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The drilling operations use a rotary slender structure in-
troduced inside the drill well. The nonlinear dynamics with
bit-bouncing, stick-slip phenomena and pulsating mud flow
may yield the premature wear and damage of drilling equip-
ment and should be investigated to improve the reliability of
drilling operations. This work presents the beam element
formulation to model the drilling nonlinear dynamics. The
well-pipes contacts are modeled by the radial elastic stops.
The fluid-structure interactions are considered. The first step
consists in computing the static position of structure to deter-
mine the contact points and calculate the pre-loaded state.
These results are then considered to calculate the Campbell
diagram. The potential unstable speeds of rotation are iden-
tified. The results show that the modal coupling phenom-
ena strongly occur for the 3D well. The well-pipes contacts
modify the modes in rotation and the rotating fluid induces a
strong deviation of the flexural mode curves.

Nomenclature
α, f Real and imaginary parts of eigenvalue of the

modes in rotation
δ, δ̇ Total FE displacement and velocity vectors
δ

e, δ̇
e
, δ̈

e
Elementary FE displacement, velocity and accel-
eration vectors

Φ Projection matrix of the modal basis
Φ j, ω j Eigenvectors and eigenvalues of the modal basis

∗Corresponding author.

u̇, v̇, θ̇z Two lateral velocities in x, y directions and tor-
sional velocity in z direction.

µs, µd , vr Static, dynamic friction coefficients and regular-
ized coefficient of the friction function

Ω Speed of rotation−→
F cns FE vector of static normal contact force at one

beam node−→
F cn Dynamics normal contact force at one beam

node−→
F cts,

−→
T cts FE vectors of static tangential friction force and

torque at one beam node−→
F ct ,
−→
T ct Dynamics tangential friction force and torque at

one beam node
∂Fcs/∂δ Total Jacobian matrix of Fcs
ρ, E, ν Mass density, Young modulus, Poisson ratio of

drillstring
cη, cη, j, η Modal viscous damping matrix, its diagonal

terms and kinematic viscous coefficient of fluid
Ce

ac, Cac Elementary and total matrices representing the
gyroscopic effect

Cad , cM , cK Rayleigh damping matrix and its two character-
istic coefficients

Fe
i , Fe

f , Fe
f e Elementary FE vectors of the inertial and fric-

tion effects of outer fluid and their total effect
Fs FE vector of exterior static loads (gravity, buoy-

ancy forces, Weight-on-Bit, Torque-on-Bit)
Fcs, Fcns FE vectors of static contact forces and its normal

component
Fcts,Tcts FE vectors of tangential friction force and torque



Ji,i=1..P Jacobian matrix of the static contact force at one
node

Ke
f e, K f e Elementary and total stiffness matrices of outer

fluid effects
M, C, K Total mass, damping, stiffness matrices of the

whole drilling system
m, c, k Mass, damping, stiffness matrices reduced by the

modal basis technique
Me, Ke Elementary mass and stiffness matrices
M f e, C f e Total mass and damping matrices of outer fluid

effects
Me

f e, Ce
f e Elementary mass and damping matrices of outer

fluid effects
Me

f i, M f i Elementary and total mass matrices of the iner-
tial effect of the inner fluid

θx,θy,θz Two lateral rotations around x, y directions and
one torsional angle around z direction.

Eca, Eda Total kinetic and strain energies of the drillstring
Ee

ca, Ee
da Elementary kinetic and strain energies of the

drillstring
Fe

a , T e
a Elementary axial forces and torques

G, Ġ Penetration and penetration velocity of beam
cross-section in the well

j0, λk, λc Radial clearance, two regularized parameters of
Kc, Cc

Kc, Cc Dynamics contact stiffness, damping functions
L, l Total drillstring length and beam element length
ma, ρ f , f f Added mass, mass density and tangential friction

coefficient of the outer fluid
Ni,i=1..6 Six shape functions
P Node number
r, kc, cc Radial displacement, nominal contact stiffness

and damping
Re Outer radius of one beam cross-section
rk, Xk, qk Eigenvalues, total eigenvectors and reduced

eogenvectors of the modes in rotation
R f e, R f i Outer and inner radii of the annular space
S, Ip Beam cross-section area, polar moment of inertia

around the z−axis
SF , ST , SL Three indicators of like-flexural, like-torsional,

like-longitudinal vibrations of modes in rotation
u,v,w Two lateral displacements in x, y directions and

one axial displacement in z direction.
vg, µ Sliding velocity and contact friction function

