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CONSTANT-RATIO APPROXIMATION FOR ROBUST BIN
PACKING WITH BUDGETED UNCERTAINTY?∗

MARIN BOUGERET† , GYÖRGY DÓSA‡ , NOAM GOLDBERG§ , AND MICHAEL POSS¶

Abstract. We consider robust variants of the bin packing problem with uncertain item sizes.
Specifically we consider two uncertainty sets previously studied in the literature: budgeted uncer-
tainty (the UΓ model) in which at most Γ items deviate, each reaching its peak value, while other
items assume their nominal values. The second uncertainty set, the UΩ model, bounds the total
amount of deviation in each scenario. We show that a variant of the next-fit-decreasing algorithm is
a 2 approximation for the UΩ model, and another variant of this algorithm is a 2Γ approximation
for the UΓ model. Unlike the classical bin packing problem, it is shown that (unless P = NP) no
asymptotic approximation scheme exists for the UΓ model, already for Γ = 1. This motivates the
question of the existence of a constant approximation factor algorithm for the UΓ model. Our main
result is to answer this question by proving a (polynomial-time) 4.5 approximation algorithm, based
on a dynamic-programming approach.

Key words. Bin-packing, robust optimization, approximation algorithms, Next-fit-decreasing,
dynamic programming

1. Introduction. This paper studies approximation algorithms for a generaliza-
tion of the bin packing problem that requires its solutions to be robust with respect to
uncertain input data. In general, approximation algorithm bound results may involve
asymptotic or absolute approximation ratio guarantees whose definition can be stated
as follows: An algorithm has an asymptotic approximation ratio ρ for a minimization
problem if and only if there exists a constant c such that it outputs a solution of value
that is at most ρOPT(I) + c, for every instance input I. The definition of an absolute
approximation ratio ρ is similar with the same upper bound only that c = 0.

Bin packing is the problem of assigning a given set of n items, each item of a
specified size, to the smallest number of unit capacity bins. The problem has been
the subject of study in an extensive body of research initiated by several publications
in the 1970s including the work of Johnson et al. [20]. The problem is NP-hard and in
fact a straightforward reduction from the partition decision problem implies that it is
NP-hard to determine whether a bin packing instance has a solution using only two
bins. This also shows that the problem cannot be approximated within a factor less
than 3/2 unless P = NP. An absolute approximation factor guarantee of 3/2 has been
proven for the first-fit decreasing algorithm [24]. Several results concern asymptotic
setting of classical bin packing. It is known since the problem has been first analyzed
that the first-fit decreasing algorithm has an asymptotic approximation ratio of 11

9 [20].
This result has also been extended to analyze the constant for first-fit decreasing, in
particular it turns out that 11

9 OPT(I) + 6
9 is a tight upper bound (so c = 6

9 ) [15]. A
well known result is the asymptotic fully polynomial-time approximation scheme for
bin packing established by [21], following the approximation scheme first proposed
by [13].
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Another distinct line of studies, which may not include the focus of the current
paper but has received significant attention in the literature, is that of bin packing
online algorithms, a setting in which the instance is not given in advance but items are
revealed and packed one at a time as they arrive (note that first-fit decreasing is not an
online algorithm). In this context the performance measure, which bounds the ratio of
the algorithm’s solution objective value to the optimal offline solution objective value,
is called the competitive ratio. The best asymptotic and absolute online competitive
ratios of 1.578 and 5/3, respectively, have been shown in [3] and [5], respectively,
while the best lower bound for the asymptotic competitive ratio of around 1.54278
has been provided in [4]. Approximation results in the offline and online settings have
also been developed for different extensions and generalizations of the classical bin
packing problem; for example see [12, 18] and references therein.

In many applications, the sizes of the items to be packed are not fully known at
the time that the packing is carried out. In cargo shipping, for example, the actual
weight of a container may deviate from its declared weight or its measurements may
be inaccurate. Bin packing has been used to model the assignment of elective surg-
eries to operating room in hospitals [14]. Here a bin is a shift of a properly equipped
and staffed operating room for performing a certain type of elective surgeries. The
room scheduler has to fit in the bins as many cases (patients) as possible. In this
setting clearly the length of time of performing each surgery is subject to uncertainty
for example in the event of complications. Bin packing variants has also been used
to model the scheduling of internet advertising; see for example [1]. When multi-
ple commercials are packed into advertising breaks of online video services and each
commercial may be skipped by the viewer then the length of each ad is subject to
uncertainty.

One way to model the uncertainty that falls into the framework of robust opti-
mization is to assume that the sizes are uncertain parameters taking any value in a
given set U ⊂ Rn, where each a ∈ U represents a possible scenario. Modern robust
optimization considers such sets U in continuous as well as combinatorial optimiza-
tion, and most common are discrete, polyhedral, and ellipsoid uncertainty sets; see [7]
for a comprehensive reference on continuous robust optimization and [11] as a survey
of robust combinatorial optimization. Incorporating U in bin packing leads to the
following problem (note that the description of U may not be explicit to avoid an
exponential length in n).

Robust bin packing (RBP)
Input: U ⊂ Rn

Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
maxa∈U

∑
i∈bj ai ≤ 1 for each j ∈ [k]

Minimize: k

In this paper we focus on two specific uncertainty sets, defined by simple budget
constraints. One of these widely used uncertainty sets [8], UΓ, supposes that the size
of each item is either its given nominal size āi, or its peak value āi + âi. Furthermore,
in any scenario, at most Γ ∈ N of the items may take their peak value simultaneously.
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Formally, UΓ can be defined as

UΓ = {a|∀i ∈ [n], ai ∈ {āi, āi + âi} and
∑
i∈[n]

(ai − āi)/âi ≤ Γ}.1

We also consider a second uncertainty set (used in [19, 22, 26], among others), charac-
terized again by ā and â, as well as the number Ω ∈ [0, 1] stating how much deviation
can be spread among all sizes, formally UΩ = {a ∈ ×i∈[n][āi, āi+âi] |

∑
i∈[n](ai−āi) ≤

Ω}. The main purpose of this paper is to prove the following two theorems.

Theorem 1.1. There exists a 2-approximation algorithm for RBP with uncer-
tainty set UΩ.

Theorem 1.2. There exists a min(2Γ, 4.5)-approximation algorithm for RBP
with uncertainty set UΓ.

1.1. Literature review. Uncertainty set UΓ has been widely used in robust
combinatorial optimization with a constant number of constraints because the set
essentially preserves the complexity properties of the nominal problem, and to some
extent, its approximability properties as well. While the results for this model were
first developed for min-max problems and uncertain objective functions [8], they were
later extended to uncertain constraints independently in [2, 17]. Our second uncer-
tainty set (used in [19, 22, 26], among others), UΩ benefits from similar positive results
as UΓ; see [23].

