
HAL Id: hal-02119351
https://hal.science/hal-02119351v2

Preprint submitted on 11 Feb 2020 (v2), last revised 30 Oct 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating robust bin-packing with budgeted
uncertainty

Marin Bougeret, Noam Goldberg, Michael Poss

To cite this version:
Marin Bougeret, Noam Goldberg, Michael Poss. Approximating robust bin-packing with budgeted
uncertainty. 2020. �hal-02119351v2�

https://hal.science/hal-02119351v2
https://hal.archives-ouvertes.fr

Constant-Ratio Approximation for Robust Bin
Packing with Budgeted Uncertainty?

Aniket Basu Roy1, Marin Bougeret1, Noam Goldberg2, and Michael Poss1

1 LIRMM, University of Montpellier, CNRS, Montpellier, France
{aniket.basu-roy,marin.bougeret,michael.poss}@lirmm.fr

2 Department of Management, Bar-Ilan University, Ramat Gan 5290002, Israel
noam.goldberg@biu.ac.il

Abstract. We consider robust variants of the bin packing problem with
uncertain item sizes. Specifically we consider two uncertainty sets previ-
ously studied in the literature: budgeted uncertainty (the UΓ model) in
which at most Γ items deviate, each reaching its peak value, while other
items assume their nominal values. The second uncertainty set, the UΩ

model, bounds the total amount of deviation in each scenario. We show
that a variant of the next-fit algorithm is a 2 approximation for the UΩ

model, and another variant of this algorithm is a 2Γ approximation for
the UΓ model. This first result motivates the question of the existence of
a constant approximation factor algorithm for the UΓ model. Our main
result affirms this question by developing a dynamic-programming based
algorithm for which a 3 + ρ ≤ 4.5 approximation factor is proven for the
UΓ model, where ρ is an approximation factor guarantee of a classical
bin packing approximation algorithm.

Keywords: Bin-packing · robust optimization · approximation algo-
rithms · Next-fit · dynamic programming

1 Introduction

Bin packing is the problem of assigning a given set of n items, each item of a
specified size, to the smallest number of unit capacity bins. The problem has
been the subject of study in an extensive body of research initiated by several
publications in the 1970s including the work of Johnson et al. [20]. The problem
is NP-hard and in fact a straightforward reduction from the partition decision
problem implies that it is NP-hard to determine whether a bin packing instance
has a solution using only two bins. This also shows that the problem cannot be
approximated within a factor less than 3/2 unless P = NP. An approximation
factor guarantee of 3/2 has been proven for the first-fit decreasing algorithm by
Simchi-Levi [26]. In the standard deterministic setting, much of the research has

? A preliminary version of this work has been published in [7].
This research has benefited from the support of the ANR project ROBUST [ANR-
16-CE40-0018].

2 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

concentrated on the asymptotic case where n tends to infinity, and on the online
setting where the instance is not given in advance but each item is revealed
and packed one at a time. A fully polynomial-time approximation scheme for
the offline asymptotic problem is due to Karmarkar and Karp [21]. The best
asymptotic and absolute online competitive ratios of 1.578 and 5/3, respectively,
are due to Balogh et al.in [6] and [5], respectively. Approximation results have
also been developed for different extensions and generalizations of the classical
bin packing problem; for example see [15, 18] and references therein.

In many applications, the sizes of the items to be packed are not fully known
at the time that the packing is carried out. In cargo shipping, for example, the
actual weight of a container may deviate from its declared weight or its measure-
ments may be inaccurate. Bin packing has been used to model the assignment
of elective surgeries to operating room in hospitals [16]. Here a bin is a shift of
a properly equipped and staffed operating room for performing a certain type
of elective surgeries. The room scheduler has to fit in the bins as many cases
(patients) as possible. In this setting clearly the length of time of performing
each surgery is subject to uncertainty for example in the event of complications.
Bin packing variants has also been used to model the scheduling of internet
advertising; see for example [1]. When multiple commercials are packed into ad-
vertising breaks of online video services and each commercial may be skipped
by the viewer then the length of each ad is subject to uncertainty. One way to
model the uncertainty that falls into the framework of robust optimization is
to assume that the sizes are uncertain parameters taking any value in a given
set U ⊂ Rn, where each a ∈ U represents a possible scenario. This leads to the
following problem (where the description of U is sometimes not explicit to avoid
exponential length in n).

Robust bin packing (RBP)
Input: U ⊂ Rn
Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
maxa∈U

∑
i∈bj ai ≤ 1 for each j ∈ [k]

Minimize: k

Classically, robust combinatorial optimization has dealt with uncertain ob-
jective, meaning that the cost vector c can take any value in set U , unlike
RBP where the uncertainty affects the feasibility of the solutions. In that con-
text, it is well-known that arbitrary uncertainty sets U lead to robust coun-
terparts that that can be more challenging to approximate. For instance, the
robust counterpart of the knapsack problem cannot be approximated to within
any factor that is a function of the input size (number of items n) unless
P = NP; see [2] and for additional complexity results with specific uncertainty
sets see [3, 14]. Moreoever, problems whose nominal (deterministic) version can
be solved in polynomial time like the shortest path problem, the minimum
spanning tree problem, the minimum cut problem and assignment problem can-

Title Suppressed Due to Excessive Length 3

not be approximated to within constant factors; see [22, 23]. Furthermore, de-
scribing U by an explicit list of scenarios runs the risk of over-fitting so the
optimal solutions may become infeasible for small variations outside U . These
two drawbacks are usually tackled by using more specific uncertainty sets, de-
fined by simple budget constraints. One of these widely used uncertainty sets,
UΓ , supposes that the size of each item is either its given nominal size āi, or
its peak value āi + âi. Furthermore, in any scenario, at most Γ ∈ N of the
items may assume their peak value simultaneously. Formally, UΓ can be de-
fined as UΓ = {a|∀i ∈ [n], ai ∈ {āi, āi + âi} and

∑
i∈[n](ai − āi)/âi ≤ Γ}.3

Uncertainty set UΓ has been widely used in robust combinatorial optimization
with a constant number of constraints because the set essentially preserves the
complexity properties of the nominal problem, and to some extent, its approx-
imability properties as well. Results for this model, including both algorithms
and computational complexity for combinatorial optimization problems, were
first developed for min-max problems and uncertain objective functions in [10].
In the general robust optimization literature this uncertainty model is viewed as
a polyhedral uncertainty set, specifically the intersection of L1 and L∞ balls [8,
9], but that literature had mostly focused on results for ellipsoidal uncertainty
sets in continuous settings. The results of [10, 11] were later extended to uncer-
tain constraints independently in [4, 17]. We also consider a second uncertainty
set (used in [19, 24, 28], among others), characterized again by ā and â, as well
as the number Ω ∈ [0, 1] stating how much deviation can be spread among all
sizes, formally UΩ = {a ∈ ×i∈[n][āi, āi + âi] |

∑
i∈[n](ai − āi) ≤ Ω}. From the

approximability viewpoint, set UΩ benefits from similar positive results as UΓ ;
see [25].

