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Motivated by the problem of jet–flap interaction noise, we study the tonal dynamics
that occurs when an isothermal turbulent jet grazes a sharp edge. We perform
hydrodynamic and acoustic pressure measurements to characterise the tones as a
function of Mach number and streamwise edge position. The observed distribution
of spectral peaks cannot be explained using the usual edge-tone model, in which
resonance is underpinned by coupling between downstream-travelling Kelvin–
Helmholtz wavepackets and upstream-travelling sound waves. We show, rather, that
the strongest tones are due to coupling between Kelvin–Helmholtz wavepackets and
a family of trapped, upstream-travelling acoustic modes in the potential core, recently
studied by Towne et al. (J. Fluid Mech. vol. 825, 2017) and Schmidt et al. (J. Fluid
Mech. vol. 825, 2017). We also study the band-limited nature of the resonance,
showing the high-frequency cutoff to be due to the frequency dependence of the
upstream-travelling waves. Specifically, at high Mach number, these modes become
evanescent above a certain frequency, whereas at low Mach number they become
progressively trapped with increasing frequency, which inhibits their reflection in the
nozzle plane.

Key words: aeroacoustics, instability, jet noise

1. Introduction

Resonant phenomena are widely encountered in fluid systems, where they are
underpinned by diverse flow physics. In flow-acoustic resonance, they may be
exploited to produce pleasant, desired effects, as is the case with musical wind

† Email address for correspondence: peter.jordan@univ-poitiers.fr
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334 P. Jordan and others

instruments (Howe 1975; Coltman 1976; Fabre et al. 2012). Or they may constitute
an undesired behaviour that complicates the design of engineering systems. This
can occur for flow in the presence of sharp edges (Richardson 1931; Curle 1953;
Powell 1953a) or cavities (Rossiter 1964; Rowley, Colonius & Basu 2002; Kegerise
et al. 2004); it is the case for imperfectly expanded supersonic jets, that screech
(Powell 1953b; Alkislar, Krothapalli & Lourenco 2003; Edgington-Mitchell et al.
2014), impinging jets (Powell 1988; Krothapalli et al. 1999; Henderson, Bridges &
Wernet 2005) and globally unstable flows more generally (Huerre & Monkewitz 1990;
Monkewitz, Huerre & Chomaz 1993).

Resonance is most often the result of an identifiable feedback that involves a
disturbance, initiated at some point in the flow, and that triggers, at a distant
point, a second disturbance that influences, or feeds back to, the inception point.
Synchronisation occurs when the phases of the disturbances are appropriately matched
at the inception and reflection points. In this long-range feedback scenario, the
inception and reflection points may correspond to physical boundaries, as is the case
in cavity flows, or they may arise due to other flow phenomena, such as shocks
in underexpanded supersonic jets, or turning points in slowly spreading mean flows
(Rienstra 2003; Towne et al. 2017). In certain globally unstable flows, resonance may
occur in the absence of solid boundaries, between disturbances of opposite generalised
group velocity when their frequencies and wavenumbers become matched; this is the
case for the saddle-point ringing that underpins absolute instability in wake flows or
low-density jets for instance (Huerre & Monkewitz 1990).

In many of the examples evoked above, the downstream-travelling disturbance is a
convectively unstable Kelvin–Helmholtz wave, and the upstream-travelling disturbance
a sound wave. But in the case of round jets there are other kinds of wave available
for both upstream and downstream transport of fluctuation energy. Tam & Hu (1989)
discuss one such upstream-travelling wave, originally observed by Michalke (1970),
who disregarded it as an artefact of the locally parallel framework of his analysis.
It has been suggested by Tam & Ahuja (1990) that this wave may be important in
explaining the tonal behaviour of impinging subsonic jets, and a recent numerical
study by Bogey & Gojon (2017) shows that this may also be the case for resonance
in impinging supersonic jets, although Weightman et al. (2017) show that free-stream
sound waves can also complete the feedback part of the cycle in such flows. Schmidt
et al. (2017) and Towne et al. (2017) recently discovered that the round jet can
support a number of additional waves. Resonance possibilities in jets are therefore
more numerous than had previously been thought.

The present study was motivated by the new generation of ultra-high-bypass-ratio
turbofan engines and potential problems posed by the closely coupled jet–flap
configurations that such systems involve. With this in mind, we consider the problem
of subsonic jets grazing a sharp edge. While the literature is relatively rich in terms
of the study of jets impinging on flat surfaces (Ho & Nosseir 1981; Landreth &
Adrian 1990; Tam & Ahuja 1990; Krothapalli et al. 1999; Henderson et al. 2005),
or on cylinders, wedges and edges situated within the flow (Powell 1961; Hussain
& Zaman 1978; Staubli & Rockwell 1987; Umeda, Maeda & Ishii 1987), there is
relatively little work on the case where a jet grazes, rather than impinges on, an
edge. Such configurations were considered in the 1970s (Neuwerth 1974; McKinzie
& Burns 1975) and more recently by Lawrence & Self (2015), who observed a
tonal behaviour that they attributed to a resonance involving downstream-travelling
Kelvin–Helmholtz waves and upstream-travelling, free-stream sound waves. We
perform similar experiments, involving a flat rectangular plate whose edge is
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Jet–edge interaction tones 335

(a) (b)

FIGURE 1. Schematic depiction of the experimental set-up. (a) Side view; (b) front view.
Points m1 and m2 are microphones situated, respectively, in the irrotational, hydrodynamic
near field and in the acoustic field.

positioned within the shear layer of a round turbulent jet. The nozzle is the same used
in recent work (Cavalieri et al. 2013; Jordan et al. 2017; Jaunet, Jordan & Cavalieri
2017; Schmidt et al. 2017; Towne et al. 2017; Brès et al. 2018) and among the exit
conditions considered are those of the cited studies. Our objective is to establish if
the strong hydrodynamic and acoustic tones that are observed in this closely coupled
jet–edge configuration can be understood in the framework of the waves considered
by Schmidt et al. (2017) and Towne et al. (2017).

The remainder of the paper is organised as follows. We present the experimental set-
up in § 2. This is followed, in § 3, by an overview of the hydrodynamic and acoustic
pressure fields that result from interaction of the turbulent jet, whose Mach number
is varied, with the plate edge, whose streamwise position is varied. In § 4 we recall
briefly the theoretical framework established by Towne et al. (2017) and then use this
to explain the observed tones. Some concluding remarks are provided in § 5.

