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Abstract. We give formulas for phase recovering from appropriate monochromatic phase-
less scattering data at 2n points in dimension d = 3 and in dimension d = 2. These formulas
are recurrent and explicit and their precision is proportional to n. By this result we con-
tinue studies of [Novikov, Bull.Sci.Math. 139, 923-936, 2015], where formulas of such a
type were given for n = 1, d ≥ 2.
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1. Introduction
We consider monochromatic wave propagation modelled by the equation:

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

where ∆ is the Laplacian in x, v is a coefficient, e.g., such that

v ∈ L∞(Rd), supp v ⊂ D,

D is an open bounded domain in Rd.
(1.2)

Equation (1.1) can be considered as the Schrödinger equation at fixed energy E that
describes a quantum mechanical particle interacting with a macroscopic object contained
in D. In this case v is the potential of this interaction.

Equation (1.1) can be also considered as the Helmholtz equation of electrodynamic or
acoustic wave propagation at fixed frequency ω. In this case

v(x) = (1− (n(x)))2
( ω
c0

)2
, E =

( ω
c0

)2
, (1.3)

where n(x) is a scalar index of refraction, n(x) ≡ 1 on Rd\D, c0 is a reference speed of
wave propagation.

For equation (1.1) we consider the classical scattering solutions ψ+ satisfying the
Lippmann-Schwinger integral equation

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy, (1.4)

G+(x, k)
def
= −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|), (1.5)
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where x ∈ Rd, k ∈ Rd, k2 = E. Note that

G+(x, k) = − i

4
H1

0 (|x| |k|) for d = 2, G+(x, k) = −e
i|k||x|

4π|x|
for d = 3, (1.6)

where H1
0 is the Hankel function of the first type.

Remark 1.1. In the present work, in addition to (1.2), we assume that

equation (1.4) is uniquely solvable for ψ+(·, k) ∈ L∞(Rd) for fixed E > 0, (1.7)

where k ∈ Rd, k2 = E. If, for example, v satisfies (1.2) and is real-valued, then (1.7) is
fulfilled automatically.

In particular, the solutions ψ+ have the following asymptotics as |x| → ∞:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
f1(k, |k|

x

|x|
) +O

( 1

|x|(d+1)/2

)
, (1.8)

where x ∈ Rd, k ∈ Rd, k2 = E. In addition,

f1(k, l) = c(d, |k|)f(k, l), (1.9)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, (1.10)

f(k, l) = (2π)−d

∫
D

e−ilyv(y)ψ+(y, k)dy, (1.11)

where k ∈ Rd, l ∈ Rd, k2 = l2 = E.
We recall that ψ+(x, k) at fixed k describes scattering of the incident plane wave

described by eikx on the scatterer described by v. In addition, the second term on the
right-hand side of (1.8) associates with the leading scattered spherical wave.

The function f arising in (1.8), (1.9) is the classical scattering amplitude for equation
(1.1). This function is defined on

ΩE = {k ∈ Rd, l ∈ Rd, k2 = l2 = E} = Sd−1√
E

× Sd−1√
E
, (1.12)

where
Sd−1
r = {m ∈ Rd : |m| = r}. (1.13)

We recall that in quantum mechanics, by Born’s principle, the values of the functions
ψ+ and f with phase have no direct physical sense, whereas the phaseless values of |ψ+|2
and |f |2 have probabilistic interpretations and can be directly obtained in experiments;
see [B], [FM]. On the other hand, in electrodynamic or acoustic experiments ψ+ and
f can be directly measured, at least, in principle. However, in many important cases
of monochromatic electro-magnetic wave propagation (e.g., X-rays and lasers) the wave
frequency is so great that only intensities like |ψ+|2 and |f |2 can be measured in practice
by modern technical devices; see [HN] and references therein.
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In the present work we continue studies on the problem of finding f and ψ+ from
|ψ+|2, where ψ+ and |ψ+|2 are considered outside of D.

In particular, in the present work, for fixed (k, l) ∈ ΩE , k ̸= l, for d = 3 and d = 2,
we give

formulas for finding f(k, l) up to O(s−n) as s→ +∞
from |ψ+(x, k)|2 given at 2n points x = x1(s), . . . , x2n(s),

(1.14)

where
xi(s) = ri(s)l̂, i = 1, . . . , 2n, l̂ = l/|l|,
r2j−1(s) = λjs, r2j(s) = λjs+ τ, j = 1, . . . , n,

λ1 = 1, λj1 < λj2 for j1 < j2, τ = τfixed > 0.

(1.15)

These formulas for f are recurrent and explicit and are presented in detail in Sections 3,
6, 7, 9, 10, 11. The precision of these formulas is O(s−n), s → +∞, and in this sense is
proportional to n.

In the present work, for fixed (k, l) ∈ ΩE , k ̸= l, for d = 3 and d = 2, we also give

formulas for finding ψ+(sl̂, k) up to O(s−n−(d−1)/2) as s→ +∞
from |ψ+(x, k)|2 given at x = x1(s), . . . , x2n(s),

(1.16)

where l̂ and xi(s), i = 1, . . . , 2n, are defined in (1.15). These formulas for ψ+ are presented
in detail in Sections 3, 12.

Actually, in the present work we continue studies of [N2], [N3], [N4]. In [N2], [N4]
formulas of the type (1.14) were given for the 2-point case (i.e., for n = 1) for d ≥ 2 (but
with less precise O(s−1/2) in place of O(s−1) for d = 2); see Section 2. In turn, article [N3]
gives exact versions (without error terms) of formulas (1.14), (1.16) for the 3-point case
for d = 1; see [N3], [N4] for details.

In addition, the present work continues studies on inverse wave propagation problems
without phase information; see Chapter 10 of [ChS], [JL], [IK], [K1], [N2], [N3], [N4], [KR],
[R], [K2], [AHN], [HN], [P] and references therein in connection with results given in the
literature on the later problem. In particular, formulas (1.14) of the present work and
known methods of inverse scattering from f (see [ChS], [N1], [N2] and references therein)
yield new results on phaseless inverse scattering from |ψ+|2 measured outside of D for
wave propagation modelled by equation (1.1).

Remark 1.2. The approach of the present work as well as of [N2] can be also used
for phaseless inverse scattering for obstacles.

2. Two-point formulas for f for d ≥ 2

We define

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), x ∈ Rd\{0}, k ∈ Rd\{0}, (2.1)

where ψ+ is the function of (1.4), (1.8).
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The following formulas of [N2], [N4] hold:(
Re f1(k, l)
Imf1(k, l)

)
=M

((
a(x1, k)
a(x2, k)

)
−
(
δ1a(x1, k)
δ1a(x2, k)

))
, (2.2)

M =
1

2 sin(φ2 − φ1)

(
sinφ2 − sinφ1

− cosφ1 cosφ2

)
, (2.3)

x1 = sl̂, x2 = (s+ τ)l̂, l̂ = l/|l|, (2.4)

φj = |k||xj | − kxj , j = 1, 2, (2.5)

φ2 − φ1 = τ(|k| − kl̂), (2.6)

δ1a(x1, k) = O(s−σ), δ1a(x2, k) = O(s−σ) as s→ +∞ (2.7)

uniformly in k̂ = k/|k|, l̂ = l/|l| and τ at fixed E > 0,

σ = 1/2 for d = 2, σ = 1 for d ≥ 3, (2.8)

where

sin(φ2 − φ1) ̸= 0, (2.9)

k ∈ Rd, l ∈ Rd, |k| = |l| =
√
E, s > 0, τ > 0.