The above positive complexity results (e.g., [17, 25]) imply, for instance,
that under mild assumptions there exists a fully-polynomial time approxima-
tion scheme (FPTAS) for the robust knapsack problem with uncertain profits
and uncertain weights belonging to UΩ and/or UΓ . Interestingly, these positive
results do not extend to most scheduling problems (because they involve non-
linearities) and to the bin packing problem (because it involves a non-constant
numbers of robust constraints). While in previous papers [13, 12] (with authors
in common) we provided approximability results on robust scheduling, no such
results have yet been proposed for the bin packing problem, the only previous
work focusing on numerical algorithms [27]. The purpose of this paper is to
fill these gaps, as we present constant-factor approximation algorithms the bin
packing problem, both for UΩ and UΓ .

Notation, problems definitions, and next-fit algorithm In this paper
we consider two special cases of RBP. In the first one, ΓRBP, the input is
I = (a, â, Γ) ∈ [0, 1]n × [0, 1]n×+ where n ∈ N, and U = UΓ . In the second one,

3 UΓ is often defined alternatively in the literature, as the polytope {a ∈ ×i∈[n][āi, āi+
âi] |

∑
i∈[n](ai− āi)/âi ≤ Γ}. For the bin packing problem, one readily verifies using

classical arguments that the two definitions lead to the same optimization problem.

4 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

ΩRBP, the input is I = (oa, â, Ω) ∈ [0, 1]n × [0, 1]n × [0, 1] where n ∈ N and
U = UΩ .

Let us now define some notation that may be required for formaly stating
the ΓRBP and ΩRBP problems. Given n ∈ N, sets {0, 1, . . . , n} and {1, . . . , n}
are respectively denoted [n]0 and [n]. Set {i, . . . , j} is denoted by Ji, jK. Given
a vector v ∈ [0, 1]n and a subset X ⊆ [n], we define v(X) =

∑
i∈X vi. Given

two vectors a ∈ [0, 1]n, â ∈ [0, 1]n and a subset of items X ⊆ [n], we define
âΩ(X) = min{â(X), Ω}, Γ (X) as the set of Γ items in X with largest â values
(ties broken by taking smallest indices), or Γ (X) = X if |X| < Γ , and âΓ (X) =
â(Γ (X)). Accordingly, we define the fill of a bin b ⊆ [n] as fΓ (b) = a(b) + âΓ (b)
for set UΓ , and fΩ(b) = ā(b) + âΩ(b) for set UΩ . The fill of a bin for a general
uncertainty set U is denoted as fU (b) = maxa∈U a(b).

Consider the following example. We are given an ordered set of pairs (āi, âi),
X = {(0.3, 0.2), (0.4, 0.2), (0.3, 0.1), (0.2, 0.5)} with Γ = 2 and Ω = 0.3. Thus,
Γ (X) = {(0.3, 0.2), (0.2, 0.5)}, ā(X) = 1.2, âΓ (X) = 0.7, and fΓ (X) = 1.9.
Similarly, âΩ(X) = 0.3 and fΩ(X) = 1.5.

Now, observe that maxa∈U
∑
i∈bj ai ≤ 1 (the constraint required in RBP) is

equivalent to fU (b) ≤ 1, and thus to fΓ (bj) ≤ 1 for ΓRBP and fΩ(bj) ≤ 1 for
ΩRBP. For example in ΓRBP, fΓ (bj) ≤ 1 simply means that the total nominal
(a) size of the items plus the deviating size (â) of the Γ largest (in â values)
items must not exceed one. Then, the two optimization problems studied in this
paper can be equivalently formulated as follows.

Γ -robust bin packing (ΓRBP)
Input: I = (a, â, Γ) ∈ [0, 1]n × [0, 1]n × N.
Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
fΓ (bj) ≤ 1 for each j ∈ [k]
Minimize: k

Ω-robust bin packing (ΩRBP)
Input: I = (n, a, â, Ω) where n ∈ N, a ∈ [0, 1]n, â ∈ [0, 1]n, and Ω ∈ [0, 1].
Output: A solution that is a partition of [n] into k bins b1, . . . , bk such that
fΩ(bj) ≤ 1 for each j ∈ [k]
Minimize: k

The optimal solution value or cost of either problem is denoted by OPT(I) = k∗

(I may be omitted when the instance is clear from the context) and a corre-
sponding optimal solution is denoted by s∗ = {b∗1, b∗2, . . . , b∗k∗}. We introduce in
Algorithm 1 a variant of the standard next fit algorithm.

Structure of the paper In Sections 2 and 3, we analyze approximation-factor
guarantees for Next-Fit in the case of ΩRBP and ΓRBP, respectively. For

Title Suppressed Due to Excessive Length 5

initialization: j = 1
1 Pack items (with smaller index first) in bj until fU (bj) > 1 or n ∈ bj . If n /∈ bj

then j ← j + 1 and repeat Step 1. Otherwise, k′ ← j proceed to Step 2.
2 Pack the last item of each bin in a new bin: for any j, let i = max(bj),

b1j = bj \ {i}, and b2j = {i}
return :

⋃k′

j=1{b
1
j , b

2
j}

Algorithm 1: Next-Fit(I)

ΩRBP, using ordering (1) (non-increasing ordering on âi
āi

) the ratio is equal
to 2. For ΓRBP, using ordering (2) (non-increasing ordering on âi), the ratio
is bounded by 2Γ . As Theorem 3 shows that neither ordering (1) or (2) leads
to a constant ratio using Next-Fit, this raises the question of the existence
of a constant approximation for ΓRBP. We answer the question in Section 4
by providing a dynamic programming algorithm (DP) giving a ratio of 4.5 for
ΓRBP and any Γ ∈ N, which is our main result.

2 Next-fit for ΩRBP

Unlike the classical bin packing problem, executing Next-Fit on arbitrarily
ordered items can lead to arbitrarily bad solutions. For example, given ε with
0 < ε ≤ 1

2n , consider an instance with Ω = 1 − ε, and items ((2ε, 0), (0, 1 −
ε), . . . , (2ε, 0), (0, 1− ε)), where item i ∈ [n] is denoted by the pair (āi, âi). Using
this ordering, Next-Fit will create n/2 bins bj with fΩ(bj) > 1 for any j ∈ [n]
(which will be turned into n bins {b1j , b2j}), whereas the optimal solution uses
2 bins. This example also illustrates that, unlike in the standard bin packing,
the total size argument no longer apply to the robust counterpart as having
fΩ(bj) > 1 for any j ∈ [n] does not imply a large (depending on n) lower bound
on the optimum.

