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Sensitivity of clay content prediction to spectral configuration of VNIR/

SWIR imaging data, from multispectral to hyperspectral scenarios

C. Gomeza,
⁎

, K. Adelinea,e, S. Bachab, B. Driessena, N. Gorrettac, P. Lagacheried, J.M. Rogerc, X. Briottete

The use of digital soil mapping, with the help of spectroscopic data, provides a non-destructive and cost-efficient alternative to soil property laboratory

measurements. Visible, near-infrared and short wave infrared (VNIR/SWIR, 400–2500 nm) hyperspectral imaging is one of the most promising tools for topsoil

property

 

mapping.

 

The

 

aim

 

of

 

this

 

study

 

was

 

to

 

test

 

the

 

sensitivity

 

of

 

soil

 

property

 

prediction

 

results

 

to

 

coarsening

 

image

 

spectral

 

resolution.

 

This

 

may

 

offer

 

an

 

analysis

 

of

 

the

 

potential

 

of

 

forthcoming

 

hyperspectral

 

satellite

 

sensors,

 

e.g.,

 

HYPerspectral

 

X

 

IMagery

 

(HYPXIM)

 

or

 

Environmental

 

Mapping

 

and

 

Analysis

 

Program

 

(EnMAP),

 

and

 

existing

 

multispectral

 

sensors,

 

e.g.,

 

SENTINEL-2

 

Multispectral

 

Sensor

 

Instrument

 

(MSI)

 

or

 

LANDSAT-8

 

Operational

 

Land

 

Imager

 

(OLI),

 

for

 

soil

 

properties

 

mapping.

 

This

 

study

 

used

 

VNIR/SWIR

 

hyperspectral

 

airborne

 

data

 

acquired

 

by

 

the

 

AISA-DUAL

 

sensor

 

(initial

 

spectral

 

and

 

spatial

 

resolutions

 

of

 

approximately

 

5

 

nm

 

and

 

5

 

m,

 

respectively)

 

over

 

a

 

300

 

km2

 

Mediterranean

 

rural

 

region.

 

Ten

 

spectral

 

configurations

 

were

 

built

 

and

 

divided

 

in

 

the

 

following

 

two

 

groups:

 

i)

 

six

 

spectral

 

configurations

 

corresponding

 

to

 

simulated

 

sensors

 

with

 

regular

 

spectral

 

resolution

 

from

 

5

 

nm

 

to

 

200

 

nm

 

(i.e.,

 

the

 

Full

 

Width

 

at

 

Half

 

Maximum

 

(FWHM)

 

remains

 

constant

 

throughout

 

the

 

considered

 

spectral

 

domain;

 

this

 

includes

 

the

 

simulation

 

of

 

the

 

forthcoming

 

HYPXIM

 

and

 

EnMAP

 

hyperspectral

 

satellites)

 

and

 

ii)

 

four

 

spectral

 

configurations

 

corresponding

 

to

 

existing

 

multispectral

 

sensors

 

with

 

irregular

 

spectral

 

re-solution

 

(i.e.,

 

the

 

FWHM

 

differs

 

from

 

spectral

 

sampling

 

interval;

 

Advanced

 

Spaceborne

 

Thermal

 

Emission

 

and

 

Reflection

 

Radiometer

 

(ASTER),

 

SENTINEL-2

 

MSI,

 

LANDSAT-7

 

Enhanced

 

Thematic

 

Mapper

 

(ETM+)

 

and

 

LANDSAT-8

 

OLI).

 

The

 

soil

 

property

 

studied

 

in

 

this

 

paper

 

is

 

the

 

clay

 

content,

 

defined

 

as

 

the

 

percentage

 

of

 

granulometric

 

fraction

 

finer

 

than

 

2

 

μm

 

by

 

weight

 

of

 

the

 

soil,

 

which

 

will

 

be

 

estimated

 

using

 

the

 

partial

 

least

 

squares

 

regression

 

method.

 

Our

 

results

 

showed

 

that

 

i)

 

spectral

 

configurations

 

with

 

regular

 

spectral

 

resolutions

 

from

 

5

 

to

 

100

 

nm

 

provided

 

similar

 

and

 

good

 

clay

 

content

 

prediction

 

performances

 

(R2
val

 

>

 

0.7

 

and

 

RPIQ

 

>

 

3)

 

and

 

allowed

 

clay

 

mapping

 

with

 

correct

 

short-scale

 

variations,

 

ii)

 

the

 

spectral

 

configuration

 

with

 

a

 

regular

 

spectral

 

resolution

 

of

 

200

 

nm

 

provided

 

unsatisfactory

 

clay

 

content

 

prediction

 

performance

 

(R2
val

 

≃

 

0.01

 

and

 

RPIQ

 

≃

 

1.65)

 

and

 

iii)

 

the

 

ASTER

 

sensor

 

was

 

the

 

only

 

existing

 

multispectral

 

sensor

 

that

 

provided

 

both

 

correct

 

performance

 

of

 

clay

 

content

 

estimation

 

(R2
val

 

≃

 

0.8

 

and

 

RPIQ

 

≃

 

3.72)

 

and

 

correct

 

clay

 

mapping.

 

Therefore,

 

clay

 

mapping

 

by

 

the

 

ASTER

 

multispectral

 

data

 

should

 

be

 

pursued

 

while

 

awaiting

 

the

 

launch

 

of

 

forthcoming

 

hy-

perspectral

 

satellite

 

sensors

 

(e.g.,

 

HYPXIM

 

and

 

EnMAP),

 

which

 

will

 

be

 

good

 

candidates

 

for

 

future

 

large

 

clay

 

mapping

 

campaigns

 

over

 

bare

 

soils.

1. Introduction

Soil provides major services such as provisions of food, fiber, carbon

sequestration, water purification and storage, soil contaminant reduc-

tion, climate regulation, nutrient cycling, biological habitats and gene

pools. However, demographic pressure and climate change impact

these key environmental functions which must be monitored, explored

and studied. Many models and indicators that represent these functions

are now available (Sanchez et al., 2009). To be fully operational for

assisting decisions at local, national and global levels, precise spatially
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referenced soil information is required as input in these models and

indicators. To address this situation, hyperspectral visible, near-infrared

and short-wave infrared (VNIR/SWIR, 400–2500 nm, with> 100

spectral bands) imagery can be considered as an adequate technology

for accurate mapping and monitoring of some key soil surface proper-

ties (e.g., Ben-Dor et al., 2002; Selige et al., 2006; Stevens et al., 2010;

Gomez et al., 2012a). Accurate local estimates were obtained by hy-

perspectral VNIR/SWIR imagery over bare soil surfaces for soil prop-

erties: i) related to a chemical component that impacts soil surface re-

flectance through absorption bands (e.g., OH− ions for clay) or ii)

highly correlated with the latter (e.g., Cation Exchange Capacity when

it is correlated with, for example, clay content) (Ben-Dor et al., 2002).