In view of (1.9), formulas (2.1)-(2.8) are explicit asymptotic formulas for finding
phased f(k, l) at fixed (k, l) ∈ ΩE , k ̸= l, from phaseless |ψ+(x, k)|2 at two points x = x1, x2
defined in (2.4), where s → +∞. For d ≥ 3 these formulas can be considered as formulas
(1.14) for n = 1. For d = 2 these formulas can be also considered as formulas of the type
(1.14) but with less precise O(s−1/2) in place of O(s−1).

We recall that (see [N2]):

a(x, k) = a1(x, k) + δ1a(x, k), (2.10)

where

a1 = 2Re eiφf1, (2.11)

δ1a = |x|−(d−1)/2|f1|2 + 2|x|(d−1)/2Re (δ1ψ
+ψ̄1) + |x|(d−1)/2|δ1ψ+|2 = (2.12)

δ1,1a+ δ1,2a+ δ1,3a,

where φ = |k||x| − kx, f1 = f1(k, |k|x/|x|) is the function of (1.8),

ψ+
1 = eikx +

ei|k||x|

|x|(d−1)/2
f1(k, |k|

x

|x|
), (2.13)

δ1ψ
+ = ψ+ − ψ+

1 , (2.14)

where ψ+ is the function of (1.4), (1.8).
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In addition, we have that (see [N2]):

|δ1ψ+(x, k)| ≤ |x|−(d+1)/2C1, (2.15)

|δ1,1a(x, k)| ≤ |x|−(d−1)/2(F1)
2, (2.16)

|δ1,2a(x, k)| ≤ 2|x|−1C1(1 + |x|−(d−1)/2F1), (2.17)

|δ1,3a(x, k)| ≤ |x|−(d+3)/2(C1)
2, (2.18)

x ∈ Rd\{0}, k ∈ Rd, k2 = E > 0,

where C1 = C1(v,E), F1 = F1(v,E) are positive constants depending on v and E only,
in addition F1 = ∥f1∥L∞(ΩE).

Formulas (2.12)-(2.18) can be used for obtaining detailed versions of estimates (2.7),
(2.8).

Note also that formulas (2.2), (2.3) for f1 can be rewritten as follows:(
f1(k, l)
f̄1(k, l)

)
=M

((
a(x1, k)
a(x2, k)

)
−
(
δ1a(x1, k)
δ1a(x2, k)

))
, (2.19)

M =
−1

2i sin(φ2 − φ1)

(
e−iφ2 −e−iφ1

−eiφ2 eiφ1

)
. (2.20)

Finally, note that formulas (1.8), (1.9), (2.2)-(2.8) also yield formulas (1.16) for n = 1,
d ≥ 3 and formulas of the type (1.16) but with less precise O(s−1) in place of O(s−3/2) for
n = 1, d = 2.

3. General idea of 2n-point formulas for f and ψ+ for d ≥ 2
The main drawback of the two-point formulas (1.9), (2.2)-(2.9) for finding phased f

from phaseless |ψ+|2 is a slow decay of the error as s → +∞; see (2.2), (2.7), (2.8). This
drawback motivates our considerations given below.

For d ≥ 2, to obtain rapidly convergent formulas for finding f(k, l) from |ψ+(x, k)|2
at appropriate 2n points

x = x1(s), . . . , x2n(s), (3.1)

where
xi(s) = ri(s)l̂, i = 1, . . . , 2n, l̂ = l/|l|,
ri1(s) < ri2(s) for i1 < i2, r1(s) = s→ +∞,

(3.2)

we suggest the following general scheme.
We use that, under our assumptions (1.2), (1.7), formula (1.8) admits the following

much more precise version:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

( n∑
j=1

fj(k, |k| x
|x| )

|x|j−1
+O

( 1

|x|n
))

as |x| → ∞, (3.3)

where x ∈ Rd, k ∈ Rd, k2 = E > 0, n ∈ N. Actually, expansion (3.3) follows from
assumptions (1.2), equation (1.4) and an extended version of Proposition 1.1 of [M]. Note
also that formulas (1.9)-(1.11) for f1 have analogs for fj , j ≥ 2.
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We look for

formulas for finding fj(k, l) up to O(s−(n−j+1)) as s→ +∞, j = 1, . . . , n, (3.4)

from |ψ+(x, k)|2 given at 2n points x = x1(s), . . . , x2n(s) of the form (3.2),

where fj = fj(k, l), j = 1, . . . , n, are the functions arising in (3.3), k and l are fixed,

k, l ∈ Rd, |k| = |l| > 0, l ̸= k.
In particular, in view of (1.9) and (3.4) for j = 1 this scheme yields 2n-point formulas

for finding f = f(k, l) from |ψ+|2 = |ψ+(x, k)|2 given at x = x1(s), . . . , x2n(s) of the
form (3.2) with the error O(s−n) as s → +∞, that is with rapidly decaying error if n is
sufficiently large.

Besides, in view of (3.3), (3.4) this scheme also yields

formulas for finding ψ+(sl̂, k) up to O(s−n−(d−1)/2) as s→ +∞
from |ψ+(x, k)|2 given at 2n points x = x1(s), . . . , x2n(s) of the form (3.2),

(3.5)

where k and l are fixed, k, l ∈ Rd, |k| = |l| > 0, l ̸= k, l̂ = l/|l|.
The realization of the general scheme of this Section depends on the concrete choice

of the functions ri = ri(s), i = 1, . . . , 2n, of (3.1), (3.2). In the present work we realize this
scheme for the case when ri = ri(s) are defined as in (1.15) for d = 3 and for d = 2. In

particular, in this case x2j(s) − x2j−1(s) = τ l̂, j = 1, . . . , n, as well as x2(s) − x1(s) = τ l̂
for x2, x1 of the 2-point case considered in Section 2 (see formula (2.4)).

Note that, originally, the realization of the general scheme of this Section was started
in [NG] for the case when ri(s) = λis, i = 1, . . . , 2n, 1 = λ1 < λ2, . . . , < λ2n.

Finally, our results on formulas (1.14), (1.16), (3.4), (3.5), for x1(s), . . . , x2n(s) defined
by (1.15), can be summarized as follows.

For d ≥ 3, n = 1, and x1(s), x2(s) defined according to (1.15) (or by (2.4)), formulas
(1.14), (3.4) are realized (in [N2], [N4]) as formulas (2.2)-(2.9) of Section 2.

For d = 3, n = 2, and x1(s), . . . , x4(s) defined according to (1.15) (or by (6.1)),
formulas (1.14), (3.4) are realized as formulas (6.13)-(6.16), (6.5), (6.3) of Section 6.

For d = 3, n > 2, and x1(s), . . . , x2n(s) defined by (1.15) (or by (7.1)), formulas (1.14),
(3.4) are realized as inductive formulas (7.4), (7.5), (7.16),(7.12), (7.6)-(7.10) of Section 7.

For d = 2, n = 1, and x1(s), x2(s) defined according to (1.15) (or by (2.4)), formulas
(1.14), (3.4) with O(s−1) (and not with O(s−1/2) as in (2.2)-(2.9) for d = 2) are realized
as formulas (9.3), (9.4), (9.2) of Section 9.

For d = 2, n = 2, and x1(s), . . . , x4(s) defined according to (1.15), formulas (1.14),
(3.4) are realized as formulas (10.20)-(10.23), (10.13), (10.10), (10.11), (10.8), (10.9) of
Section 10.

For d = 2, n > 2, and x1(s), . . . , x2n(s) defined by (1.15), formulas (1.14), (3.4) are
realized as inductive formulas (11.2), (11.6), (11.7) and (7.4) for d = 2, (11.11), (11.12) of
Section 11.