1 Introduction
The drilling structure for oil or geothermic extraction

is a long and slender structure including mainly the steel
drill-pipes and a bottom-hole assembly (BHA) (see Fig-
ure 1). Drill-pipes are tubes of a typical length about 9
m and screwed to each other by the tooljoints. The BHA
contains the drill-collars, some stabilizers and one drill-bit.
These extra heavy pipes of BHA insures the transmission of
Weight-On-Bit (WOB), facilitates the control of the structure
dynamic behavior and the drilling direction. The drilling as-
sembly rotates in a well bore of several kilometers length,
whose top part is protected with steel tube casings. The

drilling fluid is a water-based or oil-based fluid, circulates
downward in the pipes and then travels back to the surface
in the well-pipes annular space. Thus the rock debris evac-
uation, the cooling down of the tool, the lubrication of the
rotating string and the dynamic stability of the system are
insured.

The drilling process induces nonlinear dynamic phe-
nomena [1] due to the bit-rock and well-pipes contacts with
stick-slip phenomena [2–4] and the fluid-structure interac-
tion. Multiple vibrations coupling axial, torsional and lat-
eral motions may yield dangerous damages of drilling struc-
ture [5]. A thorough study of the structure dynamics is neces-
sary to avoid the harmful vibrations and improve the drilling
process stability.

In order to control the vibrations of a drilling structure,
the time evolution of nonlinear dynamics has been recently
modeled by many numerical studies. Christoufou et al. [6]
were focused on analyzing the axial and transverse vibrations
of a rotating BHA. Ritto et al. [7] used the non-parametric
approach to take into account the model uncertainties in the
bit-rock interaction, the fluid-structure interaction and the
impact forces. Liu [8], Gupta [9], Wiercigroch [10] and their
co-authors proposed the lumped parameter models with two
degrees of freedom (dofs) to study the axial-torsional vibra-
tion coupling for the vertical wells or drillstrings. Kreuzer
et al. [11] have conducted an academic but representative
experiment and analyzed the results by considering a sim-
ple model based on few dofs. Liao et al. [12] also devel-
oped a four-dof model to study the bending and torsional dy-
namics of drillstrings. The finite element method has been
widely implemented for modeling the dynamic behavior of
drilling assembly in horizontal wells [13, 14] and in curved
wells [15, 16]. A dynamic model [17] based on the Timo-
shenko beams has been developed to analyze the suppres-
sion of lateral and torsional vibrations of drillstring by using
the impact and torsional dampers. Recently, Hosseinzadeh et
al. [18] presented a finite element dynamic model coupling
axial and torsional vibrations to study the effect of drillstring
length variation on the drilling structure stability.

The axial vibrations can travel from the well bottom
to the surface and have been studied by the analytical ap-
proach presented in [19]. The torsional vibrations, usually
associated with the stick-slip phenomena of bit-rock and
well-pipe contacts, was investigated by some simple mod-
els such as the wave equation [20], a dynamics system with
one degree of freedom [21] or the continuous system ap-
proach [22]. Lateral vibrations (bending or flexural motions)
are considered as the sources of structure failures and dam-
ages to the well. They have been studied since the mid 1960s
and extensively investigated by the finite element method
since 1990s [23–25] thanks to computer development. How-
ever, the effects of the speed of rotation on the natural fre-
quencies of drilling structure are not carefully studied. In
the context of rotordynamics [26], the modal analysis usu-
ally decouples the lateral, torsional vibrations and computes
the Campbell diagrams to determine the potential unstable
speeds of rotation which may yield the harmful vibrations
and resonances. Contrary to the classical rotors, the drill-



Fig. 1: Rotary drilling sketch.

string, also considered as a long rotor, shows a much more
complicated dynamics, which represents the coupling phe-
nomena between flexural, torsional and longitudinal vibra-
tions. A few works investigated the Campbell diagrams of
simple rotors immersed in fluids by some theoretical and ex-
perimental analysis [27–30].

