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Potential of EPR Spin-Trapping to Investigate in situ Free Radicals Generation 

from Skin Allergens in Reconstructed Human Epidermis: Cumene Hydroperoxide 

as Proof of Concept 

The first step in the development of skin sensitization to a chemical, and in the elicitation of 

further allergic contact dermatitis, is the binding of the allergen to skin proteins after penetration 

into the epidermis. The so formed antigenic adduct is then recognized by the immune system as 

foreign to the body. Sensitizing organic hydroperoxides derived from autoxidation of natural 

terpenes are believed to form antigens through radical-mediated mechanisms, although this has 

not yet been established. So far, in vitro investigations on reactive radical intermediates derived 

from these skin sensitizers have been conducted in solution, yet with experimental conditions 

being far away from real life sensitization. In here we report for the first time, the potential use of 

EPR spin-trapping to study the in situ generation of free radicals derived from cumene 

hydroperoxide CumOOH in a 3D reconstructed human epidermis model RHE, thus much closer 

to what may happen in vivo. Among the undesirable effects associated to dermal exposure to 

CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant 

sensitizer. We considered exploiting usage of spin-trap DEPMPO as an extensive view of all sort 

of radicals deriving from CumOOH were observed all at once in solution. We showed that in the 

EpiskinTM RHE model, both by incubating in the assay medium or by topical application, carbon 

radicals are mainly formed and this through redox reactions suggesting a key role of CumOOH 

derived carbon radicals in the antigen formation process. 

 

Keywords: skin sensitizers, radicals, EPR spectroscopy, spin-trapping, reconstructed human epidermis 

 



 
3 

Introduction 

Allergic contact dermatitis (ACD) is the clinically relevant outcome of skin sensitization, one of the 

most important occupational and environmental health issues. It is a delayed-type hypersensitivity 

reaction, and the most frequent expression of immunotoxicity in humans [1]. Prevalence is rising 

worldwide, and exposure to allergens and the risk of skin sensitization have become an essential 

regulatory issue within industry. Thus it is nowadays crucial to predict the sensitization potential of 

chemicals before their marketing authorization to perform reliable risk assessment. In this context, 

more upstream investigations are required aiming at understanding molecular mechanisms involved in 

allergic-inflammatory reactions induced by sensitizers to cover all categories of molecules for risk 

assessment. 

Chemical skin allergens (haptens) are low molecular weight compounds unable to stimulate by 

themselves an adaptive immune response after penetration into the epidermis. Immunogenicity is 

attained by their reaction with skin proteins, forming stable antigenic conjugates recognized and 

processed for presentation to the immune system [2]. The usual mechanism for the hapten-protein 

interaction is the formation of covalent bonds via two electrons mechanisms. However, some allergens 

do not fit this model. In this case, there is a real belief that radical-mediated mechanisms are involved 

in the antigen formation [3]. 

Many natural terpenes widely used as fragrances in consumer goods are excellent targets for 

autoxidation and form allylic hydroperoxides (ROOHs) on air exposure. It has been shown that these 

ROOHs are frequent causes of ACD, form specific antigens and act as skin sensitizers [4]. We believe 

that sensitizing ROOHs form antigens via radical mechanisms starting with the cleavage of the O-O 

bond of weak dissociation energy (175 kJ mol–1). Such cleavage is an easy process allowing unstable 

alkoxyl (RO•)/peroxyl (ROO•) radicals to efficiently convert to longer half-life carbon centered radicals 

(R•) via intramolecular cyclization, fragmentation and/or hydrogen abstraction. 



 
4 

Our studies are focused on the identification of radical species derived from sensitizing ROOHs 

and on the study of their involvement in ACD for risk assessment purposes. We reported previously 

free radical generation from a range of ROOHs studied by EPR spin-trapping, specifically employed 

for the characterization of transient radicals in chemical and biological systems. Basically, the formed 

radical (either too short-lived or of too low concentration to be directly detected) reacts with a 

diamagnetic reagent (spin-trap) to form a more persistent radical (spin-adduct), whose EPR signature 

might be function on the trapped transient reactive species. The use of spin-traps 5-diethoxy-

phosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) 

allowed the identification of different oxygen and carbon centered free radicals derived from ROOHs 

[5-7]. Such studies revealed that several reactive radical intermediates could issue from the ROOHs 

depending on their chemical structure, suggesting that different immunogenic protein chemical 

modifications could lead to sensitization. However, such studies were carried out in solution (aqueous 

buffer or semiorganic), far from mimicking real life scenario. 

