
HAL Id: hal-02119503
https://hal.science/hal-02119503v1

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Decidability of several concepts of finiteness for simple
types

José Espírito Santo, Ralph Matthes, Luís Pinto

To cite this version:
José Espírito Santo, Ralph Matthes, Luís Pinto. Decidability of several concepts of finiteness for simple
types. Fundamenta Informaticae, 2019, 170 (1-3), pp.111-138. �10.3233/FI-2019-1857�. �hal-02119503�

https://hal.science/hal-02119503v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Decidability of several concepts of finiteness for simple types

José Espírito Santo∗†

Centro de Matemática

Universidade do Minho, Portugal

jes@math.uminho.pt

Ralph Matthes‡†

Institut de Recherche en Informatique de Toulouse

(IRIT), CNRS and University of Toulouse, France

matthes@irit.fr

Luís Pinto∗†

Centro de Matemática

Universidade do Minho, Portugal

luis@math.uminho.pt

Abstract. If we consider as “member” of a simple type the outcome of any successful (possi-

bly infinite) run of bottom-up proof search that starts from the type, then several concepts of

“finiteness” for simple types are possible: the finiteness of the search space, the finiteness of any

member, or the finiteness of the number of finite members (in other words, the inhabitants). In

this paper we show that these three concepts are instances of the same parameterized notion of

finiteness, and that a single, parameterized proof shows the decidability of all of them. One in-

stance of this result means that termination of proof search is decidable. A separate result is that

emptiness is also decidable (where emptiness is absence of “members” as above, not just absence

of inhabitants). This fact is an ingredient of the main decidability result, but it also has a different

application, the definition of the pruned search space - the one where branches leading to failure

are chopped off. We conclude with our version of König’s lemma for simple types: a simple type

has an infinite member exactly when the pruned search space is infinite.

Keywords: lambda-calculus, proof search, coinduction, decision procedure

∗The first and third authors were partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a

Tecnologia) within the Project UID/MAT/00013/2013.
†The three authors were partially financed by COST action CA15123 EUTYPES.
‡An early phase of the reported work was partially financed by the project Climt, ANR-11-BS02-016, of the French Agence

Nationale de la Recherche.

1. Introduction

Like sets, simple types have an “extension”, the collection of its inhabitants. But, more generally,

a simple type determines a search space, a tree amalgamating all possible runs of bottom-up proof

search. The collection of its inhabitants just corresponds to the successful traversals of this space

which stop after finite time. A sensible proof search procedure will detect failure caused by a branch

leading to a situation where no rule applies. But the procedure may fail to terminate because it may

extend forever a branch where a further application of rule is always possible. The outcome of such

a run is an infinite object which we tend to see positively, and call a “solution” of the search problem

(after all, the procedure never faces the impossibility of applying a rule, which is the sign of failure).

Thus, the inhabitants are just the finite solutions, and the collection of all solutions is another, more

general, concept of extension of the simple type.

Given this richness, several concepts of finiteness for a simple type are possible: either the finite-

ness of the collection of inhabitants; or the property of all solutions being finite; or the finiteness of the

search space tout court. In this paper we investigate these possible concepts of finiteness and show:

they are all instances of a same, parameterized concept of finiteness; and they are all decidable. The

parametrization allows to put the just mentioned concepts in decreasing order of generality; it permits

as well a single proof of decidability, under mild conditions imposed on the parameter. The parameter

is another, auxiliary predicate. It follows, as an instance, the decidability of the property of having a

finite set of inhabitants, which is known [1, 2]; but the other instances are new decidability results.

One example of the parameter, determining an instance of finiteness capturing the property of all

solutions being finite, is the predicate stating the existence of a solution. We have to study separately

this property and establish that “solvability” of simple types (like inhabitation) is decidable. The prop-

erty of all solutions being finite corresponds to termination of proof search, which is thus decidable.

Additionally, the property of all solutions being finite is strictly stronger than the property of having

a finite number of inhabitants. It is a kind of finiteness with an “operational” flavor: the members

of the type can be found by a naive, depth-first proof search procedure; it is also a kind of finiteness

we describe as “weakly extensional”: the property cannot distinguish two types with the same set of

solutions (and thus is “extensional”), but it can tell apart types with the same sets of inhabitants, like

p and (p ⊃ p) ⊃ p (which both have none).

On the other hand, the finiteness of the search space is strictly stronger than the property of all

solutions being finite. However, this observation can be refined. We can redefine the search space as

being the amalgamation of all the runs of a refined proof search procedure, one that applies a rule only

if such a step does not create a branch where finite failure can be observed. The redefined search space

is one where useless, finite branches have been pruned, i. e., where useless, finite runs are avoided.

The procedure underlying this space is effective only because the extra test for applicability of a rule

is decidable—and this is another application of “solvability” of simple types. Then, we show that the

finiteness of the pruned search space is equivalent to all solutions being finite. In other words, the

existence of an infinite run is equivalent to the infiniteness of this space—a result having the flavor of

König’s lemma.

The decidability results in this paper are established by means of a methodology previously de-

veloped by the authors [3, 4, 5]. All concepts pertaining to proof search are first given a coinductive

definition, integrated with the Curry-Howard style of representation of proofs. This means the search

space is represented by a single λ-term in a suitable coinductive λ-calculus. In parallel, an alternative,

finitary (inductive) syntax is developed in the form of a λ-calculus enriched with formal fixed points,

where the search space has an equivalent representation, again as a single λ-term. Both calculi employ

formal sums to represent choice points. Predicates of interest, say the (in)existence of inhabitants, are

first given (co)inductive characterizations in the coinductive syntax, and later inductive, syntax di-

rected characterizations in the finitary syntax. Decidability follows from syntax-directedness and the

effectiveness of the functions that calculates the finitary representation of the search space of a given

sequent.

This methodology is recalled in Section 2 (dedicated to background material), and in the beginning

of Section 4, which is dedicated to decidability. There one finds a further application of decidability,

leading to a refinement in the so-called coherence theorem. The parameterized concept of finiteness

is developed in Section 3. Section 5 ends the paper.

2. Background

In this section we recall the presentation of the simply-typed λ-calculus we will be working with,

and our coinductive representation of proof search [3, 4, 5]. Additionally, in the third subsection, we

introduce new predicates to reason about our coinductive representation of proof search, and notions

of extensionality over predicates.

2.1. Simply-typed λ-calculus, reduced to normal forms

It is well-known that η-long β-normal terms are complete for simply-typed λ-calculus in the sense

that any typable term normalises to a β-normal form, which in turn can be expanded to an η-long

β-normal form (see, e. g., 2D5 and 8A8 of the book [6]). We lay out a presentation of the η-long

β-normal fragment of simply-typed λ-calculus, a system we often refer to by λ.

Simple types (or simply, types) are given by the grammar:

(types) A,B,C := p | A ⊃ B

where p, q, r range over atoms. We thus do not distinguish types from propositional implicational

formulas. We will write A1 ⊃ A2 ⊃ · · · ⊃ Ak ⊃ p, with k ≥ 0, in vectorial notation as ~A ⊃ p. For

example, if the vector ~A is empty the notation means simply p.

Normal (i.e., β-normal) λ-terms are given by:

(terms) t, u ::= λxA.t | x 〈t1, . . . , tk〉

where a countably infinite set of variables, ranged over by letters x, y, w, z, is assumed. As is

common-place with lambda-calculi, we will throughout identify terms up to α-equivalence. The term

constructor x 〈t1, . . . , tk〉 is called application (traditionally, this would be expressed as a multiple

application xt1 . . . tk of λ-calculus). Often, we simply write the variable x when k = 0, and we will

use the notation 〈ti〉i for finite tuples.

Figure 1. Typing rules of λ

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A ⊃ B
RIntro

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ⊢ ti : Bi

Γ ⊢ x〈ti〉i : p
LVecIntro

We view contexts Γ as finite sets of declarations x : A, where no variable x occurs twice. The

letters Γ, ∆, Θ are used to range over contexts, and the notation dom(Γ) stands for the set of variables

declared in Γ. The context Γ, x : A is obtained from Γ by adding the declaration x : A, and is only

written if x is not declared in Γ. Context union is written as concatenation Γ,∆ for contexts Γ and

∆ if dom(Γ) ∩ dom(∆) = ∅. We will write Γ(x) for the type associated with x for x ∈ dom(Γ).
Context inclusion Γ ⊆ ∆ is just set inclusion.

The typing rules are in Fig. 1 and derive sequents Γ ⊢ t : A. Note that, in the particular case of

LVecIntro where ~B is empty, (x : p) ∈ Γ is the only hypothesis, and we type variables with atoms.

2.2. Search for inhabitants, coinductively

We are concerned with a specific kind of search problems: given Γ and A, to find a λ-term t such

that Γ ⊢ t : A, that is, to find an inhabitant of type A in context Γ. Under the Curry-Howard

correspondence, a pair (Γ, A) may be seen as a logical sequent Γ ⇒ A, and searching for an inhabitant

of A in context Γ is the same as searching for a proof of that sequent. Our search process will receive

a formal description in Definition 2.1.

Following [3, 4, 5], we model this search process through the coinductive λ-calculus, denoted λco.

The terms of λco, also called coterms, are given by

M,N ::=co λxA.N |x〈N1, . . . , Nk〉.

This is exactly the previous grammar for λ-terms, but read coinductively, as indicated by the index co

(still with finite tuples 〈Ni〉i). Of course, since coterms are not built in finitary ways from finitary syn-

tax, the notion of equality is not just syntactic equality, but rather bisimilarity modulo α-equivalence.

