (ℓ+ 1)α/b

=
1

d
.

4.5. Theorem 1.4, case I-2. From the formula (4.1), we get

ϕ(an(x)) ∈
(
en

α

(1− 2ε), en
α

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B
(
nα/c,

3ε

c
nα(1/c−1), N

)
.

On the other hand, for a sequence of positive numbers εn converging to 0,

we have

Eϕ(Φ) ⊃ B
(
nα/c, εnn

α(1/c−1), 1
)
.

We then apply Lemma 2.3 to obtain

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1 α(1/c− 1) log j

d
∑ℓ+1

j=1 α/c log j − α(1/c− 1) log(ℓ+ 1)
=

1− c

d
.
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4.6. Theorem 1.4, case II. From the formula (4.1), we get

ϕ(an(x)) ∈
(
eβ

n

(1− 2ε), eβ
n

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B
(
βn/c,

3ε

c
βn(1/c−1), N

)
.

On the other hand, for a positive sequence εn converging to 0, we have

Eϕ(Φ) ⊃ B
(
βn/c, εnβ

n(1/c−1), 1
)
.

Applying Lemma 2.3, we obtain

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1 j(1/c− 1) log β

d
∑ℓ+1

j=1 j/c logβ − (ℓ+ 1)(1/c− 1) log β
=

1− c

d
.

4.7. Theorem 1.4, case III. From the formula (4.1), we get

ϕ(an(x)) ∈
(
ee

γn

(1− 2ε), ee
γn

(1 + 2ε)
)
.

Hence,

Eϕ(Φ) ⊂
⋃

N

B
(
e

1
c
γn

,
3ε

c
eγ

n(1/c−1), N
)
.

On the other hand, for a positive sequence εn converging to 0, we have

Eϕ(Φ) ⊃ B
(
e

1
c
γn

, εne
γn(1/c−1), 1

)
.

Applying Lemma 2.3, we get

dimH Eϕ(Φ) = lim inf
ℓ→∞

∑ℓ
j=1(1/c− 1)γj

d
∑ℓ+1

j=1 1/cγ
j − (1/c− 1)γℓ+1

=
1− c

dγ − (1− c)(γ − 1)
.

We also apply Lemma 2.3 for the lower bounds of Theorem 1.2, subcase

I-2a and Theorem 1.3, subcase I-2a. But for the upper bounds we need

Lemma 2.4 and Lemma 2.5 respectively.

4.8. Proof of Theorem 1.2, case I-2a. We first show the lower bound.

Let x be points such that

ϕ(an(x)) ∈
(
αnα−1en

α

(1− εn), αnα−1en
α

(1 + εn)
)
.

where (εn)n≥1 is a summable positive sequence. Then
n∑

j=1

αjα−1ej
α

(1− εj) ≤
n∑

j=1

ϕ(aj(x)) ≤
n∑

j=1

αjα−1ej
α

(1 + εj),

which implies

en
α

− 2

n∑

j=1

αjα−1ej
α

εj ≤
n∑

j=1

ϕ(aj(x)) ≤ en
α

− 2

n∑

j=1

αjα−1ej
α

εj.
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Note that
n/2∑

j=1

αjα−1ej
α

εj ≤

n/2∑

j=1

αjα−1ej
α

≤ e(n/2)
α

,

and by the summability of (εn)n≥1,

n∑

j=n/2

αjα−1ej
α

εj ≤ αnα−1en
α

n/2∑

j=1

εj = o(en
α

).

Hence, these points x are all in Eϕ(Φ), that is

Eϕ(Φ) ⊃ B
(
(αnα−1en

α

)1/a,
εn
a
(αnα−1en

α

)1/a, 1
)
.

Applying Lemma 2.3, we obtain the lower bound.

Now we turn to the upper bound.

Take a subsequence n0 = 1, and nk = Φ−1(ek) = k1/α (k ≥ 1). If

x ∈ Eϕ(Φ) then for any ε > 0 there exists an integer N ≥ 1 such that for

all k ≥ N ,

(1− ε/5)Φ(nk) ≤ Snk
ϕ(x) ≤ (1 + ε/5)Φ(nk),

and (as Φ(nk) = ek)

(1−ε/5)ek−(1+ε/5)ek−1 ≤ Snk
(x)−Snk−1

(x) ≤ (1+ε/5)ek−(1−ε/5)ek−1.