Most of the models aforementioned are limited to some
simple uniform drillstring and well geometries (vertical or
horizontal) with uncomplete coupling phenomena of vibra-
tions. This paper proposes a finite element model to compute
the Campbell diagram of drilling structure in curved wells by
using Timoshenko beams in the presence of fluid. Thanks to
the beam element method, this model is able to consider a
realistic geometry of drilling assembly in 3D wells and to
give a complete study of coupling phenomena between ax-
ial, torsional and lateral vibrations. Section 2 presents the
beam element formulation based on the rotordynamics pre-
sented in [26], the models of well-pipe contacts and the fluid-
structure interactions. The algorithm of the computation of
Campbell diagram is introduced in Section 3. The first step is
to compute the static position of the structure in curved wells
to identify the contact points and pre-loaded state. These re-
sults are then considered to compute the Campbell diagram.
The reduction technique is applied to reduce the computa-
tional time. A criterion based on the relative kinetic and
strain energy contribution is proposed to classify the vibra-
tion natures of modes in rotation. A mode shape tracking
technique is implemented for tracking and plotting, versus
the speeds of rotation, the eigen-frequencies having the sim-
ilar mode shapes. Section 4 presents some simple academic
test cases to study the influence of well-pipes contacts and
of the fluid on the Campbell diagram. Section 5 considers
one drilling assembly in 3D wells to analyze the effect of the
speed of rotation on the modes in rotation. The potential un-
stable region and critical speeds of rotation are determined.

2 Beam element formulation
2.1 Drilling structure

The details of the beam element formulation of drilling
structure are presented in [31]. As shown in Figure 2, the
drilling structure is meshed along the axial curvilinear direc-

Fig. 2: Finite element mesh of drillstring. Solid vectors: el-
ementary frame of reference, dashed vector: nodal frame of
reference.

tion by a series of beam elements with two nodes per ele-
ment. Each node is characterized by six degrees of freedom
(dofs) including three displacements (u,v,w), two lateral ro-
tations (θx,θy) and one torsional angle θz.

The energies of one beam element are mainly
due to the kinetic movements and the strain defor-
mation. Let the elementary displacement vector con-
taining the motions of two nodes be denoted: δ

e =
[ue

1,v
e
1,w

e
1,θ

e
x1,θ

e
y1,θ

e
z1,u

e
2,v

e
2,w

e
2,θ

e
x2,θ

e
y2,θ

e
z2]

T . By using six
shape functions

N1(z) = 1− 3z2

l2 +
2z3

l3 ,N2(z) = z− 2z2

l
+

z3

l2 ,N3(z) =
3z2

l2 −
2z3

l3 ,

N4(z) =−
z2

l
+

z3

l2 ,N5(z) = 1− z
l
,N6(z) =

z
l

(1)
with l the element length, the finite element (FE) forms of el-

ementary kinetic and strain energies are Ee
ca =

1
2

δ̇
eT Me

aδ̇
e
+

δ
eT (ΩCe

ac)δ̇
e and Ee

da =
1
2

δ
eT Ke

aδ
e with Me

a, Ke
a the elemen-

tary mass and elastic stiffness matrices, Ce
ac related to the

Coriolis effect of one beam element. Assembling all the

beam elements gives the total energies Eca =
1
2

δ̇
T Maδ̇ +

δ
T (ΩCac)δ̇ and Eda =

1
2

δ
T Kaδ where Ω is the speed of ro-

tation, Ma and Ka are the total mass and elastic stiffness ma-
trices, Cac represents the gyroscopic effect, δ and δ̇ store all
displacements and velocities defined in the nodal reference
frame. The reference frame of one node is the one of its left
element. The Timoshenko beam are considered as in [26].

The elementary parametric axial force Fe
a and torque

T e
a induce stress stiffening, modelled respectively with two

elementary geometric stiffness matrices Ke
GF , Ke

GT and the
global matrices KGF , KGT [26]. The structural damping ef-
fects are characterized by the Rayleigh damping matrix with
two coefficients cM , cK : Cad = cMMa + cK(Ka + KGF +
KGT ).

2.2 Well-drillstring contacts
Due to the bending deflections, the mechanical contacts

occur between the rotating beam and the well (see Figure 3).
The well-pipes contacts are modeled by a series of radial



Fig. 3: Well-pipe contacts in the x− y plane of nodal refer-
ence frame.

elastic stops. In the transverse x− y plan of the reference
frame of one contact node, the normal contact force is given
by:

−→
F cn =−

(
Kc(G)G+Cc(G)Ġ

)
~n, (2)

with ~n = u/r ~x+ v/r ~y, G = r− j0 the penetration of beam
cross-section in the well, Ġ = (u̇u+ v̇v)/r the penetration ve-
locity, r =

√
u2 + v2 the radial displacement and j0 the radial

clearance.
Instead of the classical contact law modeling two dis-

continuous states (contact or no contact) and leading to nu-
merical problems, a contact law based on parameters λk
and λc to regularize the stiffness and damping functions is

chosen, see [32, 33]: Kc(G) =
kc

2

[
2
π

arctan(πλkG)+1
]

and

Cc(G) =
cc

2

[
2
π

arctan(πλcG)+1
]

