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Unsupervised Pre-Training of Image Features on Non-Curated Data

Pre-training general-purpose visual features with convolutional neural networks without relying on annotations is a challenging and important task. Most recent efforts in unsupervised feature learning have focused on either small or highly curated datasets like ImageNet, whereas using non-curated raw datasets was found to decrease the feature quality when evaluated on a transfer task. Our goal is to bridge the performance gap between unsupervised methods trained on curated data, which are costly to obtain, and massive raw datasets that are easily available. To that effect, we propose a new unsupervised approach which leverages self-supervision and clustering to capture complementary statistics from large-scale data. We validate our approach on 96 million images from YFCC100M [44], achieving state-of-the-art results among unsupervised methods on standard benchmarks, which confirms the potential of unsupervised learning when only non-curated raw data are available. We also show that pre-training a supervised VGG-16 with our method achieves 74.9% top-1 classification accuracy on the validation set of ImageNet, which is an improvement of +0.8% over the same network trained from scratch. Our code is available at https://github. com/facebookresearch/DeeperCluster.

Introduction

Pre-trained convolutional neural networks, or convnets, are important components of image recognition applications [START_REF] Carreira | Human pose estimation with iterative error feedback[END_REF][START_REF] Chen | Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[END_REF][START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF][START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF]. They improve the generalization of models trained on a limited amount of data [START_REF] Sharif Razavian | Cnn features off-the-shelf: an astounding baseline for recognition[END_REF] and speed up the training on applications when annotated data is abundant [START_REF] He | Rethinking imagenet pre-training[END_REF]. Convnets produce good generic representations when they are pre-trained on large supervised datasets like ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. However, designing such fully-annotated datasets has required a significant effort from the research community in terms of data cleansing and manual labeling. Scaling up the annotation process to datasets that are orders of magnitude bigger raises important difficulties. Using raw metadata as an alternative has been shown to perform comparatively well [23,43], even surpassing ImageNet pretraining when trained on billions of images [START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF]. However, metadata are not always available, and when they are, they do not necessarily cover the full extent of a dataset. These difficulties motivate the design of methods that learn transferable features without using any annotation.

Recent works describing unsupervised approaches have reported performances that are closing the gap with their supervised counterparts [6,15,[START_REF] Zhang | aed: Unsupervised representation learning by autoencoding transformations rather than data[END_REF]. However, the best performing unsupervised methods are trained on ImageNet, a curated dataset made of carefully selected images to form well-balanced and diversified classes [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. Simply discarding the labels does not undo this careful selection, as it only removes part of the human supervision. Because of that, previous works that have experimented with noncurated raw data report a degradation of the quality of features [6,[START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF]. In this work, we aim at learning good visual representations from unlabeled and non-curated datasets. We focus on the YFCC100M dataset [START_REF] Thomee | Yfcc100m: The new data in multimedia research[END_REF], which contains 99 million images from the Flickr photo-sharing website. This dataset is unbalanced, with a "long-tail" distribution of 1 hashtags contrasting with the well-behaved label distribution of ImageNet (see Appendix). For example, guenon and baseball correspond to labels with 1300 associated images in ImageNet, while there are respectively 226 and 256, 758 images associated with these hashtags in YFCC100M. Our goal is to understand if trading manually-curated data for scale leads to an improvement in the feature quality.

We propose a new unsupervised approach specifically designed to leverage large amount of raw data. Indeed, training on large-scale non-curated data requires (i) model complexity to increase with dataset size; (ii) model stability to data distribution changes. A simple yet effective solution is to combine methods from two domains of unsupervised learning: clustering and self-supervision. Since clustering methods, like DeepCluster [6], build supervision from inter-image similarities, the task at hand becomes inherently more complex when the number of images increases. In addition, DeepCluster captures finer relations between images when the number of clusters scales with the dataset size. Clustering approaches infer target labels at the same time as features are learned. Thus, target labels evolve during training, making clustering-based approaches unstable. Furthermore, these methods are sensitive to data distribution as they rely directly on cluster structure in the underlying data. Explicitly dealing with unbalanced category distribution might be a solution but it assumes that we know the distribution of the latent classes. We design our method without this assumption. On the other hand, self-supervised learning [START_REF] Virginia R De Sa | Learning classification with unlabeled data[END_REF] consists in designing a pretext task by predicting pseudo-labels automatically extracted from input signals [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF]. In other words, self-supervised approaches, like RotNet [15], leverage intra-image statistics to build supervision, which are often independent of the data distribution. However, the dataset size has little impact on the nature of the task and on the performance of the resulting features (see Figure 1). A solution to leveraging larger datasets require manually increasing the difficulty of the self-supervision task [START_REF] Chen | Webly supervised learning of convolutional networks[END_REF]. Our approach automatically increases complexity through the clustering strategy. The novelty of our method lies in the combination of these two paradigms (Table 1) so that they benefit from one another. Our approach, DeeperCluster, automatically generates targets by clustering the features of the entire dataset, under constraints derived from self-supervision. Due to the "long-tail" distribution of raw non-curated data, processing huge datasets and learning a large number of targets is necessary, making the problem challenging from a computational point of view. For this reason, we propose a hierachical formulation that is suitable for distributed training. This enables the discovery of latent categories present in the "tail" of the image distribution. While our framework is general, in practice we focus on combining the large rotation classification task of Gidaris et al. [15] with the clustering approach of Caron et al. [6]. Figure 1 left shows that as we increase the number of training images, the quality of features improves to the point where it surpasses those trained without labels on curated datasets. More importantly, we evaluate the quality of our approach as a pretraining step for ImageNet classification. Pre-training a supervised VGG-16 with our unsupervised approach leads to a top-1 accuracy of 74.9%, which is an improvement of +0.8% over a model trained from scratch. This shows the potential of unsupervised pre-training on large non-curated datasets as a way to improve the quality of visual features.