Formulas (1.16), (3.5) are realized as formulas (12.1), (12.2) of Section 12.
Finally, note that detailed versions of O(s−σ) in (2.7), O(s−(n−j+1)) in (3.4) and

O(s−n−(d−1)/2) in (3.5) will be given in subsequent papers.
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4. Presentations for a for d = 3
The function a defined by (2.1) can be presented as follows for d = 3:

a(x, k) = an(x, k) + δna(x, k), (4.1)

an(x, k) = a1n(x, k) + a2n(x, k), (4.2)

a1n(x, k) =
n∑

j=1

eiφfj
|x|j−1

+
n∑

j=1

e−iφf̄j
|x|j−1

, (4.3)

a2n(x, k) =
∑
j∈N
2j≤n

|fj |2

|x|2j−1
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1 f̄j2
|x|j1+j2−1

, (4.4)

δna(x, k) = O
( 1

|x|n
)

as |x| → ∞, (4.5)

where

φ = φ(x, k) = |x|(|k| − k x̂), (4.6)

fj = fj(k, |k|x̂), j = 1, . . . , n, (4.7)

x ∈ R3\{0}, x̂ = x/|x|, k ∈ R3, k2 = E > 0, n ∈ N.
Formulas (4.1)-(4.7) follow from (2.1), (3.3) for d = 3.
In addition, we have that:

a(x+τ x̂, k) = a1,τn (x, k)+(a1n(x+τ x̂, k)−a1,τn (x, k))+a2n(x+τ x̂, k)+δna(x+τ x̂, k), (4.8)

a1n(x+ τ x̂, k)− a1,τn (x, k) = ∆1,τ
n (x, k) + ρ1,τn (x, k), (4.9)

where

a1,τn (x, k) =

n∑
j=1

eiφτ fj
|x|j−1

+

n∑
j=1

e−iφτ f̄j
|x|j−1

, (4.10)

∆1,τ
n (x, k) =

n−1∑
j=1

eiφτ fj
|x|j−1

wj−1(|x|, τ) +
n−1∑
j=1

e−iφτ f̄j
|x|j−1

wj−1(|x|, τ), (4.11)

ρ1,τn (x, k) =
eiφτ fn
|x|n−1

wn−1(|x|, τ) +
e−iφτ f̄n
|x|n−1

wn−1(|x|, τ), (4.12)

wj−1(|x|, τ) =
1

(1 + τ/|x|)j−1
− 1 = O

( 1

|x|
)
, |x| → ∞, (4.13)

at fixed τ, j = 1, . . . , n,

a2n(x+ τ x̂, k) =
∑
j∈N
2j≤n

|fj |2

(|x|+ τ)2j−1
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1 f̄j2
(|x|+ τ)j1+j2−1

, (4.14)

ρ1,τn (x, k) = O
( 1

|x|n
)
, δna(x+ τ x̂, k) = O

( 1

|x|n
)

as |x| → ∞, (4.15)
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where
φτ = φτ (x, k) = (|x|+ τ)(|k| − kx̂), (4.16)

fj are the same that in (3.3), (4.3), (4.4), x ∈ R3\{0}, x̂ = x/|x|, k ∈ R3, k2 = E > 0,
n ∈ N.

5. An advanced version of formulas (2.2)-(2.9) for d = 3
Let

zn(k, l, s) =
n∑

j=1

fj(k, l)

sj−1
, (k, l) ∈ ΩE , s > 0, n ∈ N, (5.1)

where fj are the coefficients of (3.3).

Proposition 5.1. Under assumptions (1.2), (1.7), the following formulas hold, for
d = 3: (

zn(k, l, s)
z̄n(k, l, s)

)
=M

(
a(sl̂, k)

a((s+ τ)l̂, k)

)
− (5.2)

M

((
a2n(sl̂, k)

∆1,τ
n (sl̂, k) + a2n((s+ τ)l̂, k)

)
+

(
δna(sl̂, k)

ρ1,τn (sl̂, k) + δna((s+ τ)l̂, k)

))
,

M =Mk,l,τ,s =
−1

2i sin(φ2 − φ1)

(
e−iφ2 −e−iφ1

−eiφ2 eiφ1

)
, (5.3)

φ1 = (|k| − kl̂)s, φ2 = (|k| − kl̂)(s+ τ), (5.4)

δna(sl̂, k) = O(s−n), δna((s+ τ)l̂, k) = O(s−n) as s→ +∞ (5.5)

uniformly in k̂, l̂ and τ at fixed E > 0,

ρ1,τn (sl̂, k) = O(s−n) as s→ +∞ (5.6)

uniformly in k̂, l̂ at fixed τ > 0 and E > 0, where

sin(φ2 − φ1) ̸= 0, (5.7)

k ∈ R3, l ∈ R3, |k| = |l| =
√
E, k̂ = k/|k|, l̂ = l/|l|, τ > 0, n ∈ N.

Proof of Proposition 5.1. Using (4.1)-(4.3), (4.8)-(4.10), (5.1) we obtain that

a(sl̂, k) = eiφ1zn(k, l, s) + e−iφ1 z̄n(k, l, s) + a2n(sl̂, k) + δna(sl̂, k), (5.8)

a((s+ τ)l̂, k) = eiφ2zn(k, l, s) + e−iφ2 z̄n(k, l, s)+ (5.9)

∆1,τ
n (sl̂, k) + a2n((s+ τ)l̂, k) + ρ1,τn (sl̂, k) + δna((s+ τ)l̂, k),

where φ1, φ2 are given by (5.4).
Considering (5.8), (5.9) as a linear system for zn, z̄n we obtain (5.2), (5.3).
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Estimates (5.5), (5.6) follow from (4.5), (4.12), (4.13).
Proposition 5.1 is proved.
Actually, formulas (5.2)-(5.7) for n = 1 reduce to formulas (2.2)-(2.9) (with (2.2),

(2.3) written as (2.19), (2.20)), d = 3.

6. Finding f1, f2 for the 4-point case for d = 3
In this section we realize the scheme of Section 3 for the case when n = 2, d = 3 and

x1 = sl̂, x2 = (s+ τ)l̂, x3 = λsl̂, x4 = (λs+ τ)l̂, (6.1)

where τ > 0 and λ > 1 are fixed, s→ +∞.

6.1. Considerations at x1 and x2. Due to (5.2)-(5.7) for n = 1 (or, by other words,
due to (2.19), (2.20), (2.4)-(2.9) for d = 3), we have that

f1 = f1,1(s) +O(s−1) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0 and E,
(6.2)

where f1 = f1(k, l), f1,1(s) = f1,1(k, l, τ, s),(
f1,1(s)
f̄1,1(s)

)
=M

(
a(x1, k)
a(x2, k)

)
, (6.3)

M = Mk,l,τ,s is defined by (5.3), x1, x2 are defined in (6.1), (k, l) ∈ ΩE , d = 3, E > 0,

l̂ = l/|l|, τ > 0.

Proposition 6.1. Under assumptions (1.2), (1.7) for d = 3, the following formulas
hold:

z2(s) = z2,1(s) +O(s−2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,
(6.4)

where z2(s) = z2(k, l, s) is defined by (5.1) for n = 2, z2,1(s) = z2,1(k, l, τ, s) is defined as
follows: (

z2,1(s)
z̄2,1(s)

)
=

(
f1,1(s)
f̄1,1(s)

)
− |f1,1(s)|2

s
M

(
1
1

)
, (6.5)

f1,1(s) = f1,1(k, l, τ, s) is defined by (6.3), M = Mk,l,τ,s is defined by (5.3), (k, l) ∈ ΩE ,

d = 3, E > 0, l̂ = l/|l|, τ > 0.

Proof of Proposition 6.1. Proposition 6.1 follows from Proposition 5.1 for n = 2 and
from formulas (6.2), (6.3). In more detail, the proof consists of the following.

