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Abstract  17 

Ficus species have adapted to diverse environments and pests by developing physical or chemical 18 

protection strategies. Physical defences are based on the accumulation of minerals such as calcium 19 

oxalate crystals, amorphous calcium carbonates and silica that lead to tougher plants. Additional 20 

cellular structures such as non-glandular trichomes or laticifer cells make the leaves rougher or sticky 21 

upon injury. Ficus have also established structures that are able to produce specialized metabolites 22 

(alkaloids, terpenoids, and phenolics) or proteins (proteases, protease inhibitors, oxidases, and 23 

chitinases) that are toxic to predators. All these defence mechanisms are distributed throughout the 24 

plant and can differ depending on the genotype, the stage of development or the environment. In 25 

this review, we present an overview of these strategies and discuss how these complementary 26 

mechanisms enable effective and flexible adaptation to numerous hostile environments.  27 

  28 
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I- Introduction 29 

 30 

Ficus is a large and diverse genus of approximately 850 species belonging to the Moraceae family. 31 

The various lifeforms of Ficus (trees, stranglers, vines, shrubs, and epiphytes) are adapted to diverse 32 

climatic and geographic regions (Janzen 1979; Pierantoni et al. 2018). Ficus species can be 33 

monoecious or dioecious (Ghana et al. 2017), but this genus is characterized by its peculiar 34 

inflorescence, the fig (or syconium), which forms a cavity enclosing tiny flowers (Anstett 2001).  35 

 36 

The most popular Ficus species is F.carica, a deciduous tree that can reach a height of two to five 37 

metres and is frequently referred to as fig tree. F. carica is thought to be native to the Middle East 38 

and to be one of the earliest cultivated fruit trees, but it can currently be found in many warm 39 

regions worldwide (Bonamonte et al. 2010). Because its fruits – the common figs – are consumed in 40 

many ways (fresh, dried, and processed) and are rich in minerals, vitamins and fibres, F. carica has 41 

become an important crop and is mostly cultivated in the Mediterranean region (Solomon et al. 42 

2006; Oliveira et al. 2009). Indeed, world fig production was approximately one million tons in 2016, 43 

and more than half of this production was in Turkey, Egypt and Algeria (FAO 2016). 44 

 45 

F. carica can therefore be regarded as a species of agronomical and economical importance. Similar 46 

to other plants, Ficus species are subjected to numerous bioaggressors including a large variety of 47 

generalist and specialist insects (Basset and Novotny 1999; Novotny et al. 2010; Volf et al. 2018). 48 

These species can also be infected by fungi (McKenzie 1986; Hosomi et al. 2012) or by some viruses 49 

(Elbeaino et al. 2011; Bayoudh et al. 2017). In Europe, the main pests affecting F. carica include the 50 

fig wax scale, while the major diseases include fig canker and fig rust (Chamont 2014). Excepting 51 

these diseases, which can lead to a significant decrease in yield, F. carica and the Ficus genus in 52 

general seem to be excellent at countering their bioaggressors and especially at resisting their 53 

attacks (Chamont 2014). Indeed, to adapt to their hostile environments, Ficus species have 54 

developed a high diversity of defence strategies including physical structures (mineral deposition, 55 

fibre content, and toughness) and chemical constituents (specialized metabolites and particular 56 

proteins). This review aims to realize a state of the art of the defence mechanisms developed by 57 

Ficus plants, especially F.carica. 58 

 59 

 60 

II- Physical defences: tough and mineralized leaves 61 

 62 
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Leaves are the first targets of herbivores; therefore, their toughness might be considered part of the 63 

general plant defence strategy. Toughness is reported to be negatively correlated with herbivore 64 

damage (Coley 1983) and this resistance might be related to macromolecular substances such as 65 

lignin, fibre and phenolic content (Coley et al. 1985; Xiang and Chen 2004). Toughness can also be 66 

reinforced by mineral deposits, such as those of calcium oxalate crystals, amorphous calcium 67 

carbonate and silica (Fig. 1). Pierantoni et al. (2018) reported that these three minerals were 68 

unequally distributed throughout the tissues of 10 Ficus species collected in diverse environments. 69 

 70 

Calcium oxalate crystals  71 

Calcium oxalate represents the most common form of plant solid mineralization (Korth et al. 2006; 72 

Bauer et al. 2011). This mineral forms intra- or extracellular crystals in most plant tissues, but its 73 

deposition occurs mostly in the vacuole of crystal idioblasts (Foster 1956; Franceschi and Nakata 74 

2005; Bauer et al. 2011). Idioblasts are isolated cells that differ from their neighbouring tissue 75 

elements in their form, size, content and/or cell wall structure. They can be found in any plant part 76 

and include a wide variety of cells (Foster 1956). In plants, in addition to their calcium regulation 77 

function and their metal detoxification role, calcium oxalate crystals are involved in defence (Finley 78 

1999; Franceschi and Nakata 2005; Pierantoni et al. 2018). These crystals establish a physical barrier 79 

(Ruiz et al. 2002; Hudgins et al. 2003), deter pests and herbivorous mammal feeding (Yoshihara et al. 80 

1980; Ward et al. 1997), and are responsible for abrading the mouthparts of chewing insects (Korth 81 

et al. 2006). These crystals may therefore be complementary to plant toughness in a defence 82 

strategy (Finley 1999). In Ficus, a potential reduction in pest attacks has been reported among these 83 

defensive roles (Xiang and Chen 2004; Sosnovsky 2016). 84 

 85 

Calcium oxalate crystals are usually deposited in lines parallel to the major veins of Ficus leaves. 86 

These crystals can therefore be found along the vein bundle, the phloem or the ground tissue 87 

supporting the veins (Pierantoni et al. 2018). Depending on the Ficus species and the leaf localization, 88 

calcium oxalate crystals are mainly described as prismatic crystals restricted to the bundle sheath 89 

and druses located in the mesophyll and bundle sheath (Wu and Kuo-Huang 1997; Pierantoni et al. 90 

2018). However, this is not a general rule: for example, calcium oxalate crystals are observed in 91 

F.virgata in the form of druses located in the bundle sheath and the palisade mesophyll layers but 92 

also as crystal sands in the abaxial epidermis of the leaves. In F.elastica, prismatic crystals are 93 

restricted to the bundle sheath, but needle-shaped crystals have also been reported in the epidermis 94 

of leaves (Wu and Kuo-Huang 1997). In F.carica, calcium oxalate is mainly found in the phloem in the 95 
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form of druses and prismatic crystals. The deposition of calcium oxalate occurs on the inner or outer 96 

surface of the vein (Fig. 1A) throughout the development of the leaf (Pierantoni et al. 2018).  97 