Bisimilarity is given by a coinductive binary relation that considers as equal coterms M and N that

finitely decompose in the same way, in other words, the successive deconstruction of M and N ac-

cording to the grammar must proceed the same way (up to α-equivalence), and this to arbitrary depth.

Following mathematical practice, bisimilarity is still written as plain equality.

In λco, also the typing rules of Fig. 1 have to be interpreted coinductively—but the types stay

inductive and the contexts finite. Following common practice in the presentation of coinductive syntax,

we will symbolize the coinductive reading of an inference (rule) by the double horizontal line, but we

refrain from displaying Fig. 1 again with double lines—a figure where the two inference rules would

be called RIntroco and LVecIntroco. Such a system defines when Γ ⊢ N : A holds for a finite context

Γ, a coterm N and a type A.

Suppose Γ ⊢ N : A holds. Then this sequent has a derivation, which is a (possibly infinite) tree of

sequents, generated by applying the inference rules bottom-up; and N is a (possibly infinite) coterm,

Figure 2. Membership relations

mem(M,N)

mem(λxA.M, λxA.N)

mem(M,Ej)

mem(M,
∑

iEi)

∀i, mem(Mi, Ni)

mem(x〈Mi〉i, x〈Ni〉i)

Figure 3. Extra typing rule of λco
Σ

w. r. t. λco

∀i, Γ ⊢ Ei : p

Γ ⊢
∑

iEi : p
Alts

which we call a solution of σ, with σ = (Γ ⇒ A). Therefore, such derivations are the structures

generated by the search process when it does not fail—even if it runs forever—and so they subsume

proofs; likewise solutions subsume typable terms, so we may refer to the latter as finite solutions.

The next step is to extend even further the paradigm, representing also the choice points of the search

process. To this end, we extend λco to λco
Σ , whose syntax is this:

(terms) M,N ::=co λxA.N |E1 + · · ·+ En

(elimination alternatives) E ::=co x〈N1, . . . , Nk〉

where both n, k ≥ 0 are arbitrary (thus including the empty sum of elimination alternatives). T ranges

over both terms and elimination alternatives. We will often use
∑

iEi instead of E1 + · · · + En and

O instead the empty sum.

The notion of equality of terms in λco
Σ is again bisimilarity modulo α-equivalence, but we further

assume that + is associative, commutative and idempotent. So the sums of elimination alternatives

can plainly be treated as if they were finite sets of elimination alternatives.

We call forests the expressions of λco
Σ —and a coterm M is a member of a forest N when the

relation mem(M,N), defined coinductively in Fig. 2, holds. Then, we define the extension of a forest

to be the collection of its members, in symbols,

E(T) := {M ∈ λco | mem(M,T)}.

As in [5], we define the finite extension of a forest to be the collection of its finite members, in symbols,

Efin(T) := {t ∈ λ | mem(t, T)}.

Simple types can be assigned to forests [3, 4]. In the typing system for λco
Σ , one derives sequents

Γ ⊢ N : A and Γ ⊢ E : p. The coinductive typing rules are the ones of λco, together with the rule

given in Fig. 3 (the empty sum of elimination alternatives receives any atom as type).

A typing derivation of λco
Σ is a possibly infinite tree of sequents, generated by the bottom-up appli-

cation of the inference rules, with “multiplicative” branching (logically: “and” branching) caused by

the list of arguments in elimination alternatives, and “additive” branching (logically: “or” branching)

caused by sums—the latter being able to express the alternatives found in the search process when an

atom p can be proved by picking different head variables with their appropriate arguments. So, it is

no surprise that, with this infrastructure, we can express, as a (single) forest, the entire solution space

generated by the search process when applied to given Γ and A. That forest can be corecursively

defined as the function S of Γ ⇒ A:

Definition 2.1. (Solution spaces)

S(Γ ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆ ⇒ Bj)〉j with ∆ := Γ, ~x : ~A

Example 2.2. We introduce now the sequents that will play some role in the paper, and calculate their

solution spaces. (More standard examples, but also complicated examples that illustrate the dynamic

nature of the contexts of the sequents—when implications are nested in the hypotheses—can be found

in [3, 4, 5].)

• Let σa := (⇒ p). Then, S(σa) = O. Obviously, this sequent has no solution.

• Let σb := (x : p ⊃ p ⇒ p). Then, S(σb) = x〈S(σb)〉, i. e., S(σb) is the forest x〈x〈. . .〉〉 with an

infinitely repeated application of x. The only solution for this sequent is again x〈x〈. . .〉〉 (now

seen as a coterm).

• Let σc := (x : p ⊃ q ⊃ p ⇒ p). Then, S(σc) = x〈S(σc),O〉. This sequent has no solution

(since we cannot find a coterm from the empty sum in the second component of the tuple).

• Let σd := (x : p ⊃ q ⊃ p, y : p, z : q ⇒ p). Then, S(σd) = x〈S(σd), z〉 + y. Infinitely

many inhabitants can be obtained for this sequent, starting with the inhabitant t1 := x〈y, z〉 and

building new inhabitants via tn+1 := x〈tn, z〉 (for each n ∈ N). This sequent has one infinite

solution given by the coterm x〈x〈x〈. . .〉, z〉, z〉.

• Let σe := (x : p ⊃ p, y : p ⇒ p), corresponding to a simplification of type CHURCH of the

Church numerals, analysed in [5, 3, 4]. Then, S(σe) = x〈S(σe)〉+ y. Again, this is an example

of a sequent with infinitely many inhabitants and one infinite solution.

The following properties witnessing the robustness of the definition of S are shown in [3, 4] (and

reproduced as [5, Proposition 1]).

Fact 2.3. (Properties of solution spaces)

1. Given Γ and A, the typing Γ ⊢ S(Γ ⇒ A) : A holds in λco
Σ .

2. For N ∈ λco, mem(N,S(Γ ⇒ A)) iff Γ ⊢ N : A in λco.

3. For t ∈ λ, mem(t,S(Γ ⇒ A)) iff Γ ⊢ t : A in λ.

The second property says the members of S(σ) are exactly the solutions of σ, and this justifies calling

S(σ) the solution space of σ. The last two properties together say that solutions subsume finite solu-

tions conservatively, i. e., given a λ-term t, Γ ⊢ t : A in λ iff Γ ⊢ t : A in λco. The first property says

S(Γ ⇒ A) is a λ-term representing, in the Curry-Howard style, a type derivation in λco
Σ that amounts

to the entire search space for Γ ⇒ A.

From this, and the coinductive definition of membership, it follows that the solutions are the

outcomes of the successful runs of an idealized proof search procedure that non-deterministically

applies bottom-up an inference rule, and proceeds by searching in parallel proofs for the premisses.

This procedure will find a finite failure, caused by the impossibility of applying an inference rule,

whenever it exists; but it may run forever while building an infinite solution. Termination of the search

procedure amounts to the inexistence of an infinite solution. One of the concepts of finiteness for

simple types developed in Section 3 (namely allfin) corresponds exactly to this notion of termination

of proof search.

Finally, we recall from [3, 4, 5] the important phenomenon of decontraction (going by the name

of cocontraction in the earlier papers). Intuitively, this is just the observation that, when searching

for solutions in a given context with two variables x and y that are declared with the same type A,

then, whenever a coterm of a given type B can be constructed using assumption x, another coterm

of that type B can be constructed with y in place of x, and this choice between x and y can be

operated for each occurrence of x independently. (This same phenomenon already occurs in the search

for inhabitants.) The operation of decontraction on forests, for contexts and for sequents, denoted

by [Γ′/Γ]T and [σ′/σ]T , respectively, describes this phenomenon in terms of λco
Σ : the outcome of

applying the operation is the forest where all the extra choices available in Γ′ w. r. t. Γ (or in the

contexts of the respective sequents σ′ and σ) are included. Therefore the decontraction operation

(henceforth called just decontraction) is only defined when Γ′ (resp. σ′) is an inessential extension of

Γ (resp. σ), that is when the context of Γ′ (resp. σ′) has more declarations than that of Γ (resp. σ), but

not with new types. Formally:

Definition 2.4. (Inessential extension of contexts and sequents)

1. Γ ≤ Γ′ iff Γ ⊆ Γ′ and |Γ| = |Γ′|, with the set |∆| := {A | ∃x, (x : A) ∈ ∆} of assumed types

of ∆ for an arbitrary context ∆.

2. σ ≤ σ′ iff for some Γ ≤ Γ′ and for some atom p, σ = (Γ ⇒ p) and σ′ = (Γ′ ⇒ p).

Decontraction precisely captures the extension of the solution space when going from σ to some

σ′ with σ ≤ σ′, as will be expressed in Fact 2.6 below.

Definition 2.5. (Decontraction of contexts and sequents)

1. Let Γ ≤ Γ′. For T an expression of λco
Σ , we define the expression [Γ′/Γ]T of λco

Σ by corecursion

as follows:

[Γ′/Γ](λxA.N) = λxA.[Γ′/Γ]N

[Γ′/Γ]
∑

i

Ei =
∑

i

[Γ′/Γ]Ei

[Γ′/Γ]
(

z〈Ni〉i
)

= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(

z〈Ni〉i
)

=
∑

(w:A)∈∆z

w〈[Γ′/Γ]Ni〉i if z ∈ dom(Γ)

where, in the last clause, A := Γ(z) and ∆z := {(z : A)} ∪ (Γ′ \ Γ).

2. Let σ ≤ σ′, and σ = (Γ ⇒ p) and σ′ = (Γ′ ⇒ p). For T an expression of λco
Σ , [σ′/σ]T is

defined to be [Γ′/Γ]T .