2. Experimental set-up

The experiments were performed at the Bruit et Vent jet-noise facility of the Institut
Pprime, Poitiers, France. A schematic depiction of the set-up is shown in figure 1.
This involved a round, isothermal jet of diameter D = 0.05 m and a rectangular
aluminium plate, of dimensions 9D ⇥ 15D ⇥ 0.06D, inclined at 45� to the upstream
jet axis, positioned with one of its long edges on the jet lipline, r = 0.5D, and
at streamwise position, L, which was varied from 2D to 4D in increments of 1D.
The Mach number of the jet was varied from M = 0.6 to M = 1 in increments of
1M = 0.02. The boundary layer inside the nozzle was turbulent due to tripping by a
carborundum strip situated 2.7D upstream of the exit plane (Cavalieri et al. 2013).

Measurements were performed for each configuration using a microphone located at
(x/D, r/D) = (0.08, 0.55) (m1 in figure 1), in order to record the pressure signature
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FIGURE 2. Power-spectral-density maps estimated from hydrodynamic, near-field pressure
recordings (microphone m1 in figure 1) for three streamwise edge positions, (a),
(b) and (c): respectively, L/D = 2, 3 and 4. Blue lines show the poor resonance
predictions based on coupling between downstream-travelling Kelvin–Helmholtz waves and
upstream-travelling free-stream sound waves.
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FIGURE 3. Power-spectral-density maps estimated from acoustic pressure recordings on
the shielded side of the plate, by microphone m2 (cf. figure 1), and for the same three
streamwise edge positions considered in figure 2.

in the irrotational hydrodynamic near field (Jordan & Colonius 2013). All references
to near-field data correspond to measurements provided by this microphone. A second
microphone, situated on the shielded side of the plate (m2 in figure 1), was used to
perform measurements in the acoustic field. Twenty seconds of data were recorded
at a sample rate of 200 kHz and power spectral densities estimated from this using
Welch’s method. Frequency is expressed in non-dimensional form in terms of the
Strouhal number, St = fD/Uj, where f is frequency in Hz, and Uj the jet exit velocity
in m s�1.

3. Acoustic and hydrodynamic tones

The high sample rate and finely resolved Mach number variation allow us to obtain
high-resolution power-spectral-density (PSD) maps (shown in figures 2 and 3 for the
hydrodynamic and acoustic regions, respectively) that comprise a rich ensemble of
spectral tones. Peak levels in the acoustic field are of the order of 170 dB/St, while
levels in the hydrodynamic field are, naturally, considerably higher.

The strongest tones have a similar St �M pattern in both acoustic and hydrodynamic
regions, but this does not correspond to the usual edge-tone scenario, in which
resonance occurs between downstream-travelling Kelvin–Helmholtz wavepackets and
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Jet–edge interaction tones 337

upstream-travelling sound waves – note that, following Towne et al. (2017), we use
the terms upstream- and downstream-travelling to refer to the sign of the generalised
group velocity of a wave (Briggs 1964), rather than its phase velocity. The blue
lines in figure 2 show what would be expected from such resonance, with predictions
made using the methods that will be detailed in § 4.3; it is clear that neither the
frequency spacing nor the Mach number trend of the observed peaks are captured by
this model.

The broadband levels also exhibit an interesting behaviour. There exist Mach
number ranges in which these are strongly suppressed (white regions in figure 2).
Associated with this we see that the multiple low-frequency peaks (St < 0.7) are
replaced by a single, stronger peak, of higher quality factor. Its harmonic also then
appears clearly (e.g. at St = 1.25 for M ⇡ 0.78, L = 2D). This behaviour, which is
repeatable and occurs whether the experiment is run from low to high Mach number
or vice versa, likely corresponds to the onset of strong oscillator behaviour and an
associated nonlinear limit cycle. Further evidence of nonlinear dynamics is manifest in
mode switching, reported in appendix A. Such behaviour, namely switching between
strong, nonlinear self-sustaining oscillations and a weaker, forced, lightly damped
resonance, has also been observed in the cavity tone problem (Rowley et al. 2006).
In the present study, we restrict our attention to linear analysis in order to explain
the feedback cycle and predict the oscillation frequencies.

The pattern of the strongest tones is characterised, for all plate-edge streamwise
positions, by a progressively closer spacing between resonant peaks as either frequency
or Mach number are increased. We refer to this effect as frequency squeezing. Our
goal is to understand and model the flow dynamics responsible for this behaviour.

4. Understanding and predicting the tones

Exploration of the mechanisms responsible for the tonal behaviour discussed above
requires consideration of the different kinds of wave that are supported by subsonic
turbulent jets. These waves have been characterised in local and global frameworks by
Schmidt et al. (2017), and Towne et al. (2017), respectively. The studies show that the
turbulent jet in isolation can support diverse, weak, forced-resonance mechanisms, due
to a rich variety of waves that is briefly summarised in what follows.

4.1. Overview of wave behaviour supported by turbulent jets
The resonance mechanisms studied by Schmidt et al. (2017) and Towne et al. (2017)
in an isolated, isothermal, Mach 0.9 turbulent jet involve two kinds of downstream-
travelling (k+) waves: (i) the well-known Kelvin–Helmholtz instability, that we denote
k+

KH (blue in figures 4 and 5); and (ii) a wave discovered by Towne et al. (2017),
denoted k+

T (green in figures 4 and 5), that only exists in the Mach number range,
0.82 < M 6 1, over a restricted range of frequencies, and whose physics vary within
that range. At the low-frequency end the waves are largely trapped within and guided
by the jet, behaving in the manner of acoustic waves propagating in a soft-walled
cylindrical duct. At the high-frequency end, on the other hand, the waves have support
in the shear layer and it is more appropriate to think of them as shear-layer modes.