 98 

Amorphous calcium carbonates (cystoliths) 99 

Cystoliths are mineralized bodies restricted to a few species including some in Moraceae; they were 100 

first described by Meyen in 1839 (Meyen 1839; Weddell 1854). These calcified structures display 101 

concentric layers of cellulose microfibrils associated with pectin and polysaccharides and imbued 102 

with calcium carbonate. Depending on the species, these bodies occur in various shapes (oblong-, 103 

cigar-, bean-, Y-shaped, etc.), colours (blue, violet and greenish) and sizes (from 25 to 75 μm wide 104 

and 15 to 115 μm long) (Ummu-Hani and Noraini 2013). In the Ficus genus, the localization of 105 

cystoliths depends on their shapes: elongated cystoliths are formed only in the adaxial epidermis and 106 

extend into the palisade mesophyll, while spherical cystoliths only appear in the abaxial epidermis 107 

and extend into the spongy mesophyll (Pierantoni et al. 2018). Therefore, cystoliths can be found 108 

adaxially (F. benghalensis), abaxially (F. religiosa) or in both epidermises of the leaves (F. benjamina) 109 

(Ummu-Hani and Noraini 2013; Pierantoni et al. 2018). In contrast to densely packed spherical 110 

cystoliths, elongated cystoliths are never located above the veins; therefore, they do not overlap 111 

with and are complementary to calcium oxalate crystals (Pierantoni et al. 2018). 112 

 113 

Cystoliths are observed in lithocysts, which are specialized idioblastic cells. Lithocysts often contain a 114 

silicified stalk that can remain inside the cell or protrude out of it, and these stalks vary in size (Wu 115 

and Kuo-Huang 1997; Gal et al. 2010; Bauer et al. 2011; Ummu-Hani and Noraini 2013; Pierantoni et 116 

al. 2018). Cystoliths are involved in light harvesting (Gal et al. 2012) and might provide mechanical 117 

properties that are still unclear (Smith and Watt 1986; Bauer et al. 2011; Pierantoni et al. 2018). 118 

Therefore, it might be hypothesized that the calcium content and silica stalk of cystoliths can 119 

contribute to leaf roughness. Several types of lithocysts have been described in the Ficus genus: hair-120 

like lithocysts located in uniseriate epidermis (F.religiosa) and papillate lithocysts located in 121 

multiseriate epidermis (F. virgata) (Wu and Kuo-Huang 1997). In F. carica, spherical lithocysts have 122 

been found adjacent to the abaxial epidermis. Such lithocysts contain a stalk that protrudes outside 123 

of the cell wall and forms a spiked appendage on the surface of the leaf (Fig. 1B) (Mamoucha et al. 124 

2016). 125 

 126 

Silica 127 

Since plants can easily absorb silicon from soil, it is one of the most common minerals found 128 

throughout the plant kingdom (Hodson et al. 2005; Bauer et al. 2011; Strömberg et al. 2016). Silicon 129 
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is known to be involved in several physiological processes such as physical support and plant 130 

resistance to biotic and abiotic stresses (Bauer et al. 2011; Gautam et al. 2016; Strömberg et al. 2016; 131 

Pierantoni et al. 2018). Indeed, since polymerized silica is amongst the hardest materials found in 132 

plants, high silica contents are correlated with increased mechanical protection (Hunt et al. 2008). 133 

Silica deposits may also deter insect and mammal herbivores by increasing plant abrasiveness 134 

(Massey et al. 2007a, b) and abrading herbivore mouthparts (Massey and Hartley 2009; Müller et al. 135 

2014).  136 

 137 

In plant leaves, silica is mainly found in the sheath cells of vascular bundles and in epidermal cells 138 

(Bauer et al. 2011). It can be deposited within or on cells as particles or microscopic bodies called 139 

phytoliths, be incorporated into the cell wall or form silicified cells and tissue sections (Prychid et al. 140 

2003; Strömberg et al. 2016). However, in Ficus leaves, silica is mainly located in the cell wall, non-141 

glandular trichomes and stalks of the cystoliths, but this localization is not restricted since the 142 

abundance and exact form of silica are variable among species (Pierantoni et al. 2018). Therefore, 143 

any cell of the epidermis or the mesophyll might be partially or completely impregnated with silica, 144 

such as the guard cells in F. prasinicarpa (Chantarasuwan et al. 2014). In F. carica, silica is abundant 145 

in the adaxial side of the leaf. It is deposited in cell walls and conic trichomes (Pierantoni et al. 2018). 146 

 147 

Crystal-containing idioblasts 148 

In F. carica leaves, numerous idioblasts that contain spiny crystals have also been observed along the 149 

first layer of palisade cells (Fig. 1C). These crystals are different in structure from the cystoliths, but 150 

their nature has not been identified (Mamoucha et al. 2016). However, these spiny crystals might 151 

contribute to leaf roughness and abrasiveness.  152 

 153 

 154 

III- Specialized tissues as essential contributors to Ficus defences 155 

 156 

Non-glandular trichomes 157 

Trichomes are interesting structures that can be found in almost all plant species, and their role in 158 

plant defence has long been clearly established (Levin 1973). These structures are also considered 159 

idioblasts. They are divided into glandular and non-glandular types, and the latter are involved in 160 

physical defence through increasing the resistance to herbivores and the roughness of Ficus leaves 161 

(Sosnovsky 2016). In the Ficus genus, straight and long trichomes seem to be predominant and more 162 

abundant on the abaxial side than on the adaxial side of the leaf, but their exact shape, size and 163 
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density show strong inter- and intraspecific variations (Klimko and Truchan 2006; Sosnovsky 2016). In 164 

F. carica, non-glandular trichomes are mainly straight and long and can be curved at the apex (Klimko 165 

and Truchan 2006). They appear as spiny unicellular hairs that can be silicified and are present on 166 

both surfaces of the leaf but are more numerous on the adaxial epidermis (Fig. 1D-E) (Mamoucha et 167 

al. 2016; Pierantoni et al. 2018). Short peltate non-glandular trichomes can also occur on the abaxial 168 

side (Klimko and Truchan 2006). In F. carica leaves, final-sized non-glandular trichomes appear at 169 

early developmental stages and give the leaflets a very aggressive appearance before they gradually 170 

appear to scatter as the leaf expands (Mamoucha et al. 2016). 171 

 172 

Glandular trichomes 173 

Glandular trichomes can be defined as pluricellular structures accumulating and secreting substances 174 

such as defense-specialized metabolites in a compartment that is virtually “outside” the plant body. 175 