The aim here was to transfer the EPR spin-trapping methodology developed in solution to the 

potential investigation of free radicals formation issued from ROOHs in a reconstructed human 

epidermis (RHE) 3D model, thus much closer to what may happen in vivo. RHE consist of normal 

multi-layered keratinocyte cultures, being the major cell type in the epidermis and playing a key role in 

skin inflammatory reactions. EPR has been used for dermatological purposes and skin research mainly 

for the detection of free radicals in UV-irradiated skin, melanoma investigation and in vivo EPR 

imaging directly in skin of human volunteers [8-10], but never in the skin allergy field. In this report we 

describe the technology transfer by using cumene hydroperoxide (CumOOH) as proof of concept and 

model for ROOHs. CumOOH is a common reference compound in EPR investigations [11-13], and it 

has also been reported as a significant sensitizer in guinea-pigs, with positive specific responses 

reported in allergy cross-reactivity studies with allergenic cyclohexene hydroperoxides [4]. 
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Materials and Methods 

Studies in Solution 

Chemicals and Reagents 

CumOOH, PBN (98%) and DMPO were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, 

France) and used as received. DEPMPO was synthesized as reported in the literature [14]. HEPES (≥ 

99.5 %), ferrous sulfate heptahydrate FeSO4.7H2O and acetonitrile CH3CN (99.8%) were acquired 

from Sigma-Aldrich (Saint-Quentin Fallavier, France). Aqueous solutions were prepared with 

deionized water. 

EPR Experiments 

EPR spectra were recorded on an EPR X-band spectrometer (EMXplus, Bruker Biospin GmbH, 

Germany), equipped with a high sensitivity resonator (HSW, Bruker Biospin GmbH, Germany). The g 

calibration was performed using Bruker standard (strong pitch) with known isotropic g factor of 2.0028. 

The principal experimental parameters values were: microwave power 4.5 mW, modulation amplitude 

0.5 to 1 G, for a resulting sweep time of ca. 120 s for a single scan. Up to 2 scans were accumulated to 

improve the signal-to-noise ratio. Spectra were recorded at room temperature (295K±1K). As fast as 

possible after reagents mixing, the resulting sample was introduced into a glass capillary (Hirschmann, 

25 µL), sealed at both ends and rapidly transferred into the EPR cavity for measurement.  

General Procedure in Solution 

HEPES buffer solution (10 mM, pH 6.8) was prepared by dissolving 1.19 g HEPES in 400 mL 

deionized water, with additional 4 g NaCl and 0.1 g KCl. To attain pH 6.8 NaOH pellets were added. If 

the pH went too high, it was lowered back by carefully adding HCl until pH remained stable to 6.8. 

Finally, deionized water was added for a final volume of 500 mL. 

Stock solutions were prepared for CumOOH (5.4 mM, HEPES/CH3CN 9/1), the spin-traps (100 

mM in HEPES) and FeSO4.7H2O (10 mM in deionized water). 12.5 µL of spin-trap solution were 
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mixed with FeSO4.7H2O (i. e. 0.5 µL for a final concentration in the reaction mixture of 0.1 mM), 5 µL 

CumOOH solution added and final volume completed to 50 µL.  This way, final concentrations in the 

reaction mixture were 25 mM spin-trap and 0.54 mM CumOOH. The reaction mixture was subjected to 

stirring, further introduced into the EPR quartz capillary tube, sealed on both ends, and EPR spectra 

registered. 

Reconstructed Human Epidermis Studies 

Chemicals and Reagents 

EpiskinTM (Lyon, France) is an in vitro reconstructed human epidermis (RHE) from normal human 

keratinocytes cultured for 13 days on a collagen matrix at the air-liquid interface. It is a 3D epidermis 

model histologically similar to human epidermis. The small 0.38 cm2 format was chosen for the 

studies. Immediately after arrival in the laboratory, the 3D reconstructed epidermis were removed from 

the agarose-nutrient solution in the shipping multiwell plate under a sterile airflow. Then, they were 

immediately placed in a plate in which each well was previously filled with 2 mL EpiskinTM 

maintenance or growth medium at room temperature. It was necessary to act quickly as the tissue 

cultures dry out rapidly when not in contact with medium. Samples were placed in the incubator at 37 

°C, 5% CO2 and saturated humidity, at least 24 h before incubation. EpiskinTM (Lyon, France) 

furnished the assay medium used for incubations. 