Formulas (4.4), (4.11), (4.13), (4.14) for n = 2 imply that

a22(sl̂, k) =
|f1(k, l)|2

s
, (6.6)

∆1,τ
2 (sl̂, k) = 0, (6.7)

a22((s+ τ)l̂, k) =
|f1(k, l)|2

s+ τ
, (6.8)
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s > 0, τ > 0.
Formulas (5.2)-(5.7) for n = 2 and formulas (6.6)-(6.8) imply that(
z2(s)
z̄2(s)

)
=M

(
a(sl̂, k)

a((s+ τ)l̂, k)

)
−M

(
s−1|f1|2

(s+ τ)−1|f1|2
)
+O

( 1
s2
)

as s→ +∞ (6.9)

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ .
Formulas (6.2), (6.3), (6.9) imply (6.4), (6.5).
This completes the proof of Proposition 6.1.

6.2. Considerations at x3 and x4. In addition to (6.4), we have that

z2(λs) = z2,1(λs) +O((λs)−2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ.
(6.10)

The point is that z2,1(λs) is given in terms of a(x3, k), a(x4, k) via formulas (6.3), (6.5)
with x3, x4 in place of x1, x2 and λs in place of s, where x1, x2, x3, x4 are defined by
(6.1).

6.3. Formulas for f1, f2. Due to definition (5.1), for n = 2, and formulas (6.4), (6.10),
we have that

f1 + s−1f2 = z2,1(s) +O(s−2), s→ +∞, (6.11)

f1 + (λs)−1f2 = z2,1(λs) +O((λs)−2), s→ +∞, (6.12)

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,

where f1 = f1(k, l), f2 = f2(k, l),

z2,1(s) = z2,1(k, l, τ, s), (k, l) ∈ ΩE , d = 3, E > 0, l̂ = l/|l|, τ > 0.
Proceeding from (6.11), (6.12) we obtain the following result.

Proposition 6.2. Under assumptions (1.2), (1.7) for d = 3, the following formulas
hold:

f1 = f1,2(s) +O(s−2), s→ +∞, (6.13)

f2 = f2,1(s) +O(s−1), s→ +∞, (6.14)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ,

where f1 = f1(k, l), f2 = f2(k, l),
f1,2(s) = f1,2(k, l, τ, λ, s), f2,1(s) = f2,1(k, l, τ, λ, s),

f1,2(s) = −z2,1(s)
λ− 1

+
λz2,1(λs)

λ− 1
, (6.15)

f2,1(s) =
sλ

λ− 1
(z2,1(s)− z2,1(λs)), (6.16)

10
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where z2,1(s) = z2,1(k, l, τ, s) is found via (6.3), (6.5) from |ψ+(x, k)|2 at x = x1, x2 of
(6.1), z2,1(λs) = z2,1(k, l, τ, λs) is found via (6.3), (6.5) (where s and x1, x2 are replaced

by λs and x3, x4 of (6.1)), (k, l) ∈ ΩE , d = 3, E > 0, l̂ = l/|l|, τ > 0, λ > 1.
Propositions 6.1 and 6.2 realize the scheme of Section 3, for n = 2, d = 3, for finding

f1, f2 as in (3.3) from |ψ+(x, k)|2 given at x = x1, x2, x3, x4 defined in (6.1).

7. Inductive finding f1, . . . , fn for the 2n-point case for d = 3
In this section we realize the scheme of Section 3 for the case when d = 3 and

x1, . . . , x2n are defined as in (1.15).

7.1. Step of induction. Suppose that

f1,n−1(s), f2,n−2(s), . . . , fn−1,1(s) are functions found from

|ψ+(x, k)|2 given at x = x1(s), . . . , x2(n−1)(s) defined in (1.15)
(7.1)

and such that

fj = fj,n−j(s) +O(s−(n−j)), s→ +∞, j = 1, . . . , n− 1,

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn−1,
(7.2)

where fj = fj(k, l), fj,n−j(s) = fj,n−j(k, l, τ, λ1, . . . , λn−1, s), (k, l) ∈ ΩE , d = 3, E > 0,

l̂ = l/|l|, τ > 0. For n = 2 and n = 3 such functions are found in Sections 2 and 6.
The step of induction consists in finding f1,n, f2,n−1, . . . , fn,1 proceeding from

f1,n−1, f2,n−2, . . . , fn−1,1 of (7.1), (7.2), where

f1,n(s), f2,n−1(s), . . . , fn,1(s) are functions found from

|ψ+(x, k)|2 given at x = x1(s), . . . , x2n(s) defined by (1.15)
(7.3)

and such that

fj = fj,n−j+1(s) +O(s−(n−j+1)), s→ +∞, j = 1, . . . , n,

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn,
(7.4)

where fj = fj(k, l), fj,n−j+1(s) = fj,n−j+1(k, l, τ, λ1, . . . , λn, s), (k, l) ∈ ΩE , d = 3, E > 0,

l̂ = l/|l|, τ > 0.
This step of induction is realized via Theorems 7.1 and 7.2 formulated in the next

subsection.

7.2. Realization of the inductive step. Let f1,1(κs) = f1,1(k, l, τ, κs) be defined by(
f1,1(κs)
f̄1,1(κs)

)
=M

(
a(y1, k)
a(y2, k)

)
, (7.5)

where M = Mk,l,τ,κs is defined according to (5.3), (5.4), (5.7), a is defined by (2.1) (for
d = 3),

y1 = κsl̂, y2 = (κs+ τ)l̂, (7.6)

11



R.G. Novikov

(k, l) ∈ ΩE , d = 3, E > 0, l̂ = l/|l|, s > 0, κ ≥ 1.
Let

a2n,n−1(κ, s) =
∑
j∈N
2j≤n

|fj,n−j(s)|2

(κs)2j−1
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1,n−j1(s)f̄j2,n−j2(s)

(κs)j1+j2−1
, (7.7)

a2,τn,n−1(κ, s) =
∑
j∈N
2j≤n

|fj,n−j(s)|2

(κs+ τ)2j−1
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1,n−j1(s)f̄j2,n−j2(s)

(κs+ τ)j1+j2−1
, (7.8)

∆1,τ
n,n−1(κ, s) =

n−1∑
j=1

eiφτ (κs)fj,n−j(s)

(κs)j−1
wj−1(κs, τ)+

n−1∑
j=1

e−iφτ (κs)f̄j,n−j(s)

(κs)j−1
wj−1(κs, τ),

(7.9)

where fj,n−j(s) and wj−1(s, τ), j = 1, . . . , n−1, are the functions of (7.1), (7.2) and (4.13),

φτ (s) = φτ (sl̂, k), where φτ (x, k) is defined by (4.16), l̂ = l/|l|.

Theorem 7.1. Under assumptions (1.2), (1.7) for d = 3, the following formulas hold:

zn(κs) = ζn,n−1(κ, s) +O(s−n) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn−1, κ,
(7.10)

where zn(s) = zn(k, l, s) is defined by (5.1),
ζn,n−1(κ, s) = ζn,n−1(k, l, τ, λ1, . . . , λn−1, κ, s) is defined as follows:(

ζn,n−1(κ, s)
ζ̄n,n−1(κ, s)

)
=

(
f1,1(κs)
f̄1,1(κs)

)
−M

(
a2n,n−1(κ, s)

∆1,τ
n,n−1(κ, s) + a2,τn,n−1(κ, s)

)
, (7.11)

f1,1(κs) is defined by (7.5), M =Mk,l,τ,κs is defined according to (5.3), (5.4), a2n,n−1(κ, s),

a2,τn,n−1(κ, s) and ∆1,τ
n,n−1(κ, s) are defined by (7.7)-(7.9), (k, l) ∈ ΩE , d = 3, E > 0, l̂ = l/|l|,

τ > 0, λ1, . . . , λn−1 are the numbers of (1.15), κ ≥ 1, n ≥ 2.
In Theorem 7.1 we have that:
(a) ζn,n−1(κ, s) appropriately approximates zn(κs) as s→ +∞;
(b) ζn,n−1(κ, s) is given in terms of f1,1(κs) defined by (7.5) and fj,n−j(s),

j = 1, . . . , n−1, of (7.1), (7.2) (in view of (7.11), (7.7)-(7.9)), and, as a corollary, ζn,n−1(κ, s)
is found from |ψ+(x, k)|2 at x = x1(s), . . . , x2(n−1)(s), y1(s), y2(s) of (1.15) and (7.6).