The above positive complexity results (e.g., [17, 23]) imply, for instance, that un-
der mild assumptions there exists a fully-polynomial time approximation scheme (FP-
TAS) for the robust knapsack problem with uncertain profits and uncertain weights in
UΩ or UΓ. Interestingly, these positive results may not be applied to most scheduling
problems due to the presence of nonlinearities of the objective function in the uncer-
tain data parameters. Also, these general results cannot be applied to the bin packing
problem because it involves a non-constant numbers of robust constraints. Further,
in the current paper it is proved that approximation results of standard bin packing
in the form of asymptotic approximation scheme, cannot carry over (unless P = NP)
to the robust counterpart with UΓ. While in previous papers [10, 9] (with authors in
common) we provided approximability results on robust scheduling, no such results
have yet been proposed for the bin packing problem, the only previous work focusing
on numerical algorithms [25]. The purpose of this paper is to fill these gaps, as we
present constant-factor approximation algorithms the bin packing problem, both for
UΩ and UΓ.

1.2. Notation, problems definitions, and next-fit algorithm. In this pa-
per we consider two special cases of RBP. In the first one, ΓRBP, the input is
I = (a, â,Γ) ∈ [0, 1]n × [0, 1]n × N where n ∈ N, and U = UΓ. In the second one,
ΩRBP, the input is I = (a, â,Ω) ∈ [0, 1]n × [0, 1]n × [0, 1] where n ∈ N and U = UΩ.

Let us now define some notation that may be required for formally stating the
ΓRBP and ΩRBP problems. Given n ∈ N, sets {0, 1, . . . , n} and {1, . . . , n} are
respectively denoted [n]0 and [n]. Set {i, . . . , j} is denoted by Ji, jK. Given a vector
v ∈ [0, 1]n and a subset X ⊆ [n], we define v(X) =

∑
i∈X vi. Given two vectors

a ∈ [0, 1]n, â ∈ [0, 1]n and a subset of itemsX ⊆ [n], we define âΩ(X) = min{â(X),Ω},

1UΓ is often defined alternatively in the literature, as the polytope {a ∈ ×i∈[n][āi, āi + âi] |∑
i∈[n](ai− āi)/âi ≤ Γ}. For the bin packing problem, one readily verifies using classical arguments

that the two definitions lead to the same optimization problem.
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Γ(X) as the set of Γ items in X with largest â values (ties broken by taking smallest
indices), or Γ(X) = X if |X| < Γ, and âΓ(X) = â(Γ(X)). Accordingly, we define the
fill of a bin b ⊆ [n] as fΓ(b) = a(b) + âΓ(b) for set UΓ, and fΩ(b) = ā(b) + âΩ(b) for set
UΩ. The fill of a bin for a general uncertainty set U is denoted as fU (b) = maxa∈U a(b).

Consider the following example. We are given an ordered set of pairs (āi, âi),
X = {(0.3, 0.2), (0.4, 0.2), (0.3, 0.1), (0.2, 0.5)} with Γ = 2 and Ω = 0.3. Thus, Γ(X) =
{(0.3, 0.2), (0.2, 0.5)}, ā(X) = 1.2, âΓ(X) = 0.7, and fΓ(X) = 1.9. Similarly, âΩ(X) =
0.3 and fΩ(X) = 1.5.

Now, observe that maxa∈U
∑

i∈bj ai ≤ 1 (the constraint required in RBP) is

equivalent to fU (b) ≤ 1, and thus to fΓ(bj) ≤ 1 for ΓRBP and fΩ(bj) ≤ 1 for ΩRBP.
For example in ΓRBP, fΓ(bj) ≤ 1 simply means that the total nominal (a) size of the
items plus the deviating size (â) of the Γ largest (in â values) items must not exceed
one. Then, the two optimization problems studied in this paper can be equivalently
formulated as follows.

Γ-robust bin packing (ΓRBP)
Input: I = (a, â,Γ) ∈ [0, 1]n × [0, 1]n × N.
Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
fΓ(bj) ≤ 1 for each j ∈ [k]
Minimize: k

Ω-robust bin packing (ΩRBP)
Input: I = (n, a, â,Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Ω ∈ [0, 1].
Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
fΩ(bj) ≤ 1 for each j ∈ [k]
Minimize: k

The optimal solution value or cost of either problem is denoted by OPT(I) = k∗ (I
may be omitted when the instance is clear from the context) and a corresponding
optimal solution is denoted by s∗ = {b∗1, b∗2, . . . , b∗k∗}. We introduce in Algorithm 1 a
variant of the next-fit-decreasing algorithm.

initialization: j = 1
1 Pack items (with smaller index first) in bj until fU (bj) > 1 or n ∈ bj . If

n /∈ bj then j ← j + 1 and repeat Step 1. Otherwise, k′ ← j proceed to Step
2.

2 Pack the last item of each bin in a new bin: for any j, let i = max(bj),
b1j = bj \ {i}, and b2j = {i}

return :
⋃k′

j=1{b1j , b2j}
Algorithm 1: Next-Fit-Decreasing(I)

1.3. Structure of the paper. In Section 2 we prove that there is no
asymptotic approximation for ΓRBP with a factor less than 3/2 (unless P = NP).
In Sections 3 and 4, we analyze approximation-factor guarantees for Next-Fit-
Decreasing in the case of ΩRBP and ΓRBP, respectively. For ΩRBP, using
ordering (3.1) (non-increasing ordering on âi

āi
) the ratio is equal to 2. For ΓRBP,

using ordering (4.1) (non-increasing ordering on âi), the ratio is bounded by 2Γ. As
Theorem 4.5 shows that neither ordering (3.1) or (4.1) leads to a constant ratio using
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Next-Fit-Decreasing, this raises the question of the existence of a constant ap-
proximation for ΓRBP. We answer the question in Section 5 by providing a dynamic
programming algorithm (DP) giving a ratio of 4.5 for ΓRBP and any Γ ∈ N, which
is our main result.

2. Innaproximability. First we establish that as opposed to classical bin pack-
ing that has asymptotic approximation schemes [13, 21], such approximation schemes
are not possible (unless P = NP) for ΓRBP.

Lemma 2.1. Suppose Γ = 1. For any K ≥ 1, it is NP-complete to decide whether
ΓRBP has a solution using 2K bins or whether at least 3K bins are required.

Proof. Consider an instance I, of the NP-Complete 2-partition decision prob-
lem [16], given by a set of distinct positive rational numbers whose sum is 2 (in par-
ticular each instance given by a set of N integers can be normalized to get such a set
of rational numbers), so I = {s1, s2, ..., sN}, where s1+s2+...+sN = 2 and 0 ≤ si ≤ 1
for i ∈ [N ]. In particular, it is NP -complete to decide the question whether the given
set of numbers can be partitioned into two subsets having a sum of one in each subset
(that is to decide whether I is a “YES-instance”). Let smin = mini∈[N ]{si} and let
0 < δ < smin (assume that δ is a rational number).