EPR Experiments 

EPR spectra were recorded on an EPR X-band spectrometer (ESP300E, Bruker Biospin GmbH, 

Germany), equipped with a standard TE102 rectangular resonator (Bruker Biospin GmbH, Germany). 

The g calibration was performed using Bruker standard (strong pitch) with known isotropic g factor of 

2.0028. The principal experimental parameters values were: microwave power of 5-10 mW, 

modulation amplitude 1 to 2 G, and resulting sweep time of ca. 164 s to 328 s for a single scan. Up to 4 

scans were accumulated to improve the signal-to-noise ratio. Spectra were recorded at room 
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temperature (295K±1K) as soon as possible after incubating the reagents. RHE were placed in an EPR 

tissue cell equipped with a silica window (Willmad, #ER162TC-Q) and resulting EPR spectra recorded 

in situ right afterwards.  

General Procedure in RHE 

Incubation in the Assay Medium: CumOOH (200 µL of 5.4 mM HEPES/CH3CN 9/1 stock solution) 

and DEPMPO (100 µL of 500 mM stock solution in HEPES) were introduced in a mixture of 300 µL 

assay medium and 1400 µL of HEPES buffer. The RHE model was then placed in a well containing 

this mixture. After 2 h incubation, RHE was placed in the EPR tissue cell and EPR spectra recorded. 

Incubation by Topical Application to the RHE: RHE were topically treated with CumOOH in acetone 

(1 mM, 20 µL) and post incubated (37 °C, 5% CO2) different time periods (1 min to 2 h). After the 

incubation time, the RHE were placed in the EPR tissue cell and DEPMPO (50 mM in HEPES buffer, 

20 µL) was applied to the epidermis taking care to ensure that the solution was only applied to it. EPR 

spectra were then recorded. 

EPR Simulations 

All experimental EPR spectra were analyzed by means of computer simulation using labmade scripts 

based on Easyspin toolbox (http://www.easyspin.org) under Matlab (Mathworks) environment [15]. 
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Results 

Studies in Solution 

Studies in solution were carried out to set up the optimal experimental conditions providing a good 

signal-to-noise ratio while keeping low CumOOH concentrations, i.e. suitable with physiological 

conditions. α-Phenyl-N-tert-butylnitrone (PBN), DMPO and DEPMPO were used as complementary 

spin-traps to obtain a comprehensive picture of all radicals being formed. Spin-adducts are formed by 

addition of transient short-lived radicals to the α-C of the nitronyl group of the spin-traps. PBN and 

DMPO are commonly used in biological media, but their low resistance to bio reductions of their spin-

adducts limit potential in vivo applications. DEPMPO produces spin-adducts with longer lifetime, 

particularly for the superoxide and alkylperoxyl radicals adducts [16,17]. 

Radical initiation was triggered by Fe(II) induced Fenton reaction. Spin-traps, in 10 mM buffer, 

were employed in an excess concentration (25 mM) with respect to CumOOH (0.54 mM). The spin-

trap solution was mixed with aqueous ferrous sulfate (0-1.7 mM), CumOOH added and the mixture 

subjected to conventional field-swept continuous wave-EPR spectroscopy (cw-EPR) in a glass 

capillary after different reaction times (1 min to 2 h). Initial tests were carried out in phosphate buffer 

(pH 7.4) but we observed that Fe(II) concentration was a limiting factor in the generation of radical 

species as Fe(II)-catalyzed CumOOH oxidation was inhibited at low Fe(II) concentrations [18] (see 

Supplementary Material for experimental data). The use of HEPES buffer of better stability at 

physiological pH resolved this problem: (i) similar EPR spectra were observed in HEPES solutions and 

(ii) Fe(II) initiation was efficient instantly at catalytic concentrations (0.1 mM). 