Theorem 7.1 for κ = 1 is an extension of Proposition 6.1 to the case n > 2. In addition
for n = 2, in general, z2,1(κs) ̸= ζ2,1(κ, s).

Let

Λ = (Λj1,j2) = (λ1−j2
j1

), j1, j2 = 1, . . . , n, (7.12)
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where λ1, . . . , λn are the numbers of (1.15). One can see that Λ is a Vandermonde matrix
and, in particular,

detΛ =
∏

1≤i<j≤n

(λ−1
j − λ−1

i ) ̸= 0, (7.13)

where we used our assumptions on λj of (1.15) in order to have that detΛ ̸= 0.

Theorem 7.2. Under assumptions (1.2), (1.7) for d = 3, formulas (7.4) hold, where

fi,n−i+1(s) = si−1
n∑

j=1

Λ−1
i,j ζn,n−1(λj , s), i = 1, . . . , n, (7.14)

where Λ−1 = (Λ−1
i,j ) is the inverse of the matrix Λ defined by (7.12), ζn,n−1(κ, s) is defined

by (7.11), n ≥ 2.
Note that f1,2, f2,1 of Theorem 7.2 for n = 2 are different, in general, from f1,2, f2,1

of Proposition 6.2.
Theorems 7.1 and 7.2 realize the step of induction of Subsection 7.1.

7.3. Proofs of Theorems 7.1 and 7.2.

Proof of Theorem 7.1. Theorem 7.1 follows from Proposition 5.1, formula (7.5) and
the formulas

a2n(κs) = a2n,n−1(κ, s) +O(s−n), s→ +∞, (7.15)

a2n(κs+ τ) = a2,τn,n−1(κ, s) +O(s−n), s→ +∞, (7.16)

∆1,τ
n (κs) = ∆1,τ

n,n−1(κ, s) +O(s−n), s→ +∞, (7.17)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn−1,

where a2n(κs) = a2n(κsl̂, k), a
2
n(κs+ τ) = a2n((κs+ τ)l̂, k), ∆1,τ

n (κs) = ∆1,τ
n (κsl̂, k) are the

functions of (4.4), (4.14), (4.11), a2n,n−1(κ, s), a
2,τ
n,n−1(κ, s), ∆

1,τ
n,n−1(κ, s) are the functions

of (7.7), (7.8), (7.9).
Formula (7.15) follows from (4.4), (7.7), (7.2) and the observation that the terms

O(s−(n+j−1)), O(s−(n+j1−1)), O(s−(n+j2−1)),

j ∈ N, 2j ≤ n, j1, j2 ∈ N, j1 ̸= j2, j1 + j2 ≤ n,

arising at comparison of the summands of a2n(κs) and a
2
n,n−1(κ, s) are majorized by O(s−n)

as s→ +∞.
Formula (7.16) is proved in a similar way with formula (7.15).
Formula (7.17) follows from(4.11), (4.13), (7.9), (7.2).
This completes the proof of Theorem 7.1.

Proof of Theorem 7.2. Formula (5.1) and formula (7.10) for λ = λ1, . . . , λn imply the
following system of approximate equations for f1, . . . , fn:

n∑
j=1

fj
(λis)j−1

= ζn,n−1(λi, s) +O(s−n) as s→ +∞, i = 1, . . . , n, (7.18)

13



R.G. Novikov

where λ1, . . . , λn are the number of (1.15).
Let

g(s) = (g1(s), . . . , gn(s))
T , gj(s) =

fj
sj−1

, j = 1, . . . , n, (7.19)

h(s) = (h1(s), . . . , hn(s))
T , hj(s) = ζn,n−1(λj , s), j = 1, . . . , n. (7.20)

Then (7.18) can be rewritten as

Λg(s) = h(s) +O(s−n) as s→ +∞, (7.21)

where O(s−n) is considered as an n-dimensional vector with the components O(s−n).
From (7.21) we obtain that

g(s) = Λ−1h(s) +O(s−n) as s→ +∞. (7.22)

Formulas (7.4), (7.14) follow from (7.19), (7.20), (7.22).
Theorem 7.2 is proved.

8. Analogs for d = 2 of formulas of Sections 4 and 5
Formulas (4.1)-(4.16) of Section 4 and formulas (5.1)-(5.9) of Section 5 have direct

analogs for d = 2. The difference consists in the following modifications in formulas (4.4),
(4.5), (4.14), (4.15) and (5.5):

a2n(x, k) =
∑
j∈N
2j≤n

|fj |2

|x|2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1 f̄j2
|x|j1+j2−1−1/2

(8.1)

(in place of (4.4));

δna(x, k) = O
( 1

|x|n−1/2

)
as |x| → ∞ (8.2)

(in place of (4.5));

a2n(x+ τ x̂, k) =
∑
j∈N
2j≤n

|fj |2

(|x|+ τ)2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1 f̄j2
(|x|+ τ)j1+j2−1−1/2

(8.3)

(in place of (4.14));

δna(x+ τ x̂, k) = O
( 1

|x|n−1/2

)
as |x| → ∞ (8.4)

(in place of the second term of formula (4.15));

δna(sl̂, k) = O(s−n+1/2), δna((s+ τ)l̂, k) = O(s−n+1/2) as s→ +∞ (8.5)

14
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(in place of (5.5)).
Besides, for d = 2, in all formulas of Sections 4 and 5 with modifications summed up

in (8.1)-(8.5) we have that x ∈ R2\{0}, k ∈ R2, l ∈ R2.

9. Improved finding f1 for the 2-point case for d = 2
Due to (2.19)-(2.20), (2.4)-(2.9) for d = 2, we have that

f1 = f1,1/2(s) +O(s−1/2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0 and E,
(9.1)

where f1 = f1(k, l), f1,1/2(s) = f1,1/2(k, l, τ, s),(
f1,1/2(s)
f̄1,1/2(s)

)
=M

(
a(x1, k)
a(x2, k)

)
, (9.2)

M = Mk,l,τ,s is defined by (5.3), x1, x2 are defined by (2.4), (k, l) ∈ ΩE , d = 2, E > 0,

l̂ = l/|l|, τ > 0.

Proposition 9.1 Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

f1 = f1,1(s) +O(s−1) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,
(9.3)

where f1,1(s) = f1,1(k, l, τ, s) is defined as follows:(
f1,1(s)
f̄1,1(s)

)
=

(
f1,1/2(s)
f̄1,1/2(s)

)
−

|f1,1/2(s)|2

s1/2
M

(
1
1

)
, (9.4)

f1,1/2(s) = f1,1/2(k, l, τ, s) is defined by (9.2), M =Mk,l,τ,s is defined by (5.3), (k, l) ∈ ΩE ,

d = 2, E > 0, l̂ = l/|l|, τ > 0.

Proof of Proposition 9.1. Proposition 9.1 follows from Proposition 5.1 for n = 2, d = 2
and formulas (9.1), (9.2). In more detail, the proof consists of the following.