Related Work

Self-supervision. Self-supervised learning builds a pretext task from the input signal to train a model without annotation [START_REF] Virginia R De Sa | Learning classification with unlabeled data[END_REF]. Many pretext tasks have been proposed [22,[START_REF] Mahendran | Cross pixel optical flow similarity for self-supervised learning[END_REF][START_REF] Wang | Transitive invariance for self-supervised visual representation learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], exploiting, amongst others, spatial context [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF][START_REF] Kim | Learning image representations by completing damaged jigsaw puzzles[END_REF]33,[START_REF] Noroozi | Boosting self-supervised learning via knowledge transfer[END_REF][START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF], cross-channel prediction [START_REF] Larsson | Learning representations for automatic colorization[END_REF][START_REF] Larsson | Colorization as a proxy task for visual understanding[END_REF]55,[START_REF] Zhang | Split-brain autoencoders: Unsupervised learning by cross-channel prediction[END_REF], or the temporal structure of videos [START_REF] Agrawal | Learning to see by moving[END_REF][START_REF] Pathak | Learning features by watching objects move[END_REF]46]. Some pretext tasks explicitly encourage the representations to be either invariant or discriminative to particular types of input tranformations. For example, Dosovitskiy et al. [START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF] consider each image and its transformations as a class to enforce invariance to data transformations. In this paper, we build upon the work of Gidaris et al. [15] where the model encourages features to be discriminative for large rotations. Recently, Kolesnikov et al. [START_REF] Kolesnikov | Revisiting self-supervised visual representation learning[END_REF] have conducted an extensive benchmark of self-supervised learning methods on different convnet architectures. As opposed to our work, they use curated datasets for pre-training.

Deep clustering. Clustering, along with density estimation and dimensionality reduction, is a family of standard unsupervised learning methods. Various attempts have been made to train convnets using clustering [2,3,6,[START_REF] Liao | Learning deep parsimonious representations[END_REF][START_REF] Wang | Unsupervised joint mining of deep features and image labels for large-scale radiology image categorization and scene recognition[END_REF][START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF][START_REF] Yang | Joint unsupervised learning of deep representations and image clusters[END_REF]. Our paper builds upon the work of Caron et al. [6], in which k-means is used to cluster the visual representations. Unlike our work, they mainly focus on training their approach using ImageNet without labels. Recently, Noroozi et al. [START_REF] Noroozi | Boosting self-supervised learning via knowledge transfer[END_REF] show that clustering can also be used as a form of distillation to improve the performance of networks trained with self-supervision. As opposed to our work, they use clustering only as a post-processing step and does not leverage the complementarity between clustering and selfsupervision to further improve the quality of features.

Learning on non-curated datasets. Some methods [9, [START_REF] Gomez | Self-supervised learning of visual features through embedding images into text topic spaces[END_REF][START_REF] Ni | Large-scale deep learning on the yfcc100m dataset[END_REF] aim at learning visual features from non-curated data streams. They typically use metadata such as hashtags [23,43] or geolocalization [START_REF] Weyand | Planetphoto geolocation with convolutional neural networks[END_REF] as a source of noisy supervision. In particular, Mahajan et al. [START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF] train a network to classify billions of Instagram images into predefined and clean sets of hashtags. They show that with little human effort, it is possible to learn features that transfer well to Im-ageNet, even achieving state-of-the-art performance if finetuned. As opposed to our work, they use an extrinsic source of supervision that had to be cleaned beforehand.

Preliminaries

In this work, we refer to the vector obtained at the penultimate layer of the convnet as a feature or representation. We denote by f θ the feature-extracting function, parametrized by a set of parameters θ. Given a set of images, our goal is then to learn a "good" mapping f θ * . By "good", we mean a function that produces general-purpose visual features that are useful on downstream tasks.

Self-supervision

In self-supervised learning, a pretext task is used to extract target labels directly from data [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF]. These targets can take a variety of forms. They can be categorical labels associated with a multiclass problem, as when predicting the transformation of an image [15,[START_REF] Zhang | aed: Unsupervised representation learning by autoencoding transformations rather than data[END_REF] or the ordering of a set of patches [33]. Or they can be continuous variables associated with a regression problem, as when predicting image color [55] or surrounding patches [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF]. In this work, we are interested in the former. We suppose that we are given a set of N images {x 1 , . . . , x N } and we assign a pseudo-label y n in Y to each input x n . Given these pseudo-labels, we learn the parameters θ of the convet jointly with a linear classifier V to predict pseudo-labels by solving the problem

min θ,V 1 N N n=1 (y n , V f θ (x n )), (1) 
where is a loss function. The pseudo-labels y n are fixed during the optimization and the quality of the learned features entirely depends on their relevance.