Relevant 14N, 1H, 31P hyperfine coupling constants (hfccs) of detected spin-adducts are listed in 

Table 1. Scheme 1 suggests mechanisms explaining 1-8 formation. (Table 1 and Scheme1 around here) 

Experiments with PBN and DMPO provided an initial basis of radicals trapped while DEPMPO 

gave the most complete information. Very briefly, we assigned adduct 1 to a PBN-carbon centered 
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radical adduct, probably the •CH3 generated by β-scission of CumO• radicals [18]. Adduct 2 with hfccs 

also characteristic of trapped carbon radicals was observed too but at higher Fe(II) concentrations (≥ 

0.5 mM) (see Supplementary Material). In the literature, 2 has been reported only in presence of amino 

acids or ethanol in the reaction mixtures, which was not the case here [18-20]. A hypothetical 

explanation could be trapping of oxaspiro radicals in equilibrium with CumO•, which are suspected 

intermediates in known O-neophyl rearrangement processes [21,22]. DMPO-OCH3 spin-adduct 3 was 

detected at catalytic Fe(II) levels (0.1 mM), and •CH3/HO• radicals also formed and trapped (4, 5) at 

higher Fe(II) concentrations [23] (see Supplementary Material). 

DEPMPO was undoubtedly more valuable when compared to PBN or DMPO as a broad view of 

all sort of radicals deriving from CumOOH were observed all at once with catalytic Fe(II) 

concentration as low as 0.1 mM (Fig. 1b). Higher Fe(II) concentrations resulted simply in ratio changes 

of radicals formed (Fig. 1a). We attributed the EPR spectrum shown in Fig. 1b to a mixture of spin-

adducts formed by trapping hydroxyl HO• (6, Fig. 1d), carbon centered (7a/7b, Fig. 1e/1f), CH3O• 

and/or possible peroxyl CumOO• radicals (8, Fig. 1g) [24]. (Figure 1 around here) In the experimental 

spectra it is shown two low-field/high-field overlapping EPR lines that correspond to carbon centered 

radicals. These could be two stereoisomers (7a/7b) since it is known that DEPMPO can produce stereo-

specific adducts [25]. The same should be observed theoretically for 8-like adducts, having 

stereoisomers when trapping CH3O• and/or CumOO• radicals [26]. However, in our case, to 

differentiate between these two radicals was hardly possible as hfccs could correspond to both upon 

literature depending on the experimental conditions [24]. 

Reconstructed Human Epidermis Studies 

DEPMPO was chosen for the development of the EPR spin-trapping methodology with RHE based 

upon (i) the results of the studies in solution where an extensive view of all sort of radicals deriving 

from CumOOH were observed all at once with catalytic Fe(II) concentration and (ii) the high 
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persistency of its superoxide and alkylperoxyl radicals spin-adducts when compared to DMPO [27]. 

Also, DEPMPO allows a clear distinction between oxygen and carbon centered radicals [28]. 

EpiskinTM RHE (Lyon, France) (0.38 cm2) were stored at arrival in 2 mL provided maintenance 

medium (at 37°C, in 5% CO2 saturated humidity atmosphere). After 24 h, the maintenance medium 

was replaced by 2 mL of assay medium. 

Preliminary trials were conducted by incubating CumOOH (0.54 mM) and DEPMPO (25 mM in 

HEPES) in the assay medium. The aim was to avoid the epidermal barrier function and check at a first 

sight using absorption from the bottom of RHE if CumOOH-mediated radicals could be formed within 

the epidermis. Even though EpiskinTM RHE barrier function has been described to be less developed 

than that of normal skin, regarding its different lipids composition and organization, it may not be 

neglected [29]. For control purposes, a sample from assay medium was regularly taken (20 µL) during 

incubation (37°C, 5% CO2, 1 min to 2 h), inserted into a capillary, sealed and measured by EPR at 

room temperature. Whatever the incubation time, no EPR signal for spin-adducts was observed in the 

assay medium (Fig. 2a). (Figure 2 around here) After 2 h incubation in the assay medium, the RHE was 

placed in a commercial EPR tissue cell (Willmad) equipped with a silica window and EPR spectra 

recorded. Although being noisy, a signal was then already observed, increasing with time (Fig. 2c-2e). 