As announced above, (the) decontraction (operation) properly captures the decontraction phenomenon:

Fact 2.6. (Solution spaces and decontraction [4, Lemma 33] (reproduced as [5, Lemma 7]))

Let σ ≤ σ′. Then S(σ′) = [σ′/σ]S(σ).

2.3. Predicates on forests and extensionality

We call strongly extensional a predicate on forests that only depends on the finite extension of the

forest, in other words, if Π is a predicate on forests, then Π is strongly extensional iff Efin(T) =
Efin(T

′) and Π(T) imply Π(T ′). Put differently, a strongly extensional predicate on forests cannot

distinguish between forests that have the same finite extension. This is in particular the case when

Π = R ◦ Efin for any predicate R on sets of λ-terms. But the existence of such a predicate R is also a

necessary condition for Π being strongly extensional (take R(X) :⇔ ∃T (Efin(T) = X ∧Π(T))).
A predicate P on sequents is called strongly extensional if there is a strongly extensional predicate

Π on forests such that P = Π ◦ S . A fortiori, this is in particular the case when there is a predicate R
on sets of λ-terms such that P = R ◦ Efin ◦S . By [5, Proposition 1.3], this is equivalent to P = R ◦ I,

where I(Γ ⇒ A) := {t ∈ λ | Γ ⊢ t : A in λ} is the set of inhabitants of a sequent. The existence

of such a predicate R is again also a necessary condition for P being strongly extensional. In other

words, a strongly extensional predicate on sequents is characterized by not being able to distinguish

between sequents that have the same set of inhabitants.

Previously [5, Section 3], we analyzed the following strongly extensional predicates on forests:

• exfinext(T) :⇔ Efin(T) is nonempty.

nofinext(T) :⇔ Efin(T) is empty.

• finfinext(T) :⇔ Efin(T) is finite.

inffinext(T) :⇔ Efin(T) is infinite.

They are strongly extensional since their definition is expressed in terms of the finite extension, i. e.,

their definition is of the form R ◦ Efin with suitable predicates R.

Extensional predicates concern no longer only the finite extension Efin(T) of a forest but the whole

extension. Extensionality of a predicate on forests is defined like strong extensionality, but with refer-

ence to E in place of Efin. Of course, strongly extensional predicates are extensional (since having the

same extension implies having the same finite extension).

Weakly extensional predicates are then defined as extensional predicates that are not strongly ex-

tensional. In particular, Π is extensional if there is a predicate R on sets of coterms such that Π = R◦E .

The definitions of extensional and weakly extensional predicates on sequents are obtained analogously.

Again, in particular, a predicate P on sequents is extensional if there is a predicate R on sets of coterms

such that P = R ◦ E ◦ S .

We will be mainly interested in the following predicates on forests concerning their extension:

• nosolext(T) :⇔ E(T) is empty.

exsolext(T) :⇔ E(T) is nonempty.

• allfinext(T) :⇔ E(T) consists only of finite terms, i. e., E(T) ⊆ Efin(T).
exinfext(T) :⇔ E(T) contains an infinite term, i. e., there is M ∈ λco \ λ with mem(M,T).

These predicates factor through the extension E , hence are extensional. They are not strongly exten-

sional, as can be exemplified by forests that arise as solution spaces of sequents:

Example 2.7. (nosolext and allfinext are only weakly extensional)

In Example 2.2, we already observed E(S(σa)) = ∅ and E(S(σb)) consists only of the coterm

x〈x〈. . .〉〉. Hence, nosolext(S(σa)), allfinext(S(σa)) and neither nosolext(S(σb)) nor allfinext(S(σb)).

We are also interested in the property of forests of being “finite by definition”, i. e., to be in the set

λΣ of expressions that is inductively generated by the grammar for λco
Σ .

• fin(T) :⇔ T ∈ λΣ.

inf(T) :⇔ T ∈ λco
Σ \ λΣ.

The elements of λΣ will also be called finite forests. Obviously, fin ⊆ allfinext ∩ finfinext. The

predicate fin on forests is not even weakly extensional, as can again be exemplified by forests that

arise as solution spaces of sequents:

Example 2.8. (fin is not even weakly extensional)

In Example 2.2, we observed S(σa) = O, S(σc) = x〈S(σc),O〉, and E(S(σa)) = E(S(σc)) = ∅.

But, clearly, fin(S(σa)) and inf(S(σc)).

We remark that all properties P of sequents of interest to us in this work (with the sole exception

being the condition on positivity in Theorem 4.21 in Section 4) factor through the function S that

designates their solution space, thus they are always expressed as a property of the associated forests,

which therefore gives a good sense to the question if P is strongly extensional, weakly extensional or

not extensional.

3. Concepts of finiteness for simple types

In this section we develop the three decidable concepts of finiteness for a simple type A, referred

to in Section 1: finiteness of the collection of inhabitants of A; all solutions of A are finite; the

search space of A is itself finite. The first concept is given through the strongly extensional pred-

icate finfinext(S(⇒ A)), already studied in [5]. The second and third concepts are given, respec-

tively, through the weakly extensional predicate allfinext(S(⇒ A)) and the non-extensional predicate

fin(S(⇒ A)), both introduced in this paper. We will see in the second subsection that the three men-

tioned predicates can be obtained through instances of a parameterized predicate on forests that is

inductively defined and has a complement enjoying a coinductive characterization. The third subsec-

tion will further explore this parameterized description of finiteness. But, for all this, we will need

to study first the complementary weakly extensional predicates nosolext and exsolext, defined in Sec-

tion 2.

Figure 4. nosol and exsol predicates

nosol(N)

nosol(λxA.N)

∀i, nosol(Ei)

nosol(
∑

iEi)

nosol(Nj)

nosol(x〈Ni〉i)

exsol(N)

exsol(λxA.N)

exsol(Ej)

exsol(
∑

iEi)

∀i, exsol(Ni)

exsol(x〈Ni〉i)

3.1. An auxiliary concept: absence of solutions

We introduce predicate nosol(T), for T an expression of λco
Σ (a forest), which holds iff nosolext(T),

i. e., if the extension of T is empty, but it is defined inductively in Fig. 4, together (but independently)

with the coinductive definition of the predicate exsol(T) that is supposed to mean the negation of

nosol(T), but which is expressed positively as existence of a member (i. e., that the extension is non-

empty—that exsolext(T) holds).

Lemma 3.1. Given a forest T , nosol(T) iff exsol(T) does not hold.

Proof:

This is an instance of the dualization principle recalled in our previous paper [5, proof of Lemma

20]. ⊓⊔

Lemma 3.2. (Coinductive characterization of existence of solutions)

Given a forest T . Then, exsol(T) iff exsolext(T), i. e., exsol = exsolext as sets of forests.

Proof:

We have to show exsol(N) ⇐⇒ (∃M.mem(M,N)). The “if” direction is proved coinductively, by

showing that R := {T : ∃M.mem(M,T)} is backwards closed for the defining rules of exsol. The

“only if” direction is proved with the help of a corecursive procedure extracting an M s. t. mem(M,T)
from a proof of exsol(T). ⊓⊔

In particular, we also get that nosol = nosolext. Notice that, although nosol is defined inductively, this

does not mean that this predicate is decidable—the question does not even make sense in view of the

semantic nature of the forests it receives as argument.

Definition 3.3. Let Π be a predicate on forests. Π is said to be closed under decontraction both ways

if for all forests T and all sequents σ, σ′ such that σ ≤ σ′, we have Π(T) iff Π([σ′/σ]T).

It is obvious that Π is closed under decontraction both ways iff Π is closed under decontraction (i. e.,

for all forests T and all sequents σ, σ′ such that σ ≤ σ′, Π(T) implies Π([σ′/σ]T)) and also the

complement of Π is closed under decontraction. Therefore, Π is closed under decontraction both

ways iff its complement is closed under decontraction both ways.

Figure 5. finΠ predicate and infΠ predicate

¬Π(N)

finΠ(λxA.N)

finΠ(N)

finΠ(λxA.N)

∀i, finΠ(Ei)

finΠ(
∑

iEi)

¬Π(Nj)

finΠ(x〈Ni〉i)

∀i, finΠ(Ni)

finΠ(x〈Ni〉i)

Π(N) infΠ(N)

infΠ(λxA.N)

infΠ(Ej)

infΠ(
∑

iEi)

∀i, Π(Ni) infΠ(Nj)

infΠ(x〈Ni〉i)

Lemma 3.4. The predicates nosol and exsol are closed under decontraction both ways.

Proof:

This is already obvious in the semantics, i. e., for the extensional version nosolext, but also provable

by induction on the inductive definition of nosol, and the same property for the complement follows,

as mentioned above. ⊓⊔

3.2. A parameterized concept of finiteness

Throughout this section, Π will stand for a predicate on forests (in λco
Σ). The parameterized predicates

over forests finΠ and infΠ are defined inductively and coinductively, respectively, in Fig. 5.

Lemma 3.5. Given a forest T , finΠ(T) iff infΠ(T) does not hold.

Proof:

This is another instance of the dualization principle recalled in our previous paper [5, proof of Lemma

20]. ⊓⊔

By inspecting the defining rules, it is immediate to see that infΠ is monotone on Π and finΠ is

antitone on Π, i. e.:

Lemma 3.6. (Monotonicity properties of the parameterized predicates on forests)

For any predicates Π,Π′, if Π ⊆ Π′, then infΠ ⊆ infΠ
′

and finΠ
′

⊆ finΠ.

We will consider three specific instantiations for predicate Π:

• Π1 := exfin, where exfin is the predicate defined in [5, Fig. 5] that inductively characterizes

exfinext;

• Π2 := exsol (defined in Fig. 4);

• Π3 := λco
Σ (the always true predicate).