Rotation as self-supervision. 1) is randomly rotated and associated with a target y n that represents the angle of the applied rotation.

Deep clustering

Clustering-based approaches for deep networks typically build target classes by clustering visual features produced by convnets. As a consequence, the targets are updated during training along with the representations and are potentially different at each epoch. In this context, we define a latent pseudo-label z n in Z for each image n as well as a corresponding linear classifier W . These clustering-based methods alternate between learning the parameters θ and W and updating the pseudo-labels z n . Between two reassignments, the pseudo-labels z n are fixed, and the parameters and classifier are optimized by solving

min θ,W 1 N N n=1 (z n , W f θ (x n )), (2) 
which is of the same form as Eq. ( 1). Then, the pseudolabels z n can be reassigned by minimizing an auxiliary loss function. This loss sometimes coincides with Eq. (2) [3,[START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF] but some works proposed to use another objective [6,[START_REF] Yang | Joint unsupervised learning of deep representations and image clusters[END_REF].

Updating the targets with k-means. In this work, we focus on the framework of Caron et al.

[6], DeepCluster, where latent targets are obtained by clustering the activations with k-means. More precisely, the targets z n are updated by solving the following optimization problem:

min C∈R d×k N n=1 min zn∈{0,1} k s.t. z n 1=1 Cz n -f θ (x n ) 2 2 , (3) 
C is the matrix where each column corresponds to a centroid, k is the number of centroids, and z n is a binary vector with a single non-zero entry. This approach assumes that the number of clusters k is known a priori; in practice, we set it by validation on a downstream task (see Sec. 5.3). The latent targets are updated every T epochs of stochastic gradient descent steps when minimizing the objective (2). Note that this alternate optimization scheme is prone to trivial solutions and controlling the way optimization procedures of both objectives interact is crucial. Re-assigning empty clusters and performing a batch-sampling based on an uniform distribution over the cluster assignments are workarounds to avoid trivial parametrization [6].

Method

In this section, we describe how we combine selfsupervised learning with deep clustering in order to scale up to large numbers of images and targets.

Combining self-supervision and clustering

We assume that the inputs x 1 , . . . , x N are rotated images, each associated with a target label y n encoding its rotation angle and a cluster assignment z n . The cluster assignment changes during training along with the visual representations. We denote by Y the set of possible rotation angles and by Z, the set of possible cluster assignments. A way of combining self-supervision with deep clustering is to add the losses defined in Eq. ( 1) and Eq. (2). However, summing these losses implicitly assumes that classifying rotations and cluster memberships are two independent tasks, which may limit the signal that can be captured. Instead, we work with the Cartesian product space Y × Z, which can potentially capture richer interactions between the two tasks. We get the following optimization problem:

min θ,W 1 N N n=1 (y n ⊗ z n , W f θ (x n )). ( 4 
)
Note that any clustering or self-supervised approach with a multiclass objective can be combined with this formulation. For example, we could use a self-supervision task that captures information about tiles permutations [33] or frame ordering in a video [46]. However, this formulation does not scale in the number of combined targets, i.e., its complexity is O(|Y||Z|). This limits the use of a large number of cluster or a self-supervised task with a large output space [START_REF] Zhang | aed: Unsupervised representation learning by autoencoding transformations rather than data[END_REF].

In particular, if we want to capture information contained in the tail of the distribution of non-curated dataset, we may need a large number of clusters. We thus propose an approximation of our formulation based on a scalable hierarchical loss that it is designed to suit distributed training.

Scaling up to large number of targets

Hierarchical losses are commonly used in language modeling where the goal is to predict a word out of a large vocabulary [5]. Instead of making one decision over the full vocabulary, these approaches split the process in a hierarchy of decisions, each with a smaller output space. For example, the vocabulary can be split into clusters of semantically similar words, and the hierarchical process would first select a cluster and then a word within this cluster.

Following this line of work, we partition the target labels into a 2-level hierarchy where we first predict a super-class and then a sub-class among its associated target labels. The first level is a partition of the images into S super-classes and we denote by y n the super-class assignment vector in {0, 1} S of the image n and by y ns the s-th entry of y n . This super-class assignment is made with a linear classifier V on top of the features. The second-level of the hierarchy is obtained by partitioning within each super-class. We denote 

1 N N n=1 V f θ (x n ), y n + S s=1 y ns (W s f θ (x n ), z s n ) , (5) 
where is the negative log-softmax function. Note that an image that does not belong to the super-class s does not belong either to any of its k s sub-classes.