Now choose some (arbitrarily large) integer K ≥ 1, and create K sets (each of
size N) of bin packing items as follows. For k ∈ [K], let εk = δk. Elements of the K
copies of the N numbers will be denoted by index set pairs in [N ]× [K]. The nominal
and deviation sizes of the ΓRBP instance items are defined for i ∈ [N ] and k ∈ [K]
as

ai,k = εk · si and âi,k = 1− εk, respectively.

Note that for each k,
∑

i∈[N ] ai,k = 2εk, and ai,k ≤ εk for each i ∈ [N ]. Also note,

that by construction, for all i ∈ [N ], ai,k > εk+1, for 1 ≤ k < K.
First it can be observed that if I is a YES-instance of the 2-partition problem,

then the constructed ΓRBP instance 2K bins: K pairs of bins, where in each of the
two bins of pair k ∈ [K], the total nominal is εk and the deviation is 1− εk.

Suppose now that I is a NO-instance of 2-partition. Let b1, . . . , bL be a ΓRBP
solution for some L > 1. To show that L ≥ 3K, first define for each k ∈ [K],
Ik = {(i, k), i ∈ [N ]} to be referred to as the set of items of type k, and observe that
no bin can contain items of two different types. Indeed, suppose by contradiction
that for some k, k′ ∈ [K] satisfying k 6= k′ (say k > k′), and i, i′ ∈ [N ], item (i, k) is
packed with item (i′, k′). This implies ai,k + ai′,k′ + max{âi,k, âi′,k′} ≥ ai,k + âi′,k′ >
εk′ + (1− εk′), a contradiction. Thus, none of the bins b1, . . . , bl contain items of two
different types, that is for each l ∈ [L], there exists some k ∈ [K] such that bl ⊆ Ik.
Since I is a NO-instance, each Ik is packed in at least 3 distinct bins out of b1, . . . , bL,
implying L ≥ 3K.

The following theorem is immediate from Lemma 2.1.

Theorem 2.2. Unless P = NP there is no asymptotic approximation for ΓRBP
of ratio ρ < 3/2.

Note that this result is in contrast with the approximation schemes that exist for
classical bin packing [21, 13]. Furthermore, recall that in contrast to Theorem 2.2,
for the classical bin packing, the first-fit decreasing algorithm packs the items of any
input I into at most b 11

9 OPT (I) + 6/9c bins [15].
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3. Next-fit-decreasing for ΩRBP. Unlike the classical bin packing problem,
executing Next-Fit-Decreasing on arbitrarily ordered items can lead to arbitrarily
bad solutions. For example, given ε with 0 < ε ≤ 1

2n , consider an instance with
Ω = 1 − ε, and items ((2ε, 0), (0, 1 − ε), . . . , (2ε, 0), (0, 1 − ε)), where item i ∈ [n] is
denoted by the pair (āi, âi). Using this ordering, Next-Fit-Decreasing will create
n/2 bins bj with fΩ(bj) > 1 for any j ∈ [n] (which will be turned into n bins {b1j , b2j}),
whereas the optimal solution uses 2 bins. This example also illustrates that, unlike
in the standard bin packing, the total size argument no longer apply to the robust
counterpart as having fΩ(bj) > 1 for any j ∈ [n] does not imply a large (depending
on n) lower bound on the optimum.

Next, we consider an ordering of the items such that

(3.1) â1/ā1 ≥ · · · ≥ ân/ān,

and recall that k′ is the number of bins opened in Step 1 of Next-Fit-Decreasing.

Lemma 3.1. Suppose that the items are ordered according to (3.1). Then k′ ≤ k∗.
Proof. Consider an optimal solution b∗1, . . . , b

∗
k∗ and the subset of optimal bins

given by G∗ = {j ∈ [k∗] | â(b∗j ) > Ω}. Let

A =
∑
i∈[n]

(āi + âi) =
∑
j∈[k′]

(ā(bj) + â(bj)) =
∑

j∈[k∗]

(
ā(b∗j ) + â(b∗j )

)
.

Let G denote the first |G∗| bins opened in Step 1 of Next-Fit-Decreasing. If
k′ ∈ G then clearly k′ ≤ k∗. Otherwise, it can be observed that for each l ∈ G,
ā(bl) > 1− Ω (as ā(b`) + âΩ(b`) > 1 and âΩ(b`) ≤ Ω) and 1− Ω ≥ maxj∈G∗ ā(b∗j ) (as
fΩ(b∗j ) ≤ 1). Thus,

∑
j∈G ā(bj) >

∑
j∈G∗ ā(b∗j ) and so by the assumed ordering (3.1)

of the items, following a standard knapsack argument,
∑

j∈G â(bj) >
∑

j∈G∗ â(b∗j ).

Letting Ḡ = [k′] \G and Ḡ∗ = [k∗] \G∗, it follows that∑
j∈Ḡ

(ā(bj) + â(bj)) = A−
∑
j∈G

(ā(bj) + â(bj)) ≤

A−
∑
j∈G∗

(
a(b∗j ) + â(b∗j )

)
=
∑
j∈Ḡ∗

(
ā(b∗j ) + â(b∗j )

)
(equality may hold throughout if G∗ = ∅). Further, for each j ∈ Ḡ \ {k′}, ā(bj) +
â(bj) ≥ fΩ(bj) > 1 and for each j ∈ Ḡ∗, ā(b∗j ) + â(b∗j ) ≤ 1. Therefore, |Ḡ| ≤⌈∑

j∈Ḡ (ā(bj) + â(bj))
⌉
≤
⌈∑

j∈Ḡ∗
(
ā(b∗j ) + â(b∗j )

)⌉
≤ |Ḡ∗| and k′ ≤ k∗ as claimed.

The lemma combined with Step 2 of Next-Fit-Decreasing immediately imply the
following theorem.

Theorem 3.2. If the items are ordered according to (3.1) then Next-Fit-Decreasing
is a 2-approximation algorithm for ΩRBP.

4. Next-fit-decreasing for ΓRBP. From now on, we focus on problem ΓRBP.
Remark first that using an arbitrary ordering leads to arbitrarily bad solutions, con-
sidering Γ = 1 and the same items ((2ε, 0), (0, 1 − ε), . . . , (2ε, 0), (0, 1 − ε)) as in the
previous section. Thus, we consider here an ordering of the items such that

(4.1) â1 ≥ · · · ≥ ân.
6



The main result of this section is the following. We also note that this result has
been improved compared with the result that appears in the preliminary extended
abstract version of this paper [6].

Theorem 4.1. Suppose that the items are ordered according to (4.1). Then Next-
Fit-Decreasing is a 2Γ-approximation algorithm for ΓRBP.

Recall that k′ is the number of bins used in Step 1 and let s′ = (b1, . . . , bk′) be
the bins output at the end of Step 1. Let s∗ = {b∗1, . . . , b∗k∗} be an optimal solution.
Define i∗j = max(Γ(b∗j )), and also let ij = max(Γ(bj)) for each j ∈ [k′].

The key element in proving Theorem 4.1 is the following counterpart of
Lemma 3.1, a result which immediately implies an approximation-factor guarantee of
2Γ.