Then:

• finΠ1 = finfin and infΠ1 = inffin (for the predicates finfin and inffin defined in [5, Fig. 7]), with

the latter equality following by definition of inffin, and the former following with the help of [5,

Lemma 20] (that just says that Π1 is the negation of a coinductively defined predicate nofin that

is used in the definition of finfin instead of the negated Π1)—in both cases, no (co-)induction is

needed since even the defining rules are provably the same;1

• let us define allfin := finΠ2 and exinf := infΠ2 ; we show below in Lemma 3.9 that exinf =
exinfext, from which, by duality, follows allfin = allfinext;

• finΠ3 = fin; hence infΠ3 = inf; these equalities are justified next.

Lemma 3.7. (Coinductive characterization of infinity of forests)

Let T be a forest T . Then, infΠ3(T) iff inf(T).

Proof:

Due to Lemma 3.5, this is equivalent to: finΠ3(T) iff T ∈ λΣ. When Π = Π3 = λco
Σ , the first

and fourth rules in the definition of finΠ (Fig. 5) may be erased, the predicate Π plays no role in the

remaining rules, and what remains is the inductive definition of λΣ.2 ⊓⊔

Corollary 3.8. (Invariants of infΠ and of finΠ)

1. For any Π and T , if infΠ(T), then inf(T).

2. For any Π and T , if fin(T), then finΠ(T).

Proof:

For any Π, since Π ⊆ λco
Σ = Π3, Lemma 3.6 gives infΠ ⊆ infΠ3 . Hence, the previous lemma

gives infΠ ⊆ inf. Part 2 follows from part 1 by contraposition, the obvious fact that fin and inf are

complementary predicates and Lemma 3.5. ⊓⊔

So, T must be an infinite forest if infΠ(T), for some Π, and, equivalentely, for any finite forest T ,

finΠ(T) holds for any Π.

Lemma 3.9. (Coinductive characterization of existence of infinite members)

Given a forest T . Then, exinf(T) iff exinfext(T).

Proof:

The proof is analogous to the one of Lemma 3.2. The “if” direction follows by coinduction on exinf.

It uses the fact exinfext ⊆ exsol (an immediate consequence of exinfext ⊆ exsolext and Lemma 3.2).

A corecursive extraction procedure out of proofs of exinf(T) shows the “only if” direction. It requires

the subsidiary corecursive extraction procedure of “members of T ” from proofs of exsol(T) mentioned

in Lemma 3.2. ⊓⊔

1In hindsight, we could just as well have defined finfin as being fin
exfinext, and the proof that finfin(S(σ)) characterizes the

finiteness of I(σ) [5, Theorem 33.2] would still work.
2In the proof of Lemma 21 of [5], a similar characterization is found of the infinite coterms (terms in λ

co \ λ). There is no

risk of confusion with the symbol inf used there since, in the absence of sums in an expression, both predicates coincide.

It will be useful to know the following sufficient condition for closedness under decontraction of

infΠ:

Lemma 3.10. Let Π be closed under decontraction both ways. Then, finΠ and infΠ are closed under

decontraction both ways.

Proof:

The proof can be done for finΠ by induction on its inductive definition (for each direction separately),

its complement infΠ then has the same property. ⊓⊔

3.3. Exploring the parameterized concept of finiteness

Let us pause to relate the instances of the predicates finΠ and infΠ we just considered. First note the

following strictly ascending chain:

exfin ⊂ exsol ⊂ λco
Σ (1)

The first inclusion follows from the fact exfin(T) iff Efin(T) is nonempty (an easy consequence of [5,

Lemma 21]—for exfinext in place of exfin, this would just be the definition) and exsolext = exsol

(Lemma 3.2). The second inclusion is trivial.

Now, by (1) and antitonicity of finΠ (Lemma 3.6), we have fin ⊆ allfin ⊆ finfin and, equivalently,

inffin ⊆ exinf ⊆ inf.

Example 3.11. (inffin 6= exinf 6= inf)

Take the sequents σb and σc from Example 2.2. Then, S(σb) ∈ exinf \ inffin, and S(σc) ∈ inf \ exinf.

Therefore, we even get the following strictly ascending chains:

fin ⊂ allfin ⊂ finfin (2)

inffin ⊂ exinf ⊂ inf (3)

The equivalent inclusions allfin ⊆ finfin and inffin ⊆ exinf (that we have thus got in particular)

are not obvious, and neither of them looks amenable to a direct proof. We interpret the second one in

terms of inhabitants and solutions and then strengthen the observation to the case of infinitely many

solutions:

Proposition 3.12. (Infinite number of solutions vs infinity of solution)

1. Any sequent having infinitely many inhabitants has an infinite solution.

2. Any sequent having infinitely many solutions has an infinite solution.

Proof:

To prove 1, suppose σ has infinitely many inhabitants. Hence inffin(S(σ)) holds by [5, Theorem 33.2

and Lemma 29] (where the latter just identifies finfin and inffin as complements). So, because inffin ⊆
exinf, exinf(S(σ)), which, by Lemma 3.9, yields an infinite solution. The seemingly stronger part 2

is a direct consequence of part 1: if σ has infinitely many solutions, not all of them can be finite, since

this would give infinitely many inhabitants, which by part 1 would imply an infinite solution.3 ⊓⊔

We now turn to the equivalent inclusions fin ⊂ allfin and exinf ⊂ inf. We will show a (sufficient)

condition on forests relative to which these strong inclusions turn into identities (of sets of forests

satisfying this condition).

For a forest T , we say that “T has an empty sum” whenever in the generation process of T appears

E1 + · · ·+En with n = 0, in other words, the empty sum O. The negation of this property is written

as “T has no empty sum”.

Lemma 3.13. If nosol(T) then T has an empty sum.

Proof:

By induction on nosol(T). There are 3 cases, according to the 3 rules in the inductive definition

of nosol—recall the upper half of Fig. 4. The first and third cases follow routinely by induction

hypothesis. Let us detail the second case. Suppose nosol(
∑

iEi) with nosol(Ei) for all i. If T =
∑

iEi itself is not an empty sum, then the empty sums that exist in Ei by induction hypothesis are

also empty sums of T . ⊓⊔

Lemma 3.14. If T has no empty sum, then allfin(T) iff fin(T).

Proof:

Given fin ⊂ allfin, it suffices to prove, for all T such that allfin(T): If T has no empty sum then

fin(T). The proof is by induction on allfin(T). Recall allfin = finΠ2 , with Π2 = exsol. There are 5

cases, according to the 5 rules in the inductive definition of finΠ—recall the upper half of Fig. 5. The

second, third and fifth cases follow routinely by induction hypothesis. The remaining cases rely on

Lemma 3.13. We detail the fourth case (the remaining first case is similar). Suppose allfin(x〈Ni〉i)
with nosol(Nj) for some j (thanks to Lemma 3.1). Then T has an empty sum since already Nj has an

empty sum, by Lemma 3.13. ⊓⊔

This result will have an important application towards the end of Section 4.

4. Decidability of finiteness

In this section we establish decidability of the finiteness predicate finΠ(S(σ)) (when Π(S(σ)) itself

is decidable), and of the auxiliary predicate nosol(S(σ)). This is done following the methodology

of [5] to obtain decidability of the predicates exfin(S(σ)) and finfin(S(σ)). The methodology rests

on an equivalent, effective representation of solution spaces of sequents as expressions of the finitary

extension λgfp
Σ of λ, introduced in [3, 4]. It comprises the definition of syntax-directed predicates over

the finitary expressions of λgfp
Σ that characterize the uneffective predicates over forests to be decided.

Such syntax-directed predicates lead immediately to simple recursive decision procedures.

3Notice that this argument is not specific to solutions of sequents but could be stated in terms of forests. However, we did

not introduce the corresponding notion of infinity on forests that would ask if E(T) is infinite, in order to avoid confusion

with the inf predicate.

4.1. Background: search for inhabitants, inductively

The syntax of the finitary calculus λgfp
Σ is given by the following grammar (read inductively):

(terms) N ::= λxA.N | gfp Xσ.E1 + · · ·+ En | Xσ

(elimination alternatives) E ::= x〈N1, . . . , Nk〉

where X is assumed to range over a countably infinite set of fixpoint variables (also letters Y , Z will

range over them), and where, as for λco
Σ , both n, k ≥ 0 are arbitrary. (Generally, the conventions

adopted for the expressions of λco
Σ will also be adopted for the expressions of λgfp

Σ .) If n = 0, we write

O
σ for gfp Xσ.E1 + · · ·+ En.

In the term formation rules, σ in Xσ is required to be atomic, i. e., of the form Γ ⇒ p. We write

FPV (T) to denote the set of free occurrences of typed fixpoint variables in T . We say T is closed

when FPV (T) = ∅. In gfp Xσ.
∑

iEi the fixed-point construction gfp binds all free occurrences of

Xσ′
in the elimination alternatives Ei, not just Xσ, when σ ≤ σ′. This raises the need for a notion

of well-bound expression: T ∈ λgfp
Σ is well-bound if, for any of its subterms gfp Xσ.

∑

iEi and any

(free) occurrence of Xσ′
in the Ei’s, σ ≤ σ′.

In the sequel, when we refer to finitary forests we have in mind the expressions of λgfp
Σ . (Recall

we use forests for the expressions of λco
Σ .)

We recall now the simplified interpretation of expressions of λgfp
Σ in terms of the coinductive

syntax of λco
Σ [5, Subsec. 3.2]. This simplified interpretation turns out to coincide with the original

interpretation of expressions of λgfp
Σ introduced in [3, 4] for the λgfp

Σ -terms representing solution spaces

[5, Corollary 18].