The morphology and abundance of these structures vary among species (Wagner 1991). In Ficus, 176 

glandular trichomes can be capitate, uniseriate or filamentous. Capitate trichomes consist of a 177 

unicellular short stalk and a 1-5 celled head that may be elliptic in species such as F. erecta or 178 

spherical in species such as F. sagittata (Klimko and Truchan 2006). In Ficus leaves, glandular 179 

trichomes have been reported on both epidermises, but they seem to occur mainly on the lower one 180 

(Sosnovsky 2016). In F. carica, glandular trichomes are small capitate trichomes with a 4-celled head; 181 

they are formed only under the nerves, on the abaxial epidermis (Fig. 1F). These trichomes develop 182 

when the leaf expands, and at maturity, the head cells produce and accumulate metabolites in the 183 

form of dark granules (Mamoucha et al. 2016).  184 

 185 

Laticifers 186 

In addition to trichomes, laticifers are other idioblasts that are specialized secretory structures 187 

producing defensive metabolites and enzymes. These structures have been reported in more than 188 

20000 species from 40 phylogenetically distant families of angiosperms but seem to be most 189 

common in tropical plants (Lewinsohn 1991; Konno 2011). Laticifers have been widely studied and 190 

reviewed (Hagel et al. 2008; Konno 2011), partly for their involvement in plant defence. Laticifers are 191 

elongated living cells that form a complex ramified network that follows the veins throughout the 192 

plant and contain a fluid called latex (Dussourd and Eisner 1987; Farrell et al. 1990). The anatomy and 193 

features of laticifers are highly variable among species: laticifers can be articulated or non-articulated 194 

(Fig. 1G) and secrete latex to a greater or lesser extent (Konno 2011). In the genus Ficus, laticifers are 195 

non-articulated and multinucleated. These structures appear during the embryonic stage from single 196 

cells that elongate and branch without cell division during plant growth (Dussourd and Denno 1991; 197 

Hagel et al. 2008; Konno 2011). In the leaves of F. carica, the laticifers are located in the mesophyll, 198 
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where they form a non-articulated network that follows the veins. More specifically, these structures 199 

are located in the nerves, just above the xylem. It should therefore be noted that the secretive 200 

apparatus of F. carica that includes capitate trichomes and laticifers is almost totally confined to 201 

areas around the veins (Mamoucha et al. 2016). 202 

 203 

Latex is a cytoplasmic fluid that contains normal plant cell organelles (Kim et al. 2003) and numerous 204 

chemical compounds, but its exact composition is highly variable among species (Hagel et al. 2008) 205 

and plant parts (Kitajima et al. 2018). As latex is stored under pressure in the laticifers, it constitutes 206 

an economic mobile defence mechanism. Due to the internal pressure of laticifers, any rupture leads 207 

to the quick mobilization and delivery of a large amount of latex at the site of the injury. As a 208 

consequence, even if the total amount of latex produced by the plant is low, the herbivores that 209 

attack the plant are immediately exposed to a high quantity of defensive fluid, which is vastly greater 210 

than the very small amount initially present at this location (Dussourd and Eisner 1987; Farrell et al. 211 

1990; Dussourd and Denno 1991; Konno et al. 2004; Agrawal and Konno 2009; Konno 2011). In some 212 

plants such as Cryptostegia grandiflora, latex can even be transported over a distance of 70 cm 213 

(Buttery and Boatman 1976).  214 

 215 

When exposed to air, latex becomes sticky and acts as a physical defence by forming a barrier, 216 

closing wounds, immobilizing insects’ mouthparts and even gluing and trapping small insects (Farrell 217 

et al. 1990; Dussourd and Denno 1994; Konno et al. 2004; Konno 2011). This stickiness is due to 218 

rubber, a terpenoid commonly synthesized in laticifers that is also responsible for the colour of the 219 

latex (Kim et al. 2003; Konno 2011). Latex is also involved in chemical defence and has toxic effects: it 220 

contains a high diversity of compounds such as irritant proteins and toxic secondary metabolites, the 221 

average concentration of which is often higher than that in the rest of the leaf. As a striking example 222 

of the defensive role of latex, it has been shown that the leaves of F. virgata exhibit strong toxic 223 

effects against some lepidopteran larvae but lose their toxicity when the latex is washed off (Konno 224 

et al. 2004). For F. carica, hundreds of metabolites and more than fifty proteins have been found in 225 

latexes from different parts of the plant, with many of these compounds having defensive effects 226 

(Kitajima et al. 2018). 227 

 228 

 229 

IV- Ficus defensive metabolites and proteins 230 

 231 
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The Ficus genus contains a high diversity of specialized compounds (such as alkaloids, terpenoids, 232 

and phenolics) and proteins that vary among species, cultivars, plant parts and environmental 233 

factors. These chemicals confer various biological activities including defensive ones such as 234 

antimicrobial (Jeong et al. 2009), antipyretic (Patil Vikas et al. 2010), nematicidal (Liu et al. 2011) and 235 

irritant properties (Saeed and Sabir 2002).  236 

 237 

Specialized metabolites 238 

Many studies have shown that Ficus species contain hundreds of metabolites belonging to various 239 

chemical classes (Sirisha et al. 2010; Jun et al. 2012; Oliveira et al. 2012; Marrelli et al. 2014). Among 240 

these metabolites, some primary ones have biological activities such as antioxidant properties 241 

(Oliveira et al. 2009), but the molecules responsible for defence are generally specialized metabolites 242 

belonging to three families: alkaloids, terpenoids and phenolics. 243 

 244 

Alkaloids 245 

Among the alkaloid subfamilies already described in the Ficus genus, the most studied are the 246 

phenanthroindolizidines (Table 1, Fig. 2), which are mainly restricted to the Asclepiadaceae and 247 