Lemma 4.2. Suppose that the items are ordered according to (4.1). Then k′ ≤
Γk∗.

LetM′ ⊆ s′ be the set of bins that contain only items that either do not deviate
or are the smallest deviations, i∗j for some j ∈ [k∗]. So for each b ∈ M′, b ⊆ [n] \⋃k∗

j=1 Γ(b∗j )∪{i∗1, . . . , i∗k∗}. In what follows, we bound |M′| and |s′ \M′| by multiples
of k∗.

Lemma 4.3. |s′ \M′| ≤ (Γ− 1)k∗

Proof. As each bin b ∈ s′ \ M′ contains at least one item from
⋃k∗

j=1 Γ(b∗j ) \
{i∗1, . . . , i∗k∗}, and as |

⋃k∗

j=1 Γ(b∗j )\{i∗1, . . . , i∗k∗}| ≤ (Γ−1)k∗, the result is immediate.

The case of M′, which is slightly more involved, is addressed in the following
lemma.

Lemma 4.4. |M′| ≤ k∗.

Proof. For convenience in the following without loss of generality let M′ =
{b1, . . . , bk′′} where k′′ = |M′| ≤ k′, and let {b∗1, . . . , b∗k∗∗} ⊆ s∗ be the set of optimal
solution bins each containing Γ deviations, with bins ordered in non-increasing small-
est deviation size, so âi∗k ≥ âi∗k+1

for each k ∈ [k∗∗ − 1], and where k∗∗ ≤ k∗. Assume

for the sake of deriving a contradiction that k∗∗ < k′′. Then, since
⋃k′′

j=1 bj ⊆
⋃k∗∗

j=1 b
∗
j ,

∑
j∈[k′′]

ā(bj) ≤
∑

j∈[k∗∗]

ā(b∗j ) ≤ k∗∗ −
∑

j∈[k∗∗]

âΓ(b∗j ).

We now show that
∑

j∈[k∗∗] âΓ(bj) ≤
∑

j∈[k∗∗] âΓ(b∗j ). To do so we show by induction
on k = 1, . . . , k∗∗ − 1 for a fixed instance and corresponding algorithm bins and
optimal solution bins, b1, . . . , b

′′
k and b∗1, . . . , bk∗∗ , respectively. For k = 1, and all

i ∈ b1 by the fact that these items either do not deviate in s∗ or are in the set
of smallest deviations, {i∗1, . . . , i∗k∗∗}, it follows that âi ≤ âi∗1 , so âΓ(b1) ≤ âΓ(b∗1).
Now assume

∑
j∈[k] âΓ(bj) ≤

∑
j∈[k] âΓ(b∗j ) in order to prove that

∑
j∈[k+1] âΓ(bj) ≤
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∑
j∈[k+1] âΓ(b∗j ). By the induction hypothesis∑

j∈[k]

ā(bj) > 1−
∑
j∈[k]

âΓ(bj)

≥ 1−
∑
j∈[k]

âΓ(b∗j )

≥
∑
j∈[k]

ā(b∗j )

≥
∑
j∈[k]

ā(b∗j \ Γ(b∗j ) ∪ {i∗j}).

The above inequality and the ordering of the items imply that

âmax ≡ max
i∈

⋃k∗∗
j=k+1(b∗j \Γ(b∗j )∪{i∗j })

âi ≥ max
i∈bk+1

âi.

Since âi∗k+1
=âmax it follows that âΓ(b∗k+1) ≥ âΓ(bk+1). Together with the induction

hypothesis it implies that
∑

j∈[k+1] âΓ(bj) ≤
∑

j∈[k+1] âΓ(b∗j ).

Note that âΓ(bj) ≤ 1 for j = 1, . . . , k′′; otherwise if âΓ(bj) > 1 for some j ∈ [k′′],
then there is some i ∈ bj that has âi > 1/Γ. But then i ∈ b∗l for some l ∈ [k∗∗] and
since i is either a nondeviating item and âΓ(b∗l ) > 1, or i = i∗l and it implies that b∗l
may contain only Γ − 1 deviating items, thereby establishing a contradiction. Now,
by definition of the algorithm,∑

j∈[k′′]

ā(bj) >
∑

j∈[k′′−1]

ā(bj) > k′′ − 1−
∑

j∈[k′′−1]

âΓ(bj) ≥ k∗∗ −
∑

j∈[k∗∗]

âΓ(b∗j ).

The last inequality followed from k′′ − 1 ≥ k∗∗ and âΓ(bj) ≤ 1 for j ∈ [k′′], implying

that
∑k′′−1

j=k∗∗+1 âΓ(bj) ≤ k′′ − k∗∗.
Proof of Lemma 4.2. Lemmas 4.3 and 4.4 immediately imply that k′ ≤ Γk∗, thus
proving the claim of Lemma 4.2.

Proof of Theorem 4.1. After step 2 of the algorithm the total number of bins is at
most 2Γk∗, concluding the proof of Theorem 4.1.

To complete the analysis, we establish the following lower bound on the approxi-
mation ratio of Next-Fit-Decreasing.

Theorem 4.5. If the items are ordered according to (4.1) or (3.1), then the ap-
proximation ratio of Next-Fit-Decreasing for ΓRBP is at least 2Γ

3 .

Proof. Let us define an instance where the ordering (4.1) can lead to Step 1 of
Next-Fit-Decreasing using k′ = Γ bins while OPT = 3. Every row of the Γ × Γ
matrix below corresponds to the set of items in a bin (after the Step 1) of Next-Fit-
Decreasing algorithm

(4.2)

(ε, 1/Γ− δ1) (0, 1/Γ− δ1) . . . (0, 1/Γ− δ1)
...

...
. . .

...
(ε, 1/Γ− δΓ) (0, 1/Γ− δΓ) . . . (0, 1/Γ− δΓ)

where ε ≤ 1/Γ and δ1 ≤ · · · ≤ δΓ < ε/Γ. On the one hand, ε + Γ · (1/Γ− δl) > 1 for
each l ∈ [Γ], so step 1 of Next-Fit-Decreasing outputs Γ bins. On the other hand,
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an optimal solution can pack all the items above except the ones in the first column
into a single bin because Γ · 1/Γ − δ1 ≤ 1. Further, the total weight of the first Γ/2

items of the first column sums up to Γ/2 · (1/Γ + ε) −
∑Γ/2

l=1 δl ≤ 1 −
∑Γ/2

l=1 δl ≤ 1,
and similarly for the last Γ/2 items, so an optimal solution may pack the first column
using two bins.

This instance can be adapted to establish a lower bound for the approximation
ratio of Next-Fit-Decreasing when items are ordered according to (3.1). We
consider an example that yields a lower bound on the approximation ratio of Next-
Fit-Decreasing in solving ΓRBP when the items are ordered according to (3.1).
For some c ≥ Γ2, ε′ = 2

Γ(1+c) , ε = 1
Γ(Γ2+Γ−1) consider the instance given by the

following Γ× Γ matrix:

(ε′, cε′) (ε, cε) . . . (ε, cε)
...