Choice of super-classes. A natural partition would be to define the super-classes based on the target labels from the self-supervised task and the sub-classes as the labels produced by clustering. However, this would mean that each image of the entire dataset would be present in each superclass (with a different rotation), which does not take advantage of the hierarchical structure to use a bigger number of clusters. Instead, we split the dataset into m sets by running kmeans with m centroids on the full dataset every T epochs. We then use the Cartesian product between the assignment to these m clusters and the angle rotation classes to form the super-classes. There are 4m super-classes, each associated with the subset of data belonging to the corresponding cluster (N/m images if the clustering is perfectly balanced). These subsets are then further split with k-means into k subclasses. This is equivalent to running a hierarchical k-means with rotation constraints on the full datasets to form our hierarchical loss. We typically use m = 4 and k = 80k, leading to a total of 320k different clusters split in 4 subsets. Our approach, "DeeperCluster", shares similarities with Deep-Cluster but is designed to scale to larger datasets. We alternate between clustering the non-rotated images features and training the network to predict both the rotation applied to the input data and its cluster assignment amongst the clusters corresponding to this rotation (Figure 2).

Distributed training. Building the super-classes based on data splits lends itself to a distributed implementation that scales well in the number of images. Specifically, when optimizing Eq. ( 5), we form as many distributed communication groups of p GPUs as the number of super-classes, i.e., G = 4m. Different communication groups share the parameters θ and the super-class classifier V , while the parameters of the sub-class classifiers W 1 , . . . , W S are only shared within a communication group. Each communication group s deals only with the subset of images and the rotation angle associated with the super-class s.

Distributed k-means. Every T epochs, we recompute the super and sub-class assignments by running two consecutive k-means on the entire dataset. This is achieved by first randomly splitting the dataset across different GPUs. Each GPU is in charge of computing cluster assignments for its partition, whereas centroids are updated across GPUs. We reduce communication between GPUs by sharing only the number of assigned elements for each cluster and the sum of their features. The new centroids are then computed from these statistics. We observe empirically that k-means converges in 10 iterations. We cluster 96M features of dimension 4096 into m = 4 clusters using 64 GPUs (1 minute per iteration). Then, we split this pool of GPUs into 4 groups of 16 GPUs. Each group clusters around 23M features into 80k clusters (4 minutes per iteration).

Implementation details

The loss in Eq. ( 5) is minimized with mini-batch stochastic gradient descent [START_REF] Bottou | Stochastic gradient descent tricks[END_REF]. Each mini-batch contains 3072 instances distributed accross 64 GPUs, leading to 48 instances per GPU per minibatch [START_REF] Goyal | Accurate, large minibatch sgd: Training imagenet in 1 hour[END_REF]. We use dropout, weight decay, momentum and a constant learning rate of 0.1. We reassign clusters every 3 epochs. We use the Pascal VOC 2007 classification task without finetuning as a downstream task to select hyper-parameters. In order to speed up experimentations, we initialize the network with RotNet trained on YFCC100M. Before clustering, we perform a whitening of the activations and 2 -normalize each of them. We use standard data augmentations, i.e., cropping of random sizes and aspect ratios and horizontal flips [26]). We use Classif.

Detect. We disassociate methods using curated datasets and methods using non-curated datasets. We selected hyper-parameters for each transfer task on the validation set, and then retrain on both training and validation sets. We report results on the test set averaged over 5 runs. "YFFCv" stands for the videos contained in YFFC100M dataset. † numbers from their original paper.

Method

the VGG-16 architecture [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] with batch normalization layers. Following [3, 6, 37], we pre-process images with a Sobel filtering. We train our models on the 96M images from YFCC100M [START_REF] Thomee | Yfcc100m: The new data in multimedia research[END_REF] that we managed to download. We use this publicly available dataset for research purposes only.

Experiments

In this section we evaluate the quality of the features learned with DeeperCluster on a variety of downstream tasks, such as classification or object detection. We also provide insights about the impact of the number of images and clusters on the performance of our model.

Evaluating unsupervised features

We evaluate the quality of the features extracted from a convnet trained with DeeperCluster on YFCC100M by considering several standard transfer learning tasks, namely image classification, object detection and scene classification.

Pascal VOC 2007 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF]. This dataset has small training and validation sets (2.5k images each), making it close to the setting of real applications where models trained using large computational resources are adapted to a new task with a small number of instances. We report numbers on the classification and detection tasks with finetuning ("ALL") or by only retraining the last three fully connected layers of the network ("FC68"). The FC68 setting gives a better measure of the quality of the evaluated features since fewer parameters are retrained. For classification, we use the code of Caron et al. [6] 1 and for detection, fast-rcnn [START_REF] Girshick | Fast r-cnn[END_REF] 2 . For classification, we train the models for 150k iterations, starting with a learning rate of 0.002 decayed by a factor 10 every 20k iterations, and we report results averaged over 10 random crops. For object detection, we train our network for 150k iterations, dividing the step-size by 10 after the first 50k steps with an initial learning rate of 0.01 (FC68) or 0.002 (ALL) and a weight decay of 0.0001. Following Doersch et al. [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF], we use the multiscale configuration, with scales [400, 500, 600, 700] for training and [400, 500, 600] for testing. In Table 2, we compare Deep-erCluster with two sets of unsupervised methods that use a VGG-16 network: those trained on curated datasets and those trained on non-curated datasets. Previous unsupervised methods that worked on unucurated datasets with a VGG-16 use videos: Youtube8M ("YT8M"), Youtube9M ("YT9M") or the videos from YFCC100M ("YFFCv"). Our approach achieves state-of-the-art performance among all the unsupervised method that uses a VGG-16 architecture, even those that use ImageNet as a training set. The gap with a supervised network is still important when we freeze the convolutions (6% for detection and 10% for classification) but drops to less than 5% for both tasks with finetuning. [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] and Places205 [START_REF] Zhou | Learning deep features for scene recognition using places database[END_REF]. ImageNet ("INet") and Places205 ("Pl.") are two large scale image classification datasets: ImageNet's domain covers objects and animals (1.3M images) and Places205's domain covers indoor and outdoor scenes (2.5M images). We train linear classifiers with a logistic loss on top of frozen convolutional layers at different depths. To reduce influence of feature dimension in the comparison, we average-pool the features until their dimension is below 10k [55]. This experiment probes the quality of the features extracted at each convolutional layer. In Figure 3, we observe that Deeper-Cluster matches the performance of a supervised network for all layers on Places205. On ImageNet, it also matches supervised features up to the 4th convolutional block; then the gap suddenly increases to around 20%. It is not surprising since the supervised features are trained on ImageNet itself, while ours are trained on YFCC100M.