Definition 4.1. (Simplified interpretation of finitary forests as forests)

For an expression T of λgfp
Σ , the simplified interpretation [[T]]s is a forest given by structural recursion

on T :

[[Xσ]]s = S(σ) [[λxA.N]]s = λxA.[[N]]s

[[gfp Xσ.
∑

i

Ei]]
s =

∑

i

[[Ei]]
s [[x〈Ni〉i]]

s = x〈[[Ni]]
s〉i

Note that the base case profits from the sequent annotation at fixpoint variables, and the interpretation

of the gfp -constructor has nothing to do with a greatest fixed point, contrary to what happens in the

original interpretation of expressions of λgfp
Σ given in [3, 4] (explaining the name of the fixed-point

construction gfp).

We will be specially interested in the finitary forests which guarantee that a gfpXσ construction

represents the solution space of σ:

Definition 4.2. (Proper expressions)

An expression T ∈ λgfp
Σ is proper if for any of its subterms T ′ of the form gfp Xσ.

∑

i

Ei (which could

be T itself), it holds that [[T ′]]s = S(σ).

Now we recall the alternative representation F(σ) of the search space generated by a sequent σ as

a finitary forest, introduced in [3, 4].

Definition 4.3. (Finitary solution space)

Let Ξ :=
−−−−−−−→
X : Θ ⇒ q be a vector of m ≥ 0 declarations (Xi : Θi ⇒ qi) where no fixpoint variable

name and no sequent occurs twice. The specification of F(σ; Ξ) is as follows, with σ = (Γ ⇒ ~A ⊃ p):
If, for some 1 ≤ i ≤ m, p = qi and Θi ⊆ Γ and |Θi| = |Γ| ∪ {A1, . . . , An}, then

F(σ; Ξ) = λzA1

1 . . . zAn

n .Xσ′

i ,

where i is taken to be the biggest such index. Otherwise,

F(σ; Ξ) = λzA1

1 . . . zAn

n .gfp Y σ′

.
∑

(y: ~B⊃p)∈∆

y〈F(∆ ⇒ Bj ; Ξ, Y : σ′)〉j

where, in both cases, ∆ := Γ, z1 : A1, . . . , zn : An and σ′ := ∆ ⇒ p.

Notice that, in the first case, Xi occurs with sequent σ′ in the resulting finitary forest instead of with

Θi ⇒ p in Ξ, but Θi ≤ ∆, hence (Θi ⇒ p) ≤ σ′ makes it plausible that this process generates

well-bound terms.

F(σ) denotes F(σ; Ξ) with empty Ξ.

Fact 4.4. [4, Lemma 52 and Lemma 53]

1. F(σ) is well-defined (the above recursive definition terminates).

2. F(σ) is a closed well-bound term.

This result is central to our methodology of decision algorithms that conform to a coinductive specifi-

cation. Its proof is by establishing an invariant on the recursive calls to F . It is a manifestation of the

“subformula property” of the fragment λ of lambda-calculus we are studying in this paper. The proof

we gave in op. cit. does not try to bound recursion depth polynomially in the length of σ. However, we

could profit from very recent work on the analysis of inhabitation problems through the pre-grammar

of a given type A [7]. First of all, it exploits that, in the implicational fragment we are considering,

the search for proofs of A only generates goals that are subformulas at positive positions of A, with

assumptions that are negative subpremises of A (occur at specific negative positions of A, see already

[8]). Inspired by [7, Proposition 33], we can bound the number of declarations in Ξ for any F(σ′; Ξ)
appearing in the definition of F(⇒ A) by the product of the number of atoms at positive positions in

A and the number of negative subpremises of A.4 Since this optimization of the analysis is orthogonal

to the aims of the present paper, it will be detailed elsewhere.

Example 4.5. Let us see the finitary solution space of each of the sequents in Example 2.2:

• F(σa) = O
σa .

• F(σb) = gfp Xσb .x〈Xσb〉.

4This quantitative result only changes the analysis, not the definition. It needs a modification of the invariant used in the

proof of [4, Lemma 52].

Figure 6. NES and ES predicate

P (σ)

NESP (X
σ)

NESP (N)

NESP (λx
A.N)

∀i, NESP (Ei)

NESP (gfpX
σ.
∑

iEi)

NESP (Nj)

NESP (x〈Ni〉i)

¬P (σ)

ESP (X
σ)

ESP (N)

ESP (λx
A.N)

ESP (Ej)

ESP (gfpX
σ.
∑

iEi)

∀i, ESP (Ni)

ESP (x〈Ni〉i)

• F(σc) = gfp Xσc .x〈Xσc ,Ox:p⊃q⊃p⇒q〉.

• F(σd) = gfp Xσd .(x〈Xσd , z〉+ y).

• F(σe) = gfp Xσe .(x〈Xσe〉+ y).

Not surprisingly, the meta-level fixed points of the coinductive representations turn into formal fixed

points of the finitary calculus. In these simple examples the occurrences of fixpoint variables always

have the sequent of the respective binder. When the decontration phenomenon shows up, we observe

occurrences of fixpoint variables with sequents which are different, but in any case inessential exten-

sions of the sequents in the respective binders. For a more complicated example where decontraction

is seen to play a role, we refer to [5, Example 11].

The semantics into λco
Σ of the finitary representation coincides with S(σ).

Fact 4.6. (Equivalence for simplified semantics [5, Theorem 19])

Let σ be a sequent.

1. F(σ) is proper.

2. [[F(σ)]]s = S(σ).

4.2. Auxiliary result: decidability of absence of solutions

Analogously to the inductive definition of EF and its negation for the decision of exfin ◦ S in [5,

Section 3.3], we introduce a parameterized inductive predicate NES and its negation for the decision

of nosol ◦ S .

We consider a predicate P on sequents and in general require that P is decidable and that, for all

sequents σ, P (σ) implies nosol(S(σ)), i. e., P ⊆ nosol ◦ S .

The definition of this (parameterized) predicate NESP is inductive and presented in the first line

of Fig. 6, although, as in [5] for EFP , it is clear that it could equivalently be given by a definition by

recursion over the term structure. Thus, the predicate NESP is decidable. Intuitively, NESP (T) holds

when the search for a member of T gets “stuck”. For this question, all sequents σ for which P (σ)
holds, are considered as “hopeless”, which is why those Xσ are then also considered as “stuck”. As

in [5], our first instance of P is P := ∅, hence without “hopeless” sequents, which will be used in part

2 of Theorem 4.9 below.

Formally, the definition of NESP only differs from EFP in [5, Fig. 6] in having the universal

quantifier over i in the case of fixed points over sums and the (implicit) existential quantifier over j in

the case of tuples, while this is the other way around for EFP . This is the reason why most proofs in

this section are variants of those in [5, Section 3.3].

Lemma 4.7. For all T ∈ λgfp
Σ , ESP (T) iff NESP (T) does not hold.

Proof:

As straightforward as the proof of [5, Lemma 22]. ⊓⊔

Proposition 4.8. (Finitary characterization)

1. If NESP (T) then nosol([[T]]s).

2. Let T ∈ λgfp
Σ be well-bound and proper. If ESP (T) and for all Xσ ∈ FPV (T), nosol(S(σ))

implies P (σ), then exsol([[T]]s).

The proof follows that of [5, Prop. 2] in lockstep (except for the fact that the clauses of NESP for

fixed points and tuples switched their logical connector in the premise, relative to EFP , as mentioned

above).

Proof:

1. is proved by induction on the predicate NESP (or, equivalently, on T). The base case for fixpoint

variables needs the proviso on P , and all other cases are immediate by the induction hypothesis.

2. is proved by induction on the predicate ESP (which can also be seen as a proof by induction on

T).

Case T = Xσ. Then ¬P (σ), hence, since Xσ ∈ FPV (T), by contraposition and Lemma 3.1, we

get exsol(S(σ)).
Case T = gfpXσ.

∑

iEi. Let N := [[T]]s =
∑

i[[Ei]]
s. As T is proper, N = S(σ). We hence

have to show exsol(S(σ)), which we do by an embedded coinduction for the coinductively defined

predicate exsol. Coinduction is now used in a more sophisticated way than in the proof of Lemma 3.2

where backwards closure of a suitable relation suffices. We have to establish evidence for exsol(S(σ)),
and we may use evidence for exsol(S(σ)) as coinductive hypothesis, provided that use is “guarded”

by the construction process: if we set out to observe the generated proof of exsol(S(σ)) up to a certain

depth (in a “thought process”), we have to make sure (in the “thought process”) that the construction

only accesses the coinductive hypothesis up to a smaller depth. The construction of evidence is as

follows: We have ESP (Ej) for some j and want to use the induction hypothesis, which would give

us exsol([[Ej]]
s) and thus exsol(

∑

i[[Ei]]
s), which was our goal. Of course, Ej is also well-bound

and proper. We have to consider all Y σ′
∈ FPV (Ej). Either Y σ′

∈ FPV (T), and we are fine by

hypothesis, or Y = X and, since T is well-bound, σ ≤ σ′. We just show that nosol(S(σ′)) does

not hold: from our coinductive hypothesis exsol(S(σ)), we get through Fact 2.6 and Lemma 3.4 even

exsol(S(σ′)), and this is the negation of nosol(S(σ′)). (See the corresponding case in the proof of

Proposition 4.14.2 that argues in an analogous situation that this is proper coinductive reasoning, in

other words, that the proof construction is guarded. An even closer analogy is with the proof of [5,

Proposition 2].)

The other cases are simple applications of the induction hypothesis. ⊓⊔

Theorem 4.9. (Decidability of existence of solutions)

1. For any T ∈ λgfp
Σ well-bound, proper and closed, NESP (T) iff nosol([[T]]s).

2. nosol(S(σ)) is decided, by deciding NES∅(F(σ)).