Moraceae families (Burtoloso et al. 2013; Al-Khdhairawi et al. 2017). A few dozen of these molecules 248 

have been reported in F. septica stems, roots and sometimes leaves (Baumgartner et al. 1990; Wu et 249 

al. 2002; Damu et al. 2005, 2009). Some phenanthroindolizidine alkaloids were also reported in F. 250 

fistulosa (Yap et al. 2016) and F. hispida (Peraza-Sánchez et al. 2002; Yap et al. 2015). These 251 

molecules display antiamoebic (Bhutani et al. 1987), antiviral (Li et al. 2006), antifungal and 252 

antibacterial activities (Baumgartner et al. 1990), which strongly suggests that they are involved in 253 

plant defence against pests. This suggestion of involvement in defence is reinforced by the finding of 254 

Konno et al. (2011), who reported that the latex of some Ficus species contains 255 

phenanthroindolizidine alkaloids in concentrations high enough to kill generalist herbivores. It is also 256 

noteworthy that these alkaloids exhibit strong cytotoxicity against cancer cell lines (Peraza-Sánchez 257 

et al. 2002; Damu et al. 2005, 2009; Yap et al. 2015, 2016; Al-Khdhairawi et al. 2017). The other 258 

alkaloid subfamilies have been much less described in Ficus, but some of them also display cytotoxic 259 

effects (Yap et al. 2016; Al-Khdhairawi et al. 2017) and antifungal and antibacterial activities 260 

(Baumgartner et al. 1990). 261 

 262 

Terpenoids 263 

In Ficus species, terpenoids belonging to monoterpenoids, triterpenoids, sesquiterpenoids, 264 

norisoprenoids, steroids and esters have been reported, and some of them exhibit known 265 

bioactivities (Table 1, Fig. 2). Sesquiterpenes are the most abundant subfamily in the leaves of F. 266 
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carica, whereas monoterpenes accumulate almost exclusively in fruits (Oliveira et al. 2010b). The 267 

most striking example of a Ficus defensive terpenoid is rubber, a cis-1,4-isoprene polymer 268 

responsible for latex stickiness (Konno 2011). Ficus steroids might play a role in defence, since they 269 

have antiproliferative properties. For example, 6-O-acyl-β-D-glucosyl-β-sitosterol, isolated from F. 270 

carica latex, showed in vitro inhibitory effects against the proliferation of several cancer cell lines 271 

(Rubnov et al. 2001). Ojo et al. (2014) reported the presence of cardenolides, a subclass of cardiac 272 

steroids (Roberts et al. 2016), in the leaves of F. asperifolia. Although the activity of Ficus-specific 273 

cardenolides has not yet been tested, cardiac steroids are well known for their high toxicity to 274 

animals (Roberts et al. 2016). Additionally, cardenolides from the milkweed latexes cause toxic 275 

symptoms in caterpillars such as regurgitation, convulsions and hours to days of unresponsiveness 276 

(Dussourd and Hoyle 2000; Konno 2011). Triterpenoids such as calotropenyl acetate, 277 

methylmaslinate and lupeol acetate are additional examples of molecules involved in defence. These 278 

triterpenoids have been described in F. carica leaves and display irritant properties when applied to 279 

mouse ears (Saeed and Sabir 2002). Several volatile terpenoids found in Ficus were shown to have 280 

defensive bioactivities in other plants. For instance, Oliveira et al. (2010b) showed that the major 281 

sesquiterpenes present in F. carica leaves were germacrene D, β-caryophyllene and τ-elemene, while 282 

the main monoterpenes in F. carica fruits were limonene and menthol. β-caryophyllene has 283 

antibacterial properties (Kim et al. 2008) while limonene is known for its insecticidal (Hebeish et al. 284 

2008) and antibacterial activities (Skalicka-Wozniak et al. 2009; Oliveira et al. 2010b). 285 

 286 

Phenolics 287 

Phenolic compounds such as phenolic acids, flavonoids, tannins, coumarins and their derivatives such 288 

as pyranocoumarins and furanocoumarins have been extensively studied in the Ficus genus (Table 1, 289 

Fig. 2). Phenolics are well known for their redox and radical scavenging activities, which lead to 290 

antioxidant effects (Oliveira et al. 2009; Marrelli et al. 2012; Debib et al. 2014). However, some Ficus 291 

phenolics also exhibit defensive properties against biotic stresses. Flavonoids and tannins might be 292 

responsible for the antimicrobial activity exhibited by some fig extracts (Debib et al. 2014). 293 

Flavonoids and pyranocoumarins, such as genistein and 3-hydroxyxanthyletin, respectively, were 294 

found in the roots of F. nervosa and exhibited antimycobacterial activity (Chen et al. 2010). Many 295 

Ficus species also contain large amounts of various furanocoumarins, which have already been 296 

described in other plants as effective defence molecules against plants, herbivores and pathogens 297 

(Beier and Oertli 1983; Zumwalt and Neal 1993; Ojala et al. 2000; Berenbaum 2002; Li et al. 2003; 298 

Guo et al. 2016). The large range of organisms affected by the toxicity of furanocoumarins is in part 299 

underlain by their mode of action: furanocoumarins can lead to the formation of toxic reactive 300 
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oxygen species (Berenbaum 2002), can inhibit cytochrome P450s (Neal and Wu 1994; He et al. 1998; 301 

Koenigs and Trager 1998) and, when excited by UV, can bind to macromolecules and cause various 302 

reactions leading to mutations or cell death (Dardalhon et al. 1998). Psoralen and bergapten are the 303 

main furanocoumarins reported in F. carica (Takahashi et al. 2014, 2017; Wang et al. 2017) but they 304 

are also among the major phenolics reported in Ficus leaves (Oliveira et al. 2012). According to 305 

Mamoucha et al. (2016), these metabolites are mainly located around the nerves containing laticifer 306 

cells and the glandular trichomes. The defensive effects of furanocoumarins have rarely been studied 307 

in Ficus, but two studies described the nematicidal effect of psoralen and bergapten extracted from 308 

F. carica leaves (Liu et al. 2011; Guo et al. 2016) characterized by inhibition of the activities of two 309 

important digestive enzymes (amylase and cellulase) in the pine wood nematode (Guo et al. 2016). 310 

Finally, it has long been known that fig trees have photosensitizing action and can cause contact 311 

dermatitis (Pathak et al. 1962) because of the furanocoumarins they contain (Bonamonte et al. 312 