The downstream-travelling waves can undergo resonance with four kinds of
upstream-travelling (k�) waves: free-stream sound waves and three kinds of acoustic
jet wave. The first jet wave is that previously discussed by Tam & Hu (1989), and
is denoted k�

TH in the present paper (cyan in figures 4 and 5). As shown by Towne
et al. (2017), this wave exists over the Mach number range, 0 < M 6 0.82, and, like
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338 P. Jordan and others

FIGURE 4. Schematic depiction of waves supported by cylindrical vortex sheet; colours
correspond to those of figure 5.
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FIGURE 5. Vortex-sheet dispersion relations in the range 0.6 6 M 6 0.97. Blue: k+

KH
Kelvin–Helmholtz modes; cyan in range 0.6 6 M 6 0.82: k�

TH modes (Tam & Hu 1989);
cyan in range 0.82 < M 6 0.97: k�

d modes (Towne et al. 2017); red and green, respectively:
k�

p and k+

T acoustic jet modes (Towne et al. 2017); black: k+ and k� free-stream sound
waves (solid: M = 0.6; dash-dot: M = 0.97).

the k+

T wave, its physics depend on the frequency considered. At sufficiently high
frequency it is trapped within and guided by the jet, behaving in the manner of
acoustic modes in a soft-walled duct. At lower frequencies, on the other hand, the
mode has support in the shear layer and again must be thought of as a shear-layer
mode. The second k� wave, also discovered by Towne et al. (2017), exists over
the Mach number range, 0.82 < M < 1, and has the same soft-duct-like character as
the high-frequency k�

TH waves; it is therefore denoted, k�

d (cyan in figures 4 and 5).
We distinguish it from the k�

TH waves because, unlike these, it becomes evanescent
below a well-defined frequency (at the transition from cyan to green in figure 5). We
note that for Mach numbers close to M = 0.82, in the close vicinity of the cutoff
frequency, it also ceases to be duct-like, but the Strouhal and Mach number ranges
over which it is duct-like are sufficiently large to justify the denomination. The third
upstream-travelling wave behaves in a manner similar to the low-frequency end of the
k�

TH branch, i.e. it is a shear-layer mode, and is distinguished from the k�

TH wave by
the fact that it becomes evanescent above a well-defined frequency (at the transition
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Jet–edge interaction tones 339

from red to green in figure 5). This wave is denoted k�

p (red in figures 4 and 5). We
can add to this catalogue of waves, upstream- and downstream-travelling free-stream
sound waves (black in figures 4 and 5), which are also potential candidates for the
enabling of resonance.

The k�

TH , k+

T , k�

d and k�

p waves are members of hierarchical families parameterised
by two integers, (m, j), corresponding to the azimuthal and radial orders of the waves.
In what follows, we restrict attention to axisymmetric waves, m = 0, of radial order,
j = 1.

4.2. Dispersion relations
Our objective is to see if the tone patterns can be understood in terms of the waves
described above. The linearised Euler equations provide the modelling framework.
These are considered in a locally parallel setting, with normal-mode ansatz,

q(x, r, t) = q̂(r)ei(kx�!t). (4.1)

Here, q is the dependent variable of interest, k the streamwise wavenumber,
non-dimensionalised by D, and ! = 2pStM, is the non-dimensional frequency. Two
dispersion relations are obtained from these: that which is obtained by considering
the jet to behave as a soft-walled cylindrical duct and that we refer to as DR1,

k±

m,n =
�!M ±

p
T
p
!2 � 4(T � M2)�2

m,n

T � M2
, (4.2)

where � = i�i/2; and that which describes waves supported by a cylindrical vortex
sheet (Lessen, Fox & Zien 1965; Michalke 1970), referred to as DR2,

D(!, k; M, T) =
1

(!� kM)2
+

1
T

Im

⇣�i

2

⌘ h�o

2
Km�1

⇣�o

2

⌘
+ mKm

⇣�o

2

⌘i

Km

⇣�o

2

⌘ h�i

2
Im�1

⇣�i

2

⌘
+ mIm

⇣�i

2

⌘i = 0, (4.3)

where

�i =
p

k2 � (!� Mk)2, (4.4)

�o =

p
k2 �!2, (4.5)

and the branch cut is chosen such that the real parts of �i,o be positive.
The models have been thoroughly discussed by Towne et al. (2017). We make

a preliminary tone prediction using phase-speed information from DR2; fine-tuning
requires additional analysis using both DR1 and DR2.

Figure 5 shows vortex-sheet dispersion relations, DR2, in the Mach number range
0.6 6 M 6 0.97. With the exception of the Kelvin–Helmholtz mode, which has
non-zero imaginary part, the lines are loci of eigenvalues with zero imaginary part,
i.e. neutrally stable, propagating waves (Towne et al. 2017); only the real parts
of the Kelvin–Helmholtz eigenvalues are shown. The waves discussed above have
been colour coded. The downstream-travelling waves are shown in blue and green:
respectively, the Kelvin–Helmholtz mode, k+

KH , and the k+

T mode. Upstream-travelling
waves are shown in cyan and red: respectively, [k�

TH (0.66M 6 0.82); k�

d (0.82 < M <
1)] and k�

p (0.82 < M < 1). The black lines show dispersion relations for upstream-
and downstream-travelling free-stream sound waves at M = 0.6 (solid) and, M = 0.97
(dash-dot).

.
!(

 �
!1

45
4�

6#
!�

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5 
�/0

�1
44

#5
AA

���
� 

�

 �

	�
 �

��
�!

 �
��

�,
C7

��
��


�
1%

��
��

	

��


�
�A

C2
:5

3%
�%!

�%8
5�

�1
�

2#
�4

75
��

!#
5�

%5
#�

A�
!6

�C
A5

��1
D1

��1
2�

5�
1%

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5�
%5

#�
A 

�8
%%

"A
���

4!
� !

#7
��

� 
��

��
�:6

�
 �

��

 


�
�



340 P. Jordan and others

Resonance can potentially occur between any k+/k� mode pair; there are therefore
five different possibilities if we exclude resonance between upstream- and downstream-
travelling sound waves. Given that the Kelvin–Helmholtz mode is the only unstable
wave, all others being in reality either neutral or slightly damped, the most likely
scenario is that in which k+

KH is coupled, via end conditions provided by the nozzle
exit plane and the plate edge, to a k� mode. A further argument for excluding the k+

T
wave is the continuity of the tones across the M = 0.82 threshold, on the lower side
of which these modes are evanescent.

4.3. Tone-frequency prediction for the jet–plate system
The conditions that must be satisfied for resonance to occur between waves travelling
upstream and downstream between the nozzle exit plane and the plate edge, where
they are coupled by reflections characterised by complex coefficients, R1(M, St) and
R2(M, St, L), can, as shown in appendix B, be separated into magnitude and phase
components, respectively,

e1kiL = |R1R2|, (4.6)
1krL + � = 2np, (4.7)

where � refers to the argument of R1R2. In most previous studies of fluid-mechanics
resonance phenomena only the phase component is considered. This amounts to
assuming that the waves are neutrally stable, both spatially and temporally. A
convenient consequence of this is that knowledge of the absolute value of the
reflection-coefficient product, |R1R2|, and its dependence on Mach number, frequency
and edge position, is not necessary for resonance-frequency prediction. The main
results presented in what follows are obtained under this assumption. In appendix D
we drop the assumption, allowing wavenumber and frequency to be complex, and
thereby involve the magnitude component of the resonance condition (4.6). While the
results of that analysis do indicate a low-frequency resonance cutoff that we discuss
later, resonance-frequency prediction is found to be fragile due to the treatment of
|R1R2| as a parameter independent of Mach number, frequency and edge position.
Given a better understanding of the flow physics associated with upstream and
downstream reflection, and an associated model for R1(M, St)R2(M, St, L), it is
likely that more reliable resonance-frequency prediction would be possible using
the complex-wave model. The upstream reflection physics may be accessible, for
instance, by a Wiener–Hopf analysis involving boundary conditions that change
at x = 0 between a hard-walled nozzle and a vortex sheet (Rienstra 2007) or by
detailed numerical analysis. In the absence of such analyses, the present model, while
imperfect, is found to be sufficient to support the hypothesis that resonance between
k� jet modes and Kelvin–Helmholtz wavepackets underpins the observed edge-tone
behaviour.