...
. . .

...
(ε′, cε′) (ε, cε) . . . (ε, cε)

It can be verified that Next-Fit-Decreasing opens a bin for each row, since (1 +
c)ε′+ (Γ−1)(1 + c)ε > 1. The optimal solution opens 3 bins, 2 bins to store the items
of the first column and another bin to store the rightmost Γ − 1 columns. Although
in this example all items i ∈ [n] are set to have ratios âi/āi = c, the example can be
extended in a straightforward manner with slight perturbations of the item sizes so
that the ratios will be strictly decreasing for the items ordered from left-to-right and
top-to-bottom in this matrix.

We conclude the section by emphasizing our results for the special cases of Γ =
1 and Γ = 2, where the straight-forward Next-Fit-Decreasing algorithm with
ordering (4.1) obtains the best approximation guarantees using the analysis of the
current paper.

Corollary 4.6. If the items are ordered according to (4.1) and Γ = 1 or Γ =
2, then Next-Fit-Decreasing is a 2-factor or 4-factor approximation algorithm,
respectively, for ΓRBP.

In the section that follows we consider constant-factor approximation factors that do
not depend on the parameter Γ.

5. A constant-factor approximation algorithm for ΓRBP. The algorithm
presented in this section relies on three main ideas. First, we show in Section 5.1 that
we can restrict ourselves to instances of ΓRBP with small items; that is, ai ≤ 1

Γ and
âi ≤ 1

Γ for each i ∈ [n]. Specifically, we show how to convert any ρ-approximation
algorithm for the latter special case of the problem with small items into a general
(ρ+ ρbp)-approximation for ΓRBP, where ρbp is an approximation factor guarantee
of some algorithm for classical bin packing. First note that having only small items,
any set of bΓ/2c items can always be packed together into a bin. This fact is stated
as the following observation.

Observation 1. Given an instance I to the ΓRBP satisfying âi ≤ 1/Γ and

ai ≤ 1/Γ for each i ∈ [n], any subset X ⊆ [n] can be packed in at most d 2|X|
Γ e bins.

Next, we introduce in Section 5.2 variants of ΓRBP where items are packed into
bins as in standard bin packing but some of the items are placed in two designated
special bins. The deviations will be ignored so that they are irrelevant in these two
bins, while in each of the other regular bins only a single item can deviate. One of
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the special bins that will be referred to as the trash bin, cannot contain more than
k(Γ− 1) items, where k is the number of regular bins used in the solution. The trash
contains and “mimics” the Γ − 1 deviating items of each bin in an optimal solution.
Following Observation 1, items in the trash can be packed into at most 2k additional
bins. The problem with trash remains hard because of the capacity of the regular
bins, so we focus on almost feasible solutions, which are allowed to exceed each regular
bin by one item. We show in that section how finding almost feasible solutions no
worse than the optimal solution for the problem with trash leads to an approximation
algorithm for ΓRBP with small items.

Finally, we present in Section 5.3 a dynamic programming (DP) algorithm that
outputs an almost feasible solution using a number of bins that is at most that of
the optimal solution of the original ΓRBP problem. Essentially, for each bin the
DP algorithm guesses a particular item that deviates. Then it greedily packs the
remaining items with largest nominal values into the trash.

We maintain throughout the section the assumption that the items are ordered
according to (4.1).

5.1. Robust bin packing with small items. We define ΓRBP with small
values as the ΓRBP problem restricted to inputs where for any i ∈ [n], ai ≤ 1

Γ and
âi ≤ 1

Γ . The following proposition motivates our focus on ΓRBP with small values.

Proposition 5.1. Any polynomial ρ-approximation algorithm for ΓRBP with in-
put satisfying âi ≤ 1/Γ and ai ≤ 1/Γ for each i ∈ [n], can be turned into a polynomial-
time (ρ+ ρbp)-approximation algorithm for ΓRBP. 2

Proof. Given an instance I of ΓRBP, we define the small items S = {i ∈ [n] :
ai ≤ 1/Γ and âi ≤ 1/Γ} and the large item as B = [n] \ S. We use the given ρ-
approximation algorithm to pack S into kS bins, so that kS ≤ ρOPT(I). Then, we
observe that in any packing of B, each bin contains at most Γ items, so that all
items deviate in these bins. Hence, the least number of bins needed to pack items
in B is is given by a solution that is optimal to the standard bin packing problem
for this same set of items B where the size of each item i ∈ B is a′i = ai + âi. Let
I ′ denote this instance of standard bin packing So, OPTbp(I ′) ≤ OPT(I) (where
OPTbp denotes the optimal objective value of standard bin packing), and observe
that any optimal solution of standard bin packing for items B is a solution that
is feasible for the ΓRBP instance I using the same number of bins. Using a ρbp-
approximation algorithm for standard bin packing to pack B in kB bins, it follows
that kB ≤ ρbpOPTbp(I ′) = ρbpOPT(I) ≤ ρbpOPT(I). Thus, the packing of B and S
is a packing of I satisfying kS + kB ≤ (ρ+ ρbp)OPT(I).

Notice that instances with small items are not easier to approximate by Next-Fit-
Decreasing as illustrated by the instance defined by (4.2), in Section 4, whose items
satisfy ai, âi ≤ 1/Γ for all i ∈ [n].

5.2. Bin-packing with trash. For any X ⊆ [n], we define ãΓ(X) = Γâ1(X)
(ãΓ(X) is Γ times the largest deviating value of an item in X) and f̃(X) = a(X) +
ãΓ(X). We introduce next a decision problem ΓRBP-T that is related to ΓRBP.

2In general, if we have a polynomial time additive approximation algorithm using OPT+f(OPT )
bins and polynomial time ρ-approximation algorithm for ΓRBP with small values then our algorithm
uses OPT (ρ+ 1) + f(OPT ) bins for ΓRBP in polynomial time.
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ΓRBP-T (Robust bin packing with trash)
Input: (I, k, t) where I is an instance of ΓRBP and k, t ∈ N.
Output: ’Yes’ if a solution exists, which is a partition of the set of

items into k+ 1 sets b1, . . . , bk and T (called the trash) such
that:

• f̃(bj) ≤ 1 for each j = 1, . . . , k
• |T | ≤ t

and ’No’ otherwise.

Notice that although the input of ΓRBP-T is assumed to include only small
items, it is possible to have an item i ∈ [n] such that f̃({i}) > 1, implying that i ∈ T .
The following two lemmas suggest how the decision problem ΓRBP-T may be used
to determine an approximate solution of ΓRBP.

Lemma 5.2. For any input I of ΓRBP where k∗ = OPT(I), (I, k∗, (Γ− 1)k∗) is
a yes instance of ΓRBP-T.