Proof:

1. Follows from both parts of Prop. 4.8, Lemmas 3.1 and 4.7, and the fact that, trivially, the extra

condition in Prop. 4.8.2 is satisfied for closed terms.

2. Apply 1. with both parts of Fact 4.6. ⊓⊔

Definition 4.10. Let the predicates NES⋆ and ES⋆ on λgfp
Σ be defined by NES⋆ := NESP and ES⋆ :=

ESP for P (σ) :⇔ NES∅(F(σ)), which satisfies the proviso by Theorem 4.9.2. In particular, NES⋆
and ES⋆ are decidable.

As for EF⋆ in [5], we get an improvement (no conditions on T are needed) over the theorem for

this special situation.

Lemma 4.11. (Sharp finitary characterization)

For all T ∈ λgfp
Σ , NES⋆(T) iff nosol([[T]]s).

Proof:

In lockstep with the proof of [5, Lemma 27] (again modulo the interchange of quantifiers between the

rules for sums and tuples). ⊓⊔

In particular, nosol([[T]]s) is decidable, by deciding NES⋆(T).

We close this discussion by a necessary condition on finitary expressions T to satisfy NES∅(T).

For T ∈ λgfp
Σ , we say that “T has an empty sum” whenever T has a (not necessarily proper) subterm

of the form gfp Xσ.E1 + · · ·+ En with n = 0. The negation of this property is written as “T has no

empty sum”.

Lemma 4.12. If NES∅(T) then T has an empty sum.

Proof:

By induction on NES∅(T). There are 4 cases, according to the 4 rules in the inductive defini-

tion of NES∅—recall the upper half of Fig. 6. The first rule is never applicable, while the second

and fourth cases follow routinely by induction hypothesis. Let us detail the third case. Suppose

NES∅(gfp Xσ.
∑

iEi) with NES∅(Ei) for all i. If
∑

iEi itself is not an empty sum, then the empty

sums that exist in Ei by induction hypothesis are also empty sums of the whole expression. ⊓⊔

Figure 7. FΠ

P
and NFΠ

P
predicates, for P satisfying the proviso: P ⊆ finΠ ◦ S and P decidable.

P (σ)

FΠP (X
σ)

FΠP (N)

FΠP (λx
A.N)

∀i, FΠP (Ei)

FΠP (gfpX
σ.
∑

iEi)

∀i, FΠP (Ni)

FΠP (x〈Ni〉i)

¬Π([[Nj]]
s)

FΠP (x〈Ni〉i)

¬P (σ)

NFΠP (X
σ)

NFΠP (N)

NFΠP (λx
A.N)

NFΠP (Ej)

NFΠP (gfpX
σ.
∑

iEi)

NFΠP (Nj) ∀i, Π([[Ni]]
s)

NFΠP (x〈Ni〉i)

4.3. Decidability of parameterized finiteness

Analogously to the previous section, we now develop the companion finitary predicates that will lead

to a decidability result on finΠ and its instances.

Given a decidable predicate P over sequents such that P ⊆ finΠ ◦ S , the doubly parametric

predicate FΠP over λgfp
Σ is defined in the first line of Fig. 7. Again, it is clear that when Π ◦ [[·]]s is

decidable so is FΠP . As before, we also define inductively the negation of FΠP . This is through the also

doubly parametric predicate NFΠP in the second line of Fig. 7. Below, when FΠP or NFΠP is written, it is

implicitly assumed that P satisfies the proviso of Fig. 7.

Lemma 4.13. For all T ∈ λgfp
Σ , NFΠP (T) iff FΠP (T) does not hold.

Proof:

Routine induction on T . ⊓⊔

Before proving the main results of the section, linking the coinductive predicates and the inductive

ones, we consider the example FΠ1

P . We will argue that indeed it coincides with the predicate FFP in [5,

Fig. 8], used to capture finiteness of the finite extension of sequents. First observe that the definitions

of FΠ1

P and FFP impose the same proviso on P , since finΠ1 = finfin. It is immediate to see that the

rules defining the two predicates coincide except for one of the tuple rules. For this case, we need to

argue: ¬exfin([[N]]s) iff NEF⋆(N). This is immediate from Lemmas 22 and 27 of [5]. Obviously, the

negations of FΠ1

P and FFP must also coincide, i. e., NFΠ1

P = NFFP (the latter defined in [5, Fig. 8]).

Proposition 4.14. (Finitary characterization)

1. If FΠP (T) then finΠ([[T]]s).

2. Let T ∈ λgfp
Σ be well-bound and proper, and assume infΠ is a subset of Π, and Π is closed under

decontraction both ways. If NFΠP (T) and for all Xσ ∈ FPV (T), finΠ(S(σ)) implies P (σ),
then infΠ([[T]]s).

Proof:

A generalization of the proof of [5, Prop. 3].

1. By induction on FΠP (or equivalently by structural induction on T).

Case T = Xσ. From the assumption FΠP (X
σ) follows P (σ). The proviso on P gives finΠ(S(σ)).

Hence finΠ([[Xσ]]s) by definition of [[·]]s.

Case T = x〈Ni〉i. From the assumption, one of two sub-cases holds.

Sub-case for some j, ¬Π([[Nj]]
s). By the first rule for tuples, finΠ(x〈[[Ni]]

s〉i), hence we obtain

finΠ([[x〈Ni〉i]]
s).

Sub-case for all i, FΠP (Ni). By induction hypothesis, finΠ([[Ni]]
s) for all i, hence finΠ([[x〈Ni〉i]]

s).

The other inductive cases are equally simple.

2. By induction on NFΠP (or equivalently by structural induction on T).

Case T = Xσ. Then ¬P (σ). So, since Xσ ∈ FPV (T), by contraposition, ¬finΠ(S(σ)). Hence,

by Lemma 3.5, infΠ(S(σ)), which is the same as infΠ([[Xσ]]s), by definition of [[·]]s.

Case T = x〈Ni〉i. Then, for some j, NFΠP (Nj) and, for all i, Π([[Ni]]
s). The induction hypothesis

is applicable for Nj since FPV (Nj) ⊆ FPV (T). Therefore, we have infΠ([[Nj]]
s). So, the tuple rule

can be applied to give infΠ(x〈[[Ni]]
s〉i), hence infΠ([[x〈Ni〉i]]

s).

Case T = λxA.N . Then, we have NFΠP (N). The induction hypothesis is applicable for N , since

FPV (N) ⊆ FPV (T), therefore we obtain infΠ([[N]]s). Using the assumption infΠ ⊆ Π, we get

infΠ(λxA.[[N]]s), hence infΠ([[λxA.N]]s). (This is the only place in the proof where the assumption

infΠ ⊆ Π is used.)

Case T = gfpXσ.
∑

iEi. Then, for some j, NFΠP (Ej). Let N := [[T]]s =
∑

i[[Ei]]
s. As

T is proper, N = S(σ). We have to show infΠ(S(σ)). This is done by an embedded coinduc-

tion on the coinductively defined predicate infΠ, using the concept of guardedness as in the proof

of Proposition 4.8.2, showing infΠ(S(σ)) with limited access to the same infΠ(S(σ)) as coinductive

hypothesis. We want to use the induction hypothesis for Ej , which would give us infΠ([[Ej]]
s) and

thus infΠ(
∑

i[[Ei]]
s), our goal. Since T is well-bound and proper, so is Ej . We have to consider all

Y σ′
∈ FPV (Ej). Either Y σ′

∈ FPV (T), and we are fine by hypothesis, or Y = X and, since

T is well-bound, σ ≤ σ′. We just show that finΠ(S(σ′)) does not hold. From Fact 2.6, we know

S(σ′) = [σ′/σ]S(σ). The assumption that Π is closed under decontraction both ways gives that

infΠ is also closed under decontraction (Lemma 3.10). Hence, applying our coinductive hypothesis

infΠ(S(σ)), we get infΠ(S(σ′)), which is the negation of finΠ(S(σ′)) (Lemma 3.5). The application

of the coinductive hypothesis is guarded (and hence the whole proof construction a proper use of the

coinduction principle) since it enters a lemma on infΠ that does not change needed observation depths

and then goes into an elimination alternative, where the occurrences of free fixpoint variables are at

least “guarded” by an ordinary variable of a tuple, which creates extra depth of the outcome of the

proof construction. (We invite the reader to check that the whole argument just abstracts away from

the specific situation of [5, Proposition 3] but is structurally the same, using in particular the same

coinductive reasoning.)

⊓⊔

Theorem 4.15. (Deciding generalized finiteness)

Let Π be closed under decontraction both ways and such that infΠ ⊆ Π.

1. For any T ∈ λgfp
Σ well-bound, proper and closed, FΠP (T) iff finΠ([[T]]s).

2. If Π ◦ [[·]]s is decidable, finΠ(S(σ)) is decided by deciding FΠ
∅
(F(σ)).

Proof:

1. Follows from both parts of Prop. 4.14, Lemmas 3.5 and 4.13, and the fact that, trivially, the extra

condition in Prop. 4.14.2 is satisfied for closed terms.

2. By 1 and both parts of Fact 4.6. finΠ(S(σ)) iff FΠ
∅
(F(σ)). Then use computability of F and

the equivalence of the inductively defined FΠ
∅

with a recursive procedure over the term structure of

its argument, where, corresponding to the last rule of Fig. 7, the decisions for predicate Π ◦ [[·]]s are

invoked. ⊓⊔

Corollary 4.16. 1. finfin(S(σ)) is decided by deciding FΠ1

∅
(F(σ)).