The phase function of the reflection-coefficient product is also unknown. We
choose therefore to consider two extremes, � = 0 and � = p, making the simplifying
assumption that this phase function is also independent of Mach number, frequency
and edge position. This leads to resonance conditions that we refer to in what follows
as in phase and out of phase, respectively,

1k =
2np

L
, (4.8)

1k =
(2n + 1)p

L
, (4.9)

.
!(

 �
!1

45
4�

6#
!�

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5 
�/0

�1
44

#5
AA

���
� 

�

 �

	�
 �

��
�!

 �
��

�,
C7

��
��


�
1%

��
��

	

��


�
�A

C2
:5

3%
�%!

�%8
5�

�1
�

2#
�4

75
��

!#
5�

%5
#�

A�
!6

�C
A5

��1
D1

��1
2�

5�
1%

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5�
%5

#�
A 

�8
%%

"A
���

4!
� !

#7
��

� 
��

��
�:6

�
 �

��

 


�
�



Jet–edge interaction tones 341
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(a) (b)

FIGURE 6. (a) Value of 1k between k+

KH Kelvin–Helmholtz mode and all k� jet modes
in range 0.6 6 M 6 0.97. (b) Illustration of resonance-frequency identification (showing
frequency squeezing) for L/D = 3, M = 0.6 and out-of-phase reflection conditions:
horizontal lines show values of 1k (4.8) for L/D = 3.

where 1k is the difference between the real parts of the wavenumbers of the upstream-
and downstream-travelling waves that participate in resonance.

The wavenumber difference, 1k, can be easily computed for any k+/k� pair as a
function of Mach number and frequency, using the dispersion relations of the two
waves. This is shown in figure 6(a) for the pairs k+

KH/k�

TH and k+

KH/k�

d , both shown
in cyan, and for k+

KH/k�

p , shown in red. Having calculated 1k, the resonance criteria
of (4.8) and (4.9) can be superposed, as in figure 6(b), and the resonant frequencies
are defined by the intersection of these with the lines 1k(M, St). The example shown
in figure 6(b) is for M = 0.6, L/D = 3 and out-of-phase reflection conditions, and it
illustrates an interesting characteristic of this kind of resonance: a frequency squeezing,
due to the dispersive nature of the k� waves. As the Mach number is increased this
squeezing becomes more pronounced, due to the stronger variation of phase speed
with frequency.

Tone-frequency predictions are made for the Mach number range considered, using
both reflection conditions, and these are compared with the observed behaviour in
figure 7. Note that we do not show predictions obtained using the k+

KH/k�

d as these
were found not to match the data.

The general trend is satisfactorily captured, and in particular we observe the
aforesaid frequency squeezing. But there remain three discrepancies: (i) the resonance
models predict a continuation of the tones to infinitely high frequency, whereas the
data show a clear cutoff; (ii) at low frequencies, the model predicts peaks that are
not observed in the data; (iii) the best match is for some cases provided by the
out-of-phase reflection condition, whereas for others the in-phase condition does
better.

The third of these discrepancies is likely due to the simplified treatment of the
reflection conditions, as discussed above, and further analysis is beyond the scope
of the current study. Where the two other discrepancies are concerned, on the other
hand, further explanation is possible. The high-frequency cutoff is considered in what
follows.
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0.5
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FIGURE 7. Tone-frequency predictions using vortex-sheet dispersion relations and
assuming resonance between k+

KH and k� jet modes, with out-of-phase (a–c) and in-phase
(d–f ) reflection conditions. From (a–c) to (d–f ) L/D = 2, 3 and 4. Cyan: resonance
between k+

KH and k�

TH; red: resonance between k+

KH and k�

p .

4.4. High-frequency tone cutoff
In the Mach number range 0.66M 6 0.82 we explore the high-frequency cutoff using
DR2 and DR1. The first illustrates a progressive trapping of the k�

TH wave by the
jet with increasing frequency; once entirely trapped (duct-like) it is prevented from
interacting with the nozzle lip. The second is used to show that, for frequencies at
which the k�

TH wave is truly duct-like (trapped), it cannot be reflected in the nozzle exit
plane and is entirely transmitted into the nozzle. In the Mach number range, 0.82 6
M < 1, on the other hand, the resonance cutoff condition is due simply to a cutting
off of the k�

p waves: as discussed earlier, they are evanescent above a well-defined
frequency. This can be seen in figure 5 by looking at the red lines, which only appear
up to a given Strouhal number; beyond this value the waves become evanescent, which
corresponds to the saddle point S2 discussed in Towne et al. (2017). These three cases
are discussed in more detail in the following sections.

4.4.1. Trapped waves do not reach the nozzle lip
To understand the high-frequency cutoff in the range 0.6 6 M 6 0.82 we first

consider the frequency dependence of the pressure eigenfunctions associated with the
axisymmetric k�

TH mode,

pi = I0(�ir) 0 6 r 6 0.5, (4.10)
po = K0(�or) r > 0.5, (4.11)

where I0 and K0 are zeroth-order, modified Bessel functions of the first and second
kind, respectively.

.
!(

 �
!1

45
4�

6#
!�

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5 
�/0

�1
44

#5
AA

���
� 

�

 �

	�
 �

��
�!

 �
��

�,
C7

��
��


�
1%

��
��

	

��


�
�A

C2
:5

3%
�%!

�%8
5�

�1
�

2#
�4

75
��

!#
5�

%5
#�

A�
!6

�C
A5

��1
D1

��1
2�

5�
1%

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5�
%5

#�
A 

�8
%%

"A
���

4!
� !