Observe that

(1 + ε/5)ek − (1− ε/5)ek−1 <
(
(1− ε/5)ek − (1 + ε/5)ek−1

)
· (1 + ε).

Fix ε = 1/3 and denote by Ak the set of points for which the block

of symbols ank−1+1(x) · · · ank
(x) in the symbolic expansion of x from the

position nk−1 + 1 to nk belongs to the set

A
(
(1− ε/5)ek − (1 + ε/5)ek−1, nk − nk−1, a, ε

)
.

Then

Eϕ(Φ) ⊂
⋃

N

⋂

k≥N

Ak.

Now, we are going to estimate the upper bound of the Hausdorff dimension

of F =
⋂

k≥1Ak. For
⋂

k≥N Ak with N ≥ 2 we have the same bound and the

proofs are almost the same.

Let us now define n(k) = nk−nk−1 and m(k) = (1−ε/5)ek−(1+ε/5)ek−1.

By the assumption α > 1/2, we have limk→∞m(k) · 3−n(k) = ∞. Thus we
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can apply Lemma 2.4 to calculate G(m(k), n(k), a, 1/3, s) for all s > 1/d

and all k large enough. Hence
∑

Ink
(a1,...,ank

)∩F 6=∅

|Ink
(a1, . . . , ank

)|s

≤Ksnk
2

k∏

j=1

G(m(j), n(j), a, 1/3, s)

≤Ksnk
2 Ck

1C
nk−k−1
2 3−k

k∏

j=1

m(j)
1−ds

a .

As ds > 1, the right hand side is arbitrarily small for large k. This proves

the s-dimensional Hausdorff measure

Hs(F ) = 0

for all s > 1/d. We thus obtain the wanted upper bound.

4.9. Theorem 1.3, case I-2a. For the lower bound, we follow the proof

of Theorem 1.2, case I-2a, by taking those points x such that

ϕ(an(x)) ∈
(
αnα−1en

α

(1− εn), αnα−1en
α

(1 + εn)
)
.

where (εn)n≥1 is a summable positive sequence. Then we still have that

these points x are all in Eϕ(Φ). By applying the inverse of ϕ, we have

Eϕ(Φ) ⊃ B
(
e(n

α+logα+(α−1) logn)1/b ,
2εn
b

nα(1/b−1)e(n
α+logα+(α−1) logn)1/b , 1

)
.

Applying Lemma 2.3, we obtain the lower bound.

The proof of the upper bound is also similar to that of Theorem 1.2, case

I-2a. The difference is that we need to apply Lemma 2.5 in place of Lemma

2.4.

As in the proof of Theorem 1.2, case I-2a, we take a subsequence n0 = 1,

and nk = Φ−1(ek) = k1/α (k ≥ 1). Denote by Âk the set of points for which

the block of symbols ank−1+1(x) · · · ank
(x) in the symbolic expansion of x

from the position nk−1 + 1 to nk belongs to the set

Â (m(k), n(k), b, 1/3) ,

with n(k) = nk − nk−1 and m(k) = 14
15
ek − 16

15
ek−1. Then

Eϕ(Φ) ⊂
⋃

N

⋂

k≥N

Âk.

We need only to estimate the upper bound of the Hausdorff dimen-

sion of F̂ =
⋂

k≥1 Âk. By the assumption α > b
b+1

> 1
2
, we still have
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limk→∞m(k) · 3−n(k) = ∞. Thus we can apply Lemma 2.5 to calculate

Ĝ(m(k), n(k), b, 1/3, s) for all s > 1/d and all k large enough. Hence
∑

Ink
(a1,...,ank

)∩F 6=∅

|Ink
(a1, . . . , ank

)|s

≤Ksnk
2

k∏

j=1

Ĝ(m(j), n(j), b, 1/3, s)

≤Ksnk
2 · 6k · Ĉnk−k−1 · 3−k

k∏

j=1

e(1−ds)(logm(j))1/b .(4.2)

Note that logm(j) ≈ j and nk = k1/α. Thus

k∏

j=1

e(1−ds)(logm(j))1/b e
∼ e(1−ds) b

b+1
k
b+1
b

(here we used the symbol
e
∼ appeared in the proof Lemma 2.3). As b+1

b
> 1

α
,

this is the dominating term of (4.2). As ds > 1, this term, and the whole

product (4.2), converge to 0 for k → ∞. This proves the s-dimensional

Hausdorff measure

Hs(F̂ ) = 0

for all s > 1/d. We are done.
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