2. exinf(S(σ)) is decided by deciding FΠ2

∅
(F(σ)).

3. fin(S(σ)) is decided by deciding FΠ3

∅
(F(σ)).

Proof:

By the previous theorem, it suffices to argue (a) infΠi ⊆ Πi, (b) Πi is closed under decontraction both

ways and (c) Πi ◦ [[·]]
s is decidable, for i ∈ {1, 2, 3}.

Case Π1. Regarding (a), we need inffin ⊆ exfin, which is an easy consequence of the obvious

inffinext ⊆ exfinext and [5, Lemmas 20, 21, 28, 29] (that allow to replace the extensional versions of

the predicates by their characterizations). Regarding (b), we need exfin to be closed under decontrac-

tion both ways, which is established in [5, Lemma 23]. Regarding (c), we note that decidability of

exfin ◦ [[·]]s is a consequence of the sharp finitary characterization of exfin in [5, Lemma 27].

Case Π2. Regarding (a), we need exinf ⊆ exsol, which follows by coinduction on exsol (one can

also prove the equivalent nosol ⊆ allfin by induction on nosol). (b) follows from Lemma 3.4. (c) is a

consequence of the sharp finitary characterization of exsol in Lemma 4.11.

Case Π3. As Π3 = λco
Σ , the three conditions hold trivially. ⊓⊔

Notice that part 1 of the corollary is only another form of stating the result in [5, Theorem 33.3], while

the other parts are original contributions of the present paper. Notice also part 2 implies that allfin(σ)
is decidable, hence, termination of proof search is decidable. (Recall in Section 1 we argued that the

property of all solutions being finite corresponds to termination of proof search.)

The analysis we did with the sharp finitary characterizations NES⋆ and ES⋆ can be replayed.

Definition 4.17. Let Π be closed under decontraction both ways and such that infΠ ⊆ Π and Π ◦ [[·]]s

is decidable. The predicates FΠ⋆ and NFΠ⋆ on λgfp
Σ are defined by FΠ⋆ := FΠP and NFΠ⋆ := NFΠP for

P := finΠ ◦ S , which satisfies the proviso for P thanks to Theorem 4.15.2 and the assumptions on Π.

In particular, FΠ⋆ and NFΠ⋆ are decidable.

Lemma 4.18. (Sharp finitary characterization)

Let Π be closed under decontraction both ways and such that infΠ ⊆ Π and Π ◦ [[·]]s is decidable. For

all T ∈ λgfp
Σ , FΠ⋆ (T) iff finΠ([[T]]s).

Proof:

The “only if” direction follows by part 1 of Prop. 4.14. For the “if” direction, one proves the contrapos-

itive that NFΠ⋆ (T) implies infΠ([[T]]s) (thanks to Lemma 3.5 and Lemma 4.13), by an easy induction

on NFΠ⋆ . ⊓⊔

In particular, note that for the three instances of Π considered above, finΠ([[T]]s) is decidable, by

deciding FΠ⋆ (T). (Recall the proof of Cor. 4.16, where it is already argued why the three conditions

on Π hold for Π ∈ {λco
Σ , exfin, exsol}.)

Other instances of Π can be considered for which Theorem 4.15.2 and Lemma 4.18 produce

decidability results.

Example 4.19. Let Π4 := inffin = infexfin. We have Π4 closed under decontraction both ways (by

Lemma 3.10 and the fact that exfin also has this property, as observed in the proof of Corollary 4.16),

infΠ4 ⊆ Π4 (which follows by Π4 = infexfin, monotonicity of infΠ in Π, and inffin ⊆ exfin), and

Π4 ◦ [[·]]s is decidable (Lemma 4.18 and the remark following it). So, finΠ4([[T]]s) (and in particular

finΠ4(S(σ))) is decidable. Additionally, note that infΠ4 ⊂ inffin. The weak inclusion is the already

stated infΠ4 ⊆ Π4, and for the sequent σd of Example 2.2, we get inffin(S(σd)) and finΠ4(S(σd)) (for

the rather trivial reason that inffin(z) does not hold), hence infΠ4(S(σd)) cannot hold. We also note

that the predicate “infΠ4(S(σ))” does not trivialise to the empty set, as, for example, infΠ4(S(σe))
holds (since infΠ4(x〈S(σe)〉) follows coinductively thanks to the fact inffin(S(σe))). So, infΠ4 gives

rise to yet a new decidable notion of (in)finiteness for simple types.

We are not yet aware of uses of these other possible notions of “finiteness” (as the example showed,

this can be a rather wide extension of usual notions of finiteness).

4.4. Applications of decidability results

We close the section with three applications of the decidability results. The first is a sharpening of a

coherence theorem, the second is the definition of the pruned solution space of a sequent, the third is

a kind of König’s lemma for simple types.

Part 3 of the corollary allows us to sharpen (see Theorem 4.21 below) a result by Broda and Damas

[8] that we reproved with our method as [5, Theorem 46.1]: If no atom occurs positively more than

once in A, then A has only finitely many inhabitants. (Positive and negative occurrences in a formula

are defined as usual, with change of polarity when moving to the left argument of ⊃). In [5] we

proved this in two steps. Let a finitary expression T be called strongly acyclic if T has no occurrence,

free or bound, of fixpoint variables (other than the binding occurrences after gfp) [5, Definition 43.1].

In [5, Lemma 44.1], we showed the very simple fact that if T is strongly acyclic, then a predicate

equivalent to FΠ1

∅
holds of T . A more profound analysis [5, Lemma 45.1] showed that if no atom

occurs positively more than once in A, then F(⇒ A) is strongly acyclic. Then, a result similar to

Corollary 4.16.1 was invoked. Now we prove the sharpened theorem.

Lemma 4.20. Let T ∈ λgfp
Σ . Then T is strongly acyclic iff FΠ3

∅
(T).

Proof:

For the “only if” direction, we can do a straightforward induction on T (as was done for [5, Lemma

44.1]). The parameters of the predicate play no role at all, which is why they are set here to the values

that yield the smallest possible predicate. For the “if” direction, we just reason by induction on FΠ3

∅

and observe that the first and fifth rule in Fig. 7 cannot have been used thanks to this specific choice

of parameters. ⊓⊔

We now obtain that the syntactic criterion of no atom occurring positively more than once in the

type A guarantees finiteness of the solution space of A in the strongest sense of finiteness we consider

in this paper.

Theorem 4.21. (Generalizing the positive part of generalized coherence)

If no atom occurs positively more than once in A, then fin(S(⇒ A)), which in particular implies that

A has only finitely many inhabitants and only finite solutions.

Proof:

If no atom occurs positively more than once in A, then F(⇒ A) is strongly acyclic by [5, Lemma 45.1]

(as mentioned above), hence by the previous lemma FΠ3

∅
(F(⇒ A)), but this equivalent to fin(S(σ))

by Corollary 4.16.3. ⊓⊔

Decidability of the predicate ES⋆(T) allows the definition of a refined solution space for a given

sequent.

Definition 4.22. (Pruned solution space of a sequent)

S(Γ ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆ ⇒ Bj)〉j with ∆ := Γ, ~x : ~A

where

• λx : A.T := λx : A.T , if T 6= O; and λx : A.T := O, otherwise.

• (y : ~B ⊃ p)∈∆ :⇔ (y : ~B ⊃ p) ∈ ∆ and, for all j, ES⋆(F(∆ ⇒ Bj)).

Comparing with Def. 2.1: if the displayed sum above is empty, it annihilates the enclosing λ’s; and

when forming the displayed sum above, we filter out those summands y〈Nj〉j with ES⋆(Nj) failing

for some j, because such summands contribute no solution.

Lemma 4.23. (Properties of the pruned solution space)

1. E(S(σ)) = E(S(σ)).

2. If σ has a solution, then S(σ) has no empty sum.

3. If σ has no solution, then S(σ) = O.

Proof:

We prove part 2 first. Let us write noO(T) to mean that T has no empty sum. So we want to prove: if

exsol(S(σ)) then noO(S(σ)). A coinductive characterization of noO(S(σ)) is as follows:

noO(S(Γ, x : A ⇒ B))

noO(S(Γ ⇒ A ⊃ B))
(a)

∃(y : ~B ⊃ p)∈Γ ∀(y : ~B ⊃ p)∈Γ ∀j, noO(S(Γ ⇒ Bj))

noO(S(Γ ⇒ p))
(b)

The proof is by coinduction on noO(S(σ)), i. e., we prove exsol(S(σ)) is backward closed w. r. t. (a)

and (b). Recall the lower half of Fig. 4.

(a) Suppose exsol(S(Γ ⇒ A ⊃ B)). We want exsol(S(Γ, x : A ⇒ B)). If S(Γ, x : A ⇒ B) = N ,

then S(Γ ⇒ A ⊃ B) = λx : A.N . We are done by the first rule for exsol in that figure.

(b) Suppose exsol(S(Γ ⇒ p)). We need to prove: (b1) ∃(y : ~B ⊃ p)∈Γ; (b2) ∀(y : ~B ⊃
p)∈Γ ∀j, exsol(S(Γ ⇒ Bj)). From the definition of S and the second and third rules in the

mentioned figure, we see that exsol(S(Γ ⇒ p)) implies that there is (y : ~B ⊃ p) ∈ Γ such that,

for all j, exsol(S(Γ ⇒ Bj)). Having in mind the definition of (y : ~B ⊃ p)∈Γ, we obtained

precisely (b1), because exsol(S(Γ ⇒ Bj)) is equivalent to ES⋆(F(Γ ⇒ Bj)). (b2) also follows

by definition of (y : ~B ⊃ p)∈Γ and the equivalence just mentioned.