#7
��

� 
��

��
�:6

�
 �

��

 


�
�



Jet–edge interaction tones 343

1.0
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0 0.5 1.0 1.5 2.0

St

FIGURE 8. Thin lines: pressure eigenfunctions associated with k�

TH jet modes at M = 0.6,
in frequency range 0.3 6 St 6 1.1 (top-most line: St = 0.3; bottom-most line: St = 1.2).
Thick line: soft-walled duct mode of radial order 1.

The frequency dependence of the eigenfunctions is shown in figure 8 for
M = 0.6. With increasing frequency these become progressively deformed/trapped.
For frequencies greater than St ⇡ 1, their radial support shows them to be almost
entirely confined within the jet. As shown by Towne et al. (2017), they here behave
in the manner of waves propagating in a soft-walled duct, experiencing the shear
layer as a pressure-release surface. This can be seen here in the similarity of the
high-frequency, vortex-sheet eigenfunctions to those of soft-walled duct waves, which
take the form of Bessel functions, Jo(↵jr). The implication for resonance is that at
these high frequencies, k�

TH waves impinging on the nozzle exit plane have negligible
fluctuation levels in the radial vicinity of the nozzle lip, and are thus deprived
of the possibility of being scattered into k+ waves. One of the possible reflection
mechanisms necessary to sustain resonance is thereby disabled.

4.4.2. Disabled nozzle-plane reflection in range M 6 0.82
In addition to the scattering mechanism discussed in the previous section, the

impedance mismatch in the nozzle exit plane may also contribute to the reflection of
incident k� waves, particularly so as the k�

TH waves become more duct-like at these
higher frequencies. We therefore consider the nozzle–jet system as a rigid-walled
cylindrical duct connected to a soft-walled duct, the ensemble containing a plug flow
of Mach number, M 6 0.82. As discussed in appendix C, for the frequencies of
interest, an incident k�

TH wave of amplitude I and radial order j = 1 is transmitted as
a plane wave, and reflected as a k+ soft-walled duct mode of amplitude R and radial
order j = 1. The absolute value of the reflection coefficient,

R
I

=

0

BB@
1 �

k+

j M
!

1 �
k�

j M
!

1

CCA

✓
k�

n � k�

j

k+

j � k�
n

◆
, (4.12)
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M

St

FIGURE 9. Reflection coefficient, |R/I|, for a k�, soft-walled duct mode impinging on
nozzle plane. The red line shows the cut-on frequency. At frequencies below this line, the
incident wave is evanescent; above it is propagative, but has zero reflection coefficient: it
is entirely transmitted into the nozzle as a rigid-walled duct k� plane wave.

derived in the appendix, is shown in figure 9 as a function of Mach and Strouhal
numbers.

Note that the red line corresponds to the cut-on condition for soft-walled duct
modes: for frequencies below this line such modes are evanescent. But as we have
already seen, the soft-walled duct is not a good model for k� jet modes in the
low-frequency range; these are propagative in the vortex-sheet model, and have
significant radial support across the shear layer. Above the soft-walled duct cut-on
frequency, on the other hand, where the k�

TH jet modes have become trapped, as the
eigenfunctions in figure 8 show, the soft-walled duct is a good approximation for the
dynamics of these waves. We are therefore only interested in the reflection coefficient
of (4.12) above this cut-on frequency, where, as shown in figure 9, |R/I| ⇡ 0.

The k�

TH waves above this frequency impinging on the nozzle exit plane are thus not
reflected in the nozzle plane, they are entirely transmitted into the nozzle where they
propagate as plane waves. This result, combined with that of the previous section that
shows how trapping of the k�

TH waves leads to the absence of significant fluctuation
levels in the vicinity of the nozzle lip, demonstrates how, for M 6 0.82, upstream
reflection conditions are disabled above the soft-walled duct cut-on frequency.

This frequency is superposed on the vortex-sheet dispersion relations in figure 10
(solid red line), demarcating regions where the DR2 (coloured lines) and DR1
(black dash-dotted line, shown for four Mach numbers) become similar (above the
red line) and where they are not (below). In the region above this line the k�

TH
vortex-sheet modes behave essentially as propagative soft-walled duct modes, trapped
such that they avoid the nozzle lip, and transmitted into the nozzle with zero reflection.
Resonance will thus be disabled for frequencies above this line, which is superposed
on the data in figures 11 and 12 and found to agree well with the observed resonance
cutoff.

4.4.3. Saddle-point cutoff of k�

p modes in range 0.82 < M < 1
To complete the picture we consider the resonance cutoff condition in the Mach

number range 0.82 < M < 1, where the k�

p modes, which never behave like soft-walled
duct modes, are those that underpin resonance. This is straightforward: as shown by
the solid black line in figure 10 these modes become evanescent above a certain
Strouhal number. The cutoff Strouhal number is plotted on the data in figure 12 as
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k
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FIGURE 10. Truncation of dispersion relations: (i) to account for trapping of k�

TH waves,
which occurs above the thick solid red line, the cut-on condition for soft-walled duct
modes; and (ii) to account for saddle-point cutoff of k�

p waves, indicated by the thick black
line. Final tone-frequency predictions, shown in figure 13, are made using eigenvalues to
the right of the thick red and black lines. The dash-dotted black lines show dispersion
relations for a soft-walled duct for four Mach numbers (M = 0.6, 0.7, 0.75 and 0.82),
allowing comparison with the vortex-sheet dispersion relations.

a thick cyan line, where we see that it corresponds well with the observed resonance
cutoff in this Mach number range.

4.5. Refined tone-frequency prediction
Tone-frequency predictions can now be made using the vortex-sheet dispersion relation,
truncated such that only eigenvalues to the right of the solid red and black lines in
figure 10 are used. The refined tone predictions are shown in figure 13.

Recall that throughout we have been exclusively modelling axisymmetric waves of
radial order 1, which are responsible for the lowest-frequency band of peaks. The
higher-frequency bands, which are generally clearest for M > 0.9, are due to higher
radial and azimuthal wave orders (Schmidt et al. 2017). We do not attempt to model
these here because they do not show up with sufficient clarity in the single-point
microphone measurements we consider.

In comparison to the predictions provided using the classical edge-tone scenario
(figure 2), those shown in figure 13 can be considered satisfactory in the St � M
range where strong resonance is observed, especially given the crudeness of the end-
condition modelling. But there remain discrepancies at low frequency, where a match
is not clear between model and data. This is considered in what follows.