Next, we consider an ordering of the items such that

â1/ā1 ≥ · · · ≥ ân/ān. (1)

Lemma 1. Suppose that the items are ordered according to (1). Then k′ ≤ k∗.

Proof. Consider an optimal solution b∗1, . . . , b
∗
k∗ and the subset of optimal bins

given by G∗ = {j ∈ [k∗] | â(b∗j) > Ω}. Let

A =
∑
i∈[n]

(āi + âi) =

k′∑
j=1

(ā(bj) + â(bj)) =

k∗∑
j=1

(
ā(b∗j) + â(b∗j)

)
.

Let G denote the first |G∗| bins opened in Step 1 of Next-Fit. If k′ ∈ G then
clearly k′ ≤ k∗. Otherwise, it can be observed that for each l ∈ G, ā(bl) > 1−Ω
(as ā(b`)+ âΩ(b`) > 1 and âΩ(b`) ≤ Ω) and 1−Ω ≥ maxj∈G∗ ā(b∗j) (as fΩ(b∗j) ≤
1). Thus,

∑
j∈G ā(bj) >

∑
j∈G∗ ā(b∗j) and so by the assumed ordering (1) of

6 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

the items, following a standard knapsack argument,
∑
j∈G â(bj) >

∑
j∈G∗ â(b∗j).

Letting Ḡ = [k′] \G and Ḡ∗ = [k∗] \G∗, it follows that∑
j∈Ḡ

(ā(bj) + â(bj)) = A−
∑
j∈G

(ā(bj) + â(bj)) ≤

A−
∑
j∈G∗

(
a(b∗j) + â(b∗j)

)
=
∑
j∈Ḡ∗

(
ā(b∗j) + â(b∗j)

)
(equality may hold throughout if G∗ = ∅). Further, for each j ∈ Ḡ \ {k′},
ā(bj) + â(bj) ≥ fΩ(bj) > 1 and for each j ∈ Ḡ∗, ā(b∗j) + â(b∗j) ≤ 1. Therefore,

|Ḡ| ≤
⌈∑

j∈Ḡ (ā(bj) + â(bj))
⌉
≤
⌈∑

j∈Ḡ∗
(
ā(b∗j) + â(b∗j)

)⌉
≤ |Ḡ∗| and k′ ≤ k∗ as

claimed. ut

The lemma combined with Step 2 of Next-Fit immediately imply the following
theorem.

Theorem 1. If the items are ordered according to (1) then Next-Fit is a 2-
approximation algorithm for ΩRBP.

3 Next-fit for ΓRBP

From now on, we focus on problem ΓRBP. Remark first that using an arbitrary
ordering leads to arbitrarily bad solutions, considering Γ = 1 and the same
items ((2ε, 0), (0, 1 − ε), . . . , (2ε, 0), (0, 1 − ε)) as in the previous section. Thus,
we consider here an ordering of the items such that

â1 ≥ · · · ≥ ân. (2)

The main result of this section is the following. We also note that this result
has been improved compared with the result that appears in the preliminary
extended abstract version of this paper [7].

Theorem 2. Suppose that the items are ordered according to (2). Then Next-
Fit is a 2Γ -approximation algorithm for ΓRBP.

Recall that k′ is the number of bins used in Step 1 and let s′ = (b1, . . . , bk′)
be the bins output at the end of Step 1. Let s∗ = {b∗1, . . . , b∗k∗} be an optimal
solution. Define i∗j = max(Γ (b∗j)), and also let ij = max(Γ (bj)) for each j ∈ [k′].

The key element in proving Theorem 2 is the following counterpart of Lemma 1,
a result which immediately implies an approximation-factor guarantee of 2Γ .

Lemma 2. Suppose that the items are ordered according to (2). Then k′ ≤ Γk∗.

Let M′ ⊆ s′ be the set of bins that contain only items that either do not
deviate or are the smallest deviations, i∗j for some j ∈ [k∗]. So for each b ∈ M′,
b ⊆ [n]\

⋃k∗
j=1 Γ (b∗j)∪{i∗1, . . . , i∗k∗}. In what follows, we bound |M′| and |s′ \M′|

by multiples of k∗.

Title Suppressed Due to Excessive Length 7

Lemma 3. |s′ \M′| ≤ (Γ − 1)k∗

Proof. As each bin b ∈ s′ \ M′ contains at least one item from
⋃k∗
j=1 Γ (b∗j) \

{i∗1, . . . , i∗k∗}, and as |
⋃k∗
j=1 Γ (b∗j) \ {i∗1, . . . , i∗k∗}| ≤ (Γ − 1)k∗, the result is im-

mediate. ut

The case ofM′, which is slightly more involved, is addressed in the following
lemma.

Lemma 4. |M′| ≤ k∗.

Proof. For convenience in the following without loss of generality let M′ =
{b1, . . . , bk′′} where k′′ = |M′| ≤ k′, and let {b∗1, . . . , b∗k∗∗} ⊆ s∗ be the set of
optimal solution bins each containing Γ deviations, with bins ordered in non-
increasing smallest deviation size, so âi∗k ≥ âi∗k+1

for each k ∈ [k∗∗ − 1], and

where k∗∗ ≤ k∗. Assume for the sake of deriving a contradiction that k∗∗ < k′′.

Then, since
⋃k′′
j=1 bj ⊆

⋃k∗∗
j=1 b

∗
j ,

k′′∑
j=1

ā(bj) ≤
k∗∗∑
j=1

ā(b∗j) ≤ k∗∗ −
k∗∗∑
j=1

âΓ (b∗j).

We now show that
∑k∗∗

j=1 âΓ (bj) ≤
∑k∗∗

j=1 âΓ (b∗j). To do so we show by induction
on k = 1, . . . , k∗∗ − 1 for a fixed instance and corresponding algorithm bins and
optimal solution bins, b1, . . . , b

′′
k and b∗1, . . . , bk∗∗ , respectively. For k = 1, and all

i ∈ b1 by the fact that these items either do not deviate in s∗ or are in the set of
smallest deviations, {i∗1, . . . , i∗k∗∗}, it follows that âi ≤ âi∗1 , so âΓ (b1) ≤ âΓ (b∗1).

Now assume
∑k
j=1 âΓ (bj) ≤

∑k
j=1 âΓ (b∗j) in order to prove that

∑k+1
j=1 âΓ (bj) ≤∑k+1

j=1 âΓ (b∗j). By the induction hypothesis

k∑
j=1

ā(bj) > 1−
k∑
j=1

âΓ (bj)

≥ 1−
k∑
j=1

âΓ (b∗j)

≥
k∑
j=1

ā(b∗j)

≥
k∑
j=1

ā(b∗j \ Γ (b∗j) ∪ {i∗j}).