1. We want to prove: mem(N,S(σ)) iff mem(N,S(σ)). Both implications will be proved by

coinduction, so we give immediately the coinductive characterizations of the two members of the

sought equivalence:

mem(M,S(Γ, x : A ⇒ B)) S(Γ, x : A ⇒ B) 6= O

mem(λx.M,S(Γ ⇒ A ⊃ B))
(a)

∃(y : ~B ⊃ p)∈Γ ∀i, mem(Mi,S(Γ ⇒ Bi))

mem(y〈Mi〉i,S(Γ ⇒ p))
(b)

mem(M,S(Γ, x : A ⇒ B))

mem(λx.M,S(Γ ⇒ A ⊃ B))
(a)

∃(y : ~B ⊃ p) ∈ Γ ∀i, mem(Mi,S(Γ ⇒ Bi))

mem(y〈Mi〉i,S(Γ ⇒ p))
(b)

First we prove mem(N,S(σ)) is backward closed w. r. t. (a) and (b). As expected, this is imme-

diate, and establishes the easy implication “only if”. Next we prove that mem(N,S(σ)) is backward

closed w. r. t. (a) and (b).

(a) Suppose mem(λx.M,S(Γ ⇒ A ⊃ B)). We have mem(M,S(Γ, x : A ⇒ B)) by inversion of

(a); additionally, this means Γ, x : A ⇒ B has a solution, so part 2 (already proved) guarantees

S(Γ, x : A ⇒ B) has no empty sum, in particular S(Γ, x : A ⇒ B) 6= O.

(b) Suppose mem(y〈Mi〉i,S(Γ ⇒ p)). We want

∃(y : ~B ⊃ p)∈Γ ∀i, mem(Mi,S(Γ ⇒ Bi)) (∗)

By inversion of (b) we obtain that there is (y : ~B ⊃ p) ∈ Γ such that mem(Mi,S(Γ ⇒ Bi)),
for all i. To obtain (∗), it remains to see that, for all i, ES⋆(F(Γ ⇒ Bi)). But this is equivalent

to exsol(S(Γ ⇒ Bi)), and the latter follows from mem(Mi,S(Γ ⇒ Bi)).

3. Suppose nosol(S(σ)). By part 1, nosol(S(σ)). By Lemma 3.13, S(σ) has an empty sum.

Looking at the definition of S , such empty sum could live in S(∆ ⇒ Bj) of some summand of the

outer sum, or be the outer sum itself. But the first option is impossible: given the criterion for a y
to contribute a summand, we have ES⋆(F(∆ ⇒ Bj)), which implies exsol(S(∆ ⇒ Bj)), which

guarantees S(∆ ⇒ Bj) has no empty sum, thanks to part 2. So, the outer sum is O, hence S(σ) = O.

⊓⊔

We close the exploration of concepts of finiteness with a discussion of König’s lemma that we

recall for the present situation.

Lemma 4.24. (König’s lemma for forests)

inf(T) iff T has an infinite branch.

Proof:

Our definition of forests only allows finite branching (finitely many summands and finitely many

arguments in the tuple, respectively), hence König’s lemma applies. ⊓⊔

The following result is in the same spirit, extracting for sequents a consequence of Lemma 3.14,

with the help of the pruned solution space and its properties.

Theorem 4.25. (König’s lemma for simple types)

For all sequents σ, the pruned solution space of σ is infinite iff σ has an infinite solution.

Proof:

We want to prove: inf(S(σ)) iff exinf(S(σ)). If σ has no solution (hence exinf(S(σ)) does not hold),

then, by Lemma 4.23.3, S(σ) = O, hence fin(S(σ)). If σ has a solution, then S(σ) has no empty sum,

by Lemma 4.23.2. Then, by Lemma 3.14, inf(S(σ)) iff exinf(S(σ)). But exinf(S(σ)) iff exinf(S(σ)),
thanks to Lemma 4.23.1. ⊓⊔

Notice that the previous theorem would not be valid when formulated with the solution space S(σ)
in place of the pruned solution space S(σ). For instance, the sequent σc = (x : p ⊃ q ⊃ p ⇒ p)
considered in Example 2.2 has no solution, in particular no infinite one, but S(σc) is infinite. The

pruned solution space S(σc) is just O, confirming Lemma 4.23.3 in this specific case.

5. Final remarks

In this paper we introduced several concepts of finiteness for simple types, involving not only finite

objects (type inhabitants), but also infinite objects (type solutions and forests determined by types).

One of these concepts corresponds to the question of whether a simple type has finitely many inhabi-

tants, and is given through the predicate allfin already introduced in [5]. (In op. cit. we have done an

extensive literature review, and related our approach in particular to the study of this question done in

[9].) The other three concepts of finiteness considered in this paper (given through the predicates fin,

allfin and fininffin) are new. The following strict chain of inclusions holds, and determines weaker and

weaker conditions for a simple type to be “finite”:

fin ⊂ allfin ⊂ finfin ⊂ fininffin

The main results of this paper are the realization that all these concepts of finiteness are instances

of a single, parameterized concept of finiteness; and the proof of their decidability. Our study of

finiteness is rounded up with a result in the spirit of König’s lemma. Additionally, some other results

were obtained that can be seen as an increment on our previous work [5]: the decidability of the

problem “Does simple type A have no solution?” (i. e., not even an infinite one), and a generalization

of a coherence theorem. But, while the latter is just an immediate corollary of the results obtained

here, the former is actually instrumental for the development of the present paper.

One obvious question to ask is about possible uses of these concepts of finiteness. In this paper we

characterized fin-finiteness of the pruned solution space of a simple type by allfin-finiteness of its solu-

tion space, identified allfin-finiteness as a weakly extensional predicate and related it to termination of

proof search and to the previously studied strongly extensional finfin-finiteness. As mentioned before,

we obtained decidability results for all these predicates, but pursued no uses of fininffin-finiteness, and

it is not even clear in which sense this is still a concept of finiteness (other than another instance of our

results). Another natural question is whether this chain of inclusions can be prolonged, even infinitely,

and originate yet new finiteness concepts for simple types.

One of the conceptual tools that emerges from this work is the notion of pruned solution space

of a sequent given by S(σ). By chopping off elimination alternatives with certain occurrences of

empty sums, S(σ) may produce much smaller forests than S(σ), while still preserving the (full)

extension of sequents. It would be natural to investigate an analogous pruning function for the finitary

solution space, call it F(σ). In particular, we would expect such a function to allow for more efficient

decidability of the extensional predicates on forests addressed in this paper and in [5], such as a

decision of allfin(S(σ)) via a decision of FΠ2

∅
(F(σ)).

Another line of research could be inspired by the very recent work on the analysis of inhabitation

problems through the pre-grammar of a given type A [7]. We already mentioned after the presentation

of Fact 4.4 in Section 4.1 that their work made us find a bound on the recursion depth of the finitary

representation function. Based on this, we plan to describe variants of our decision algorithms that fall

into PSPACE, as did [7] in their framework of pre-grammars for several classical problems related to

inhabitation. However, the problem of principal inhabitation (shown to be PSPACE-complete in [10]

and also covered by the method in [7]) does not seem to fit with our approach since we rely on closure

under decontraction as justification for adequacy of our finitary representation function (which is not

available for principal inhabitation, see the discussion in [10]). The decontraction phenomenon is also

the root cause why the algorithms in their present form are not guaranteed to be in PSPACE, but this

seems to be the price worth paying for a direct finitary representation of the whole search space, as a

“first-class citizen” of a dedicated data structure.

References

[1] Ben-Yelles CB. Type assignment in the lambda-calculus: syntax & semantics. Ph.D. thesis, University of

College of Swansea, 1979.

[2] Hirokawa S. Infiniteness of proof(α) is polynomial-space complete. Theor. Comput. Sci., 1998. 206(1-

2):331–339. doi:10.1016/S0304-3975(97)00168-0.

[3] Espírito Santo J, Matthes R, Pinto L. A Coinductive Approach to Proof Search. In: Baelde D, Carayol A

(eds.), Proc. of FICS 2013, volume 126 of EPTCS. 2013 pp. 28–43. doi:10.4204/EPTCS.126.3.

[4] Espírito Santo J, Matthes R, Pinto L. A Coinductive Approach to Proof Search through Typed Lambda-

Calculi, 2016. Only published online at http://arxiv.org/abs/1602.04382v2.

[5] Espírito Santo J, Matthes R, Pinto L. Inhabitation in Simply-Typed Lambda-Calculus through a Lambda-

Calculus for Proof Search. Mathematical Structures in Computer Science, 2018. pp. 1–33. doi:10.1017/

S0960129518000099. First View - volume not yet known.

[6] Hindley JR. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 1997.

[7] Alves S, Broda S. A Unifying Framework for Type Inhabitation. In: Kirchner H (ed.), 3rd International

Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford,

UK, volume 108 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-077-

4, 2018 pp. 5:1–5:16. doi:10.4230/LIPIcs.FSCD.2018.5.

[8] Broda S, Damas L. On Long Normal Inhabitants of a Type. J. Log. Comput., 2005. 15(3):353–390.

doi:10.1093/logcom/exi016.

[9] Takahashi M, Akama Y, Hirokawa S. Normal Proofs and Their Grammar. Inf. Comput., 1996. 125(2):144–

153. doi:10.1006/inco.1996.0027.

[10] Dudenhefner A, Rehof J. The Complexity of Principal Inhabitation. In: Miller D (ed.), 2nd International

Conference on Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017,

Oxford, UK, volume 84 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-

95977-047-7, 2017 pp. 15:1–15:14. doi:10.4230/LIPIcs.FSCD.2017.15.