Major peaks could be assigned to a carbon centered radical DEPMPO adduct (spin-adduct 7-like) based 

on the following set of hfccs aN=15.4 G, aH=22.6 G and aP=48.2 G (Fig. 2f; Table 2) and comparison 

with our previous data in solution (Fig. 1b). It was not possible to distinguish between isomers 7a/7b 

due to the noise level. Control experiments without CumOOH were performed, i.e. after only 

DEPMPO incubation in the RHE and showed no EPR signal, corroborating that most probably spin-

adduct 7 came from trapping a carbon centered radical issued from the hydroperoxide (Fig. 2b). As 

shown in Fig. 2f, hydroxyl HO• was also trapped in the RHE at a lower ratio. Worthy of note, after 

penetrating the RHE, CumOOH radical initiation should have been induced by RHE itself as no Fe(II) 

was included. 
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EpiskinTM RHE is a very good replicate of human epidermis architecture, and is currently used for 

irritation and penetration tests of cosmetic and chemical compounds as replacement of in vivo testing. 

In recent OECD guidelines on in vitro skin irritation assessment by using such RHE system it is 

specified that test chemicals must be applied topically to the RHE model [30]. Also, the stratum 

corneum of the RHE used, and its lipid composition, must simply resist to the penetration of SDS or 

Triton X-100 cytotoxic benchmark chemicals. It is thus supposed that allergens can penetrate the 

epidermis. In consequence, with the acquired knowledge that CumOOH radicals can be formed within 

RHE as described above, and in order to get closer to real life sensitization, further experiments were 

based on a topical application procedure. With this purpose, RHE were treated with CumOOH in 

acetone (1 mM, 20 µL) on the top and incubated for different time periods (37°C, 5% CO2, 1 min to 2 

h). RHE negative controls were treated only with acetone (20 µL). After post incubation, RHE were 

placed in the EPR tissue cell, DEPMPO was then added whilst ensuring that the solution was applied to 

the epidermis top (50 mM in HEPES) and EPR spectra recorded immediately afterwards. After 5 min 

of incubation, the fingerprint of a carbon centered radical DEPMPO adduct was detected as previously 

observed during incubation protocol (spin-adduct 7-like), with hfccs aN=15.4 G, aH=22.7 G, aP=48.1 G, 

and yet with a better signal-to-noise ratio (Fig. 3b; Table 2). Negative controls (incubation of the sole 

acetone, followed by DEPMPO addition) gave no signal, indicating that the carbon radical arose from 

CumOOH and not by induction of radical formation on a RHE biomolecule (Fig. 3a). Best computer 

simulation obtained from Fig. 3b is shown in Fig. 3c where spin-adduct 7-like seems to be predominant. 

Higher incubation times resulted in a weaker signal-to-noise ratio pointing to carbon radicals formed in 

the epidermis shortly after hydroperoxide topical application. (Figure 3 and Table 2 around here) 
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Discussion 

CumOOH is used in the chemical industry in the manufacturing of organic peroxides, the production of 

phenol and acetone, and as initiator and catalyst in polymers production and fiber-reinforced plastics. It 

is also a strong oxidizing agent, which makes it an important intermediate in the manufacture of epoxy 

and polyester resin coatings. Thus, dermal exposure to CumOOH during manufacturing processes has 

been for many years of concern, and its toxicity and ability to promote skin tumor and induce 

epidermal hyperplasia have been described. As free radicals are considered key factors contributing to 

skin tumor promotion by organic peroxides, it is not surprising that CumOOH became an EPR 

reference compound regarding oxidative stress investigations. EPR spin-trapping has been used to 

study the production of free radicals in isolated murine keratinocytes and in murine skin treated with 

CumOOH and other organic peroxides [31,32]. Furthermore, the ability to trigger free radicals has also 

been suggested to be critical for the carcinogenic properties. By studying lipid extracts of mouse skin 

exposed to CumOOH, it was proved the formation of in vivo lipid-derived free radicals triggered by the 

hydroperoxide and causing severe oxidative stress in murine skin [33,34]. CumOOH has also been 

described to cause allergic and irritant dermatitis, being reported as a significant sensitizer in guinea-

pigs [4]. 