, with kc and cc the nomi-

nal contact stiffness and damping.
The tangential friction force

−→
F ct and torque

−→
T ct (Fig-

ure 3) depend on the sliding velocity vg = (uv̇−vu̇)/r+(Ω+
θ̇z)Re [33]. They are modeled by the smoothed Coulomb
law:

−→
F ct =−µ(vg)

(
Kc(G)G+Cc(G)Ġ

)
~t,

−→
T ct =−µ(vg)

(
Kc(G)G+Cc(G)Ġ

)
Re~z,

(3)

with~t = −v/r ~x+ u/r ~y. The friction direction depends on
the sign of the friction function µ(vg). A regularized form of
µ(vg) based on the dynamic and static friction coefficients µd ,
µs and on the regularized parameter vr is considered [32, 33]

µ(vg) =
vg

2vr

 1−ξ

1+
1−ξ

2vrµd
|vg|

+
1+ξ(

1+
1−ξ

2vrµd
|vg|
)2

 (4)

with ξ =
√

1−µd/µs. .

2.3 Fluid-drill-pipe interaction
The inner fluid inside the hollow drilling structure in-

duces the inertial force on the drilling assembly. The effects
of the outer fluid in the annular space are characterized by in-
ertial and friction forces developed in [27–30]. This model
does not consider the fluid flow in the axial direction. The
fluid is initially at rest and then entrained in the circumfer-
ential direction due to the rotation of drillstring. As shown
in [27–30], this fluid significantly affects the flexural vibra-
tions even for low speeds of rotation.

The viscosity effects are added to the dissipation ma-
trix defined in the modal basis [28, 29] (see Section 3.2).
The inertial and friction forces of the outer fluid are char-

acterized by the add mass ma = ρ f πR2
f i

R2
f i +R2

f e

R2
f e−R2

f i
and γ =

f f
R f e +R f i

2(R f e−R f i)
with R f e, R f i the outer and inner radii of the

annular space, ρ f is the mass density of the outer fluid, f f
the tangential friction coefficient.

By using the nodal interpolations by shape func-
tions [31], the virtual work of the inertial and friction effects
of outer fluid yields the FE forms: Fe

i = Xe
M δ̈

e
+ΩXe

Cδ̇
e−

Ω2

4
Xe

Mδ
e and Fe

f = γΩXe
M δ̇

e
+ γ

Ω2

2
Xe

Cδ̇
e
. The total effect of

these forces is given by Fe
f e = Me

f eδ̈
e +ΩCe

f eδ̇
e +Ω2Ke

f eδ
e

where Me
f e = Xe

M , Ce
f e = Xe

C +γXe
M , Ke

f e =
γ

2
Xe

C−
Xe

M
4

. The
elementary inertial force of the inner fluid corresponds to
Me

f iδ̈
e. The total fluid matrices M f e, C f e, K f e and M f i are

obtained by assembling all fluid elements.

3 Algorithm of the Campbell computation
Figure 4 represents three steps for computing the Camp-

bell diagram. The quasi-static equilibrium position is firstly
computed by considering all exterior static loads, the static
contact forces and torques. This step determines the pre-
loaded state of the drilling assembly and the drillstring nodes
in contact with the well. By assumption these nodes are con-
sidered in permanent contact for the Campbell diagram com-
putation. Consequently, the Campbell calculation takes into
account a stiffness matrix comprising the permanent con-
tact stiffness, the drillstring stiffness with its stress stiffen-
ing due to 3D curvilinear trajectory and external static loads.
The contact stiffness matrix Kb is then added to reduce the
lateral displacements of these nodes. The pre-loaded state
of structure from the static position are also considered by
adding the geometric stiffness matrices KGF and KGT to
the structure stiffness. These matrices are characterized by

the elementary axial force Fe
a =

ES
l
(wi+1−wi) and torque

T e
a =

EIp

2(1+ν)l
(θz,i+1− θz,i) where wi, wi+1, θz,i and θz,i+1

are results of the static computation, E denotes the Young
modulus, S is the beam cross-section and Ip is the polar mo-
ment of inertia around the z−axis. The final step is to apply
the reduction technique based on the modal basis to calculate
the Campbell diagram. The following subsections present



Fig. 4: Algorithm of the Campbell diagram computation.

each step in details.

3.1 Static position
The static equilibrium state of drilling structure in a well

is governed by the nonlinear equation:

Kaδ = Fs +Fcs(δ), (5)

where Fs denotes all external static loads such as the grav-
ity and buoyancy forces, the Weight-on-Bit (WOB) and the
Torque-on-Bit (TOB). Fcs corresponds to the static contact
forces and torques. Its normal component Fcns is defined
from Eqn. (2) by

−→
F cns =−Kc(G)G~n.