Linear classifiers on ImageNet

Pre-training for ImageNet

In the previous section, we can observe that a VGG-16 trained on YFCC100M has similar or better low level features than the same network trained on ImageNet with su- pervision. In this experiment, we want to check whether these low-level features pre-trained on YFCC100M without supervision can serve as a good initialization for fullysupervised ImageNet classification. To this end, we pretrain a VGG-16 on YFCC100M using either DeeperCluster or RotNet. The resulting weights are then used as initialization for the training of a network on ImageNet with supervision. We merge the Sobel weights of the network pre-trained with DeeperCluster with the first convolutional layer during the initialization. We then train the networks on ImageNet with mini-batch SGD for 100 epochs, a learning rate of 0.1, a weight decay of 0.0001, a batch size of 256 and dropout of 0.5. We reduce the learning rate by a factor of 0.2 every 20 epochs. Note that this learning rate decay schedule slightly differs from the ImageNet classification PyTorch default implementation3 where they train for 90 epochs and decay the learning rate by 0.1 at epochs 30 and 60. We give in Appendix the results with this default schedule (with unchanged conclusions). In Table 3, we compare the performance of a network trained with a standard intialization ("Supervised") to one initialized with a pre-training obtained from either DeeperCluster ("Supervised + DeeperCluster pre-training") or RotNet ("Supervised + RotNet pre-training") on YFCC100M. We see that our pre-training improves the performance of a supervised network by +0.8%, leading to 74.9% top-1 accuracy. This means that our pre-training captures important statistics from YFCC100M that transfers well to ImageNet.

Model analysis

In this final set of experiments, we analyze some components of our model. Since DeeperCluster derives from Rot-Net and DeepCluster, we first look at the difference between these methods and ours, when trained on curated and non- Comparison with RotNet and DeepCluster. In Table 4, we compare DeeperCluster with DeepCluster and RotNet when a linear classifier is trained on top of the last convolutional layer of a VGG-16 on several datasets. For reference, we also report previously published numbers [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF] with a VGG-16 architecture. We average-pool the features of the last layer resulting in representations of 8192 dimensions. Our approach outperforms both RotNet and DeepCluster, even when they are trained on curated datasets (except for ImageNet classification task where DeepCluster trained on ImageNet yields the best performance). More interestingly, we see that the quality of the dataset or its scale has little impact on RotNet while it has on DeepCluster. This is confirming that self-supervised methods are more robust than clustering to a change of dataset distribution.

Influence of dataset size and number of clusters. To measure the influence of the number of images on features, we train models with 1M, 4M, 20M, and 96M images and report their accuracy on the validation set of the Pascal VOC 2007 classification task (FC68 setting). We also train models on 20M images with a number of clusters that varies from 10k to 160k. For the experiment with a total of 160k clusters, we choose m = 2 which results in 8 super-classes.

In Figure 1, we observe that the quality of our features improves when scaling both in terms of images and clusters. Interestingly, between 4M and 20M of YFCC100M images are needed to meet the performance of our method on Ima-geNet. Augmenting the number of images has a bigger impact than the number of clusters. Yet, this improvement is significant since it corresponds to a reduction of more than 10% of the relative error w.r.t. the supervised model.

Quality of the clusters. In addition to features, our method provides a clustering of the input images. We evaluate the quality of these clusters by measuring their correlation with existing partitions of the data. In particular, YFCC100M comes with many different metadata. We consider hashtags, users, camera and GPS coordinates. If an image has several hashtags, we pick as label the least frequent one in the total hashtag distribution. We also measure the correlation of ours clusters with labels predicted by a classifier trained on ImageNet categories. We use a ResNet-50 network [21], pre-trained on ImageNet, to classify the YFCC100M images and we select those for which the confidence in prediction is higher than 75%. This evaluation omits a large amount of the data but gives some insight about the quality of our clustering in object classification.