Formulas (8.1), (4.11), (4.13), (8.3) for n = 2 imply that

a22(sl̂, k) =
|f1(k, l)|2

s1/2
, (9.5)

∆1,τ
2 (sl̂, k) = 0, (9.6)

a22((s+ τ)l̂, k) =
|f1(k, l)|2

(s+ τ)1/2
, (9.7)

s > 0, τ > 0.
Formulas (5.2)-(5.4), (8.5), (5.6), (5.7) for n = 2 and formulas (9.5)-(9.7) imply that(

z2(s)
z̄2(s)

)
=M

(
a(sl̂, k)

a((s+ τ)l̂, k)

)
−M

(
s−1/2|f1|2

(s+ τ)−1/2|f1|2
)
+

O
( 1

s3/2
)

as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ.

(9.8)

15



R.G. Novikov

Formula (5.1), for n = 2, and formulas (9.1), (9.2), (9.8) imply (9.3), (9.4).
This completes the proof of Proposition 9.1.

10. Finding f1, f2 for the 4-point case for d = 2
In this section we realize the scheme of Section 3 for the case when n = 2, d = 2 and

x1, x2, x3, x4 are defined as in (6.1).
Proceeding from considerations of Section 9 at x1 and x2, we obtain the following

result.

Proposition 10.1 Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

z2(s) = z2,1(s) +O(s−3/2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,
(10.1)

where z2(s) = z2(k, l, s) is defined by (5.1) for n = 2, z2,1(s) = z2,1(k, l, τ, s) is defined as
follows: (

z2,1(s)
z̄2,1(s)

)
=

(
f1,1/2(s)
f̄1,1/2(s)

)
− |f1,1(s)|2

s1/2
M

(
1
1

)
, (10.2)

f1,1/2(s) = f1,1/2(k, l, τ, s) is defined by (9.2), f1,1(s) = f1,1(k, l, τ, s) is defined by (9.4),

M =Mk,l,τ,s is defined by (5.3), (k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, τ > 0.
Proposition 10.1 follows from formulas (9.2), (9.3), (9.8).
Due to similar considerations at x3 and x4, we also have that

z2(λs) = z2,1(λs) +O((λs)−3/2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,
(10.3)

where z2,1(λs) is given in terms of a(x3, k), a(x4, k) via formulas (9.2), (9.4), (10.2) with
λs and x3, x4 in place of s and x1, x2.

Next, due to definition (5.1), for n = 2, and formulas (10.1), (10.3), we have that

f1 + s−1f2 = z2,1(s) +O(s−3/2) as s→ +∞, (10.4)

f1 + (λs)−1f2 = z2,1(λs) +O((λs)−3/2) as s→ +∞, (10.5)

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,

where f1 = f1(k, l), f2 = f2(k, l), z2,1(s) = z2,1(k, l, τ, s), (k, l) ∈ ΩE , d = 2, E > 0,

l̂ = l/|l|, τ > 0.
Proceeding from (10.4), (10.5), we obtain the following result.

Proposition 10.2. Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

f1 = f1,3/2(s) +O(s−3/2) as s→ +∞, (10.6)

f2 = f2,1/2(s) +O(s−1/2) as s→ +∞, (10.7)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ,
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where f1 = f1(k, l), f2 = f2(k, l), f1,3/2(s) = f1,3/2(k, l, τ, λ, s),
f2,1/2(s) = f2,1/2(k, l, τ, λ, s),

f1,3/2(s) = −z2,1(s)
λ− 1

+
λz2,1(λs)

λ− 1
, (10.8)

f2,1/2(s) =
sλ

λ− 1
(z2,1(s)− z2,1(λs)), (10.9)

where z2,1(s) = z2,1(k, l, τ, s) is found via (9.2), (9.4), (10.2) from |ψ+(x, k)|2 at
x = x1, x2 of (6.1), z2,1(λs) = z2,1(k, l, τ, λs) is found via (9.2), (9.4), (10.2) (where s and

x1, x2 are replaced by λs and x3, x4 of (7.1) for n = 2), (k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|,
τ > 0, λ > 1.

Let f1,1/2(κs) = f1,1/2(k, l, τ, κs) be defined by(
f1,1/2(κs)
f̄1,1/2(κs)

)
=M

(
a(y1, k)
a(y2, k),

)
(10.10)

y1 = κsl̂, y2 = (κs+ τ)l̂, (10.11)

where M = Mk,l,τ,κs is defined according to (5.3), (5.4), (5.7), a is defined by (2.1),

(k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, s > 0, κ ≥ 1.

Proposition 10.3 Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

z2(κs) = ζ2,3/2(κ, s) +O(s−2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ, λ and κ,
(10.12)

where z2(s) = z2(k, l, s) is defined by (5.1) for n = 2, ζ2,3/2(κ, s) = ζ2,3/2(k, l, τ, λ, κ, s) is
defined as follows:(

ζ2,3/2(κ, s)
ζ̄2,3/2(κ, s)

)
=

(
f1,1/2(κs)
f̄1,1/2(κs)

)
− |f1,3/2(s)|2M

(
(κs)−1/2

(κs+ τ)−1/2

)
−

(f1,3/2(s)f̄2,1/2(s) + f̄1,3/2(s)f2,1/2(s))

(κs)3/2
M

(
1
1

)
,

(10.13)

f1,1/2(κs) is defined by (10.10), M =Mk,l,τ,κs is defined according to (5.3), (5.4),

(k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, τ > 0, κ ≥ 1.

Proof of Proposition 10.3. Proposition 10.3 follows from Proposition 5.1 for n = 3,
d = 2 and formulas (10.6), (10.7). In more detail, the proof consists of the following.

Formulas (8.1), (4.11), (4.13), (8.3) for n = 3 imply that

a23(sl̂, k) =
|f1|2

s1/2
+
f1f̄2 + f̄1f2

s3/2
, (10.14)

∆1,τ
3 (sl̂, k) =

eiφτ f2
s

w1(s, τ) = O
( 1
s2
)
, s→ +∞, (10.15)

a23((s+ τ)l̂, k) =
|f1|2

(s+ τ)1/2
+
f1f̄2 + f̄1f2
(s+ τ)3/2

, (10.16)
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where f1 = f1(k, l), f2 = f2(k, l), s > 0, τ > 0.
Formulas (5.2)-(5.4), (8.5), (5.6), (5.7) for n = 3 and formulas (10.14)-(10.16) imply

that (
z3(κs)
z̄3(κs)

)
=M

(
a(κsl̂, k)

a((κs+ τ)l̂, k)

)
− |f1|2M

(
(κs)−1/2

(κs+ τ)−1/2

)
−

(f1f̄2 + f̄1f2)M

(
(κs)−3/2

(κs+ τ)−3/2

)
+O

( 1

(κs)5/2
)

as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E and τ,

(10.17)

where M =Mk,l,τ,κs.
Formula (5.1), for n = 2 and for n = 3, and formulas (10.10), (10.11), (10.6), (10.7),

(10.17) imply (10.12), (10.13).
This completes the proof of Proposition 10.3.
Next, due to definition (5.1), for n = 2, and formula (10.12), for κ = 1 and for κ = λ,

we have that

f1 + s−1f2 = ζ2,3/2(1, s) +O(s−2) as s→ +∞, (10.18)

f1 + (λs)−1f2 = ζ2,3/2(λ, s) +O(s−2) as s→ +∞, (10.19)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ, and λ,

where f1 = f1(k, l), f2 = f2(k, l), ζ2,3/2(κ, s) = ζ2,3/2(k, l, τ, λ, κ, s), (k, l) ∈ ΩE , d = 2,

E > 0, l̂ = l/|l|, τ > 0.
Proceeding from (10.18), (10.19), we obtain the following result.