Eqn. (5) describes the real static equilibrium if only the
normal contact force is considered. When the structure ro-
tates and has the permanent contact with the well, this situ-
ation corresponds to the “quasi”-static equilibrium. In this
case, Fc contains also the static tangential friction forces Fcts
and torques Tcts applied to each contact node obtained from
Section 2.2:

−→
F cts =−µsKc(G)G~t,

−→
T cts =−µsKc(G)GRe~z.

The Newton-Raphson method is applied to solve
Eqn. (5) by an iterative loop:

a) Initial displacement vector δ0 is chosen as K−1
a Fs.

b) The displacement vector δi at the ith iteration is assumed
to be known, the increment correction is defined by :

dδi =−

(
Ka−

∂Fcs

∂δ

∣∣∣∣
δ=δi

)−1

(Kaδi−Fs−Fcs(δi)) ,

(6)
with P the node number and Jp,p=1...P the nodal Jacobian

matrix:

Jp =



∂Fcnsx

∂u
+

∂Fctsx

∂u
∂Fcnsx

∂v
+

∂Fctsx

∂v
0 0 0 0

∂Fcnsy

∂u
+

∂Fctsy

∂u
∂Fcnsy

∂v
+

∂Fctsy

∂v
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∂Tf ts

∂u
∂Tf ts

∂v
0 0 0 0



.

(7)
and

∂Fcs

∂δ
=


J1 0 . . . 0 0
0 J2 . . . 0 0
...

...
. . .

...
...

0 0 . . . JP−1 0
0 0 . . . 0 JP

 . (8)

c) Applying the correction : δi+1 = δi +dδi.

d) If the relative error
‖dδi‖2

‖δi+1‖2
is smaller than a criterion

ε0, the iterative loop is stopped. Otherwise, the process
returns to step b).

3.2 Campbell computation with the modal reduction
The modes in rotation of a rotating system, δk = Xkerkt ,

are solutions of the quadratic eigenproblem:

(r2
k M+ rkC+K)Xk = 0, (9)

where M=Ma+M f i+M f e, C=Cad +(CT
ac−Cac+C f e)Ω

and K = Ka +KGF +KGT +Kb +K f eΩ2.
By using the projection matrix Φ containing a few first

modes of the modal basis defined in [31], the change of vari-
able X = Φq introduced in the energies and virtual works
yields the modal equations:

(r2
k m+ rkc+k)qk = 0 (10)

with m = Φ
T MΦ, k = Φ

T KΦ, c = Φ
T CΦ + cη. cη

is a diagonal matrix representing the modal viscous damp-
ing with the diagonal terms given by [28, 29]: cη, j =

Φ
T
j Φ jm̃a

√
2η̃ω j

(R̃ f e− R̃ f i)2 where Φ j and ω j denote the

eigenvectors and eigenvalues of the modal basis, m̃a =

ρ̃ f πR̃2
f i

R̃2
f i + R̃2

f e

R̃2
f e− R̃2

f i
. R̃ f e, R̃ f i, η̃, ρ̃ f denote the mean values

of R f e, R f i, η, ρ f for all cross-sections of well-drillstring an-
nular spaces.



The problem (10) is rewritten as a linear one. Due to
the non-symmetric matrices k and c, the eigenvalues are the
complexes of the form 2π(α± j f ). The positive values of α

induce the unstable vibrations. The dependence of f on the
speed of rotation gives the Campbell diagram.

3.3 Classification and mode shape tracking
For better understanding the structure vibrations, the

modes in rotation are classified by three categories of motion:
(F) like-flexural, (T) like-torsional and (L) like-longitudinal
modes. The classification criterion is based on three indica-
tors:

Si =
∑
e

Ee
ci

∑
e,i

Ee
ci
+

∑
e

Ee
di

∑
e,i

Ee
di
, i = {F,T,L}, (11)

with Ee
ci =

1
2
|(rXe

i )
∗Me

aii(rXe
i )|, Ee

di =
1
2
|Xe∗

i Ke
aiiX

e
i |, ∗ de-

noting the transposed conjugately operator. Xe
i , Me

aii, Ke
aii

denote the sub vector and matrices extracted from Xe, Me
a,

Ke
a of each beam element and correspond to the flexural, tor-

sional or longitudinal dofs respectively. The first and second
terms of Si correspond to the relative contribution of kinetic
and strain energies. The maximal values of these terms and
of Si are equal respectively to 1 and 2. A Campbell mode is
considered as (F) if SF > ST , SL, (T) if ST > SF , SL, (L) if
SL > SF , ST .