Moreover, recent studies showed that to be predictable, the soil prop-

erties have also to have a quite high amount of variability over the

study area (Gomez et al., 2012a, 2012b). Nevertheless hyperspectral

VNIR/SWIR imagery cannot be extended to large surface mapping or to

temporal monitoring because of the expensive cost and the low avail-

ability of hyperspectral VNIR/SWIR imaging data.

Only one hyperspectral VNIR/SWIR satellite sensor exists, which is

the HYPERION sensor with a spatial resolution of 30 m, a spectral re-

solution of 10 nm and a swath of 7.5 km (Folkman et al., 2001). Other

existing hyperspectral VNIR/SWIR imaging sensors are airborne sen-

sors, such as the HyMap, AISA-DUAL, Airborne Visible/Infrared Ima-

ging Spectrometer (AVIRIS) and HySpex sensors, with spectral resolu-

tions between 5 and 10 nm, spatial resolutions of approximately 2 to

5 m (depending on the flight altitude) and flight prints generally in-

ferior of 400 m2 (depending on the study case). And at least five hy-

perspectral VNIR/SWIR satellite sensors are planned to be launched

next few years (Table 1).

In addition to the hyperspectral imaging sensors, two others cate-

gories of VNIR/SWIR imaging sensors exist: multispectral (< 10 bands)

and superspectral (10 < bands < 100). Several VNIR/SWIR multi-

spectral satellite sensors are available, such as the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

(Abrams and Hook, 2003), LANDSAT-7 Enhanced Thematic Mapper

(ETM+) and LANDSAT-8 Operational Land Imager (OLI) sensors,

which were launched in 1999 and 2013, respectively (Masek et al.,

2001; Roy et al., 2014). The World-View 3 (Kruse and Perry, 2013) and

SENTINEL-2 Multispectral sensor Instrument (MSI) (Baillarin et al.,

2012) sensors are both VNIR/SWIR superspectral satellite sensors,

which were launched in 2014 and 2015, respectively.

In advance of a diversity of emerging and existing VNIR/SWIR sa-

tellite sensors and to confront the lack of soil maps around the world,

the potential of VNIR/SWIR satellite sensors for soil properties mapping

must be studied. The effect of spectral resolutions effects on minerals

and plants identification were studied by Swayze et al. (2003), by si-

mulations of four imaging spectrometers (including AVIRIS sensor).

Van Der Meer et al. (2014) demonstrated the relevance of using bands

ratios based on simulated SENTINEL-2 MSI data for ferric iron, ferrous

iron, laterite, gossan, ferrous silicate and ferric oxides mapping. The

effect of coarsening spatial resolution (from 5 m to 60 m) on the ac-

curacy of clay content (defined as the percentage of granulometric

fraction inferior to 2 μm by weight of the soil, Baize and Jabiol, 1995)

prediction models was studied by Gomez et al. (2015). They found that,

up to a spatial resolution of 30 m, clay mapping was still possible, but

beyond a spatial resolution of 15 m, clay content variations due to

short-scale successions of parent materials were not precisely captured.

In addition, spatial resolutions of 60 m or coarser were not suitable for

clay content mapping over areas characterized by small short-scale clay

content variability and small field sizes. The effect of coarsening spec-

tral resolution (from 1 nm to 200 nm) on the accuracy of soil properties

prediction models was studied only from laboratory spectral databases.

Castaldi et al. (2016) conducted a study using several laboratory

spectral databases to compare the performances of soil texture and soil

organic content estimation from present (EO-1 ALI and Hyperion,

LANDSAT-8 OLI, SENTINEL-2 MSI) and forthcoming (EnMAP, PRISMA

and HyspIRI) multi and hyperspectral sensors. Adeline et al. (2017)

used a laboratory spectral database to compare estimation perfor-

mances of four soil properties (with different spectral absorption fea-

tures due to their various physico-chemical interactions with soil sub-

strates), clay content, free iron oxides, calcium carbonate and pH, from

seven spectral configurations (number of spectral bands decreasing

from 328 to 10 and coarsening spectral resolution from 3 nm to

200 nm). Concerning the clay content, Castaldi et al. (2016) and

Adeline et al. (2017) demonstrated that coarsening spectral resolution

on lab spectra induces a small decrease in prediction model perfor-

mance, as this soil property has large and pronounced spectral features.

Clay content is often used as a tested soil property since its estimation

by VNIR/SWIR spectroscopy is driven by both:

- An absorption band centered around 2200 nm, as clay granulo-

metric fractions is correlated to clay minerals which induce an ab-

sorption band centered around 2200 nm due to the combination of

vibrations associated with the OH bond and the OHeAleOH bonds

(e.g., Hunt et al., 1971; Chabrillat et al., 2002; Kariuki et al., 2004),

- And the general shape of the spectrum as the particle size influences

both spectral intensity and absorption bands depth (Baumgardner

et al., 1985; Ben-Dor and Banin, 1995). At fine particle sizes, surface

scattering dominates so albedo is high and the expression of ab-

sorption features worsens as path length (transmission through

particles) in minerals is short. And the more the grain size increases,

the more the surface to volume ratio decreases, so albedo decreases

and absorption begins to dominate as path length increases in mi-

nerals. Thus, spectrum with high content of clay fraction will tend to

have higher albedo than spectrum of sandy or loamy soil. Finally,

the particle size usually doesn't affect the absorption bands position

(Ben-Dor and Banin, 1995).

The present study complements both previous works (Adeline et al.,

2017 and Castaldi et al., 2016) by assessing the effect of spectral re-

solution on clay topsoil property estimation. We simulated both artifi-

cial sensors (characterized by regular spectral resolutions) and existing

multispectral sensors (characterized by irregular spectral resolutions).