The above inequality and the ordering of the items imply that

âmax ≡ max
i∈

⋃k∗∗
j=k+1(b∗j \Γ (b∗j)∪{i∗j })

âi ≥ max
i∈bk+1

âi.

8 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

Since âi∗k+1
=âmax it follows that âΓ (b∗k+1) ≥ âΓ (bk+1). Together with the induc-

tion hypothesis it implies that
∑k+1
j=1 âΓ (bj) ≤

∑k+1
j=1 âΓ (b∗j).

Note that âΓ (bj) ≤ 1 for j = 1, . . . , k′′; otherwise if âΓ (bj) > 1 for some
j ∈ [k′′], then there is some i ∈ bj that has âi > 1/Γ . But then i ∈ b∗l for some
l ∈ [k∗∗] and since i is either a nondeviating item and âΓ (b∗l) > 1, or i = i∗l and
it implies that b∗l may contain only Γ − 1 deviating items, thereby establishing
a contradiction. Now, by definition of the algorithm,

k′′∑
j=1

ā(bj) >

k′′−1∑
j=1

ā(bj) > k′′ − 1−
k′′−1∑
j=1

âΓ (bj) ≥ k∗∗ −
k∗∗∑
j=1

âΓ (b∗j).

The last inequality followed from k′′ − 1 ≥ k∗∗ and âΓ (bj) ≤ 1 for j ∈ [k′′],

implying that
∑k′′−1
j=k∗∗+1 âΓ (bj) ≤ k′′ − k∗∗.

Proof of Lemma 2. Lemmas 3 and 4 immediately imply that k′ ≤ Γk∗, thus
proving the claim of Lemma 2. ut

Proof of Theorem 2. After step 2 of the algorithm the total number of bins is at
most 2Γk∗, concluding the proof of Theorem 2. ut

To complete the analysis, we establish the following lower bound on the
approximation ratio of Next-Fit.

Theorem 3. If the items are ordered according to (2) or (1), then the approx-
imation ratio of Next-Fit for ΓRBP is at least 2Γ

3 .

Proof. Let us define an instance where the ordering (2) can lead to Step 1 of
Next-Fit using k′ = Γ bins while OPT = 3. Every row of the Γ × Γ matrix
below corresponds to the set of items in a bin (after the Step 1) of Next-Fit
algorithm

(ε, 1/Γ − δ1) (0, 1/Γ − δ1) . . . (0, 1/Γ − δ1)
...

...
. . .

...
(ε, 1/Γ − δΓ) (0, 1/Γ − δΓ) . . . (0, 1/Γ − δΓ)

(3)

where ε ≤ 1/Γ and δ1 ≤ · · · ≤ δΓ < ε/Γ . On the one hand, ε+Γ · (1/Γ − δl) > 1
for each l ∈ [Γ], so step 1 of Next-Fit outputs Γ bins. On the other hand, an
optimal solution can pack all the items above except the ones in the first column
into a single bin because Γ ·1/Γ−δ1 ≤ 1. Further, the total weight of the first Γ/2

items of the first column sums up to Γ/2 ·(1/Γ +ε)−
∑Γ/2
l=1 δl ≤ 1−

∑Γ/2
l=1 δl ≤ 1,

and similarly for the last Γ/2 items, so an optimal solution may pack the first
column using two bins.

This instance can be adapted to establish a lower bound for the approxima-
tion ratio of Next-Fit when items are ordered according to (1). We consider an
example that yields a lower bound on the approximation ratio of Next-Fit in
solving ΓRBP when the items are ordered according to (1). For some c ≥ Γ 2,

Title Suppressed Due to Excessive Length 9

ε′ = 2
Γ (1+c) , ε = 1

Γ (Γ 2+Γ−1) consider the instance given by the following Γ × Γ
matrix:

(ε′, cε′) (ε, cε) . . . (ε, cε)
...

...
. . .

...
(ε′, cε′) (ε, cε) . . . (ε, cε)

It can be verified that Next-Fit opens a bin for each row, since (1 + c)ε′+ (Γ −
1)(1 + c)ε > 1. The optimal solution opens 3 bins, 2 bins to store the items of
the first column and another bin to store the rightmost Γ −1 columns. Although
in this example all items i ∈ [n] are set to have ratios âi/āi = c, the example
can be extended in a straightforward manner with slight perturbations of the
item sizes so that the ratios will be strictly decreasing for the items ordered from
left-to-right and top-to-bottom in this matrix. ut

We conclude the section by emphasizing our results for the special cases
of Γ = 1 and Γ = 2, where the straight-forward Next-Fit algorithm with
ordering (2) obtains the best approximation guarantees using the analysis of the
current paper.

Corollary 1. If the items are ordered according to (2) and Γ = 1 or Γ = 2,
then Next-Fit is a 2-factor or 4-factor approximation algorithm, respectively,
for ΓRBP.

In the section that follows we consider constant-factor approximation factors
that do not depend on the parameter Γ .

4 A constant-factor approximation algorithm for ΓRBP

The algorithm presented in this section relies on three main ideas. First, we show
in Section 4.1 that we can restrict ourselves to instances of ΓRBP with small
items; that is, ai ≤ 1

Γ and âi ≤ 1
Γ for each i ∈ [n]. Specifically, we show how to

convert any ρ-approximation algorithm for the latter special case of the problem
with small items into a general (ρ+ρbp)-approximation for ΓRBP, where ρbp is
an approximation factor guarantee of some algorithm for classical bin packing.
First note that having only small items, any set of bΓ/2c items can always be
packed together into a bin. This fact is stated as the following observation.

Observation 1 Given an instance I to the ΓRBP satisfying âi ≤ 1/Γ and

ai ≤ 1/Γ for each i ∈ [n], any subset X ⊆ [n] can be packed in d 2|X|
Γ e bins.

Next, we introduce in Section 4.2 variants of ΓRBP where items are packed
into bins as in standard bin packing but some of the items are placed in two
designated special bins. The deviations will be ignored so that they are irrelevant
in these two bins, while in each of the other regular bins only a single item can
deviate. One of the special bins that will be referred to as the trash bin, cannot
contain more than k(Γ − 1) items, where k is the number of regular bins used
in the solution. The trash contains and “mimics” the Γ − 1 deviating items of

10 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

each bin in an optimal solution. Following Observation 1, items in the trash
can be packed into at most 2k additional bins. The problem with trash remains
hard because of the capacity of the regular bins, so we focus on almost feasible
solutions, which are allowed to exceed each regular bin by one item. We show
in that section how finding almost feasible solutions no worse than the optimal
solution for the problem with trash leads to an approximation algorithm for
ΓRBP with small items.

Finally, we present in Section 4.3 a dynamic programming (DP) algorithm
that outputs an almost feasible solution using a number of bins that is at most
that of the optimal solution of the original ΓRBP problem. Essentially, for each
bin the DP algorithm guesses a particular item that deviates. Then it greedily
packs the remaining items with largest nominal values into the trash.