For each speed of rotation step, the eigenmodes are
numbered in the order of the increasing imaginary part of
their eigenvalues. However, the mode shape associated with
the kth eigenvalue at a speed of rotation may not correspond
to the kth eigenvalue at the next speed, which makes diffi-
cult the continuous plot of the natural frequencies versus the
speed of rotation.. This difficulty is overcomed by applying
the NC2O mode shape tracking method [34].

4 Academic test cases
The objective of academic cases is to highlight the con-

tact friction effects on static positions, the influence of fluid
and of well-pipe contacts on the Campbell diagram. Al-
though these test cases are more related to classical rotors
than the drilling structure, the studies are to understand and
illustrate the results obtained for the vibration analysis of real
drilling assembly presented in the next section.

Let a horizontal uniform homogeneous rod of length
L = 11 m, similar to a drill-pipe, be discretized by 101
equidistant nodes and subjected to the gravity with g = 9.81
m.s−2. Its inner and outer radii are 0.04 m and 0.06 m, re-
spectively. The steel beam is characterized by the mass den-
sity ρ = 7860 kg.m−3, the Young modulus E = 2.1 1011 Pa
and the Poisson ratio ν = 0.3. The two Rayleigh damping
coefficients are cM = 0.03 s−1 and cK = 0 s [13]. The beam
vibrations are studied in three cases sketched by Figure 5. In
the case 1, one radial elastic stop is present. In the case 2,

Fig. 5: Academic test cases. XY Z: Cartesian frame of ref-
erence with the gravity acceleration in the Z direction, xyz:
nodal frame of reference.

many radial elastic stops are present to model the potential
contact between the beam and the horizontal well. There is
at each node, one radial elastic stop per node. The case 3 is
the same as the case 2 but with the inner and outer fluids. The
elastic stops have the nominal stiffness kc = 109 N.m−1 with
the regularized parameter λk = 7 109 m−1, the radial clear-
ance j0 = 0.01 m and the static friction coefficient µs = 0.2.
The inner and outer fluids have the rheological properties
ρ f = 1200 kg.m−3, η = 10−6 m2s−1 and f f = 0.02 ou 0.05.

The quasi-static and static positions of the beam, com-
puted respectively with or without the contact friction ef-
fects, are plotted in Figure 6. The normal contact forces,
the friction forces and torques are also shown at the contact
nodes. Without the elastic stops, the bending at the center of
simple supported beam is 5ρgSL4/(384EI)' 0.054 m. This
bending is reduced to 0.01 m by the beam-elastic-stops con-
tact. Considering only the normal contact force gives the dis-
placement in X −Z plane while the tangential friction force
and torque induce the small out-of-plane displacements in
the Y -direction. Case 1 represents only one contact at the
center node. Cases 2, 3 show five contacts around the center
node where the contact forces are maximal. Moreover, the
comparison between Figures 6b and 6c show that the fluid
reduces the contacts between the beam and the elastic stops
due to the buoyancy force.

The quasi-static results computed with the friction ef-
fects are considered to compute the Campbell diagrams. The
reduction technique uses the first 8 modes of modal basis.

The Campbell diagrams are plotted in Figure 7. Fol-
lowing three indicators defined in Section 3.3 (SF = 2,ST =
0,SL = 0), only pure flexural modes are present in these
cases. The solid curves represent the NC2O mode shape
tracking. The orbits of lateral displacements of each mode



Fig. 6: Static (dashed curves) and quasi-static (continuous
curves) positions with the contact forces and torques.

pair at Ω = 250 rpm are shown in Figure 8. These mode
pairs in rotation are numbered in the order of increasing fre-
quencies.

The contact effects are studied by analyzing Figures 7
and 8. For the case 2, the multi-contacts around the center
node remove the mode pairs 1 and 3 of Case 1 whose dis-
placements are zero only at the center node. The mode pairs
2, 4 of Case 1 still exist on the Campbell diagram of the case
2 and correspond to the mode pairs 1, 3 of Case 2 (see Fig-
ures 7c, 7d, 8). New mode pairs 2, 4 of Case 2 appear, com-
pared to the case 1. In the case 2, the frequencies of mode
pairs 1 and 3 are very close to those of mode pairs 2 and 4
respectively. Only difference between their mode shapes is
that the two half-beams rotate in the same phase for the mode
pairs 1, 3 and in the opposite phase for the mode pairs 2, 4
(see the solid curves linking the circles in Figures 8).