To be a sensitizer, ROOHs need to covalently bind to skin proteins to form the antigenic entity that 

will trigger the immunotoxic process, and this via radical processes. These start with the cleavage of 

the O-O bond, allowing unstable RO•/ROO• radicals formed to rearrange to longer half-life reactive 

carbon centered radicals R•. It has been argued that the hydroxyl radical HO• might act as a hapten, thus 

affording an unspecific allergic response. However, no such unspecific responses were observed when 

performing cross-reactivity studies with even structurally closed related ROOHs in guinea-pigs and 

mice, and in clinical studies [35-37]. Most probably, specific carbon radicals R• that depend on the 

chemical structure of the ROOH must be at the origin of the antigen formation. This said, the relative 

contribution in skin sensitization processes of R• radicals and, in parallel, of also produced radical 
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oxygen species (ROS) needs still to be elucidated. In the work we report herein, the aim was to develop 

an EPR spin-trapping methodology using CumOOH as reference hydroperoxide to elucidate if radicals 

can be formed in 3D RHE human epidermis model directly issued from the peroxide 

(RO•/ROO•/R•/ROS). The objective was to clarify which radical intermediates could be involved in the 

antigen formation in a system closer to what may happen in in vivo sensitization. 

 Studies in solution were initially carried out to establish the best experimental conditions 

transferable to the RHE matrix (i.e. concentrations, solvent, spin-trap). Radical initiation was 

performed via a Fe(II) Fenton reaction and DEPMPO was taken as the optimum spin-trap when 

compared to DMPO or PBN. Carbon centered, alkoxyl, and HO• radicals were identified. Interestingly, 

the developed EPR spin-trapping methodology in the EpiskinTM RHE model, either by incubating in 

the assay medium or by topical application, indicated that carbon radicals (adducts 7-like) are mainly 

formed, with slight HO• radical (adduct 6), suggesting again a key role of carbon radicals in the antigen 

formation process. Control experiments without CumOOH always produced no EPR signal, suggesting 

that DEPMPO trapped radicals most probably originate from the hydroperoxide rather than through 

biomolecules present in RHE. The assignment of DEPMPO-OH 6 could leave open interpretation 

regarding the origin of this adduct. Aside from CumOOH, it could arise from superoxide radical adduct, 

the superoxide production being induced in skin cells by CumOOH. Additional tests to decipher the 

HO• radical origin could be preincubation of RHE with polyethylene glycol-conjugated superoxide 

dismutase, a powerful free radical scavenger that acts by reducing superoxide anions. This was out of 

the scope of the work presented here, but will need to be addressed in a near future. It is also important 

to stress that in both, solution and RHE investigations, control experiments without CumOOH did not 

exhibit any detectable signal from Fe(II) autoxidation in HEPES or in the assay medium, perhaps 

because of the catalytic concentrations of  Fe(II) applied. 

No Fe(II) was used for radical initiation when using RHE, to mimic real life skin allergy situation. 

One can hypothesize that reaction of organic peroxides in the skin in the presence of one-electron 
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donor agents (i.e. amino and thiol groups present in amino acids, metal complexes, enzymes) may start 

the electron transfer processes and further skin proteins haptenation [38-40]. Also, the potential 

presence in the skin of Fe(III) haem-containing enzymes might be responsible for the peroxide O-O 

bond cleavage and start radical processes. Reactions of model Fe(III) porphyrin complexes with 

oxidants, such as peroxyacids and hydroperoxides, have been extensively studied as models. The 

cleavage has been confirmed but a clear mechanistic consensus has not evolved on the homolytic or 

heterolytic nature of the O-O bond cleavage by these species, both kinds of mechanisms being possible 

[41-44]. 

Conclusion 

To our knowledge, EPR spectroscopy had never been used before for the study of radicals derived from 

skin allergenic substances in RHE. In this study, EPR spin-trapping allowed us for the first time to 

monitor the formation of carbon radicals issued from CumOOH in a 3D epidermis model. This is an 

important achievement opening new perspectives and mechanistic insights for the molecular 

understanding of sensitization processes to precursors of radical intermediates (i.e. allylic 

hydroperoxides derived from autoxidation of natural terpenes, aromatic phenols, aromatic amines). 