In Figure 4, we show the evolution during training of the normalized mutual information (NMI) between our clustering and different metadata, and the predicted labels from ImageNet. The higher the NMI, the more correlated our clusters are to the considered partition. For reference, we compute the NMI for a clustering of RotNet features (as it corresponds to weights at initialization) and of a supervised model. First, it is interesting to observe that our clustering is improving over time for every type of metadata. One important factor is that most of these commodities are correlated since a given user takes pictures in specific places with probably a single camera and use a preferred fixed set of hashtags. Yet, these plots show that our model captures in the input signal enough information to predict these metadata at least as well as the features trained with supervision.

We visually assess the consistency of our clusters in Figure 5. We display 9 random images from 8 manually picked clusters. The first two clusters contain a majority of images associated with tag from the head (first cluster) and from the tail (second cluster) in the YFC100M dataset. Indeed, 418.538 YFC100M images are associated with the tag cat epochs whereas only 384 images contain the tag elephantparadelondon (0.0004% of the dataset). We also show a cluster for which the dominant hashtag does not corrolate visually with the content of the cluster. As already mentioned, this database is non-curated and contains images that basically do not depict anything semantic. The dominant metadata of the last cluster in the top row is the device ID CanoScan. As this cluster is about drawings, its images have been mainly taken with a scanner. Finally, the bottom row depict clusters that are pure for GPS coordinates but unpure for user IDs.

It results in clusters of images taken by many different users in the same place: tourist landmarks.

Conclusion

In this paper, we present an unsupervised approach specifically designed to deal with large amount of noncurated data. Our method is well-suited for distributed training, which allows training on large datasets with 96M of images. With such amount of data, our approach surpasses unsupervised methods trained on curated datasets, which validates the potential of unsupervised learning in applications where annotations are scarce or curation is not trivial. Finally, we show that unsupervised pre-training improves the performance of a network trained on ImageNet. 

Appendix 1. Evaluating unsupervised features

Here we provide numbers from Figure 2 in Table 5.

YFCC100M and Imagenet label distribution

YFCC100M dataset contains social media from the Flickr website. The content of this dataset is very unbalanced, with a "long-tail" distribution of hashtags contrasting with the well-behaved label distribution of ImageNet as can be seen in Figure 6. For example, guenon and baseball correspond to labels with 1300 associated images in Ima-geNet, while there are respectively 226 and 256, 758 images associated with these hashtags in YFCC100M.

Pre-training for ImageNet

In Table 6, we compare the performance of a network trained with supervision on ImageNet with a standard intialization ("Supervised") to one pre-trained with Deeper-Cluster ("Supervised + DeeperCluster pre-training") and to one pre-trained with RotNet ("Supervised + RotNet pretraining"). The convnet is finetuned on ImageNet with supervision with mini-batch SGD following the hyperparameters of the ImageNet classification example implementation from PyTorch documentation6 ). Indeed, we train for 90 epochs (instead of 100 epochs in Table 3 of the main paper). We use a learning rate of 0.1, a weight decay of 0.0001, a batch size of 256 and dropout of 0.5. We reduce the learning rate by a factor of 0.1 at epochs 30 and 60 (instead of decaying the learning rate with a factor 0.2 every 20 epochs in Table 3 of the main paper). This setting is unfair towards the supervised from scratch baseline since as we start the optimization with a good initialization we arrive at convergence earlier. Indeed, we observe that the gap between our pretraining and the baseline shrinks from 1.0 to 0.8 when evaluating at convergence instead of evaluating before convergence. As a matter of fact, the gap for the RotNet pretraining with the baseline remains the same: 0.4.

Model analysis 4.1. Instance retrieval

Instance retrieval consists of retrieving from a corpus the most similar images to a given a query. We follow the experimental setting of Tolias et al. [START_REF] Tolias | Particular object retrieval with integral max-pooling of cnn activations[END_REF]: we apply R-MAC with a resolution of 1024 pixels and 3 grid levels and we report mAP on instance-level image retrieval on Oxford Buildings [START_REF] Philb Sur Clear ; Ondrej | Object retrieval with large vocabularies and fast spatial matching[END_REF] and Paris [START_REF] Philbin | Lost in quantization: Improving particular object retrieval in large scale image databases[END_REF] datasets.

As described by Dosovitskiy et al. [START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF], class-level supervision induces invariance to semantic categories. This property may not be beneficial for other computer vision tasks such as instance-level recognition. For that reason, descriptor matching and instance retrieval are tasks for which unsupervised feature learning might provide performance improvements. Moreover, these tasks constitute evaluations that do not require any additionnal training step, allowing a straightforward comparison accross different methods. We evaluate our method and compare it to previous work following the experimental setup proposed by Caron et al. [6]. We report results for the instance retrieval task in Table 7.

We observe that features trained with RotNet have significantly worse performance than DeepCluster both on Oxford5K and Paris6K. This performance discrepancy means that properties acquired by classifying large rotations are not relevant to instance retrieval. An explanation is that all images in Oxford5k and Paris6k have the same orientation as they picture buildings and landmarks. As our method is a combination of the two paradigms, it suffers an important performance loss on Oxfork5K, but is not affected much on Paris6k. These results emphasize the importance of having a diverse set of benchmarks to evaluate the quality of features produced by unsupervised learning methods. Table 7: mAP on instance-level image retrieval on Oxford and Paris dataset. We apply R-MAC with a resolution of 1024 pixels and 3 grid levels [START_REF] Tolias | Particular object retrieval with integral max-pooling of cnn activations[END_REF]. We disassociate the methods using unsupervised ImageNet and the methods using non-curated datasets. DeepCluster does not scale to the full YFCC100M dataset, we thus train it on a random subset of 1.3M images. 