Proof. Given an optimal solution with objective value k∗ of ΓRBP we create a
solution to ΓRBP-T problem as follows. For some (arbitrary) j ∈ [k∗], let b∗j be a
bin of the considered optimum. Let Nj = b∗j \ Γ(b∗j ) (the non-deviating items of b∗j ).
For j = 1, . . . , k∗, let

Xj =

{
max(Γ(b∗j )) |Γ(b∗j )| = Γ

∅ otherwise.

We define b′j = Nj ∪ Xj , and adjoin items of Yj = b∗j \ b′j to the trash. Note that
Yj is either the set of Γ − 1 largest deviating items of b∗j , or otherwise b∗j = Γ(b∗j )
and |Γ(b∗j )| < Γ. So, (b′1, . . . , b

′
k∗ , T ) is a yes instance for the ΓRBP-T problem since

evidently f̃(b′j) = a(b′j) + ãΓ(b′j) ≤ a(b∗j ) + âΓ(b∗j ) ≤ 1 and also |T | ≤ (Γ− 1)k∗.

The next lemma establishes that yes-instances of ΓRBP-T can be used to con-
struct solutions of ΓRBP using at most a number bins that is a constant factor of
the number of bins used by ΓRBP-T.

Lemma 5.3. For any instance I of ΓRBP satisfying âi ≤ 1/Γ and ai ≤ 1/Γ for
each i ∈ [n], and integer k, given a yes-instance of (I, k,Γk) of ΓRBP-T, we can
compute in polynomial time a solution of 3k bins for I.

Proof. Given a solution b1, . . . , bk, T for (I, k,Γk) of ΓRBP-T the bins remain
feasible in ΓRBP as for each j ∈ [k], fΓ(bj) = a(bj) + âΓ(bj) ≤ a(bj) + ã(bj) = f̃(bj).
Then, Observation 1 implies that the trash T can be packed into dkΓ/(Γ/2)e ≤ 2k
additional bins.

Notice that the trash T in the instance constructed in this lemma has |T | = Γk, which
exceeds the |T | = (Γ− 1)k in Lemma 5.2. The additional k “slots” are necessary for
deciding ΓRBP-T as will be illustrated in the analysis that follows.

In order to develop an algorithm and in particular a dynamic program (DP) for
deciding ΓRBP-T it is convenient to consider an optimization variant of ΓRBP-T, to
be called G-ΓRBP-T for “generalized robust bin packing with trash”. This variant
is defined in the following for a fixed instance I of ΓRBP and a given integer k (so
that they are not considered a part of the input).
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Generalized robust bin packing with trash (G-ΓRBP-T)
Input: I ′ = (q, t, `), where q ∈ [n], t ∈ [(Γ− 1)k]0, and ` ∈ [k + 1].
Output: A feasible solution s is a partition of Jq, nK into k − ` + 3

sets, given as a triple (L, {bj : j ∈ J`, kK}, T ), such that

• for any j ∈ J`, kK, f̃(bj) ≤ 1 (the k − ` + 1 regular
bins must satisfy the fill constraints of ΓRBP-T)
• |T | ≤ t (we only allow t items in the trash)
• min(b`) = q (meaning that the deviating item of b`

is q)

Minimize: c(s) = a(L)

The objective of G-ΓRBP-T is to pack a part (defined by Jq, kK) of the instance I
for ΓRBP-T given a fixed budget of resources (the number of bins and the size of
the trash) while minimizing the sum only of nominal sizes of items in the leftover
itemset L. The last constraint (the deviating item of b` is q), which may appear
somewhat artificial, will allow determining optimal solutions of ΓRBP-T from optimal
solutions of G-ΓRBP-T, by carefully enumerating possibilities of largest deviating
item to be packed each bin in an intelligent way; considering only those possibilities
corresponding to solutions that are close to being feasible (a notion to be defined more
precisely in the following) and whose objective value is at most that of an optimal
solution. This enumeration scheme will be shown to be efficiently solvable by a DP.
For convenience, the objective value of infeasible solutions s, including for example
s = (∅, ∅, ∅), is defined as c(s) =∞.

The capacity constraints of the bins make G-ΓRBP-T hard to solve in general.
Hence, following the spirit of Next-Fit-Decreasing introduced previously, we in-
troduce below almost feasible solutions, which can exceed the capacity of each bin by
one item.

Definition 5.4 (almost feasible solution). We say that a bin b exceeds by at
most one item iff f̃(b) > 1 and f̃(b \ {i}) ≤ 1 where i = max(b). Given an input
I ′ = (q, t, `) of G-ΓRBP-T, we say that a solution is almost feasible iff all the G-
ΓRBP-T constraints are satisfied, except that for any j ∈ J`, kK, we allow that bj
exceeds by at most one item instead of f̃(bj) ≤ 1.

Definition 5.5 (an optimal almost-feasible solution). Given an input
I ′ = (q, t, `) of G-ΓRBP-T, we say that a solution s = (L, {b1, . . . , bk}, T ) is an
optimal almost-feasible solution iff s is almost feasible with c(s) ≤ OPT(I ′).

The relation between G-ΓRBP-T and ΓRBP-T is characterized in the following
two lemmas. Let OPT(I ′) be the optimal solution cost of G-ΓRBP-T instance I ′
(notice that an optimal solution must also be feasible for the given problem).

Lemma 5.6. For any input I of ΓRBP and k such that (I, k, (Γ − 1)k) is a yes
input of ΓRBP-T, there exist a positive integer q ∈ [(Γ− 1)k] such that OPT(q, (Γ−
1)k − (q − 1), 1) = 0.

Proof. Consider a ΓRBP-T yes-instance (I, k, (Γ− 1)k) and corresponding par-

tition solution {b1, . . . , bk}, T . Let q = min
(⋃k

j=1 bj

)
(the item with smallest index

that is packed in a bin). Let t = (Γ−1)k− (q−1). By definition of q and (4.1), items
in [q − 1] must be in T , and thus it means that the triple (∅, {b1, . . . , bk}, T \ [q − 1])
is a feasible solution of G-ΓRBP-T (q, t, 1) with cost 0.
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Lemma 5.7. Let us fix I an input of ΓRBP and k an integer. For any q ∈
[(Γ − 1)k], t = (Γ − 1)k − (q − 1), given an almost feasible 0 cost solution for G-
ΓRBP-T instance I ′ = (q, t, 1), a solution for ΓRBP-T instance (I, k,Γk) can be
determined in polynomial time.

Proof. Let (∅, {b1, . . . , bk}, T ) be an optimal solution of G-ΓRBP-T instance I ′ =
(q, t, 1) with cost 0. For j ∈ [k], let b′j = bj \ max(bj). Let T ′ = T ∪ [q − 1] ∪⋃k

j=1 max(bj). We now have f̃(b′j) ≤ 1 for any j ∈ [k] (as bj exceeds by at most one
item), and |T ′| ≤ Γk, so {b′1, . . . , b′k, T} is a yes-instance for ΓRBP-T (I, k,Γk) thus
concluding the proof.