All these sensor simulations were based on real airborne hyperspectral

VNIR/SWIR data acquired over landscapes at a 5-m spatial resolution

(AISA-DUAL hyperspectral sensor). The simulation of sensors allowed

us to assess the influence of the spectral resolution on estimated soil

property, independently to others specifications (e.g. spatial resolu-

tions, acquisition dates, signal to noise ratio).

Table 1

Characteristics of planned hyperspectral VNIR/SWIR satellite sensors.

Sensor name Sensor acronym Nationality Spatial resolution Spectral resolution References

PRecursore IperSpettrale della Missione Applicativa PRISMA Italian 30 m 10 nm Lopinto and Ananasso, 2013

Environmental Mapping and Analysis Program EnMAP German 30 m from 6.5 nm to 10 nm Guanter et al., 2015

http://www.enmap.org/

HYPerspectral X Imagery HYPXIM French 8 m from 10 nm to 14 nm Lefèvre-Fonollosa et al., 2016

Spaceborne Hyperspectral Applicative Land and Ocean Mission SHALOM Italy-Israel 10 m 10 nm Ben-Dor et al., 2014

Hyperspectral Infrared Imager HyspIRI American 60 m 10 nm Lee et al., 2015
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2. Material

2.1. Study site

A subarea of the Cap Bon region in northern Tunisia including the

catchment named Lebna, was selected as the test area for this study. It

covers approximately 300 km2 as pictured in Fig. 1a. For more details,

the reader is referred to Gomez et al., 2012b and Gomez et al., 2015.

Hereafter, only its main characteristics are included for a better un-

derstanding.

This study site was initially chosen for its variety in soil type and soil

distribution patterns due to variability in lithology. The soil pattern is

characterized as significant variations in chemical and physical soil

properties due to 1) both marl outcrops and Miocene sandstones (Zante

et al., 2005) and 2) successive sandstone outcrops for which the dis-

tance between them decreases steeply along an East-West direction. The

major part of the study site is rural with a cultivation of mainly cereals

and legumes, which implies the presence of a large coverage of bare soil

during the plowing period (autumn) appropriate for hyperspectral

campaign dedicated to soil mapping.

2.2. Hyperspectral airborne data

Airborne VNIR/SWIR hyperspectral data were acquired over the

study site by the AISA-DUAL imaging sensor on November 2nd, 2010

over a 24 × 12 km area (Fig. 1b; previously studied in e.g., Gomez

et al., 2012b and Gomez et al., 2015). The AISA-DUAL sensor covers the

spectral range from 400 nm to 2450 nm with 4.6 nm bandwidth be-

tween 400 and 970 nm and with 6.5 nm bandwidth between 970 and

2450 nm, such that the reflected radiance is acquired with 359 spectral

bands. The spatial resolution during the acquisition was 5 m and the

topographic effects were corrected using a digital elevation model built

from ASTER data and some ground control points.

At the same time of the AISA-DUAL data acquisition, reflectance

was measured on five uniform surfaces over the flight print (parking

lots, asphalt and concrete) using an ASD field spectrometer to apply an

atmospheric correction (see Section 3.3).

To perform a fine analysis of the spectral resolution impact on clay

content mapping, a subarea of the Lebna catchment, covering 6.67 km2,

was further selected (black rectangle, Fig. 1b) which includes the Ka-

mech sub-catchment. This subarea was selected due to its high con-

trasting soil patterns and its status of long-term environmental research

observatory (called OMERE, Mediterranean observatory of water and

rural environment) for anthropogenic impacts study (mainly the agri-

cultural impact) on water and sediment budgets at the catchment scale

(e.g., Mekki et al., 2006; Raclot and Albergel, 2006).

2.3. Soil sample database

129 ground soil samples were collected over the Lebna study site

(Fig. 1b), in fields that were bare during the hyperspectral data ac-

quisition in November 2010. Among the 129 ground soil samples, 58

were collected in October 2008, 30 were collected in October 2009, and

41 were collected in November 2010. Each soil sample was composed

of five soil sub-samples. And these five sub-samples were collected to a

depth of 5 cm and within a 10 × 10 m square centered on the geo-

graphical position of the sampling plot as recorded by a Garmin GPS

instrument.

Each soil sample was homogenized in the laboratory, and approxi-

mately 20 g was devoted to the soil property analysis. Each soil sample

was air-dried and sieved with a 2 mm sieve prior to being transported to

the laboratory for analysis. The clay content (granulometric

fraction < 2 μm) was determined using a pipette method (method NF

X 31-107, particle size distribution by sedimentation, Baize and Jabiol,

1995). The clay content of the 129 soil samples varied between 46 and

777 g/kg and followed a normal distribution.

3. Method

A schematic overview of the process required to map the soil clay

content using coarsening spectral resolution is displayed in Fig. 2. This

process was composed of five steps, described in the following sections:

application of a spatial mask (Section 3.1), resampling of the spectra to

different configurations (Section 3.2), atmospheric correction (Section

Fig. 1. a) Map of Tunisia and the location of the study area over the Cap Bon region (orange polygon), and b) the AISA-DUAL hyperspectral image at 2206 nm acquired over the Lebna

catchment. The Kamech sub-catchment is delimited by the black rectangle. In white are the masked areas (vegetated, urban and water areas). Red targets represent the locations of the

129 collected soil samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3



3.3), the band removal (Section 3.4) and the construction of a Partial

Least Squares Regression (PLSR) model (Section 3.5). All of the treat-

ments and analyses were implemented in R (Version 1.17).

3.1. Spatial mask

The study site was covered by bare soil, urban activity, water and

vegetation consisting mainly of olive trees, native forests, green plants

and vineyards. To mask the no-soil pixels over the AISA-DUAL data, the

following process was applied, as previously described by Gomez et al.

(2015): “To isolate the bare soil areas, pixels with normalized differ-

ence vegetation index (NDVI) values over an expert-calibrated

threshold were masked. A value of 0.20 was determined after con-

sidering twenty parcels, which were visually inspected in the field. The

NDVI was retrieved using bands at 0.672 μm and 0.799 μm. Areas of

water were also masked using an expert-calibrated threshold. Pixels

with a reflectance of less than 8% at 1.665 μm were removed. Finally,

13 urban areas were identified by visual inspection and were also

masked.” Finally, when the AISA-DUAL data were acquired (on No-

vember 2nd, 2010), bare soils covered 46.3% of the entire study site

(Fig. 1b) and 49.2% of the Kamech area (black rectangle in Fig. 1b).