Proposition 10.4. Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

f1 = f1,2(s) +O(s−2) as s→ +∞, (10.20)

f2 = f2,1(s) +O(s−1) as s→ +∞, (10.21)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ,

where f1 = f1(k, l), f2 = f2(k, l), f1,2(s) = f1,2(k, l, τ, λ, s),
f2,1(s) = f2,1(k, l, τ, λ, s),

f1,2(s) = −
ζ2,3/2(1, s)

λ− 1
+
λζ2,3/2(λ, s)

λ− 1
, (10.22)

f2,1(s) =
sλ

λ− 1
(ζ2,3/2(1, s)− ζ2,3/2(λ, s)), (10.23)

where ζ2,3/2(1, s) = ζ2,3/2(k, l, τ, λ, 1, s), ζ2,3/2(λ, s) = ζ2,3/2(k, l, τ, λ, λ, s) are found via
(10.13), (10.10), (10.11), (10.8), (10.9) from |ψ+(x, k)|2 at x = x1, x2, x3, x4 of (6.1) for

n = 2, (k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, τ > 0, λ > 1.

11. Inductive finding f1, . . . , fn for the 2n-point case for d = 2
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In this section we realize the scheme of Section 3 for the case when d = 2 and
x1, . . . , x2n are defined as in (1.15).

11.1 Step of induction. Formulas (7.1)-(7.4) of Subsection 7.1 with d = 2 in place of
d = 3 can be considered as the step of induction for d = 2. However, for d = 2 this step of
induction consists of the following two substeps.

The first substep consists in finding f1,n−1/2, f2,n−1−1/2, . . . , fn,1/2 proceeding from
f1,n−1, f2,n−2, . . . , fn−1,1 of (7.1), (7.2) for d = 2, where

f1,n−1/2(s), f2,n−1−1/2(s), . . . , fn,1/2(s) are functions found from

|ψ+(x, k)|2 given at x = x1(s), . . . , x2n(s) defined by (1.15)
(11.1)

and such that

fj = fj,n−j+1/2(s) +O(s−(n−j+1/2)), s→ +∞, j = 1, . . . , n,

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn,
(11.2)

where fj = fj(k, l), fj,n−j+1/2(s) = fj,n−j+1/2(k, l, τ, λ1, . . . , λn, s), (k, l) ∈ ΩE , d =

2, E > 0, l̂ = l/|l|, τ > 0. For n = 2 and n = 3 the aforementioned functions
f1,n−1, f2,n−2, . . . , fn−1,1 of (7.1), (7.2) for d = 2 are found in Sections 9 and 10.

This substep is realized via Theorems 11.1 and 11.2 formulated in the next subsection.
The second substep consists in finding f1,n, f2,n−1, . . . , fn,1 proceeding from

f1,n−1/2, f2,n−1−1/2, . . . , fn,1/2 of (11.1), (11.2), where f1,n, f2,n−1, . . . , fn,1 are the func-
tions of (7.3), (7.4) for d = 2.

This substep is realized via Theorems 11.3 and 11.4 formulated in the next subsection.

11.2 Realization of the inductive step. Let f1,1/2(κs) = f1,1/2(k, l, τ, κs) be defined by
(10.10), (10.11).

Let

a2n,n−1(κ, s) =
∑
j∈N
2j≤n

|fj,n−j(s)|2

(κs)2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1,n−j1(s)f̄j2,n−j2(s)

(κs)j1+j2−1−1/2
, (11.3)

a2,τn,n−1(κ, s) =
∑
j∈N
2j≤n

|fj,n−j(s)|2

(κs+ τ)2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n

fj1,n−j1(s)f̄j2,n−j2(s)

(κs+ τ)j1+j2−1−1/2
, (11.4)

where fj,n−j(s), j = 1, . . . , n− 1, are the functions of (7.1), (7.2) for d = 2.

Let ∆1,τ
n,n−1(κ, s) be defined by (7.9) for d = 2.

Theorem 11.1. Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

zn(κs) = ζn,n−1(κ, s) +O(s−(n−1/2)) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn−1, κ,
(11.5)

where zn(s) = zn(k, l, s) is defined by (5.1),
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ζn,n−1(κ, s) = ζn,n−1(k, l, τ, λ1, . . . , λn−1, κ, s) is defined as follows:(
ζn,n−1(κ, s)
ζ̄n,n−1(κ, s)

)
=

(
f1,1/2(κs)
f̄1,1/2(κs)

)
−M

(
a2n,n−1(κ, s)

∆1,τ
n,n−1(κ, s) + a2,τn,n−1(κ, s)

)
, (11.6)

f1,1/2(κs) is defined by (10.10), M =Mk,l,τ,κs is defined according to (5.3), (5.4),

a2n,n−1(κ, s), a
2,τ
n,n−1(κ, s) are defined by (11.3), (11.4), ∆1,τ

n,n−1(κ, s) is defined according to

(7.9), (k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, τ > 0, λ1, . . . , λn−1 are the numbers of (1.15),
κ ≥ 1, n ≥ 2.

Theorem 11.2. Under assumptions (1.2), (1.7) for d = 2, formulas (11.2) hold, where

fi,n−i+1/2(s) = si−1
n∑

j=1

Λ−1
i,j ζn,n−1(λj , s), i = 1, . . . , n, (11.7)

where Λ−1 = (Λ−1
i,j ) is the inverse of the matrix Λ defined by (7.12), ζn,n−1(κ, s) is defined

by (11.6), n ≥ 2.
Note that f1,3/2, f2,1/2 of Theorem 11.2 for n = 2 are different, in general, from f1,3/2,

f2,1/2 of Proposition 10.2.
Theorems 11.1 and 11.2 realize the first substep of induction of Subsection 11.1.
Let

a2n+1,n−1/2(κ, s) =∑
j∈N

2j≤n+1

|fj,n−j+1/2(s)|2

(κs)2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n+1

fj1,n−j1+1/2(s)f̄j2,n−j2+1/2(s)

(κs)j1+j2−1−1/2
, (11.8)

a2,τn+1,n−1/2(κ, s) =∑
j∈N

2j≤n+1

|fj,n−j+1/2(s)|2

(κs+ τ)2j−1−1/2
+

∑
j1,j2∈N

j1 ̸=j2,j1+j2≤n+1

fj1,n−j1+1/2(s)f̄j2,n−j2+1/2(s)

(κs+ τ)j1+j2−1−1/2
, (11.9)

where fj,n−j+1/2(s), j = 1, . . . , n, are the functions of (11.1), (11.2), (11.7).

Theorem 11.3. Under assumptions (1.2), (1.7) for d = 2, the following formulas
hold:

zn(κs) = ζn,n−1/2(κ, s) +O(s−n) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn, κ,
(11.10)

where zn(s) = zn(k, l, s) is defined by (5.1),
ζn,n−1/2(κ, s) = ζn,n−1(k, l, τ, λ1, . . . , λn, κ, s) is defined as follows:(

ζn,n−1/2(κ, s)
ζ̄n,n−1/2(κ, s)

)
=

(
f1,1/2(κs)
f̄1,1/2(κs)

)
−M

(
a2n+1,n−1/2(κ, s)

∆1,τ
n,n−1(κ, s) + a2,τn+1,n−1/2(κ, s)

)
, (11.11)
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f1,1/2(κs) is defined by (10.10), M =Mk,l,τ,κs is defined according to (5.3), (5.4),

a2n+1,n−1/2(κ, s), a
2,τ
n+1,n−1/2(κ, s) are defined by (11.8), (11.9), ∆1,τ

n,n−1(κ, s) is defined ac-

cording to (7.9), (k, l) ∈ ΩE , d = 2, E > 0, l̂ = l/|l|, τ > 0, λ1, . . . , λn are the numbers of
(1.15), κ ≥ 1, n ≥ 2.