4.6. Why are tones not observed at low frequency?
As mentioned in § 4.3, a more complete resonance analysis can be performed
by considering both wavenumber and frequency to be complex-valued variables.
Resonance conditions then involve, in addition to that imposed by the vortex-sheet
dispersion relation, phase and magnitude constraints, respectively, equations (4.7)
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M

FIGURE 11. Partitioning of St � M space in terms of k� mode behaviours. L = 3D data
used for illustration purposes. Thick red and cyan lines correspond to the two cutoff
criteria shown in figure 10 (there shown, respectively, in thick red and black). Zone I:
k�

TH modes exist and are propagative; Zone II: k�

p modes exist and are propagative; Zone
III: k�

TH modes exist, are propagative, but trapped (cf. figure 8), such that they do not
reach the nozzle lip, and with zero reflection coefficient in the nozzle plane (cf. figure 9);
Zone IV: k�

p modes exist but are evanescent.

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
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FIGURE 12. Comparison of hypothesised resonance cutoff with data. (a), (b) and (c),
respectively, L = 2D, 3D and 4D. See legend of figure 11 for more details.

and (4.6). The complex analysis involves finding triplets [k+, k�, !] 2 C that
simultaneously solve (4.7), (4.6) and (4.3). The result is a deformation of the k+(!)
and k�(!) branches with respect to the neutral-mode model (cf. figures 18 and 21).
The deformation is largely determined by (4.6), leading to associated modified values
of 1kr(St), whence modified values of the resonance frequency given by (4.7).
Resonance-frequency predictions using this model are, as shown in appendix D,
fragile due to the appearance of the unknown function |R1R2|, that we must, in
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FIGURE 13. Refined tone-frequency predictions using vortex-sheet dispersion relations;
assuming resonance between Kelvin–Helmholtz k+ and k� jet modes, under out-of-phase
reflection (a–c) and in-phase reflection (d–f ) conditions; and assuming high-frequency
cutoff due to trapped, non-reflecting k�

TH jet modes in the range 0.6 6 M 6 0.82, and due
to cutoff of k�

p jet modes in the range 0.82 < M 6 1. From left to right: L/D = 2, 3 and 4.
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(a) (b) (c)

FIGURE 14. Low-frequency resonance cutoff, shown by horizontal blue lines, from (a) to
(c) |R1R2| = 0.002, 0.004 and 0.008.

our ignorance of its true form, treat as a parameter, independent of Mach number,
frequency and edge position.

But the complex analysis also provides a threshold frequency, !r|!i=0, below which
resonance is damped. This threshold also depends on R1R2, and so we cannot be
entirely satisfied with the accuracy of its prediction. However, as shown by figure 14
we see that it does roughly provide an upper bound for the low-frequency region of
the PSD maps where tones are not observed. It appears reasonable then to consider
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that the absence of tones at low-frequency is explained by the complex-wave model.
Whether or not resonance is sustained depends on the spatial growth and decay rates
of the k+ and k� waves, over the distance L, and on how effectively the waves are
reflected at the boundaries (i.e. the value of |R1R2|).

Figure 14 suggests that the values of |R1R2| considered are reasonable for the L = 4
plate position, but should be larger for L = 2 and L = 3. This is indicative of a
change in the interaction between k+ waves and the plate edge as the streamwise
position of the latter is varied. As is the case where the Mach number and frequency
dependence of R1R2 is concerned, further work will be necessary to better understand
this behaviour.

5. Conclusion

Experiments have been performed involving an isothermal, round, turbulent jet that
grazes a sharp edge whose streamwise position is varied. This leads to rich tonal
dynamics and sound that cannot be explained by appealing to the usual edge-tone
scenario. The observed behaviour has been analysed by the combined use of two
locally parallel linear models. Vortex-sheet dispersion relations provide phase-speed
information sufficient to show that the strongest peaks are underpinned by resonance
between downstream-travelling Kelvin–Helmholtz wavepackets and two kinds of
upstream-travelling trapped acoustic modes: those considered by Tam & Hu (1989)
and those of Towne et al. (2017) and Schmidt et al. (2017). This model also explains
a high-frequency resonance cutoff that occurs in the range, 0.82 < M < 1. Resonance
cutoff in the range M 6 0.82, on the other hand, requires consideration of two further
effects. On one hand the upstream-travelling waves are shown to become progressively
trapped with increasing frequency, leading to the disabling of their scattering by the
nozzle lip. A soft-walled duct model is then used to show that the upstream-travelling
waves, once trapped, are no longer reflected in the nozzle exit plane.
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Appendix A. Time–frequency analysis

A time–frequency analysis of the signal is performed via a continuous wavelet
transform (Debauchies 1990; Farge 1992). The wavelet coefficient C(t, s) at time t
and pseudo-pulsation s are calculated by convolving the pressure signal p(t) with a
dilated and translated version of an analysing wavelet  (t):

C(t, s) =

Z
+1

�1

p(⌧ ) 

✓
t � ⌧

s

◆
d⌧ . (A 1)

In order to obtain fine resolution in both time and frequency we chose a bump
analysing wavelet whose Fourier transform at scale s is given by,

 ̂(s!) = e(1�(1/(1�(s!�µ)2/� 2)))
· I(s!) (A 2)

I(s!) =

⇢
1 if (µ � � )6 s!6 (µ + � )
0 else. , (A 3)
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FIGURE 15. Time–frequency scalograms (grey scale shows wavelet-coefficient amplitudes)
showing examples of four kinds of behaviour. (a) (M, L/D) = (0.8, 3): dominance of a
single resonance cycle, despite the existence of two nearby possibilities; (b) (M, L/D) =

(0.8, 4): slow competition between neighbour resonance cycles; (c) (M, L/D) = (0.78, 4):
fast competition between neighbour resonance cycles; (d) (M, L/D)= (0.6, 2): co-existence
of neighbour resonance cycles.

where µ is the peak pulsation of the unit scale wavelet spectrum and � is its
width. Smaller values of sigma lead to higher-frequency resolution with poorer time
localisation. We chose µ = 5 and � = 0.6 which provides localisation in both time
and frequency sufficient to resolve the resonance peaks.

The spectrograms shown in figure 15 reveal a rich and varied behaviour, providing
additional insight not accessible from the PSD maps. Examples of the four kinds of
behaviour typically observed. These include: (i) total dominance by a single resonance
cycle, as, for example, at (M, L/D) = (0.8, 3), where this occurs despite the existence
of neighbour resonance possibilities; (ii) slow competition between neighbour
resonance cycles, which occurs for (M, L/D) = (0.8, 4); (iii) fast competition between
neighbour resonance cycles, as seen for (M, L/D) = (0.78, 4); and (iv) uncorrelated
co-existence of multiple resonance cycles, as for example at (M, L/D) = (0.6, 2).