The above lemmas imply that any algorithm outputting an (approximately)
optimal almost-feasible solution for G-ΓRBP-T can be used to devise approximation
algorithm for ΓRBP with small values, which is illustrated by Algorithm 2.

1 s∗ ← ([n], ∅, ∅), lb← 1, ub← n
2 while lb 6= ub do
3 k ← d lb+ub

2 e
4 I ′ ← (1,Γ(k − 1), 1)
5 Let s = (L, {b1, . . . , bk}, T ), be an optimal almost-feasible solution

returned by the G-ΓRBP-T algorithm given input I ′
6 if c(s) = 0 then
7 ub← k
8 s∗ ← s (accordingly T ∗ ← T )

9 else
10 lb← k + 1

11 Pack items in T ∗ into bins b∗k+1, . . . , b
∗
k̄

according to Observation 1.
return: b∗1, . . . , b

∗
k̄

Algorithm 2: Algorithm for ΓRBP with small values.

Proposition 5.8. Algorithm 2 is a 3-approximation for ΓRBP with small values.

Proof. Let A be a G-ΓRBP-T algorithm that is guaranteed to output an optimal
almost-feasible solution given instance (q, t, `), and whose output will be denotes by
c(A(q, t, `)). Let k∗ = OPT(I) be the optimal value of ΓRBP. Lemma 5.2 implies
that (I, k∗, (Γ− 1)k∗) is a yes-instance of ΓRBP-T, so Lemma 5.6 implies that there
exists q ∈ [(Γ − 1)k∗] and t = (Γ − 1)k∗ − (q − 1) for which OPT(q, t, 1) = 0. Thus,
the assumption implies that A outputs an almost feasible solution s that satisfies
c(s) ≤ 0, so that c(s∗) ≤ k∗. Applying Lemma 5.7, we can compute a solution of
(I, k∗,Γk∗) for ΓRBP-T, which corresponds to a solution using 3k∗ bins for ΓRBP
following Lemma 5.3.

The next section describes a dynamic programming algorithm that outputs an optimal
almost-feasible solution for G-ΓRBP-T.

5.3. A DP algorithm for G-ΓRBP-T. We now define a DP scheme that given
instance I ′ = (q, t, `) provides an almost feasible solution s with c(s) ≤ OPT(I ′). We
start by providing a gentle description before formally defining the algorithm and
proving its correctness. Let s∗ be an optimal solution for I ′, with bins ordered in
non-increasing deviation size. The DP algorithm starts by enumerating g = (q′, t′) ∈
Jq+ 1, nK× [t]0. One of the enumerated g must necessarily correspond to the optimal
solution s∗ in the following sense:

• q′ = min(b∗`+1)
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• t′ is the number of items trashed from X ′ in s∗, where X ′ = Jq, q′ − 1K
Because of the ordering of the bins in the optimal solution s∗, the items of X ′ must
be packed in bins b∗` , L∗ or T ∗. As the DP algorithm mimics the optimal solution, it
packs X ′ in b`, L and T . Specifically, the DP algorithm:

• Packs q to b` (as required by the corresponding constraint of G-ΓRBP-T).
• Packs the remaining t′ largest nominal value items of X ′ in the trash.
• Packs the remaining items of X ′ into b` until f̃(b`) > 1 or X ′ = ∅.
• Packs the remaining items of X ′ into L until X ′ = ∅.

We discuss next where the others items (of Jq′, nK) are packed. Notice that in s∗, bin
b∗` may contain items of Jq′, nK, and thus the DP algorithm may also have to pack
items of Jq′, nK into b`. To allow for that possibility, we postpone the decision of which
items of Jq′, nK to pack into b`. Specifically, let ∆` be the size of the empty space in b`
after packing X ′ as described above, and let LX′ = L∩X ′. After the previous steps,
the DP algorithm makes a recursive call to get a solution s̃ that packs Jq′, nK into
regular bins, a trash, and a leftover itemset b̃0. So far solution s̃ has not benefited
from the empty space ∆`. However, we can unpack items from b̃0 to b` while ensuring
that these items do not deviate in b` (as all these items have index greater than q).

Our DP scheme is defined by Algorithm 3. An iteration of this algorithm is
further illustrated in Figure 1.

1 s← (∅, ∅, ∅) // Where c((∅, ∅, ∅)) =∞
2 if ` = k then
3 X ′ ← Jq, nK
4 T ← {min(t, n− q) largest items in terms of nominal value in X ′}
5 Pack X ′ \ T in bk until f̃(bk) > 1 or X ′ \ T = ∅
6 Pack the remaining items in L

return: s = (L, {bk}, T )
7 for g = (q′, t′) ∈ Jq + 1, nK× [min(t, q′ − q)]0 do
8 Pack q in b`
9 X ′ ← Jq + 1, q′ − 1K

10 T ′ ← {t′ largest items in terms of nominal value in X ′}
11 Pack X ′ \ T ′ in b` until f̃(b`) > 1 or X ′ \ T ′ = ∅
12 Pack the remaining items in X ′ \ T ′ in L

13 s̃ = (b̃0, {b̃`+1, . . . , b̃k}, T̃ )← DP(q′, t− t′, `+ 1) .

14 Unpack b̃0 into b` until f̃(b`) > 1 or all items of b̃0 are unpacked, then

unpack the potentially remaining items of b̃0 into L.

15 sg ← (L, {b`, b̃`+1 . . . , b̃k}, T̃ ∪ T ′)
16 if c(sg) < c(s) then s← sg

return: s
Algorithm 3: DP(q, t, `)

Let us introduce notations to describe the packing of the DP. Let bX
′

` = b`∩X ′ be

the items of X ′ packed in b` by the DP, and let ∆` = 1−f̃(bX
′

` ) (∆` could be negative).
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q

q′ b0

b`f̃({q})

T
|T ′| = t′

X ′

Fig. 1. DP algorithm handling guess (q′, t′), starting from item q.

We define similarly LX′ = L ∩ X ′. Let c0 = a(LX′). Notice that c0 corresponds to
the total non deviating size of items packed in L after Step 12 of Algorithm 3. The
following lemma establishes the correctness of the algorithm.

Lemma 5.9. For any I ′ = (q, t, `) input of G-ΓRBP-T, DP(I ′) determines an
optimal almost feasible solution.

Proof. The proof is by induction on `.
` = k.. Consider a solution s = (L, {bk}, T ) output by the algorithm and optimal

solution s∗ = (b∗0, {b∗k}, T ∗). In step 5, either b` = {q} ∪X ′ \ T , in which case L = ∅
and ā(L) ≤ ā(b∗0), or f̃(bk) > 1 ≥ f̃(b∗k). Then, as q = min(bk) = min(b∗k) (since
both solutions must satisfy this constraint) it implies that Γâ1(b∗k) = Γâ1(bk), and
so ā(bk) > ā(b∗k). Then, by the definition of T (in step 4 of the algorithm), also
ā(T ) ≥ ā(T ∗), so it must be that ā(L) < ā(b∗0).