2010). However, despite this knowledge, various Ficus parts are still used in traditional medicine in 313 

attempts to cure skin diseases, which regularly cause severe injuries (Bonamonte et al. 2010; Son et 314 

al. 2017). Recently, psoralic acid-glucoside (PAG, a glycosylated derivative of psoralen) was also 315 

detected in large amounts in fig (Takahashi et al. 2014, 2017; Wang et al. 2017), while its biosynthesis 316 

and physiological functions are still unknown. 317 

 318 

Defensive proteins 319 

Several proteins such as proteases, protease inhibitors, oxidases and chitinases have been widely 320 

reported in the latex of numerous Ficus species (Konno 2011). Some of these proteins were 321 

described as being very stable, and their activity was not impacted by herbivore digestive juice (Zhu-322 

Salzman et al. 2008; Konno 2011). Such proteins might be involved in defence against herbivores, 323 

fungi, viruses and bacteria. 324 

 325 

Proteases 326 

Cystein proteases such as ficins were reported in Ficus latexes in 1964 by Sgarbieri and collaborators. 327 

Plant proteases are considered a very effective defence system against a wide range of insects that 328 

act on these insects by deterring them from feeding, interfering with their digestion, reducing their 329 

growth rate and increasing their larval mortality (Konno et al. 2004; Konno 2011). Protease activity 330 

has also been demonstrated to be negatively correlated with herbivory (Volf et al. 2018). Among the 331 

proteases, ficins are assumed to play a major role in plant defence; for instance, the leaves of F. 332 

virgata exhibit strong toxicity to some lepidopteran larvae but lose this toxicity when their ficins are 333 

neutralized with specific inhibitors (Konno et al. 2004). The mechanisms of ficin toxicity have not 334 

been deeply investigated (Konno 2011) but their essential function might explain their highly 335 
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conserved evolution (Volf et al. 2018). Indeed, the number of ficin isoforms and their amounts vary 336 

among species and varieties (Kramer and Whitaker 1964). In the case of F. carica, latexes contain 337 

large amounts of at least six isoforms of ficins (Kitajima et al. 2018). 338 

To a lesser extent, F. carica latexes also contain other proteases such as subtilases (Kitajima et al. 339 

2018). To the best of our knowledge, the roles of the subtilases found in Ficus have never been 340 

studied but plant subtilases are involved in many processes, including defence; see Schaller et al. 341 

(2018) for a review of plant subtilase activities.  342 

 343 

Protease inhibitors 344 

F. carica latexes contain several types of protease inhibitors such as serine and cystein protease 345 

inhibitors (Kitajima et al. 2018). Plant protease inhibitors constitute a well-known defensive tool 346 

against a wide range of pathogens and pests. For example, trypsin (a serine protease) inhibitors are 347 

reported to have antifungal (Huynh et al. 1992; Terras et al. 1993) and insecticidal activities 348 

(Broadway and Duffey 1986; Hilder et al. 1987; Ryan 1990). Indeed, these inhibitors can target 349 

proteases present in the insect gut, leading to anti-nutritional effects (Felton and Gatehouse 1996). 350 

The main protease inhibitors in F. carica latexes are trypsin inhibitors: they are present in large 351 

amounts, and no fewer than 10 isoforms have been found within just the latex of the leaves, which 352 

makes them the major defensive proteins in F. carica latexes, along with ficins (Kitajima et al. 2018). 353 

 354 

Oxidases 355 

Peroxidases and polyphenol oxidases are common enzymes present in several plant families, 356 

including Moraceae (Konno 2011). When ingested by insects, they can oxidize compounds present in 357 

the insect gut, leading to the production of reactive species that can disrupt the arthropod redox 358 

status, damage some molecules, or make some amino acids unavailable as nutrients (Felton et al. 359 

1992; Felton and Gatehouse 1996; Zhu-Salzman et al. 2008; Konno 2011). Some plant oxidases are 360 

therefore considered defence proteins with potential antinutritive effects, but direct evidence for 361 

antiherbivore effects is still scarce (Zhu-Salzman et al. 2008; Sethi et al. 2009; Konno 2011). 362 

Peroxidases have been reported in the latex of several Ficus species, such as F. sycomorus (Mohamed 363 

et al. 2011), F. glabrata (Kon and Whitaker 1965) and F. carica. In F. carica, peroxidases are 364 

associated with rubber particles (Kim et al. 2003). Polyphenol oxidases have been reported only in 365 

the latex of F. elastica, but their activity was correlated with the rate of latex coagulation (Wahler et 366 

al. 2009). Ficus oxidases might therefore impact latex stickiness. 367 

 368 

Chitinases 369 
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Chitinases have been detected in the latex of F. carica (Kitajima et al. 2018) and F. microcarpa (Taira 370 

et al. 2005). Plant chitinases are well known for their antifungal effects because of their ability to 371 

degrade fungal cell walls and subsequently inhibit fungal growth (Schlumbaum et al. 1986; Mauch et 372 

al. 1988; Roberts and Selitrennikoff 1988; Melchers et al. 1994). These enzymes may also display 373 

insecticidal activities, as exemplified by the study of Lawrence and Novak, who reported that a poplar 374 

chitinase delayed insect development (Lawrence and Novak 2006). In Ficus, the only defensive effect 375 

of chitinases that has been described is a strong antifungal activity in F. microcarpa latex (Taira et al. 376 

2005).  377 

 378 

Other pathogenesis-related proteins (PRs) 379 

PRs have been widely studied, and many of them exhibit antifungal, antibacterial, insecticidal, 380 

nematicidal or antiviral properties (Edreva 2005). These proteins are classified into several groups. 381 

The previously described chitinases and peroxidases belong to PR-3 and PR-8, respectively (Stintzi et 382 

al. 1993; Hoffmann-Sommergruber 2002; Edreva 2005), but other PRs belonging to PR-1, PR-4 and 383 

PR-5 (osmotin) have also been detected in F. carica latexes (Kitajima et al. 2018). These proteins are 384 

likely to be considered fungicides and therefore involved in plant defence, as demonstrated in the 385 

latex of Calotropis procera (Niderman et al. 1995; de Freitas et al. 2011; Bai et al. 2013). 386 

 387 

Other protein families 388 

In addition to these proteins, other miscellaneous enzymes such as lectins and phosphatases have 389 

been detected in F. carica latexes (Kitajima et al. 2018) and might be involved in plant defence. 390 

Lectins are carbohydrate-binding proteins present in the latexes of plants from several families 391 