Appendix B. Derivation of resonance conditions

Consider two waves travelling, respectively, upstream and downstream between two
boundaries, situated at x = 0 and x = L. The waves are coupled via reflections at these
boundaries, these being characterised by complex-valued coefficients, R1 and R2.

The ansatz for a dependent variable of interest, q̂(x,!), is,

q̂(x,!) = A+eik+x
+ A�eik�x. (B 1)

At x = 0 and x = L we have, respectively,

R1 =
A+

A�
, (B 2)

R2 =
A�eik�L

A+eik+L
. (B 3)
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I RT

FIGURE 16. (Colour online) Schematic depiction of simplified jet–nozzle system
comprised of connected, solid- and soft-walled cylindrical ducts.

Combining these equations leads to the resonance condition,

R1R2ei1kL
= 1, (B 4)

where

1k = 1kr + i1ki, (B 5)
= k+

r (!) � k�

r (!) + i[k+

i (!) � k�

i (!)]. (B 6)

In terms of magnitude and phase, equation (B 4) is,

|R1R2|e�1kiLei(1krL+�)
= 1, (B 7)

which leads to the following resonance constraints,

e1kiL = |R1R2|, (B 8)
1krL + � = 2np, (B 9)

a similar derivation of which can be found in Landau & Lifshitz (2013).

Appendix C. Nozzle-plane reflection conditions

Consider the simplified problem depicted in figure 16, in which an incident k�

wave of amplitude I, impinging on the nozzle plane, produces a reflected wave of
amplitude R, and a transmitted wave of amplitude T . Consider mass and momentum
conservation in a thin disk (much smaller than a wavelength, meaning that the flow
can be considered incompressible) containing the nozzle exit plane, respectively,

Z
u0

1 dA =

Z
u0

2 dA, (C 1)
Z

p0

1 dA =

Z
p0

2 dA, (C 2)

where the subscripts 1 and 2 refer, respectively, to the upstream and downstream faces
of the disk.

The incident, reflected and transmitted waves all satisfy the dispersion relation,

k±
=

�!M ±
p
!2 � 4↵2(1 � M2)

1 � M2
, (C 3)
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where non-dimensionalisation has been performed using the jet diameter and speed
of sound. The radial structures of the waves are given by the eigenfunctions J0(↵r)
where ↵ is the non-dimensional radial wavenumber.

The k�

d wave behaves, as shown by Towne et al. (2017), like a wave propagating in
a soft-walled duct, and its first radial mode has therefore, ↵j = 2.4048. The transmitted
wave propagates into the cylindrical, hard-walled nozzle, either as a plane wave, ↵n =

0, or as a wave with higher-order radial structure, characterised by ↵n = 3.8, . . ..
The cut-on condition for nozzle modes of radial order ↵n is,

St =
↵n

p
(1 � M2)

pM
. (C 4)

For the Mach number range of interest, 0.6 6 M 6 0.82, the corresponding cut-on
Strouhal number range for the first radial pipe mode, ↵n = 3.8, is well above the
frequencies of interest. The incident k� waves will therefore be transmitted as plane
waves.

Using the Fourier-transform convention,

p(x, r, t) = p̂(r)ei(kx�!t), (C 5)
u(x, r, t) = û(r)ei(kx�!t), (C 6)

the pressure fields inside and outside the nozzle that we are interested in are, therefore,
respectively,

p̂n(x, r) = Teik�
n x, (C 7)

p̂j(x, r) = J0(↵jr)(Ieik�

j x
+ Reik+

j x), (C 8)

where the e�i!t has been dropped for convenience, and the momentum balance at the
exit plane, x = 0, reads,

T =
2(I + R)

r2

Z r

0
J0(↵jr)r dr. (C 9)

In terms of the velocity fluctuation, upstream of the exit plane we have,

⇢o

✓
@u�

@t
+ M

@u�

@x

◆
= �

@p�

@x
, (C 10)

⇢o(!� k�

n M)ûeik�
n x

= k�

n Teik�
n x, (C 11)

at the nozzle exit plane, x = 0,

û�
=

k�

n

⇢o(!� k�
n M)

T, (C 12)

and downstream, considering momentum balance separately for the k+ and k�

components of the fluctuations,

⇢o

✓
@u±

@t
+ M

@u±

@x

◆
= �

@p±

@x
, (C 13)
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giving,

û+
=

k+

j

⇢o(!� k+

j M)
RJ0(↵jr), (C 14)

û�
=

k�

j

⇢o(!� k�

j M)
IJ0(↵jr). (C 15)

The mass balance at the nozzle exit plane is
Z

û�

1 dA =

Z
(û+

2 + û�

2 ) dA, (C 16)

k�

n

⇢o(!� k�
n M)

Tr2
= 2


k+

j

⇢o(!� k+

j M)
R +

k�

j

⇢o(!� k�

j M)
I
� Z

J0(↵jr)r dr, (C 17)

giving for the amplitude of the transmitted wave,

T = 2
⇢o(!� k�

n M)

r2k�
n


k+

j

⇢o(!� k+

j M)
R +

k�

j

⇢o(!� k�

j M)
I
� Z

J0(↵jr)r dr. (C 18)

Combining (C 9) and (C 18) to eliminate T ,

(I + R) =
⇢o(!� k�

n M)

k�
n


k+

j

⇢o(!� k+

j M)
R +

k�

j

⇢o(!� k�

j M)
I
�

. (C 19)

From which the reflection coefficient can be obtained,

R
I

=

0

BB@
1 �

k+

j M
!

1 �
k�

j M
!

1

CCA

✓
k�

n � k�

j

k+

j � k�
n

◆
. (C 20)

Appendix D. Complex resonance analysis

As described in § 4.6 we find triplets [k+, k�,!]2C that simultaneously solve (4.7),
(4.6) and (4.3). This provides the resonance-frequency predictions shown in figure 17,
for R1R2 = 0.002, where they are compared with the experimental data and predictions
of the neutral-mode model. Similar trends are obtained for |R1R2| = 0.004 and 0.008,
the main difference being the progressive lowering of the resonance cutoff frequency
discussed in § 4.6. Top and bottom plots show model results obtained, respectively,
with assumptions of in-phase and out-of-phase reflection conditions.

For L = 2 the neutral- and complex-mode model predictions, shown, respectively, in
cyan and red, are globally similar at frequencies for which the complex-mode model
predicts resonance. For plate-edge positions L=3 and 4 discrepancies are apparent, the
complex analysis obtaining globally poorer agreement with the data. The discrepancies
include: (i) resonance-frequency underprediction at low Mach number; (ii) resonance-
frequency overprediction at high Mach number; (iii) a non-monotonic Mach number
dependence of certain resonance-mode frequencies.