We maintain throughout the section the assumption that the items are or-
dered according to (2).

4.1 Robust bin packing with small items

We define ΓRBP with small values as the ΓRBP problem restricted to inputs
where for any i ∈ [n], ai ≤ 1

Γ and âi ≤ 1
Γ . The following proposition motivates

our focus on ΓRBP with small values.

Proposition 1. Any polynomial ρ-approximation algorithm for ΓRBP with in-
put satisfying âi ≤ 1/Γ and ai ≤ 1/Γ for each i ∈ [n], can be turned into a
polynomial-time (ρ+ ρbp)-approximation algorithm for ΓRBP. 4

Proof. Given an instance I of ΓRBP, we define the small items S = {i ∈ [n] :
ai ≤ 1/Γ and âi ≤ 1/Γ} and the large item as B = [n] \ S. We use the given
ρ-approximation algorithm to pack S into kS bins, so that kS ≤ ρOPT(I). Then,
we observe that in any packing of B, each bin contains at most Γ items, so that all
items deviate in these bins. Hence, the least number of bins needed to pack items
in B is is given by a solution that is optimal to the standard bin packing problem
for this same set of items B where the size of each item i ∈ B is a′i = ai + âi.
Let I ′ denote this instance of standard bin packing So, OPTbp(I ′) ≤ OPT(I)
(where OPTbp denotes the optimal objective value of standard bin packing),
and observe that any optimal solution of standard bin packing for items B is a
solution that is feasible for the ΓRBP instance I using the same number of bins.
Using a ρbp-approximation algorithm for standard bin packing to pack B in kB
bins, it follows that kB ≤ ρbpOPTbp(I ′) = ρbpOPT(I) ≤ ρbpOPT(I). Thus, the
packing of B and S is a packing of I satisfying kS + kB ≤ (ρ+ ρbp)OPT(I). ut

Notice that instances with small items are not easier to approximate by Next-
Fit as illustrated by the instance defined by (3), in Section 3, whose items satisfy
ai, âi ≤ 1/Γ for all i ∈ [n].

4 In general, if we have a polynomial time additive approximation algorithm using
OPT + f(OPT) bins and polynomial time ρ-approximation algorithm for ΓRBP
with small values then our algorithm uses OPT (ρ+ 1) + f(OPT) bins for ΓRBP in
polynomial time.[NG??]

Title Suppressed Due to Excessive Length 11

4.2 Bin-packing with trash

For any X ⊆ [n], we define ãΓ (X) = Γ â1(X) (ãΓ (X) is Γ times the largest
deviating value of an item in X) and f̃(X) = a(X) + ãΓ (X). We introduce next
a decision problem ΓRBP-T that is related to ΓRBP.

ΓRBP-T (Robust bin packing with trash)
Input: (I, k, t) where I is an instance of ΓRBP and k, t ∈ N.
Output: ’Yes’ if a solution exists, which is a partition of the set of items

into k + 1 sets b1, . . . , bk and T (called the trash) such that:

– f̃(bj) ≤ 1 for each j = 1, . . . , k
– |T | ≤ t

and ’No’ otherwise.

Notice that although the input of ΓRBP-T is assumed to include only small
items, it is possible to have an item i ∈ [n] such that f̃({i}) > 1, implying that
i ∈ T . The following two lemmas suggest how the decision problem ΓRBP-T
may be used to determine an approximate solution of ΓRBP.

Lemma 5. For any input I of ΓRBP where k∗ = OPT(I), (I, k∗, (Γ − 1)k∗)
is a yes instance of ΓRBP-T.

Proof. Given an optimal solution with objective value k∗ of ΓRBP we create a
solution to ΓRBP-T problem as follows. For some (arbitrary) j ∈ [k∗], let b∗j be
a bin of the considered optimum. Let Nj = b∗j \ Γ (b∗j) (the non-deviating items
of b∗j). For j = 1, . . . , k∗, let

Xj =

{
max(Γ (b∗j)) |Γ (b∗j)| = Γ

∅ otherwise.

We define b′j = Nj ∪ Xj , and adjoin items of Yj = b∗j \ b′j to the trash. Note
that Yj is either the set of Γ − 1 largest deviating items of b∗j , or otherwise
b∗j = Γ (b∗j) and |Γ (b∗j)| < Γ . So, (b′1, . . . , b

′
k∗ , T) is a yes instance for the ΓRBP-

T problem since evidently f̃(b′j) = a(b′j) + ãΓ (b′j) ≤ a(b∗j) + âΓ (b∗j) ≤ 1 and also
|T | ≤ (Γ − 1)k∗. ut

The next lemma establishes that yes-instances of ΓRBP-T can be used to
construct solutions of ΓRBP using at most a number bins that is a constant
factor of the number of bins used by ΓRBP-T.

Lemma 6. For any instance I of ΓRBP satisfying âi ≤ 1/Γ and ai ≤ 1/Γ for
each i ∈ [n], and integer k, given a yes-instance of (I, k, Γk) of ΓRBP-T, we
can compute in polynomial time a solution of 3k bins for I.

Proof. Given a solution b1, . . . , bk, T for (I, k, Γk) of ΓRBP-T the bins re-
main feasible in ΓRBP as for each j ∈ [k], fΓ (bj) = a(bj) + âΓ (bj) ≤ a(bj) +

ã(bj) = f̃(bj). Then, Observation 1 implies that the trash T can be packed into
dkΓ/(Γ/2)e ≤ 2k additional bins. ut

12 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

Notice that the trash T in the instance constructed in this lemma has |T | = Γk,
which exceeds the |T | = (Γ − 1)k in Lemma 5. The additional k “slots” are
necessary for deciding ΓRBP-T as will be illustrated in the analysis that follows.

In order to develop an algorithm and in particular a dynamic program (DP)
for deciding ΓRBP-T it is convenient to consider an optimization variant of
ΓRBP-T, to be called G-ΓRBP-T for “generalized robust bin packing with
trash”. This variant is defined in the following for a fixed instance I of ΓRBP
and a given integer k (so that they are not considered a part of the input).