The fluid effects are investigated by comparing Fig-
ures 7b (Case 2) and 7c, 7d (Case 3). With the fluid, the
unstable speeds of rotation exist from Ω = 2000 rpm. Com-
pared to the case 3, the mode frequencies at Ω = 0 rpm de-
crease with the fluid presence. Moreover, the fluid makes the

Fig. 7: Campbell diagrams of academic test cases.

(F) mode curves strongly deviated at the low speeds of ro-
tation and then converged for the higher speeds of rotation.
As mentioned in [29], the deviation of (F) mode curves al-
most depends on the fluid friction coefficient rather than the
fluid viscosity. In fact, these curves are more deviated with a
larger fluid friction coefficient (see Figures 7c and 7d).



Fig. 8: Mode shape pairs in bending (F) for academic test cases at Ω = 250 rpm. Solid curves: mode shape at t = 0 s.

Type Length (m) Outer Inner
diameter (m) diameter (m)

Drill-bit 0.5 – –
Drill-collar 10 0.159 0.071
Stabilizer 5 0.159 0.071
Pipe-body 8.9 0.127 0.108
Tooljoint 0.3 0.162 0.095

Table 1: Geometric parameters of drilling structure.

5 3D-well
In this section, the drilling structure and the well geom-

etry are close to the realistic configurations of drilling op-
erations. The quasi-static position of structure is analyzed.
The unstable speeds of rotation range and the critical speeds
of rotation are identified from the Campbell diagram. The
modal couplings are also studied.

Figure 9 represents all components of steel drilling
structure of 2000 m length: a long series of drill-pipes be-
ginning from the surface, some drill-collars, two stabilizers
and one drill-bit at the well bottom. Three gauges applied
at the stabilizers and the drill-bit to concentrate and guide
the drilling direction. Table 1 summarizes the geometric pa-
rameters of the drilling components. The structural damping
is characterized by two Rayleigh coefficients cM = 0.03 s−1

and cK = 0 s with the mass density 7860 kg.m−3, the Young

Type Outer diameter (m) Inner diameter (m)
Casing 1 0.473 0.451
Casing 2 0.244 0.222
Openhole 0.216 0.216

Table 2: Geometric parameters of three well parts.

modulus 2.1 1011 Pa and the Poisson ratio 0.3.
Figure 10 shows a 3D well geometry. Table 2 gives the

geometric parameters of three well parts whose diameters de-
crease from the surface. First 1300 m of the well length from
the surface is equipped with two steel casings to protect the
well bore. The well bottom is an openhole with only the
rock wall. The static friction coefficients of steel structure-
steel casing and rock openhole-steel casing contacts are set
respectively to 0.2 and 0.3 since the rock-steel impacts rep-
resent more friction effects than the steel-steel impacts.

The fluid is present inside the structure and in the well-
pipes annular space with the mass density 1200 kg.m−3, the
tangential friction coefficient 0.013 and the kinematic vis-
cosity coefficient η = 10−6 m2.s−1.

The drillstring is discretized by 1811 beam elements.
The well-pipes contacts are modeled by the radial elastic
stops characterized by kc = 109 N.m−1 and λk = 7 109 m−1

(see Section 2.2). Table 3 gathers different clearances j0
of the well-pipes annular space. The change of the pipes and



Fig. 9: Geometry of the drilling structure.

Fig. 10: 3D well geometry. Gravity force along the Z axis.

Contact Radial clearances (m)
Pipe-body - casing 1 0.163
Pipe-body - casing 2 0.048
Pipe-body - openhole 0.045
Stabilizer - openhole 0.029
Drill-collar - openhole 0.029
Tooljoint - casing 1 0.145
Tooljoint - casing 2 0.030
Tooljoint - openhole 0.027

Table 3: Different clearances of well-pipes contacts.

well cross-sections is modeled by introducing supplementary
clearances: 0.031 m, 0.144 m. A very small clearance is con-
sidered between three in-gauges and the well.

Radial displacements of the quasi-static position of the
drilling structure are represented in Figure 11. The grey
points represent the clearances of different elastic stops.The
nodal deflections u and v defined in Figure 3 are limited in the
radial clearances due to the well-pipes contacts. The insets
of Figure 11 represent the zooms of three regions in the cas-
ing 1, casing 2 and openhole. The well-drillstring contacts
occur at the tooljoints and the center of drill-pipes. Many
nodes of drill-collars, gauges and drill-bit of BHA contact
the openhole due to their heavy weight. Following Figure 12,
the well-pipe contacts are the most important at the positions
close to the surface (Z ' 50 m) and to the drill-bit (Z ' 800
m).