Inductive step.. Suppose now that, for some ˆ̀ ∈ [k − 1], the lemma holds for

` = ˆ̀ + 1 and that s∗ = (b∗0, {b∗ˆ̀, . . . , b∗k}, T ∗) is optimal for G-ΓRBP-T (q, t, ˆ̀).

Let q∗ = min(bˆ̀+1), let X∗ = Jq, q∗ − 1K and observe that X∗ 6= ∅. Next, observe

that (b∗0 \X∗, {b∗ˆ̀+1
, . . . , b∗k}, T ∗ \X∗) is optimal for G-ΓRBP-T (q∗, t̂, ˆ̀+ 1) where

t̂ = |T ∗ \X∗| ≤ t. Otherwise, there would exist some feasible (Ľ, {b̌ˆ̀+1, . . . , b̌k}, Ť )

that has ā(Ľ) < ā(b∗0 \X∗) and then (Ľ∪ (b∗0∩X∗), {{q}∪ (bˆ̀∩X∗), b̌ˆ̀+1, . . . , b̌k}, Ť ∪
(T ∗ ∩ X∗)) would be feasible for (q, t, ˆ̀) with ā(b̄ ∪ (b∗0 ∩ X∗)) < ā(b∗0), thereby
contradicting the optimality of s∗.

By the inductive hypothesis ā(L̃) ≤ ā(b∗0 \X∗) for some almost feasible

(L̃, {b̃ˆ̀+1, . . . , b̃k}, T̃ ) that is output by the algorithm for (q∗, t̂, ˆ̀+ 1), where q∗ > q

and t̂ = |T ∗ \X∗| ≤ t. Therefore,

(5.1) ā(b∗0) = ā(b∗0 \X∗) + ā(b∗0 ∩X∗) ≥ ā(L̃) + ā(b∗0 ∩X∗).

Let us now consider the iteration g = (q∗, t− t̂) of the main loop (starting in step 7)
and L and bˆ̀ the corresponding bins of sg. By steps 8, 11 and 14 of the algorithm,

L \ L̃ = (X∗ \ T ′) \ bˆ̀. In line 11 of the algorithm if f̃(bˆ̀) ≤ 1, then L ⊆ L̃ and

L \ L̃ = ∅. Otherwise f̃(bˆ̀) > 1 ≥ f̃(b∗ˆ̀). Recalling that both solutions must satisfy

the given constraint, q = min(bˆ̀) = min(b∗ˆ̀), it implies that Γâ1(bˆ̀) = Γâ1(b∗ˆ̀). Thus,

ā(bˆ̀) > ā(b∗ˆ̀). Also, by definition of T ′, ā(T ′) ≥ ā(T ∗ ∩ X∗). Thus, ā(L \ L̃) ≤
ā(b∗0 ∩X∗). Combined with (5.1) it finally implies that ā(b∗0) ≥ ā(L̃) + ā(b∗0 ∩X∗) ≥
ā(L \ L̃) + ā(L̃) = ā(L).

Lemma 5.10. Suppose that ai, âi ≤ 1/Γ for all i ∈ [n]. Then, Algorithm 2, with
Algorithm 3 as a subroutine for determining almost-feasible optimal solutions for G-
ΓRBP-T, is a 3-factor approximation algorithm for ΓRBP. Further, the running
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time complexity bound of this algorithm is in O(n6log(n)).

Proof. Proposition 5.8 and Lemma 5.9 applied to Algorithm 3 imply that there
exists a 3-approximation for ΓRBP with small values. The different number of inputs
of the DP is O(n3), and the running time for a fixed input is O(n3). Then, since the
binary search of Algorithm 2 takes O(log n) iterations it follows that the total running
time is in O(n6 log n).

Now, Lemma 5.10 together with Proposition 5.1 imply the following theorem
using the ρbp = 3

2 -approximation first-fit decreasing (FFD) algorithm, whose running
time complexity bound is clearly dominated by that of the algorithm for ΓRBP with
small values, for standard bin packing; see for example [24].

Theorem 5.11. There exists a 4.5-approximation algorithm for ΓRBPwith an
O(n6log(n)) runtime complexity bound.

In particular, combining FFD to to pack large items i ∈ [n], for which with āi > 1/Γ
or âi > 1/Γ and Algorithm 2 using Algorithm 3 as a subroutine to pack the other
(small) items, is an algorithm that satisfies the claim of Theorem 5.11. Also note
that while not a focus of the current paper, in the asymptotic setting (as n tends to
be large) using instead an asymptotic FPTAS for packing the large items, for ε > 0,
an asymptotic approximation of 4 + ε could be guaranteed in running time that is
polynomial in n and 1/ε. Finally, although this result establishes a constant factor
approximation for our problem when Γ is a part of the input, it can be observed that
in the special case that Γ ≤ 2, the next-fit-decreasing approximation established by
Theorem 4.6 may be preferred as a practical and fast O(n log n) algorithm with a
2Γ ≤ 4 approximation guarantee.

6. Conclusion. This paper considered the bin-packing with item size uncer-
tainty, following the robust optimization approach with two widely used variants of
budget uncertainty sets, UΓ and UΩ. We have shown that problem ΓRBP belongs
to a different complexity class than its deterministic counterpart, in particular that
no asymptotic approximation scheme exists for that problem, unless P = NP. We
have further provided constant factor approximation algorithms for problems ΩRBP
and ΓRBP. While the algorithm devised for ΩRBP is based on a rather natural ex-
tension of next-fit-decreasing, the latter provided only non-constant ratios for ΓRBP.
Instead we are able to devise a constant-ratio for ΓRBP through a more involved
algorithm, separately handling “small” and “large” items, and applying a dynamic
programming-based algorithm to the small items, or rather to a relaxed version of the
problem where not all of the items need to be packed in bins.

Future work may address the remaining gap between approximations ratio lower
and upper bounds for ΩRBP and ΓRBP with different values of Γ (in particular the
cases considered in this paper of Γ = 1, 2 and general Γ > 2). While is is shown that
ΓRBP may not have a polynomial asymptotic approximation scheme, it remains open
whether the same may be true for ΩRBP. A different line of research could seek to
extend our results to natural extensions of the uncertainty sets considered herein. For
instance, an important variant of these sets would consider smoothing constraints,
correlating the amount of deviation of subsets of dependent items. In particular,
results obtained for the UΩ model seem to naturally extend to this smoothed variant.
Applications may include, for example, medical procedures that last longer when
the staff performing them is not well rested. For such medical-procedure scheduling
applications, also of interest are two stage models in which some of the items can be
repacked at a cost, once the uncertainty is revealed. Clearly, if the cost of repacking
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is higher than unity, then the single stage approximation results of this paper would
apply as a special case of this general setting.
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[2] E. Álvarez-Miranda, I. Ljubic, and P. Toth, A note on the Bertsimas & Sim algorithm
for robust combinatorial optimization problems, 4OR, 11 (2013), pp. 349–360, https://doi.
org/10.1007/s10288-013-0231-6.
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