Method

Influence of data pre-processing

In this section we experiment with our method on raw RGB inputs. We provide some insights into the reasons why sobel filtering is crucial to obtain good performance with our method. First, in Figure 7, we randomly select a subset of 3000 clusters and sort them by standard deviation to their mean color. If the standard deviation of a cluster to its mean color is low, it means that the images of this cluster tend to have a similar colorization. Moreover, we show in Figure 8 some clusters with a low standard deviation to the mean color. We observe in Figure 7 that the clustering on features learned with our method focuses more on color than the clustering on RotNet features. Indeed, clustering by color and lowlevel information produces balanced clusters that can easily be predicted by a convnet. Clustering by color is a solution to our formulation. However, as we want to avoid an uninformative clustering essentially based on colors, we remove some part of the input information by feeding the network with the image gradients instead of the raw RGB image (see Figure 9). This allows to greatly improve the performance of our features when evaluated on downstream tasks as it can be seen in Table 8. We observe that Sobel filter improves slightly RotNet features as well. 

Hyperparameters

In this section, we detail our different hyperparameter choices. Images are rescaled to 3 × 224 × 224. Note that for each network we choose the best performing hyperparameters by evaluating on Pascal VOC 2007 classification task without finetuning.

• RotNet YFCC100M: we train with a total batchsize of 512, a learning rate of 0.05, weight decay of 0.00001 and dropout of 0.3.

• RotNet ImageNet: we train with a total batch-size of 512, a learning rate of 0.05, weight decay of 0.00001 and dropout of 0.3.

• DeepCluster YFCC100M 1.3M images: we train with a total batch-size of 256, a learning rate of 0.05, weight decay of 0.00001 and dropout of 0.5. A sobel filter is used in preprocessing step. We cluster the pca-reduced to 256 dimensions, whitened and normalized features with k-means into 10.000 clusters every 2 epochs of training.

• DeeperCluster YFCC100M: we train with a total batch-size of 3072, a learning rate of 0.1, weight decay of 0.00001 and dropout of 0.5. A sobel filter is used in preprocessing step. We cluster the whitened and normalized features (of dimension 4096) of the nonrotated images with hierarchical k-means into 320.000 clusters (4 clusterings in 80.000 clusters each) every 3 epochs of training.

• DeeperCluster ImageNet: we train with a total batchsize of 748, a learning rate of 0.1, weight decay of 0.00001 and dropout of 0.5. A sobel filter is used in preprocessing step. We cluster the whitened and normalized features (of dimension 4096) of the nonrotated images with k-means into 10.000 clusters every 5 epochs of training.

For all methods, we use stochastic gradient descent with a momentum of 0.9. We stop training as soon as performance on Pascal VOC 2007 classification task saturates. We use PyTorch version 1.0 for all our experiments.

Usernames of cluster visualization images

For copyright reason, we give here the Flickr user names of the images from 

Figure 1 :

 1 Figure 1: Influence of amount of data (left) and number of clusters (right) on the features quality. We report validation mAP on Pascal VOC classification task (FC68 setting).

Figure 2 :

 2 Figure 2: DeeperCluster alternates between a hierachical clustering of the features and learning the parameters of a convnet by predicting both the rotation angle and the cluster assignments in a single hierachical loss. by z s n the vector in {0, 1} ks of the assignment into k s subclasses for an image n belonging to super-class s. There are S sub-class classifiers W 1 , . . . , W S , each predicting the sub-class memberships within a super-class s. The parameters of the linear classifiers (V, W 1 , . . . , W S ) and θ are jointly learned by minimizing the following loss function:

1Figure 3 :

 3 Figure 3: Accuracy of linear classifiers on ImageNet and Places205 using the activations from different layers as features. We compare a VGG-16 trained with supervision on ImageNet to VGG-16 trained with either RotNet or Deep-erCluster on YFCC100M. Exact numbers are in Appendix.

Figure 4 :Figure 5 :

 45 Figure 4: Normalized mutual information between our clustering and different sorts of metadata: hashtags, user IDs, geographic coordinates, and device types. We also plot the NMI with an ImageNet classifier labeling.

Figure 6 :

 6 Figure 6: Comparison of the hashtag distribution in YFCC100M with the label distribution in ImageNet.

Figure 7 :

 7 Figure7: Sorted standard deviations to clusters mean colors. If the standard deviation of a cluster to its mean color is low, the images of this cluster have a similar colorization.

Figure 8 :Figure 9 :

 89 Figure 8: We show clusters with an uniform colorization accross their images. For each cluster, we show the mean color of the cluster.

Figure 5 .