Since the 1980s, RHE models have been developed successfully as alternative methods to animal 

experiments to assess skin penetration of chemicals, and for predicting epidermal responses to irritants 

and sensitizers. The development and use of EPR methodologies to follow radical production and stress 

induction of allergens in RHE models described in this work could be further used as an alternative 

method and an ex vivo indication of induced free radical processes occurring in skin and would be 

valuable afterwards to study other dermato-oxidation events. These novel studies on the reactivity 

understanding through radical mechanisms, and the influence on the epidermis cell environment, 

should help for the development of specific alternative methods for skin sensitization assessment 

adapted to sensitizers reacting through radical mechanisms. 
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Table 1 

 

 

 

 

Table 1. Coupling constants of spin-adducts identified in solution studies 

Spin-trap Coupling constants Assignment 

aN (G) aH (G) aP(G) g 

PBN 
PBN 
DMPO 
DMPO 
DMPO 
DEPMPO 
DEPMPO 
DEPMPO 
DEPMPO 

15.3 
16.6 
14.6 
16.4 
15.3 
14.1 
15.3 
15.3 
13.1 

3.5 
3.6 

10.8 (1.4) 
23.7 
15.0 
13.4 
22.6 
19.9 
9.4 

 

 
 
 
 
 

47.5 
47.9 
45.8 
48.0 

2.0060 
2.0059 
2.0055 
2.0053 
2.0057 
2.0059 
2.0057 
2.0059 
2.0059 

1 PBN-carbon R [18]* 
2 PBN-carbon R [18,19,20]* 
3 DMPO-OCH3 [23]* 
4 DMPO-carbon R [23]* 

5 DMPO-OH [23]* 
6 DEPMPO-OH [24] 
7a DEPMPO-carbon R [24] 
7b DEPMPO-carbon R [24] 
8 DEPMPO-OCH3 and/or 
   DEPMPO-OOCum [24] 

* See Supplementary Material for experimental data. 
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Table 2 

 

 

 

 

Table 2. Spin-adducts formed from CumOOH/DEPMPO system in RHE [24,28] 

Incubation in assay medium 
assignment, g, hfccs (G) 

Topical application 
assignment, g, hfccs (G) 

6 (28%) 
DEPMPO-OH 

 
g=2.0055 
aN=14.6 
aH=13.2 
aP=46.2 

7 (72%) 
DEPMPO-carbon R 

 
g=2.0050 
aN=15.4 
aH=22.6 
aP=48.2 

6 (7%) 
DEPMPO-OH 

 
g=2.0050 
aN=15.0 
aH=13.4 
aP=44.8 

7 (93%) 
DEPMPO-carbon R 

 
g=2.0052 
aN=15.4 
aH=22.7 
aP=48.1 
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Scheme 1 
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
27 

Figure 3 
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Legends 

 

Scheme 1. Formation of CumOOH/Fe(II) spin-adducts 1-8 and related mechanisms. Fe(II) radical 

initiation produce CumO• radicals. Carbon centered radicals can be formed from initial CumO• by β-

scission or by its equilibrium with oxaspiro radicals. From further diverse rearrangements, methoxy 

CH3O• and peroxyl CumOO• radicals are also formed. 

Figure 1. EPR spectra obtained with CumOOH (0.54 mM) and DEPMPO (25 mM) dissolved in 

HEPES (10 mM, pH 6.8) in presence of Fe(II) registered immediately after mixing (a) with 1mM 

Fe(II); (b) with 0.1 mM Fe(II); (c) computer simulation of spectrum (b); (d-g) deconvolution of 

spectrum (c) with 6 (56.5%), 7a (16.5%), 7b (16%) and 8 (11%). 

Figure 2. Preliminary trials incubating CumOOH (0.54 mM) and DEPMPO (25 mM in HEPES) in the 

assay medium: (a) sample from the assay medium after 2 h incubation with DEPMPO and CumOOH; 

(b) spectrum of RHE when the assay medium is incubated 2 h with single DEPMPO; (c) spectrum of 

RHE when the assay medium is incubated with DEPMPO and CumOOH, registered immediately; (d) 

registered after 15 min; (e) registered after 1 h; (f) computer simulation of spectrum (e) with labels 

identifying each radical formed (* 7-like DEPMPO-carbon R (72%) and ° DEPMPO-OH (28%)). 

Figure 3. EPR spectra obtained in RHE topical application experiments by using CumOOH (1 mM in 

acetone) and DEPMPO (50 mM in HEPES): (a) RHE control experiment with single DEPMPO and 

vehicle; (b) RHE spectra after CumOOH application and incubation (5min, 37 °C, 5% CO2) followed 

by DEPMPO addition; (c) computer simulation of spectrum (b); (d-e) deconvolution of 7 (93%) and 6 

(7%). 

 

 