3.2. Spectral resampling

The spectral configuration was defined by three parameters: the

number of spectral bands (N), the spectral resolution which is also

called the Full Width at Half Maximum (FWHM) and the spectral

sampling interval (SSI) (Swayze et al., 2003). Ten simulations of spec-

tral configurations were built and divided in the following two groups:

• The simulation of six sensors with regular spectral resolution, which

corresponds to a constant FWHM throughout the VNIR and SWIR

spectral domains. Each simulation with regular spectral resolution

will be noted as ~X/Y, where X is the spectral resolution in VNIR

and Y in SWIR (Table 2). The spectral configuration with an FWHM

of 4.68 nm and 12.58 nm in the VNIR and SWIR, respectively, ap-

proximated the EnMAP sensor characteristics (noted as ~5/10). In

addition, the spectral configuration with an FWHM of 9.36 nm and

12.56 nm in the VNIR and SWIR, respectively, closely matched the

spectral characteristics of HYPXIM, HyspIRI and HYPERION (noted

as ~10/10). These six simulations and the AISA-DUAL initial re-

solution are called the RSR-Sensors group (“Regular Spectral Re-

solution Sensors”) and range from hyperspectral (> 100 spectral

bands) to multispectral (< 10 spectral bands) remote sensing con-

figurations.

• The simulation of four existing multispectral sensors with irregular

spectral resolution and multispectral configurations: ASTER,

SENTINEL-2 MSI, LANDSAT-7 ETM+ and LANDSAT-8 OLI

(Table 3). These four simulations are called the ISR-Sensors group

(“Irregular Spectral Range Sensors”) and range from superspectral

(10 < spectral bands < 100) to multispectral (< 10 spectral

bands) remote sensing configurations.

To build each spectral configuration of the RSR-Sensors group

(Table 3), the AISA-DUAL radiance spectra were resampled with

Gaussian filters whose tails were cut to twice their width, following the

filter response function G(x):

⎜ ⎟= ⎛
⎝
− −

⋅
⎞
⎠

=
⋅ ⋅

G x
x x

σ
σ

FHWM
( ) exp

( )

2
with

2 2 log(2)

0
2

2
(1)

where x is the spectral step determined by the spectral sampling

Fig. 2. The conceptual model, showing the process from airborne radiance data to clay

prediction maps.

Table 2

Spectral characteristics of the RSR-Sensors group. N represents the number of initial bands; FWHM (full width at half maximum) is a measure of the spectral resolution; Nfinal represents

the number of bands used in the prediction models after the bands were removed (see Section 3.4); NVNIR and NSWIR represent the number of bands used in the prediction models in the

VNIR and SWIR spectral domains, respectively.

Configuration N FWHM VNIR [nm] FWHM SWIR [nm] Nfinal [NVNIR, NSWIR] (H) Hyperspectral (S) Superspectral (M) Multispectral

AISA-DUAL 359 4.68 6.28 247 [92,152] H

~5/10 (EnMAP) 240 4.68 12.56 168 [92,76] H

~10/10 (HYPXIM/HyspIRI/HYPERION) 177 9.36 12.56 123 [47,76] H

~37/37 53 37.44 37.68 37 [12,25] S

~60/60 31 60.84 62.8 22 [8,14] S

~100/100 19 98.28 100.48 13 [5,8] S

~200/200 9 201.24 200.96 4 [2,2] M
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interval (SSI), x0 is the mean of the filter and equals the wavelength at

which the resampling was performed, and σ is the width of the filter.

To build each spectral configuration of the ISR-Sensors group (Table 3),

the AISA-DUAL radiance spectra were resampled using the Relative Spectral

Response Filters (RSRF) of each sensor. The RSRF of the SENTINEL-2 MSI,

LANDSAT-7 ETM+ and -8 OLI, and ASTER sensors were extracted from

https://sentinel.esa.int/, http://landsat.usgs.gov/instructions.php, https://

asterweb.jpl.nasa.gov/characteristics.asp, respectively.

The 5 field ASD reflectance measurements, collected over uniform

surfaces (parking lots, asphalt, and concrete), were also resampled to

these ten spectral configurations.

3.3. Atmospheric correction

The AISA-DUAL radiance spectra were converted to reflectance

spectra using an empirical line correction method (Farrand et al., 1994)

based on the five ASD spectrometer measurements of uniform surfaces

(parking lots, asphalt, and concrete) and the darkest pixel of the image

associated to a synthetic “zero-value” reflectance. The empirical line

correction method hinges on the establishment of a linear relationship

between the 6 reflectance measurements (5 field spectrometer mea-

surements and the synthetic “zero-value” reflectance over the darkest

pixel) and the 6 corresponding AISA-DUAL radiance measurements

(acquired over the uniform surfaces and the darkest pixel) for each

wavelength. The resulting regression equations per wavelength were

used to convert the AISA-DUAL and the ten simulated radiances to re-

flectance.

3.4. Removal of the spectral bands

As previously identified by Gomez et al. (2015), several spectral

bands have to be removed due to instrumental noise (in the blue region,

from 400 to 484 nm), instrument defect (from 952 nm to 1019 nm), O2

absorption bands (from747 nm to 766 nm) and H2O absorption bands

(from 1094 nm to 1.176 nm; from 1339 nm to 1465 nm; from 1773 nm

to 2005 nm). The final number of bands, Nfinal, for each spectral con-

figuration is presented in Tables 2 and 3.

3.5. PLSR model

The partial least squares regression (PLSR) method was used to es-

tablish relationships between the soil clay content and the VNIR/SWIR

imaging data (AISA-DUAL and simulated data). The usefulness of the

PLSR method comes from its ability to analyze data with many, noisy,

and collinear variables in both predictor variables (X-variables, the

spectra) and response variables (Y-variables, the clay content in our

case) (Wold et al., 1984). The general concept of PLSR is to extract the

orthogonal predictor variables (also called latent variables, LV) ac-

counting for the maximum amount of variation of the Y-variables. A

detailed description of the PLSR model can be found in Geladi and

Kowalski (1986).