(Konno 2011). These enzymes have deleterious effects against herbivores and might interfere with 392 

viruses, bacteria or fungi (Peumans and Van Damme 1995; Van Damme et al. 1998; Macedo et al. 393 

2015). Phosphatases are less studied (Lynn and Clevette-Radford 1987; Konno 2011), but 394 

phosphatase activity has been correlated with retarded development and mortality in several insect 395 

species (Liu et al. 2005). The study of these enzymes might therefore be relevant. 396 

 397 

 398 

V- Modulation of Ficus defence mechanisms 399 

 400 

Genotype 401 

Ficus defence mechanisms vary depending on numerous factors including the species, variety and 402 

individual. The genotype is probably the most relevant factor for explaining the diversity of Ficus 403 
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minerals (abundance, location, shape, size, and colour), trichomes (morphology, abundance, and 404 

location), latex (colour and amount) and chemical content (type, amount, relative amount and 405 

location). Genetic factors are also predominant determinants of leaf mineral features and result in a 406 

unique mineral system in each species (Pierantoni et al. 2018). For example, the size, shape and 407 

location of phytoliths can be used as tools for phylogenetic identification (Prychid et al. 2003).  408 

 409 

Seasonal variations and plant age 410 

In Ficus, organs are unequally defended throughout the year, but it is sometimes difficult to 411 

distinguish the effects of season from the effects of the age and developmental stage of the plant. 412 

For example, it has been shown that in F. carica leaves and latex, the furanocoumarin content is 413 

higher in spring and summer than in autumn (Zaynoun et al. 1984), suggesting that these variations 414 

are linked to seasonal effects. On their side, Marrelli and collaborators compared the chemical 415 

content of F. carica fruits harvested in June, July and September, which clearly corresponded to 416 

different fig phenological stages. These authors found that the total amount of phenolics increased 417 

with fig ripening, while the furanocoumarin and pyranocoumarin content decreased (Marrelli et al. 418 

2012). These observations were consistent with those in the older study of Zaynoun et al., but 419 

Marrelli et al. assumed that the difference was due to ripening. In another study, the chemical 420 

composition of F. carica leaves, bark and woody parts was shown to vary across months, and these 421 

variations were found to be specific to each organ and compound (Marrelli et al. 2014). In addition to 422 

chemical differences, differences in the amount of latex occur: more latex is exuded from young Ficus 423 

organs (shoots, leaves and petioles) than from older ones (Konno 2011). Finally, it is likely that both 424 

seasonality and plant development contribute to the modulation of Ficus defence and that their 425 

actions are combined.  426 

 427 

Inducible defence mechanisms 428 

It is widely known that plant defences can be triggered by pest attacks. This induction involves 429 

physical and chemical mechanisms. Regarding Ficus physical defences, long-term herbivory seems to 430 

reinforce leaf toughness and leads to an active increase in the calcium oxalate crystal density in a few 431 

Ficus species (Xiang and Chen 2004). In some plants, herbivore damage can also induce silicification 432 

(McNaughton and Tarrants 1983; Massey et al. 2007b; Strömberg et al. 2016) or an increase in 433 

trichome number and density (Baur et al. 1991; Traw and Dawson 2002; Liu et al. 2018). However, to 434 

the best of our knowledge, silica and trichome inductions have not been tested amongst species in 435 

the Ficus genus. Regarding chemical defence mechanisms, it has been reported that the expression 436 

of a chitinase, a peroxidase and a trypsin inhibitor was highly induced in F. carica latex several hours 437 
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after a wounding treatment (Kim et al. 2003). Concerning the induction of specialized metabolites, 438 

less is known for Ficus species. However, some studies performed on other plants enable us to 439 

hypothesize that the induction of the synthesis of some Ficus defence molecules may be affected by 440 

herbivory or pathogen infection. For example, the production of some furanocoumarins was 441 

demonstrated to be elicited in parsnip by mechanical wounding and pathogen infection (Zangerl and 442 

Berenbaum, 1990, Roselli et al., 2017 ; Krieger et al. 2018). It is therefore possible that the synthesis 443 

of these defence molecules is also enhanced in Ficus. 444 

 445 

Other factors might also modulate Ficus defences, but data covering this topic are scarce. To the best 446 

of our knowledge, the only relevant study on this topic reported the impact of phytohormone 447 

application (jasmonic acid, salicylic acid or abscisic acid), drought and cold on the expression levels of 448 

a chitinase, a peroxidase and a trypsin inhibitor in F. carica leaves (Kim et al. 2003). Jasmonic acid 449 

enhanced the expression of all three enzymes, whereas salicylic acid and abscisic acid elicited only 450 

the trypsin inhibitor and peroxidase, respectively.  451 

 452 

In addition, drought induced the expression of peroxidase but decreased the expression of the others 453 

two proteins while cold treatment decreased the expression of the three proteins (Kim et al. 2003). 454 

 455 

 456 

VI- Evolution of Ficus defence mechanisms 457 

 458 

Evolution and coevolution  459 

Members of Ficus are the targets of a number of generalist and specialist insects (Basset and 460 

Novotny 1999; Novotny et al. 2010; Volf et al. 2018). Basset and Novotny identified more than 300 461 

leaf-chewing insect species and more than 400 sap-sucking insect species on 15 Ficus species from 462 

Papua New Guinea (Basset and Novotny 1999). It has been proposed that the defence types affecting 463 

the generalist insects are often toxic chemicals leading to their increased mortality (Koricheva et al. 464 

2004; Volf et al. 2015). This assumption is reasonable, especially for Ficus polyphenols, which are 465 

negatively correlated with the generalist herbivore communities (Volf et al. 2018). However, in this 466 

warfare between insects and plants, some specialist insects have developed novel enzymatic 467 

mechanisms to disable these chemical weapons (Koricheva et al. 2004; Volf et al. 2015, 2018). In this 468 

context, plants adopt different strategies to protect themselves, such as pyramiding chemical 469 

diversity and mechanical defences. In this way, reducing the feeding efficiency of insects and 470 

increasing the time needed for them to feed result in a longer exposure to toxic metabolites and 471 
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natural enemies and, in turn increased insect mortality (Koricheva et al. 2004; Volf et al. 2015, 2018). 472 

In 2018, Volf and collaborators investigated the relationships between Ficus pests and various 473 

defence traits of Ficus, i.e., trichomes (length and density), chemical content and diversity (alkaloids, 474 

polyphenols and triterpenes) and polyphenol oxidative / cysteine protease activities using 19 Papua 475 