 5 For each cluster, the user names are listed from left to right and from top to bottom. Photographers of images in cluster cat are sun summer, savasavasava, windy sydney, ironsalchicha, Chiang Kai Yen, habigu, Crackers93, rikkis refuge and rabidgamer. Photographers of images in custer elephantparadelondon are Karen Roe, asw909, Matt From London, jorgeleria, Loz Flowers, Loz Flowers, Deck Accessory, Maxwell Hamilton and Melinda 26 Cristiano. Photographers of images in custer always are troutproject, elandru, vlauria, Raymond Yee, tsupo543, masatsu, robotson, edgoubert and troutproject. Photographers of images in custer CanoScan are what-i-found, what-i-found, allthepreciousthings, carbonated, what-i-found, what-i-found, what-i-found, what-ifound and what-i-found. Photographers of images in custer GPS: (43, 10) are bloke, garysoccer1, macpalm, M A T T E O 1 2 3, coder11, Johan.dk, chrissmallwood, markomni and xiquinhosilva. Photographers of images in custer GPS: (-34, -151) are asamiToku, Scott R Frost, BeauGiles, MEADEN, chaitanyakuber, mathias Straumann, jeroenvanlieshout, jamespia and Bastard Sheep. Photographers of images in custer GPS(64, -20) are arrygj, Bsivad, Powys Walker, Maria Grazia Dal Pra27, Sterling College, roundedbygravity, johnmcga, MuddyRavine and El coleccionista de instantes. Photographers of images in custer GPS: (43, -104) are dodds, eric.terry.kc, Lodahln, wmamurphy, purza7, jfhatesmustard, Marcel B., Silly America and Liralen Li.

Table 1 :

 1 Training on non-curated large-scale data requires model complexity to increase with dataset size and model stability to data distribution changes. A simple solution is to combine self-supervision and clustering.

		intra-image inter-images stable to distri-
	Method	statistics	statistics. bution change
	Self-Sup (RotNet)		
	Deep Clustering		

  {0 • , 90 • , 180 • , 270 • }. Each input x n in Eq. (

	since its performance on standard evaluation benchmarks
	is among the best in self-supervised learning. This pretext
	task corresponds to a multiclass classification problem with
	four categories: rotations in
	Gidaris et al. [15] have re-
	cently shown that good features can be obtained when train-
	ing a convnet to discriminate between different image rota-
	tions. In this work, we focus on their pretext task, RotNet,

Table 2 :

 2 Comparison of DeeperCluster to state-of-the-art unsupervised feature learning on classification and detection on PASCAL VOC 2007.

		Data	FC68 ALL	FC68 ALL
	ImageNet labels	INet	89.3 89.2	66.3 70.3
	Random	-	10.1 49.6	5.4 55.6
	Unsupervised on curated data			
	Larsson et al. [28]	INet+Pl.	-77.2 † 49.2 59.7
	Wu et al. [51]	INet	-	-	-60.5 †
	Doersh et al. [12]	INet	54.6 78.5	38.0 62.7
	Caron et al. [6]	INet	78.5 82.5	58.7 65.9 †
	Unsupervised on non-curated data		
	Mahendran et al. [31] YFCCv	-76.4 †	-	-
	Wang and Gupta [46] YT8M	-	-	-60.2 †
	Wang et al. [47]	YT9M 59.4 79.6	40.9 63.2 †
	DeeperCluster	YFCC 79.7 84.3 60.5 67.8

Table 4 :

 4 

	ImageNet			top-1 top-5
	Supervised (PyTorch documentation 4 )	73.4 91.5
	Supervised (our code)		74.1 91.8
	Supervised + RotNet pre-training	74.5 92.0
	Supervised + DeeperCluster pre-training	74.9 92.3
	Table 3: Accuracy on the validation set of ImageNet classi-
	fication for a supervised VGG-16 trained with different ini-
	tializations: we compare a network trained from a standard
	initialization to networks trained from pre-trained weights
	using either DeeperCluster or RotNet on YFCC100M.
	Method	Data	ImageNet Places VOC2007
	Supervised	ImageNet	70.2	45.9	84.8
	Wu et al. [51] ImageNet	39.2	36.3	-
	RotNet	ImageNet	32.7	32.6	60.9
	DeepCluster	ImageNet	48.4	37.9	71.9
	RotNet	YFCC100M	33.0	35.5	62.2
	DeepCluster YFCC100M	34.1	35.4	63.9
	DeeperCluster YFCC100M	45.6	42.1	73.0

Comparaison between DeeperCluster, RotNet and

DeepCluster when pre-trained on curated and non-curated dataset. We report the accuracy on several datasets of a linear classifier trained on top of features of the last convolutional layer. All the methods use the same architecture. DeepCluster does not scale to the full YFCC100M dataset, we thus train it on a random subset of 1.3M images. curated datasets. We then report quantitative and qualitative evaluations of the clusters obtained with DeeperCluster.

Table 8 :

 8 Influence of applying Sobel filter or using raw RGB input on the features quality. We report validation mAP on Pascal VOC classification task (FC68 setting).

		Data	RGB Sobel
	RotNet	YFCC 1M 69.8 70.4
	DeeperCluster YFCC 20M 71.6 76.1

github.com/pytorch/examples/blob/master/imagenet/

pytorch.org/docs/stable/torchvision/models

pytorch.org/docs/stable/torchvision/models

github.com/pytorch/examples/blob/master/ imagenet/main.py
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