Before building PLSR models, the reflectance spectra (X-variables)

were first converted into “pseudo absorbance” (log [1/reflectance]) and

noise reduction was achieved using a standard normal variate correc-

tion to remove additive and multiplicative effects (Barnes et al., 1993).

Second, the dataset was divided into two groups. One group corre-

sponding to 3/4 of the dataset is used for PLSR calibration and one

group corresponding to 1/4 of the database is used for PLSR validation.

The response variables (Y, clay content in our case) are sorted in as-

cending order. First, the lower clay content is placing in a validation set

and the next three samples are placed in the calibration set. Then the

procedure is pursued by alternately putting the following sample in the

validation set and the next three samples in the calibration set. This

subdivision ensures a similar distribution of clay contents in both ca-

libration and validation set.

A leave-one-out cross-validation procedure was adopted to verify

the prediction capability of each PLSR model for the calibration dataset

(Wold, 1978). Each time, N − 1 samples from all N samples within the

calibration dataset were used to build the regression model. Based on

this model, the value for the soil property of the sample that was not

used to develop the model was predicted. This procedure was repeated

for all N samples. The optimal number of Latent Variables corresponded

to the first local minimum of the root mean square errors of cross-va-

lidation (RMSECV) to avoid under-fitting, and do not exceed 10 to

avoid over-fitting. The optimal PLSR model was then applied to the

validation dataset.

An outlier is defined as a variable (predictor or response variable)

that is not consistent with the majority of the data (Chiang et al., 2003;

Pearson, 2002). The presence of spectral outliers in the calibration

dataset, which are samples spectrally different from other samples, has

been studied using the Mahalanobis distance (Mark and Tunnell, 1985).

Samples associated to a Mahalanobis distance higher than 3 were

considered as spectral outliers and were removed from the calibration

dataset.

3.6. Performance of clay prediction and mapping

The prediction performances of the PLSR models were evaluated

using: the coefficient of determination R2
cal (predicted values against

measured values in the calibration set), coefficient of determination R2
val

Table 3

Spectral characteristics of the ISR-Sensors group. N represents the number of initial

bands; FWHM (full width at half maximum) is a measure of the spectral resolution; Nfinal

represents the number of bands used in the prediction models after the bands were re-

moved (see Section 3.4); NVNIR and NSWIR represent the number of bands used in the

prediction models in the VNIR and SWIR spectral domains, respectively. Underlines

spectral bands correspond to removed spectral bands.

Configuration N Central Wavelength

(nm)

FWHM

(nm)

Nfinal [NVNIR,

NSWIR]

SENTINEL-2 MSI 13 443 (Coastal

Aerosols)

20 11 [9,2]

490 65

560 35

665 30

705 15

740 15

783 20

842 115

865 20

945 20

1375 (cirrus) 30

1610 90

2190 180

ASTER 9 560 80 9 [3,6]

660 60

810 100

1650 100

2165 40

2205 40

2260 50

2330 70

2395 70

LANDSAT-8 OLI 8 443 (Coastal

Aerosols)

16 6 [4,2]

482 60

561 57

655 37

865 28

1609 84

2200 187

1363 (cirrus) 20

LANDSAT-7 ETM+ 6 480 65 6 [4,2]

565 80

660 60

825 150

1650 200

2220 260
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(predicted values against measured values in the validation set), the

root mean square errors of calibration (RMSEC), the root mean square

errors in the validation set (RMSEP), the bias of prediction, the ratio of

the performance to the deviation (RPD, ratio between the standard

deviation in the validation set and the RMSEP, Chang et al., 2001) and

the ratio of performance to interquartile (RPIQ, ratio of the inter-

quartile to the RMSEP, Bellon-Maurel et al., 2010).

The Variable Importance in the Projection (VIP) (Wold et al., 2001;

Chong and Jun, 2005) and the PLSR b-coefficients (Haaland and

Thomas, 1988) were used to study the significant wavelengths used in

PLSR. A wavelength n was considered to have a significant importance

if it fulfilled the two following conditions (Wold et al., 2001):

• Its b-coefficient was larger than the standard deviation of the b-

coefficients for all the spectral bands (Viscarra Rossel et al., 2008)

• Its variable importance in the projection (VIP) was higher than 1

(Chong and Jun, 2005; Wold et al., 2001), following the equation:

∑= ⋅ ⋅
=

VIP N w Rn

p

p

p n p

1

,
2 2

opt

(2)

where wp,n
2 is the loading weight for the pth latent variable at wave-

length n, popt is the optimal number of latent variables, Rp
2 is the

coefficient of determination obtained for the pth latent variable and N is

the number of wavelengths.

Once each PLSR model was built using the calibration dataset cor-

responding to each spectral configuration, each PLSR model was ap-

plied to all of the spectra over bare soil from the corresponding spectral

configuration to produce predicted clay content map. To study and

compare the ability of the PLSR prediction models to accurately re-

produce the spatial structures of the clay contents over the study site,

variograms were calculated using semi-variance γ following the for-

mula (Webster and Oliver, 1990):

∑= − +
=

γ h
m

Y x Y x h( )
1

2
{ ( ) ( )}

i

m
i i

1 (3)

where Y(xi) and Y(xi+h) are the observed values of Y at xi and xi+h, h

is the lag (the distance from which the pairs are apart) and m is the

number of paired comparisons separated by the lag h (Webster and

Oliver, 1990). A variogram measures the spatial dependence of the

studied soil property (in our case: clay content). A spatial auto-

correlation in clay contents Y (i.e., the sampling locations located close

to each other have similar values Y) is highlighted by the variogram

when the semi-variance γ is lower at smaller lags than at larger lags.

4. Results

4.1. Preliminary results

A reference PLSR model was built from the AISA-DUAL spectra and

observed clay content values associated to the 129 available soil sam-

ples. Four spectral outliers were removed from the calibration database

of this reference model, and 4 latent variables were selected following

the rule of the first local minimum of the RMSECV (Table 4, Fig. 3a).

The performance of the model was accurate, with R2
cal and R2

val values of

0.77 and an RMSEP value of 82 g/kg (Table 4).