Generalized robust bin packing with trash (G-ΓRBP-T)
Input: I ′ = (q, t, `), where q ∈ [n], t ∈ [(Γ − 1)k]0, and ` ∈ [k + 1].
Output: A feasible solution s is a partition of Jq, nK into k − ` + 3

sets, given as a triple (L, {bj : j ∈ J`, kK}, T), such that

– for any j ∈ J`, kK, f̃(bj) ≤ 1 (the k − ` + 1 regular bins
must satisfy the fill constraints of ΓRBP-T)

– |T | ≤ t (we only allow t items in the trash)
– min(b`) = q (meaning that the deviating item of b` is q)

Minimize: c(s) = a(L)

The objective of G-ΓRBP-T is to pack a part (defined by Jq, kK) of the instance
I for ΓRBP-T given a fixed budget of resources (the number of bins and the
size of the trash) while minimizing the sum only of nominal sizes of items in the
leftover itemset L. The last constraint (the deviating item of b` is q), which may
appear somewhat artificial, will allow determining optimal solutions of ΓRBP-
Tfrom optimal solutions of G-ΓRBP-T, by carefully enumerating possibilities
of largest deviating item to be packed each bin in an intelligent way; considering
only those possibilities corresponding to solutions that are close to being feasible
(a notion to be defined more precisely in the following) and whose objective value
is at most that of an optimal solution. This enumeration scheme will be shown to
be efficiently solvable by a DP. For convenience, the objective value of infeasible
solutions s, including for example s = (∅, ∅, ∅), is defined as c(s) =∞.

The capacity constraints of the bins make G-ΓRBP-Thard to solve in gen-
eral. Hence, following the spirit of Next-Fit introduced previously, we introduce
below almost feasible solutions, which can exceed the capacity of each bin by
one item.

Definition 1 (almost feasible solution). We say that a bin b exceeds by at
most one item iff f̃(b) > 1 and f̃(b \ {i}) ≤ 1 where i = max(b). Given an input
I ′ = (q, t, `) of G-ΓRBP-T, we say that a solution is almost feasible iff all the
G-ΓRBP-T constraints are satisfied, except that for any j ∈ J`, kK, we allow
that bj exceeds by at most one item instead of f̃(bj) ≤ 1.

Definition 2 (an optimal almost-feasible solution). Given an input I ′ =
(q, t, `) of G-ΓRBP-T, we say that a solution s = (L, {b1, . . . , bk}, T) is an
optimal almost-feasible solution iff s is almost feasible with c(s) ≤ OPT(I ′).

Title Suppressed Due to Excessive Length 13

The relation between G-ΓRBP-T and ΓRBP-T is characterized in the fol-
lowing two lemmas. Let OPT(I ′) be the optimal solution cost of G-ΓRBP-T
instance I ′ (notice that an optimal solution must also be feasible for the given
problem).

Lemma 7. For any input I of ΓRBP and k such that (I, k, (Γ − 1)k) is a
yes input of ΓRBP-T, there exist a positive integer q ∈ [(Γ − 1)k] such that
OPT(q, (Γ − 1)k − (q − 1), 1) = 0.

Proof. Consider a ΓRBP-T yes-instance (I, k, (Γ −1)k) and corresponding par-

tition solution {b1, . . . , bk}, T . Let q = min
(⋃k

j=1 bj

)
(the item with smallest

index that is packed in a bin). Let t = (Γ − 1)k − (q − 1). By definition of
q and (2), items in [q − 1] must be in T , and thus it means that the triple
(∅, {b1, . . . , bk}, T \ [q−1]) is a feasible solution of G-ΓRBP-T (q, t, 1) with cost
0. ut

Lemma 8. Let us fix I an input of ΓRBP and k an integer. For any q ∈
[(Γ − 1)k], t = (Γ − 1)k − (q − 1), given an almost feasible 0 cost solution for
G-ΓRBP-T instance I ′ = (q, t, 1), a solution for ΓRBP-T instance (I, k, Γk)
can be determined in polynomial time.

Proof. Let (∅, {b1, . . . , bk}, T) be an optimal solution of G-ΓRBP-T instance
I ′ = (q, t, 1) with cost 0. For j ∈ [k], let b′j = bj \ max(bj). Let T ′ = T ∪ [q −
1] ∪

⋃k
j=1 max(bj). We now have f̃(b′j) ≤ 1 for any j ∈ [k] (as bj exceeds by at

most one item), and |T ′| ≤ Γk, so {b′1, . . . , b′k, T} is a yes-instance for ΓRBP-T
(I, k, Γk) thus concluding the proof. ut

The above lemmas imply that any algorithm outputting an (approximately)
optimal almost-feasible solution for G-ΓRBP-T can be used to devise approx-
imation algorithm for ΓRBP with small values, which is illustrated by Algo-
rithm 2.

1 s∗ ← ([n], ∅, ∅), lb← 1, ub← n
2 while lb 6= ub do
3 k ← d lb+ub2 e
4 I ′ ← (1, Γ (k − 1), 1)
5 Let s = (L, {b1, . . . , bk}, T), be an optimal almost-feasible solution

returned by the G-ΓRBP-T algorithm given input I ′
6 if c(s) = 0 then
7 ub← k
8 s∗ ← s (accordingly T ∗ ← T)

9 else
10 lb← k + 1

11 Pack items in T ∗ into bins b∗k+1, . . . , b
∗
k̄

according to Observation 1.
return: b∗1, . . . , b

∗
k̄

Algorithm 2: Algorithm for ΓRBP with small values.

14 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

Proposition 2. Algorithm 2 is a 3-approximation for ΓRBP with small values.

Proof. Let A be a G-ΓRBP-T algorithm that is guaranteed to output an opti-
mal almost-feasible solution given instance (q, t, `), and whose output will be de-
notes by c(A(q, t, `)). Let k∗ = OPT(I) be the optimal value of ΓRBP. Lemma 5
implies that (I, k∗, (Γ − 1)k∗) is a yes-instance of ΓRBP-T, so Lemma 7 im-
plies that there exists q ∈ [(Γ − 1)k∗] and t = (Γ − 1)k∗ − (q − 1) for which
OPT(q, t, 1) = 0. Thus, the assumption implies that A outputs an almost feasible
solution s that satisfies c(s) ≤ 0, so that c(s∗) ≤ k∗. Applying Lemma 8, we can
compute a solution of (I, k∗, Γk∗) for ΓRBP-T, which corresponds to a solution
using 3k∗ bins for ΓRBP following Lemma 6. ut

The next section describes a dynamic programming algorithm that outputs an
optimal almost-feasible solution for G-ΓRBP-T.

4.3 A DP algorithm for G-ΓRBP-T

We now define a DP scheme that given instance I ′ = (q, t, `) provides an almost
feasible solution s with c(s) ≤ OPT(I ′). We start by providing a gentle descrip-
tion before formally defining the algorithm and proving its correctness. Let s∗

be an optimal solution for I ′, with bins ordered in non-increasing deviation size.
The DP algorithm starts by enumerating g = (q′, t′) ∈ Jq + 1, nK × [t]0. One of
the enumerated g must necessarily correspond to the optimal solution s∗ in the
following sense:

– q′ = min(b∗`+1)
– t′ is the number of items trashed from X ′ in s∗, where X ′ = Jq, q′ − 1K

Because of the ordering of the bins in the optimal solution s∗, the items of X ′

must br packed in bins b∗` , L
∗ or T ∗. As the DP algorithm mimics the optimal

solution, it packs X ′ in b`, L and T . Specifcally, the DP algorithm:

– Packs q to b` (as required by the corresponding constraint of G-ΓRBP-T).
– Packs the remaining t′ largest nominal value items of X ′ in the trash.
– Packs the remaining items of X ′ into b` until f̃(b`) > 1 or X ′ = ∅.
– Packs the remaining items of X ′ into L until X ′ = ∅.