New Guinean Ficus species. The authors discovered significant correlations between several Ficus 476 

traits and insect community structures. For instance, they showed that the trichome length, alkaloid 477 

diversity, and protease and polyphenol oxidative activities were correlated with the overall 478 

community structure, while trichome density was only correlated with choreutids. The selective 479 

pressure exerted by some pest attacks might therefore explain why some Ficus traits were 480 

phylogenetically conserved and others escalated or diverged (Volf et al. 2018). However, in this arms 481 

race, plants are not the only ones that have established alternative strategies. To overcome the 482 

toxicity of latex, some insects found that when cutting some canal branches, they induced latex 483 

emission and freed the distal tissues from a certain amount of the toxic liquid (Dussourd and Denno 484 

1991; Konno 2011), making those distal tissues safer for consumption. Such a strategy has not been 485 

studied in detail in Ficus but has been deeply discussed for other latex-producing plants (Dussourd 486 

2017). 487 

 488 

Defence mechanism distribution on Ficus plants 489 

Pests are not the same for leaves, fruits and lignified tissues; therefore, defence strategies are not 490 

equally distributed throughout the plant. Each organ has its own histology with different defensive 491 

structures, and the abundance of defensive chemicals is highly variable from one organ to another. 492 

For instance, the main enzymes of Ficus petiole latex are trypsin inhibitors, but the main proteins of 493 

fruits and trunk latexes are ficins (Kitajima et al. 2018). Leaves are the main targets of herbivores and 494 

consequently display adapted defences. F. carica leaves are well protected by structures that prevent 495 

herbivory (trichomes and minerals) and produce a wide diversity of active chemicals. The 496 

biosynthesis of some defensive compounds, such as furanocoumarins, is more active in leaves than 497 

in other organs (Kitajima et al. 2018). The main proteins found in the latex of leaf petioles are trypsin 498 

inhibitors, which are effective against fungi and numerous insects (Kitajima et al. 2018). Fig 499 

inflorescences display a different set of defences that are directly related to the function of these 500 

organs. First, fig pollination relies on agaonid wasps (Hymenoptera: Chalcidoidea: Agaonidae). 501 

Interestingly, these insects grow inside the ripening fruits. Second, fruits are essential for seed 502 

dissemination, which is realized after consumption by vertebrate species (Cruaud et al. 2012). 503 

Because of these two ecological functions, fruits need to be protected but must not be too toxic to 504 

these partners. Therefore, even if F. carica fruit latex contains high amounts of ficins and trypsin 505 

inhibitors, some toxic chemicals are produced in smaller amounts than in leaves (Kitajima et al. 506 
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2018). For furanocoumarin, the levels are 500 to 1000 times lower in the inflorescences than in 507 

leaves (Oliveira et al. 2009). Lignification is a physical defence structure that provides mechanical 508 

protection. Therefore, trunk, bark and other woody parts are less likely than other parts to be 509 

damaged by herbivorous insects. However, lignified parts are defended by chemical mechanisms that 510 

seem to cover a broad spectrum of bioaggressors. For example, the main defensive protein found in 511 

F. carica trunk latex is ficin, which is effective against insects and fungi. Moreover, trunk latex 512 

contains the largest amounts of chitinases, acid phosphatases and PR proteins (Kitajima et al. 2018), 513 

which are described as antifungal, antibacterial, insecticidal, nematicidal and antiviral molecules.  514 

 515 

 516 

VII- Conclusion  517 

 518 

In this review, we have shown that there is not a single defence mechanism that is used in all 519 

members of Ficus. The strategies are highly diverse and are adapted to each organ of the plant. Some 520 

are constitutive, whereas others are inducible. These mechanisms have evolved over time as a 521 

function of the environment, and the synergistic action of different strategies has made Ficus 522 

resistant to a large set of pathogens. Such a pyramiding strategy is illustrated by latex, which is both 523 

a chemical and mechanical defence mechanism. This strategy is, however, not universal, and one of 524 

its limitations is the size of the aggressor that can be defended against. Indeed, tiny insects that sever 525 

a laticifer while feeding on Ficus can be confronted with an amount of latex that is large compared to 526 

their small size and the quantity of leaf they ingest. In contrast, large mammal herbivores that feed 527 

on whole leaves are confronted with the average concentration of latex diluted in the leaf and are 528 

therefore unaffected by its accumulation at the site of the injury (Konno 2011). However, as shown 529 

by the emergence of canal-cutting insects in response to plant latex, the story is not at the end and 530 

evolution continues. This fascinating arms race makes this plant an ideal model for further study. 531 

 532 

  533 
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Table 1: Secondary metabolites found in Ficus (ND = No data in Ficus) 534 

 1 Other interesting defensive activities have been highlighted in non-Ficus species for similar compounds. 535 

 Type of compound Compounds Ficus species Bioactivities References 

A
lk

al
o

id
s 

Phenanthroindolizidine alkaloids 

Ficuseptines A & B, 13aR-tylophorine, 
13aR-tylocrebrine, 13aR-
isotylocrebrine, 10S,13aR-
tylocrebrine N-oxide 

F. septica Cytotoxicity (Wu et al. 2002; Damu et al. 2005, 2009) 

Antofine F. septica 
Antifungal, 
antibacterial  

(Baumgartner et al. 1990; Wu et al. 2002; Damu et al. 2005, 2009) 

O-methyltylophorinidine, hispiloscine F. hispida Cytotoxicity (Peraza-Sánchez et al. 2002; Yap et al. 2015) 

Others 
F. septica, 

F. fistulosa 
ND1 (Damu et al. 2005, 2009; Yap et al. 2016) 

Chlorophenanthroindolizidine alkaloids Tengechlorenine F. fistulosa Cytotoxicity  (Al-Khdhairawi et al. 2017) 

Indolizidine alkaloids  
4,6-bis-(4-methoxyphenyl)-1,2,3-
trihydrolndolizidinium chloride 

F. septica 
Antifungal, 
antibacterial 

(Baumgartner et al. 1990) 

Septicine-type alkaloids Fistulopsine A & B F. fistulosa Cytotoxicity  (Yap et al. 2016) 

 8,4’-oxyneolignan-alkaloids Hispidacine F. hispida Vasorelaxant (Yap et al. 2015) 