This reference PLSR model was applied to all AISA-DUAL spectra

over bare soil to produce a predicted clay content map (Fig. 4a). As

previously observed in Gomez et al. (2012b), the Kamech catchment is

characterized by strong variations in soil patterns on a small scale, with

a close succession of clay-rich areas and clay-poor areas oriented

northwest/southeast, corresponding to marl and sandstone outcrops,

respectively (Fig. 4a). The predicted clay content values over the Ka-

mech catchment followed a normal distribution (Fig. 3c) and were

centered on 503 g/kg with a standard deviation of 157 g/kg and a

skewness of −0.004 g/kg. Finally, the empirical variogram of the

predicted clay content values exhibited spatial structures with clear

increases in the semi-variances as the distance between pairs of points

increased (Fig. 3d).

4.2. Sensitivity to spectral resolution with regular spectral range

A PLSR model was built for each spectrally resampled VNIR/SWIR

image belonging to the RSR-Sensors group, which led to six PLSR

models. The number of outliers remained quite stable (between 3 and

7) regardless of the RSR-Sensor. Among the 6 simulated spectral con-

figurations of the RSR-Sensors group, the five RSR-Sensors with spectral

resolution from ~5/10 to ~100/100 nm offered accurate PLSR models

with R2
cal > 0.73, RMSEP < 94 g/kg and R2

val > 0.71 (Table 4). The

performance indicators, R2
cal, R

2
val and RMSEP, obtained with these five

RSR-Sensors varied only slightly and indicate that a spectral resolution

of ~5/10 to ~100/100 nm does not strongly affect prediction perfor-

mances. The slight difference in performance indicator values within

this group may be caused by the selected number of latent variables

following the rule of the first local minimum of the RMSECV, which is

slightly different for each spectral configuration (Table 4 and Fig. 3a).

The PLSR model built from the regular spectral range of ~200/200 nm

produced an inaccurate PLSR model, with an R2
cal < 0.4, RMSEP >

130 g/kg and R2
val < 0.1 (Table 4).

The performance indicators R2
val, RMSEP, RPD and RPIQ indicate

that the simulated EnMAP spectral resolution (~5/10 m) provides

quite better accuracy than the initial AISA-DUAL spectral resolution.

This improvement may be explained by a smoothing of the spectra due

to the Gaussian filter used to simulate coarser spectral resolution, which

involves a noise reduction (Fig. 5).

None of the spectral bands of the reflectance data at ~ 200/200 nm

may be considered as significant based on the analysis of the VIP and b-

coefficients (Fig. 3b). Concerning the five other spectral configurations,

the spectral range between 2000 and 2500 nm included the wave-

lengths with the highest amount of significance in the PLSR models

(highest b-coefficients and VIP) (Fig. 3b). In particular, the spectral

range at approximately 2200 nm, corresponding to an absorption fea-

ture due to the combination of OH-Al bending and OH stretching

modes, was used by all PLSR models (Fig. 3b). The spectral domains at

approximately 720 nm and 1490 nm were also used by these five PLSR

models (Fig. 3b). Both spectral domains may correspond to the spectral

baseline which must appear in the regression models (Roger et al.,

2010).

The six PLSR models, built from each spectral configuration, were

applied to all spectra over bare soil to produce six predicted clay con-

tent maps over the Kamech catchment. All spectral configurations

provided predicted clay contents over the Kamech catchment following

normal distributions (Fig. 3c). The clay contents predicted using the

spectral configuration of ~ 200/200 nm exhibited a lower standard

deviation than the ones predicted by the five other spectral configura-

tions (Fig. 3c). This can also be shown by the experimental variogram

predicted from the spectral configuration of ~ 200/200 nm, which

exhibited a lower sill (Fig. 4d). This low variability of estimated clay

was due to the PLSR model tending to converge towards the mean of

the calibration data y, as not enough spectral information is contained

in the ~ 200/200 nm configuration to predict clay content with accu-

racy. The five other predicted clay maps exhibited correct short range

variations in soil patterns, with a close succession of clay-rich areas and

clay-poor areas (Fig. 4b and c), as observed in the reference map

(Fig. 4a). Similarly, the experimental variograms look very similar to

the one produced with the reference AISA-DUAL data (Fig. 3d).

4.3. Sensitivity to the spectral resolution with irregular spectral range

Among the four spectral configurations of the ISR-Sensors, the

spectral configurations of ASTER and SENTINEL-2 MSI seemed to offer

accurate PLSR models for clay prediction, corresponding to
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R2
cal > 0.69, RMSEP of 95 g/kg and R2

val > 0.71 (Table 4). Between

these two sensors, the PLSR model built from the spectral configuration

of ASTER provided a more accurate clay prediction than the PLSR

model built from the spectral configurations of SENTINEL-2 MSI, in-

dicated by a lower bias and a higher RPIQ and RPD (Table 4). The PLSR

models built from spectral configurations of LANDSAT-7 ETM+ and

Table 4

Prediction results of the PLSR models obtained from the AISA-DUAL sensor, the six RSR-Sensors and the four ISR-sensors.

Configuration name R2
cal RMSEC (g/kg) R2

val RMSEP (g/kg) Bias (g/kg) RPD RPIQ # of latent variables # of outliers removed

AISA-DUAL 0.77 82 0.77 82 −20 2.14 3.45 4 4

~5/10 (EnMAP) 0.73 90 0.78 81 −16 2.18 3.52 4 4

~10/10 (HYPXIM/HyspIRI/HYPERION) 0.75 88 0.73 90 −15 1.97 3.19 5 7

~37/37 0.74 88 0.74 90 −8 1.99 3.21 5 3

~60/60 0.75 85 0.71 93 −12 1.9 3.07 6 4

~100/100 0.75 87 0.71 94 −11 1.9 3.04 5 3

~200/200 0.35 139 0.01 173 15 1.02 1.65 3 4

SENTINEL-2 MSI 0.7 95 0.71 94 −19 1.9 3.06 8 3

ASTER 0.69 95 0.8 77 −4 2.3 3.72 5 2

LANDSAT-8 OLI 0.29 145 0.23 152 8 1.16 1.87 3 3

LANDSAT-7 ETM+ 0.27 147 0.09 166 7 1.07 1.72 3 3

Fig. 3. a) RMSECV as a function of the latent variables retained in the PLSR models, b) significant spectral bands (colored points) used in the PLSR models, c) histograms of predicted clay

content and d) empirical variograms with a lag of 20 m (points) of predicted clay content obtained from the six RSR-Sensors and the AISA-DUAL data. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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LANDSAT-8 OLI performed the worst, with an R2
cal ≤ 0.4, RMSEP >

120 g/kg and R2
val < 0.45 (Table 4). In addition, 2 to 3 spectral out-

liers were removed from the calibration database for all tested ISR-

Sensors (Table 4).