We discuss next where the others items (of Jq′, nK) are packed. Notice that in s∗,
bin b∗` may contain items of Jq′, nK, and thus the DP algorithm may also have
to pack items of Jq′, nK into b`. To allow for that possibility, we postpone the
decision of which items of Jq′, nK to pack into b`. Specifically, let ∆` be the size of
the empty space in b` after packing X ′ as described above, and let LX

′
= L∩X ′.

After the previous steps, the DP algorithm makes a recursive call to get a solution
s̃ that packs Jq′, nK into regular bins, a trash, and a leftover itemset b̃0. So far
solution s̃ has not benefited from the empty space ∆`. However, we can unpack
items from b̃0 to b` while ensuring that these items do not deviate in b` (as all
these items have index greater than q).

Title Suppressed Due to Excessive Length 15

Our DP scheme is defined by Algorithm 3. An iteration of this algorithm is
further illustrated in Figure 1.

1 s← (∅, ∅, ∅) // Where c((∅, ∅, ∅)) =∞
2 if ` = k then
3 X ′ ← Jq, nK
4 T ← {min(t, n− q) largest items in terms of nominal value in X ′}
5 Pack X ′ \ T in bk until f̃(bk) > 1 or X ′ \ T = ∅
6 Pack the remaining items in L

return: s = (L, {bk}, T)
7 for g = (q′, t′) ∈ Jq + 1, nK× [min(t, q′ − q)]0 do
8 Pack q in b`
9 X ′ ← Jq + 1, q′ − 1K

10 T ′ ← {t′ largest items in terms of nominal value in X ′}
11 Pack X ′ \ T ′ in b` until f̃(b`) > 1 or X ′ \ T ′ = ∅
12 Pack the remaining items in X ′ \ T ′ in L

13 s̃ = (b̃0, {b̃`+1, . . . , b̃k}, T̃)← DP(q′, t− t′, `+ 1) .

14 Unpack b̃0 into b` until f̃(b`) > 1 or all items of b̃0 are unpacked,

then unpack the potentially remaining items of b̃0 into L.

15 sg ← (L, {b`, b̃`+1 . . . , b̃k}, T̃ ∪ T ′)
16 if c(sg) < c(s) then s← sg

return: s
Algorithm 3: DP(q, t, `)

q

q′ b0

b`f̃({q})

T
|T ′| = t′

X ′

Fig. 1. DP algorithm handling guess (q′, t′), starting from item q.

Let us introduce notations to describe the packing of the DP. Let bX
′

` = b`∩X ′
be the items of X ′ packed in b` by the DP, and let ∆` = 1 − f̃(bX

′

`) (∆` could

be negative). We define similarly LX
′

= L∩X ′. Let c0 = a(LX
′
). Notice that c0

16 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

corresponds to the total non deviating size of items packed in L after Step 12 of
Algorithm 3. The following lemma establishes the correctness of the algorithm.

Lemma 9. For any I ′ = (q, t, `) input of G-ΓRBP-T, DP(I ′) determines an
optimal almost feasible solution.

Proof. The proof is by induction on `.

` = k. Consider a solution s = (L, {bk}, T) output by the algorithm and optimal
solution s∗ = (b∗0, {b∗k}, T ∗). In step 5, either b` = {q}∪X ′\T , in which case L = ∅
and ā(L) ≤ ā(b∗0), or f̃(bk) > 1 ≥ f̃(b∗k). Then, as q = min(bk) = min(b∗k) (since
both solutions must satisfy this constraint) it implies that Γ â1(b∗k) = Γ â1(bk),
and so ā(bk) > ā(b∗k). Then, by the definition of T (in step 4 of the algorithm),
also ā(T) ≥ ā(T ∗), so it must be that ā(L) < ā(b∗0).

Inductive step. Suppose now that, for some ˆ̀ ∈ [k − 1], the claim is true

for ` = ˆ̀ + 1 and that s∗ = (b∗0, {b∗ˆ̀, . . . , b∗k}, T ∗) is optimal for G-ΓRBP-T

(q, t, ˆ̀). Let q∗ = min(bˆ̀+1), let X∗ = Jq, q∗ − 1K and observe that X∗ 6= ∅.
Next, observe that (b∗0 \ X∗, {b∗ˆ̀+1

, . . . , b∗k}, T ∗ \ X∗) is optimal for G-ΓRBP-

T (q∗, t̂, ˆ̀ + 1) where t̂ = |T ∗ \X∗| ≤ t. Otherwise, there would exist some
feasible (Ľ, {b̌ˆ̀+1, . . . , b̌k}, Ť) that has ā(Ľ) < ā(b∗0 \ X∗) and then (Ľ ∪ (b∗0 ∩
X∗), {{q} ∪ (bˆ̀∩X∗), b̌ˆ̀+1, . . . , b̌k}, Ť ∪ (T ∗ ∩X∗)) would be feasible for (q, t, ˆ̀)

with ā(b̄ ∪ (b∗0 ∩X∗)) < ā(b∗0), thereby contradicting the optimality of s∗.
By the inductive hypothesis ā(L̃) ≤ ā(b∗0 \ X∗) for some almost feasible

(L̃, {b̃ˆ̀+1, . . . , b̃k}, T̃) that is output by the algorithm for (q∗, t̂, ˆ̀ + 1), where

q∗ > q and t̂ = |T ∗ \X∗| ≤ t. Therefore,

ā(b∗0) = ā(b∗0 \X∗) + ā(b∗0 ∩X∗) ≥ ā(L̃) + ā(b∗0 ∩X∗). (4)

Let us now consider the iteration g = (q∗, t − t̂) of the main loop (starting in
step 7) and L and bˆ̀ the corresponding bins of sg. By steps 8, 11 and 14 of

the algorithm, L \ L̃ = (X∗ \ T ′) \ bˆ̀. In line 11 of the algorithm if f̃(bˆ̀) ≤ 1,

then L ⊆ L̃ and L \ L̃ = ∅. Otherwise f̃(bˆ̀) > 1 ≥ f̃(b∗ˆ̀). Recalling that

both solutions must satisfy the given constraint, q = min(bˆ̀) = min(b∗ˆ̀), it

implies that Γ â1(bˆ̀) = Γ â1(b∗ˆ̀). Thus, ā(bˆ̀) > ā(b∗ˆ̀). Also, by definition of T ′,

ā(T ′) ≥ ā(T ∗ ∩X∗). Thus, ā(L \ L̃) ≤ ā(b∗0 ∩X∗). Combined with (4) it finally
implies that ā(b∗0) ≥ ā(L̃) + ā(b∗0 ∩X∗) ≥ ā(L \ L̃) + ā(L̃) = ā(L). ut

Lemma 10. Suppose that ai, âi ≤ 1/Γ for all i ∈ [n]. Then, Algorithm 2, with
Algorithm 3 as a subroutine for determining almost-feasible optimal solutions
for G-ΓRBP-T, is a 3-factor approximation algorithm for ΓRBP. Further, the
running time complexity bound of this algorithm is in O(n6log(n)).