Theorem 11.4. Under assumptions (1.2), (1.7) for d = 2, formulas (7.4) for d = 2
hold, where

fi,n−i+1(s) = si−1
n∑

j=1

Λ−1
i,j ζn,n−1/2(λj , s), i = 1, . . . , n, (11.12)

where Λ−1 = (Λ−1
i,j ) is the inverse of the matrix Λ defined by (7.12), ζn,n−1/2(κ, s) is defined

by (11.11), n ≥ 2.
Note that ζ2,3/2 and f1,2, f2,1 of Theorems 11.3 and 11.4 for n = 2 are different, in

general, from ζ2,3/2 and f1,2, f2,1 of Propositions 10.3 and 10.4.
Theorems 11.3 and 11.4 realize the second substep of induction of Subsection 11.1.

11.3. Proofs of Theorems 11.1-11.4.

Proof of Theorem 11.1. Theorem 11.1 follows from Proposition 5.1 for d = 2 with
formulas (8.5) in place of (5.5), formula (10.10) and the formulas

a2n(κs) = a2n,n−1(κ, s) +O(s−(n−1/2)), s→ +∞, (11.13)

a2n(κs+ τ) = a2,τn,n−1(κ, s) +O(s−(n−1/2)), s→ +∞, (11.14)

∆1,τ
n (κs) = ∆1,τ

n,n−1(κ, s) +O(s−n), s→ +∞, (11.15)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn−1, κ,

where a2n(κs) = a2n(κsl̂, k), a
2
n(κs+ τ) = a2n((κs+ τ)l̂, k) are the functions of (8.1), (8.3),

∆1,τ
n (κs) = ∆1,τ

n (κsl̂, k) is the function of (4.11) for d = 2, a2n,n−1(κ, s), a
2,τ
n,n−1(κ, s) are

the functions of (11.3), (11.4), ∆1,τ
n,n−1(κ, s) is the function of (7.9) for d = 2.

Formula (11.13) follows from (8.1), (11.3), (7.2) for d = 2, and the observation that
the terms

O(s−(n+j−1−1/2)), O(s−(n+j1−1−1/2)), O(s−(n+j2−1−1/2)),

j ∈ N, 2j ≤ n, j1, j2 ∈ N, j1 ̸= j2, j1 + j2 ≤ n,

arising at comparison of the summands of a2n(κs) and a2n,n−1(κ, s) are majorized by

O(s−(n−1/2)) as s→ +∞.
Formula (11.14) is proved in a similar way with formula (11.13).
Formula (11.15) for d = 2 is completely similar to formula (7.17) for d = 3.
This completes the proof of Theorem 11.1.

Proof of Theorem 11.2. Using formula (5.1) for d = 2 and formula (11.5) we obtain
(7.18)-(7.22) for d = 2, where O(s−n) is replaced by O(s−(n−1/2)) in (7.18), (7.21), (7.22).

Formulas (11.2), (11.7) follow from (7.19), (7.20), (7.22) for d = 2, where O(s−n) is
replaced by O(s−(n−1/2)) in (7.22).

Theorem 11.2 is proved.
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Proof of Theorem 11.3. Due to formulas (5.1)-(5.4), (5.6), (5.7) for d = 2 and formulas
(8.5), (10.10), (10.11) we have that(

zn+1(κs)
z̄n+1(κs)

)
=

(
f1,1/2(κs)
f̄1,1/2(κs)

)
− (11.16)

M

((
a2n+1(κs)

∆1,τ
n+1(κs) + a2n+1(κs+ τ)

)
+

(
δn+1a(κs)

ρ1,τn+1(κs) + δn+1a(κs+ τ)

))
,

δn+1a(κs) = O(s−n−1/2), δn+1a(κs+ τ) = O(s−n−1/2) as s→ +∞, (11.17)

ρ1,τn+1(κs) = O(s−n−1) as s→ +∞ (11.18)

uniformly in k̂, l̂ at fixed τ > 0 and E > 0, where zn+1(κs) = zn+1(k, l, κs),

f1,1/2(κs) = f1,1/2(k, l, τ, κs), M =Mk,l,τ,κs, a
2
n+1(κs) = a2n+1(κsl̂, k),

a2n+1(κs + τ) = a2n+1((κs + τ)l̂, k), ∆1,τ
n+1(κs) = ∆1,τ

n+1(κsl̂, k), δn+1a(κs) = δn+1a(κsl̂, k),

ρ1,τn+1(κs) = ρ1,τn+1(κsl̂, k), δn+1a(κs + τ) = δn+1a((κs + τ)l̂, k), (k, l) ∈ ΩE , d = 2, E > 0,

k̂ = k/|k|, l̂ = l/|l|, τ > 0, n ∈ N, κ ≥ 1, sin((|k| − kl̂)τ) ̸= 0.
In addition, using (4.11), (4.13), (5.1) for d = 2, one can see that

zn+1(κs) = zn(κs) +O(s−n), s→ +∞, (11.19)

∆1,τ
n+1(κs) = ∆1,τ

n (κs) +O(s−n), s→ +∞, (11.20)

uniformly in k̂, l̂ and κ ≥ 1 at fixed τ > 0 and E > 0.
Besides, the following formulas hold:

a2n+1(κs) = a2n+1,n−1/2(κ, s) +O(s−n), s→ +∞, (11.21)

a2n+1(κs+ τ) = a2,τn+1,n−1/2(κ, s) +O(s−n), s→ +∞, (11.22)

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn, κ,
where a2n+1(κs), a

2
n+1(κs+ τ) are the functions arising in (11.16), a2n+1,n−1/2(κ, s),

a2,τn+1,n−1/2(κ, s) are defined by (11.8), (11.9).

Formula (11.21) follows from (8.1) with n + 1 in place of n, (11.8), (11.2) and the
observation that the terms

O(s−(n+j−1)), O(s−(n+j1−1)), O(s−(n+j2−1)),

j ∈ N, 2j ≤ n+ 1, j1, j2 ∈ N, j1 ̸= j2, j1 + j2 ≤ n+ 1,

arising at comparison of the summands of a2n+1(κs) and a
2
n+1,n−1/2(κ, s) are majorized by

O(s−n) as s→ +∞.
Formulas (11.10), (11.11) follow from (11.16), (11.19), (11.17), (11.18), (11.21), (11.22)

and (11.20), (11.15).
This completes the proof of Theorem 11.3.

Proof of Theorem 11.4. Using formula (5.1) for d = 2 and formula (11.10) we obtain
(7.18)-(7.22) for d = 2, where ζn,n−1 is replaced by ζn,n−1/2.
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Formulas (7.4) for d = 2, (11.12) follow from (7.19), (7.20), (7.22), where ζn,n−1 is
replaced by ζn,n−1/2 in (7.20).

Theorem 11.4 is proved.

12. Formulas for ψ+

Theorem 12.1. Under assumptions (1.2), (1.7) for d = 3 and for d = 2, the following
formulas hold:

ψ+(sl̂, k) = ψ̃+
n (s) +O(s−n−(d−1)/2) as s→ +∞

for fixed sin((|k| − kl̂)τ) ̸= 0, E, τ and λ1, . . . , λn,
(12.1)

where ψ+ is the function of (1.4), (3.3), ψ̃+
n (s) = ψ̃+

n (k, l, τ, λ1, . . . , λn, s) is found from
|ψ+(x, k)|2 given at x = x1(s), . . . , x2n(s) defined by (1.15),

ψ̃+
n (s) = eiskl̂ +

ei|k|s

s(d−1)/2

( n∑
j=1

fj,n−j+1(s)

sj−1

)
, (12.2)

where fj,n−j+1, j = 1, . . . , n, are the functions of (7.3), (7.4) (see Section 7 for d = 3 and

Section 11 for d = 2), (k, l) ∈ ΩE , E > 0, l̂ = l/|l|, n ∈ N.
Formulas (12.1) follow from expansion (3.3), definition (12.2) and the asymptotic

formulas (7.4).
Theorem 12.1 realizes formulas (1.16), (3.5).
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