Following the rule of the first local minimum of the RMSECV, 3 to 8

latent variables were selected for these four PLSR models (Fig. 6a). For

the SENTINEL-2 MSI spectral resolution, the first local minimum of

RMSECV was difficult to detect (Fig. 6a). Moreover, no significant band

was identified for the PLSR model built from the spectral configuration

of SENTINEL-2 MSI, even though the PLSR model with 8 latent vari-

ables is quite accurate in terms of the performance indicators (Table 4,

Fig. 6b). The combination of 1) the lack of a clear first local minimum of

RMSECV and 2) the lack of any significant band means that the PLSR

model built from the SENTINEL-2 MSI spectral configuration is in-

accurate for an LV < 8 and overfit the predictions for an LV≥ 8.

Therefore, from these analyses, no PLSR models can be considered as

accurate for clay content estimation and mapping using the SENTINEL-

2 MSI spectral resolution.

For three of the four spectral configurations of the ISR-Sensors

(ASTER, LANDSAT-7 ETM+ and LANDSAT-8 OLI), the wavelength

located at approximately 2200 nm, corresponding to an absorption

feature caused by the combination of OH-Al bending and OH stretching

modes, was one of the most significant bands (highest b-coefficients and

VIP) (Fig. 6b). The spectral configurations of LANDSAT-7 ETM+ and

LANDSAT-8 OLI also used a band centered at 1650 and 1609 nm, re-

spectively, which may correspond to the spectral baseline that appears

in the regression models (Roger et al., 2010). The visible spectral

Fig. 4. Maps of the clay contents over the Kamech catchment predicted from the PLSR models using a) AISA-DUAL data and spectral configurations at b) 5/10 nm, c) 100/100 nm and d)

200/200 nm.

Fig. 5. The black and red spectra represent the AISA-DUAL reflectance of a random pixel

and its spectrum resampled at ~5/10 nm (EnMAP configuration), respectively. The

vertical red line represents the center of the clay absorption band (at 2210 nm). (For

interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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domain (400–1000 nm) was not considered as an important spectral

domain by any of these ISR-sensors (Fig. 6b).

The four PLSR models built from spectral configurations of the ISR-

Sensors were applied to all spectra over bare soil to produce four pre-

dicted clay content maps over the Kamech catchment (Fig. 7). These

spectral resolutions provided predicted clay contents over the Kamech

catchment that followed a normal distribution (Fig. 6c). The clay con-

tents predicted using the spectral configurations of LANDSAT-7 ETM+

and LANDSAT-8 OLI exhibited a lower standard deviation than the two

other spectral resolutions (Fig. 6c). This means that the pedological

variability of the Kamech catchment is not represented in the predicted

clay content maps obtained using both spectral configurations (Fig. 7c

and d), such as for the spectral resolution of 200/200 nm. The dis-

tribution of clay contents predicted using the spectral resolution of

SENTINEL-2 MSI shifted to slightly higher values compared to those

obtained from the spectral resolution of ASTER (Fig. 6c). This confirms

that the PLSR model using the SENTINEL-2 MSI spectral resolution

cannot be considered as accurate for clay content estimation and

mapping.

Finally, the spatial structures of estimated clay contents obtained by

LANDSAT-7 ETM+ and LANDSAT-8 OLI spectral configurations ex-

hibited very low sills (Fig. 6d). By contrast, the semi-variance obtained

by SENTINEL-2 MSI exhibited very high sill and strong variations. Fi-

nally, the variogram obtained by the ASTER simulated data was close to

the one obtained by the AISA-DUAL data.

5. Discussion

5.1. Clay absorption feature as a driver of spectral configuration impact

The presence of the clay absorption feature centered around

2200 nm in the tested spectral configuration seems to be the main

driver of clay content prediction performance. From the literature, the

width of the clay absorption feature centered around 2200 nm is

Fig. 6. a) RMSECV as a function of the latent variables retained in the PLSR models, b) significant spectral bands (colored points) used in the PLSR models, c) histograms of the predicted

clay content and d) empirical variograms with a lag of 20 m (points) of predicted clay content obtained from the four ISR-Sensors and the AISA-DUAL sensor. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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between 92 nm (Levin et al., 2007) and 126 nm (Lagacherie et al.,

2008).

5.1.1. Case of regular spectral resolution sensors (including simulated

forthcoming hyperspectral satellites)

Correct performances of clay prediction were obtained from the

PLSR models built using regular spectral resolution up to ~100/100 nm

(Table 4). Weak performances of clay prediction obtained from the

PLSR model using regular spectral resolution of ~200/200 nm may be

explained by the fact that the clay absorption feature was included in

only one spectral band (Fig. 8a), which cannot reflect depth and width

of the absorption feature. However, for higher FHWM (regular spectral

resolution from ~5/10 nm to 100/100 nm), the clay absorption feature

was discriminated using several bands (e.g., using three bands at the

spectral resolution of ~100/100 nm, Fig. 8a).

Castaldi et al. (2016) showed that good clay prediction perfor-

mances are obtained using laboratory spectra with bandwidths from 10

to 160 nm. In addition, Adeline et al. (2017) showed that good clay

prediction performances are obtained using laboratory spectra with

bandwidths up to 200 nm. The measurement differences between the

laboratory spectroscopy and imaging data (light sources, spatial re-

solution, instrumental noise, atmospheric conditions, purity of the

pixels, etc.) may explain the performance differences between our re-

sults and those of Castaldi et al. (2016) and Adeline et al. (2017).

Imaging spectra may contain perturbations which alter the spectra

quality and reduce the performance of prediction when the spectral

resolution decreases.

5.1.2. Case of irregular spectral resolution sensors (simulated existing

multispectral satellites)

The ASTER simulated sensor is the only multispectral simulated

sensor which provides accurate prediction of clay content (R2
val = 0.8,

Table 4). This accurate performance of clay prediction may be ex-

plained by the fact that the clay absorption feature is represented by

three ASTER spectral bands at 2165, 2205 and 2260 nm with

FWHM< 70 nm (Table 3, Fig. 8b). In addition, the weak performances

of clay prediction models built using spectra sampled from SENTINEL-2

MSI and from both LANDSAT spectral resolutions (Table 4) may be

explained by the fact that the clay absorption feature is represented by

only one spectral band of the SENTINEL-2 MSI sensor and of both

LANDSAT sensors (Fig. 8b).