The distribution of axial force Fe
a and torque T e

a of each

Fig. 11: Radial displacements of the drilling structure in 3D
well as a function of the curvilinear position.

element computed as in Section 3 is represented in Figure 13.
The axial force increases for the beam elements far away
from the drill-bit. Its positive and negative values represent
respectively the tension and compression states of the beam
element. The first 700 elements close to the surface are in
the tension state due to the steep trajectory and the remain-
ing parts are compressed with the value approximately equal
to the TOB at the bit due to the horizontal geometry at the
well end. Figure 14 represents the elementary axial torque
T e

a and the magnitude of nodal static friction torque |−→T cts|
versus the curvilinear position. Following the zoom inset,
the multi-jumps of T e

a between two adjacent elements occur
when the common node of these elements is in contact with
the well. The variations of T e

a for other non-contact parts of
the drillstring are due to the well curvature.

The Campbell diagram plotted in Figure 15 is computed
by using the first 10 modes of the modal basis. The long drill-
string induces low natural frequencies. The discrete points of
the diagram correspond to the (F), (T) and (L) modes. The
diagram is clearly observed thanks to solid curves obtained
by the NC2O mode shape tracking method (see Section 3.3
and Ref. [34]). The unstable ranges of rotary speeds exist
for some (F) modes from Ω = 280 rpm. The intersection
between the mode curves and the critical line (dashed line)
gives the potential critical speeds of rotation about 32 rpm,
34 rpm, 63 rpm, 63.5 rpm, 83.5 rpm etc. These speeds may
yield the harmful resonances due to the external excitation
such as the mass-unbalanced, asynchronous and eccentric
forces [26].



Fig. 12: Contact forces and torques applied to the drilling
structure in 3D well.

Fig. 13: Elementary axial force Fe
a (dashed curves) and

torque T e
a (solid curves) from the quasi-static positions in 3D

well.

Fig. 14: Elementary axial torque T e
a (gray curves), nodal

static contact torque |~Tcts| (black curves) as a function of a
curvilinear position with their zoom inset.

Ω (rpm) Mode f (Hz) SF ST SL

100 A 0.931 1.989 0.006 0.005
100 B 1.531 1.996 0.000 0.004
100 C1 0.524 0.995 0.000 1.005
180 C2 0.523 1.002 0.000 0.998

Table 4: Indicators of some modes in Figure 15.

Fig. 15: Campbell diagram of the drilling structure in 3D
well.

Fig. 16: Some (F) mode shapes of the drilling assembly in
3D well.

Similarly to the cases in Section 4 and in [29], the de-
viation of the Campbell curves of some (F) mode pairs are
observed and mainly due to the fluid friction. Contrary to (F)
modes, the frequencies of (T) and (L) modes are less depen-
dent on the speeds of rotation.

Figure 16 represents mode shapes in rotation of (F)
modes having deviated curves. They show large circular or-
bits at the regions close to the surface and to the horizontal
part of well.

Table 4 represents three indicators of some modes which
are labeled by A, B, C1 and C2 in Figure 15. The modes A
and B show a low coupling between flexural, torsional and



longitudinal vibrations since SF is close to the maximal value
2 and ST , SL are not zero. A strong flexural-longitudinal
coupling can be observed for the modes C1 and C2 since
their coefficients SF and SL are almost equal. The modes C1
and C2 are related to the same mode shapes with the vibra-
tion contribution changing versus speeds of rotation. In fact,
the longitudinal vibration contribution of this mode shape is
slightly stronger than the flexural one for almost all speeds
of rotation, except for Ω' 180 rpm and 325 rpm.

6 Conclusions
The friction contact effects on the static position and on

the elementary axial force and torque are studied for differ-
ent test cases. The Campbell diagram is then computed over
a large range of speeds of rotation by taking into account the
pre-loaded structure and by assuming that the static contact
nodes remain in the permanent contact with the well. The
latter assumption permits the modes in rotation calculation
with the lateral displacements of static contact nodes limited
by adding the contact stiffness. The fluid friction effects in-
duce the deviation of some (F) mode curves. The potential
unstable speeds of rotation are identified for the 3D realistic
case. Contrary to a strong deviation of (F) mode curves, the
fluid effects on the (L) and (T) mode curves are negligible.
The modal coupling mechanisms can be observed for a 3D
well.

Compared to the time-domain computation of nonlin-
ear dynamics of large drilling systems, the computation of
Campbell diagram is much more simple and faster. The di-
agram analysis yields the interesting results of drilling vi-
brations such as the critical and unstable speeds of rotation
which may induce the potentially dangerous vibrations or
resonances.
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