Bis-benzopyrroloisoquinoline alkaloids Tengerensine F. fistulosa ND1 (Al-Khdhairawi et al. 2017) 

Furoquinoline alkaloids Skimmianine F. coronata ND1 (Smyth et al. 2012) 

 

Te
rp

e
n

o
id

s 

Triterpenoids and pentacyclictriterpenes 

Bauerenol, calotropenyl acetate, 
lupeol acetate, methyl maslinate, 
oleanolic acid 

F. carica,  
F. nervosa  

Irritant 
(Saeed and Sabir 2002; Chen et al. 2010; Oliveira et al. 2012; Jaina et al. 
2013) 

Others 
F. benghalensis,  
F. carica 

ND1 (Ahmad et al. 2011; Oliveira et al. 2012; Jaina et al. 2013) 

Steroids 

6-O-acyl-β-D-glucosyl-β-sitosterol F. carica Cytotoxicity  (Rubnov et al. 2001) 

Others 

F. benghalensis,  
F. carica,  
F. nervosa,  
F. septica 

ND1 
(Athnasios et al. 1962; Chen et al. 2010; Oliveira et al. 2012; Marrelli et al. 
2012) 

Cardiac steroids (cardenolides) F. asperifolia ND1 (Konno 2011; Ojo et al. 2014) 
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Rubber (cis-1,4-isoprene polymer) Ficus 
Latex 
stickiness 

(Konno 2011) 

Monoterpenes, sesquiterpenes, norisoprenoids, esters, etc. 

F. asperifolia,  
F. benghalensis, 
 F. carica,  
F. hispida 

ND1 
(Peraza-Sánchez et al. 2002; Oliveira et al. 2010a, b; Ahmad et al. 2011; 
Marrelli et al. 2012; Ojo et al. 2014; Marrelli et al. 2014) 

  

P
h

e
n

o
lic

s 

Phenolic acids Chlorogenic acid 
F. carica,  
F. elastica 

Antioxidant (Teixeira et al. 2006; Oliveira et al. 2009; Teixeira et al. 2009; Lazreg Aref 
et al. 2011; Oliveira et al. 2012; Takahashi et al. 2014) 

Others F. carica ND1 

Flavonoids (Flavones, flavonols, 

flavonones, bengalenosides, catechin, 

anthocyanidins) 

Genistein, prunetin, (2S)-naringenin F. nervosa 
Antimycobact
erial 

(Chen et al. 2010) 

Rutin and others 

F. benghalensis,  
F. carica,  
F. nervosa,  
F. ruficaulis 

Antioxidant 

(Chang et al. 2005; Vaya and Mahmood 2006; Oliveira et al. 2009; Chen et 

al. 2010; Lazreg Aref et al. 2011; Ahmad et al. 2011; Takahashi et al. 2014) 

Tannins and phlobatannins F. asperifolia ND1 (Ojo et al., 2014) 

Simple coumarins 
F. coronata,  

F. nervosa,  

F. ramentacea 

ND1 (Yarosh and Nikonov 1973; Chen et al. 2010; Smyth et al. 2012) 

Pyranocoumarins 

3-hydroxyxanthyletin F. nervosa  
Antimycobact
erial  

(Chen et al. 2010) 

Others 
F. carica,  
F. nervosa 

ND1 
(Chen et al. 2010; Marrelli et al. 2012) 

Furanocoumarins 

Psoralen 

Bergapten 

F. carica,  

F. coronata,  

F. palmata,  

F. salicifolia,  

F. sycomorus 

Nematicidal1 
(Abu-Mustafa et al. 1963; Zaynoun et al. 1984; Oliveira et al. 2009, 2010a; 

Liu et al. 2011; Ahmad et al. 2011; Smyth et al. 2012; Jaina et al. 2013; 

Marrelli et al. 2014; Alam et al. 2015; Guo et al. 2016) 

Angelicin, bergaptol, chalepin, 

marmesin, PAG, pimpinellin, 

rutamarin, rutaretin, xanthotoxin, 

xanthotoxol and others 

F. capensis,  

F. carica,  

F. coronata,  
F. cyathistipula,  
F. nervosa,  
F. ruficaulis 

ND1 

(Caporale et al. 1970; Gibernau et al. 1997; Chen et al. 2010; Smyth et al. 

2012; Marrelli et al. 2012; Jaina et al. 2013; Takahashi et al. 2014; El-

Sakhawy et al. 2016; Mamoucha et al. 2016; Takahashi et al. 2017; Wang 

et al. 2017) 
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 536 

Fig. 1A-G Schematic representation of some defensive structures described in F. carica leaves 537 

(Mamoucha et al. 2016; Pierantoni et al. 2018). The mineralized structures are in blue, and the 538 

secretory structures are in red. (A) Cross-section from a F. carica leaf. Druses and prismatic crystals of 539 

calcium oxalate (black arrowheads) are deposited parallel to a vein that hosts a laticifer (la). Spherical 540 

lithocysts (li) appear in the lower epidermis (le) and extend into the spongy parenchyma (sp). Crystal 541 

idioblasts (ci) containing spiny crystals appear in the palisade parenchyma (pp). Non-glandular 542 

trichomes (tr) can be silicified and form on surface of both the upper (ue) and lower (le) epidermises. 543 

Glandular trichomes (gt) form only under the nerves. (B) Detail of a lithocyst that contains a cystolith 544 

(red arrowhead) and a spike (blue arrowhead) that protrudes outside the cell wall of the leaf. (C) 545 

Detail of some crystal idioblasts located in the palisade parenchyma; theycontain spiny crystals of 546 

indeterminate nature and might appear in pairs. (D) Detail of a conic silicified trichome (non-547 

glandular) that forms on the upper epidermis. (E) Detail of a long hairy silicified trichome (non-548 

glandular) that forms on the lower epidermis. (F) Detail of a capitate secretive trichome (glandular) 549 

that forms under the nerves; it has one single-celled stalk and a four-celled head that accumulates 550 

metabolites in the form of dark granules. (G) Anatomy of the laticifers. Non-articulated laticifers (a) 551 

have tree-like shapes. Articulated laticifers (b) merge to form a structure with (anastomosing 552 

laticifers) or without loops (non-anastomosing laticifers). Ficus laticifers are non-articulated.  553 



20 

 

 554 

Fig. 2: Structure of some Ficus secondary metabolites  555 

 556 

 557 

  558 
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