Multispectral remote sensing data have seen very little use in soil

science. Many of the multispectral data studies focused on the classi-

fication of pedological groups (e.g., Escadafal and Pouget, 1987). Other

multispectral data studies tested mapping of quantitative physico-che-

mical soil properties with modest success. Shabou et al. (2015)

achieved a R2 of 0.73 for clay content estimation using LANDSAT-TM5

data and a spectral index called MID-Infrared index. These results do

not match with ours. However, their model was calibrated using only

30 samples, which is low and may produce unrobust model or over-

fitted model (as is the case of our model obtained from the SENTINEL-2

MSI configuration).

5.2. Extension to other soil properties of continental surfaces

Adeline et al. (2017) also demonstrated that, in the laboratory

Fig. 7. Maps of clay contents over the Kamech catchment predicted from the PLSR models using spectral configurations of a) SENTINEL-2 MSI, b) ASTER, c) LANDSAT-7 ETM+, and d)

LANDSAT-8 OLI.
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VNIR/SWIR spectroscopy, the sensitivity of soil properties to instru-

mental spectral configurations depends on the chemical absorption

features and the correlations with other soil properties. This demon-

stration was done on three soil properties with spectral absorption re-

sponses (clay, CaCO3 and iron) and one soil property with no spectral

absorption response (pH) (Adeline et al., 2017). A coarsening of spec-

tral resolution may induce a small decrease in model performance of a

soil property when it has large and pronounced spectral features and

when it is correlated with other soil properties also characterized by

spectral features. In addition, a coarsening of spectral configuration

may induce a large decrease in the model performance of a soil property

when it has no spectral feature, as these soil properties may only rely on

the beneficial effect of correlations with other soil properties having

spectral features. Following these observations, iron, which has a large

and pronounced spectral response (Demattê et al., 2004), would be a

soil property correctly predicted at coarse spectral resolution. CaCO3,

which has a pronounced but narrow spectral response (Gaffey, 1986),

would be a soil property more sensitive to spectral resolution coar-

sening. In addition, the performance of pH prediction, which is a soil

property without spectral features, would be low if no correlation be-

tween it and other soil properties having spectral features exists.

5.3. Indirect impact of mixed vegetated pixels

Beyond the spectral resolution, the prediction model performance

depends on the composition of the pixel for which the spectra (Xcal) are

used to calibrate the prediction model. Indeed, these pixels must be

covered by bare soils, as materials other than soil, such as the vegeta-

tion (dry and green), are perturbing factors of spectral measurements

and prevent prediction model building and application (Bartholomeus

et al., 2011; Ouerghemmi et al., 2011). Therefore, a major step of image

preprocessing is the masking of pixels other than bare soil (vegetation,

urban, and water areas), which allows for selecting pixels for i) the

calibration of the prediction models and ii) the application of the model

to the entire bare soil pixels. In hyperspectral studies, the NDVI and

Cellulose Absorption Index (CAI) spectral indexes are frequently used to

identify green and dry vegetation pixels, respectively, and mask them

(Madeira Netto et al., 2007). The NDVI index can be calculated by all

sensors simulated in this paper. However, the CAI index needs spectral

information measured at 2000, 2100 and 2200 nm, which are not

measured by any of the ISR sensors studied in this work or any of the

RSR artificial sensors from the 100/100 nm spectral resolution. Dry

vegetation is usually masked on LANDSAT data using the Modified Soil

Adjusted Crop Residue Index (MSACRI) index (Bannari et al., 2000) and

on ASTER data using the Lignin-Cellulose Absorption (LCA) index

(Daughtry et al., 2005). Therefore, the masking step of pixels covered

by some dry vegetation may be an additional drawback for the potential

of sensors with low spectral resolution. It may be interesting, in futures

works, to estimate the impact of this step (and the impact of these in-

dexes on dry vegetation identification) on the prediction performances.

In our study, the AISA-DUAL data were acquired after the plowing

work which allows to remove the dry vegetation (culture residue of the

last year) or at least to mix the soil with these residues. Therefore, the

impact of the masking step of pixels covered by some dry vegetation

was not studied in this work and would have to be done in further

studies.

6. Conclusion

The launch of the forthcoming sensors, in addition to existing ones,

will produce an increasing amount of VNIR/SWIR data over the world,

and soil surface quality could be mapped over larger areas than it is

currently. This work investigated the sensitivity of spectral configura-

tions on clay content estimation and mapping to identify adequate

sensor(s) for soil mapping. Performances of the PLSR models built from

six simulated sensors (with regular spectral ranges from 5 nm to

200 nm) and four existing multispectral sensors (with irregular spectral

ranges relating the characteristics of ASTER, SENTINEL-2 MSI,

LANDSAT-7 ETM+ and LANDSAT-8 OLI) were analyzed. Moreover,

spatial structures of maps obtained using these PLSR models were also

analyzed. Analysis of the PLSR model performances highlighted that the

RSR sensors with spectral configurations up to 100/100 nm and the

ASTER spectral configuration may allow for the estimation of clay

content. In addition, pedological patterns of estimated clay content are

preserved with spectral configurations up to 100/100 nm and with the

ASTER spectral configuration. Finally, performances of satellites

(forthcoming and existing) for soil property predictions may depend on

the spectral absorption features of the studied soil properties. In addi-

tion, studies limited to spectral configuration evaluations (i.e., Castaldi

et al., 2016; Adeline et al., 2017), including this paper, or to spatial

resolution evaluations (Gomez et al., 2015) may not give an exact view

of the potential of VNIR/SWIR sensors. Coupling spectral and spatial

Fig. 8. Spectral bands of the a) two RSR-sensors at ~100/100 nm and ~200/200 nm and b) of each IRS-Sensor. Black circles represent the central wavelength of the spectral bands. The

black spectrum represents the AISA-DUAL reflectance of a random pixel. The vertical red line represents the center of the clay absorption band (at 2210 nm). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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resolutions would provide further and necessary analysis of the po-

tential of forthcoming and existing sensors.
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