The discrepancies can be understood by looking at how and why the k+ and k�

branches are deformed with respect to the neutral-mode model. Figure 18 shows these

.
!(

 �
!1

45
4�

6#
!�

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5 
�/0

�1
44

#5
AA

���
� 

�

 �

	�
 �

��
�!

 �
��

�,
C7

��
��


�
1%

��
��

	

��


�
�A

C2
:5

3%
�%!

�%8
5�

�1
�

2#
�4

75
��

!#
5�

%5
#�

A�
!6

�C
A5

��1
D1

��1
2�

5�
1%

�8
%%

"A
���

(
(

(
 3

1�
2#

�4
75

 !
#7

�3
!#

5�
%5

#�
A 

�8
%%

"A
���

4!
� !

#7
��

� 
��

��
�:6

�
 �

��

 


�
�



Jet–edge interaction tones 353
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FIGURE 17. Comparison of resonance predictions with experimental data. Solid cyan lines:
neutral-mode model; red dash-dotted lines: complex-mode model, with R1R2 = 0.002. Top
and bottom: respectively, assumption of in-phase and out-of-phase reflection conditions.
From left to right: plate-edge positions L = 2, 3 and 4.

10–10–20 0 10–10–20 0 10–10–20 0

1.0

0

0.2

0.4

0.6

0.8

St

(a) (b) (c)

FIGURE 18. Eigenvalue branch deformation in Mach number range, 0.61 6 M 6 0.93.
Cyan, red and blue lines (neutral-mode model): respectively, k�

TH , k�

p and k+

KH . Black dots:
complex-mode model for R1R2 = 0.002.

in the St � kr plane. The neutral-mode model branches are shown in cyan and red for
the k� waves, and in blue for the k+ waves. The deformed branches of the complex-
mode model are shown by the black dots. The left plot of figure 20 shows a sparsed
zoom for L = 4, with successive complex-mode branches here shown, alternatingly, in
red and black, for ease of visualisation.

At high frequency, where the upstream-travelling modes are trapped, propagative
and duct-like in the neutral-mode model, there is little k� branch deformation in the
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FIGURE 19. Resonance-frequency prediction with complex-mode model for R1R2 = 0.002;
resonance frequencies are given by intersection of horizontal red lines (solid and dash-
dotted: respectively, in-phase and out-of-phase reflection conditions) and black-dotted lines.
From (a) to (c) L = 2, 3 and 4.
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FIGURE 20. Zoom showing effect of the invalid saddle point discussed by Towne et al.
(2017) (cf. figure 12(d) in that paper) on: resonance-eigenvalue branch deformation (a)
and frequency prediction (b) using complex-mode model with R1R2 = 0.002 and L = 4.
From left to right: L = 2, 3 and 4.

St � kr plane. Note, on the other hand, that in the kr � ki plane (cf. figure 21), branch
deformation occurs, with the resonance-admissible k� waves becoming spatially
evanescent, and the k+ less spatially unstable. This trend is due to the constraint,
e1kiL = R1R2, that requires the imaginary parts of the wavenumbers to approach one
another as dictated by the reflection-coefficient product and the distance between the
nozzle exit plane and the plate edge.

As frequency decreases a more marked deformation occurs in the St � kr plane.
This is greatest in the frequency range where phase and group velocities evolve from
subsonic to sonic values. With further decrease in frequency the complex-mode k�

branches realign with the neutral-mode branches; again, this is only seen in the St � kr
plane, as is clear from figure 21. The complex-mode branches are truncated at the
threshold frequency !r|!i=0, providing a low-frequency resonance cutoff; for lower !r
solutions satisfying (4.7) and (4.6) are only found for negative !i, indicating a damped
resonance which should not lead to significant tones in the power spectral density of
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FIGURE 21. Vortex-sheet solutions, !(k). The colour map shows !i; white isocontours
show St = !r/2/p. Red dots indicate k� (left plot) and k+ (right plot) modes satisfying
the resonance amplitude constraint (B 8). From top to bottom: M = 0.6, 0.7 and 0.8. Solid
white lines show neutral-mode model branches (!i = 0).

flow fluctuations. The St � kr branch deformations become more pronounced as L is
increased, and for L = 4 there is the appearance of what looks like a discontinuity.
Figure 21 illustrates how this is due to the invalid (from an absolute stability point
of view (Huerre & Monkewitz 1990)) k�/k� saddle point discussed in Towne et al.
(2017) (cf. figure 12(d) in that paper).

The consequences of the above for resonance-frequency prediction is illustrated in
figure 19, which shows 1kr(St) and the resonance criteria 2np/L and (2n + 1)p/L,
(solid and dash-dotted horizontal red lines, respectively). The right plot of figure 20
again shows a sparsed zoom for L = 4. The branch deformation produced by the
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356 P. Jordan and others

saddle-point results, for a given Mach number, in low-frequency resonant modes
that occur at lower frequency in comparison to the neutral-mode model, and
higher-frequency modes that can potentially occur at equal or higher frequencies.
The Mach number dependence of a given resonance mode is sensitive to the details
of the Mach number dependence of the !(k) landscape (cf. figure 21), particularly
so in the neighbourhood of the saddle point; and to the influence of this on the
resonance amplitude constraint, e1kiL = R1R2, that requires the imaginary parts of the
k+ and k� waves to be adjusted as discussed earlier.

It is here that the fragility of the complex-mode model becomes apparent: in order
to make accurate resonance-frequency predictions, we require not only an accurate
knowledge of the Mach number dependence of !(k), but also an accurate knowledge
of the Mach number and frequency dependence of R1 and R2 and the further
dependence of R2 on the edge position, L. The assumption that R1R2 be independent
of these makes the model fragile when the branch of resonance-admissible k�

eigenvalues enters the neighbourhood of the saddle point. Here, high gradients of
!(k) lead to rapid variation in values of kr associated with values of ki as constrained
by e1kiL = R1R2.

The conclusion of the analysis is that the neutral-mode model, despite lacking
certain aspects of the flow physics, can provide reasonable tone predictions over a
limited frequency range, showing that in this range the resonance phenomenon is
relatively insensitive to the missing physics. The complex model, on the other hand,
despite its fragility in the absence of detailed information regarding the reflection
conditions, provides an indication of where the neutral-mode model will fail, at low
frequency for instance.
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