Proof. Proposition 2 and Lemma 9 applied to Algorithm 3 imply that there
exists a 3-approximation for ΓRBP with small values. The different number of

Title Suppressed Due to Excessive Length 17

inputs of the DP is O(n3), and the running time for a fixed input is O(n3).
Then, since the binary search of Algorithm 2 takes O(log n) iterations it follows
that the total running time is in O(n6 log n). ut

Now, Lemma 10 together with Proposition 1 imply the following theorem
using the ρbp = 3

2 -approximation first-fit decreasing (FFD) algorithm, whose
running time complexity bound is clearly dominated by that of the algorithm
for ΓRBP with small values, for standard bin packing; see for example [26].

Theorem 4. There exists a 4.5-approximation algorithm for ΓRBPwith an
O(n6log(n)) runtime complexity bound.

In particular, combining FFD to to pack large items i ∈ [n], for which with
āi > 1/Γ or âi > 1/Γ and Algorithm 2 using Algorithm 3 as a subroutine to pack
the other (small) items, is an algorithm that satisfies the claim of Theorem 4.
Also note that while not a focus of the current paper, in the asymptotic setting
(as n tends to be large) using instead an asymptotic FPTAS for packing the
large items, for ε > 0, an asymptotic approximation of 4+ ε could be guaranteed
in running time that is polynomial in n and 1/ε. Finally, although this result
establishes a constant factor approximation for our problem when Γ is a part of
the input, it can be observed that in the special case that Γ ≤ 2, the next-fit
approximation established by Theorem 1 may be preferred as simple O(n log n)
approximation with a 2Γ ≤ 4 approximation guarantee.

References

1. Adler, M., Gibbons, P., Matias, Y.: Scheduling space-sharing for internet advertis-
ing. Journal of Scheduling 5, 103–119 (2002)

2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of minmax and minmax
regret versions of some combinatorial optimization problems. Discrete Optimiza-
tion 179, 281–290 (2007). https://doi.org/10.1016/j.ejor.2006.03.023

3. Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of
combinatorial optimization problems: A survey. European Journal of Operational
Research 197(2), 427–438 (2009)

4. Álvarez-Miranda, E., Ljubic, I., Toth, P.: A note on the Bertsimas & Sim algo-
rithm for robust combinatorial optimization problems. 4OR 11(4), 349–360 (2013).
https://doi.org/10.1007/s10288-013-0231-6

5. Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio
for online bin packing. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (2015)

6. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A New and Improved
Algorithm for Online Bin Packing. In: Azar, Y., Bast, H., Herman, G. (eds.) ESA.
LIPIcs, vol. 112, pp. 5:1–5:14. Dagstuhl, Germany (2018)

7. Basu Roy, A., Bougeret, M., Goldberg, N., Poss, M.: Approximating robust bin-
packing with budgeted uncertainty (2019), Algorithms and Data Structures Sym-
posium (WADS)

8. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of Opera-
tions Research 23(4), 769–805 (1998). https://doi.org/10.1287/moor.23.4.769

18 Aniket Basu Roy, Marin Bougeret, Noam Goldberg, and Michael Poss

9. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Uni-
versity Press (2009). https://doi.org/10.1515/9781400831050

10. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1-3), 49–71 (2003)

11. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53
(2004)

12. Bougeret, M., Jansen, K., Poss, M., Rohwedder, L.: Approximation results
for makespan minimization with budgeted uncertainty. CoRR abs/1905.08592
(2019), http://arxiv.org/abs/1905.08592, accepted in WAOA

13. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncer-
tainty. Discrete Applied Mathematics 261, 93–107 (2019)

14. Buchheim, C., Kurtz, J.: Robust combinatorial optimization under con-
vex and discrete cost uncertainty. EURO J. Computational Optimiza-
tion 6(3), 211–238 (2018). https://doi.org/10.1007/s13675-018-0103-0,
https://doi.org/10.1007/s13675-018-0103-0

15. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online
algorithms for multidimensional bin packing: A survey. Computer Science Review
24, 63–79 (2017)

16. Dexter, F., Macario, A., Traub, R.D.: Which algorithm for scheduling add-on elec-
tive cases maximizes operating room utilization? use of bin packing algorithms and
fuzzy constraints in operating room management. Anesthesiology 91, 1491–1500
(Nov 1999)

17. Goetzmann, K., Stiller, S., Telha, C.: Optimization over integers with robustness
in cost and few constraints. In: WAOA. pp. 89–101 (2011)

18. Goldberg, N., Karhi, S.: Online packing of arbitrary sized items into designated
and multipurpose bins. European Journal of Operational Research 279(1), 54–67
(2019)

19. Gounaris, C.E., Wiesemann, W., Floudas, C.A.: The robust capacitated vehicle
routing problem under demand uncertainty. Operations Research 61(3), 677–693
(2013)

20. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing 3(4), 299–325 (1974)

21. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proc. 23rd Annual Symp. Foundations of
Computer Science (sfcs 1982). pp. 312–320 (Nov 1982)

22. Kasperski, A., Zieliński, P.: On the approximability of minmax (regret) network
optimization problems. Information Processing Letters 109(5), 262–266 (2009)

23. Kasperski, A., Zielinski, P.: On the approximability of robust span-
ning tree problems. Theor. Comput. Sci. 412(4-5), 365–374 (2011).
https://doi.org/10.1016/j.tcs.2010.10.006

24. Pessoa, A.A., Poss, M., Sadykov, R., Vanderbeck, F.: Branch-and-cut-and-price for
the robust capacitated vehicle routing problem with knapsack uncertainty (2020),
https://hal.inria.fr/hal-01958184/

25. Poss, M.: Robust combinatorial optimization with knapsack uncertainty. Discrete
Optimization 27, 88–102 (2018). https://doi.org/10.1016/j.disopt.2017.09.004

26. Simchi-Levi, D.: New worst-case results for the bin-packing problem 41, 579–585
(1994)

27. Song, G., Kowalczyk, D., Leus, R.: The robust machine availability problem–bin
packing under uncertainty. IISE Trans. pp. 1–35 (2018)

Title Suppressed Due to Excessive Length 19

28. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-
machine scheduling problems. J. Scheduling 18(6), 575–592 (2015)

