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Abstract—Monitoring urban growth and change is an impor-
tant task for urban planning and disaster management. While
several change detection approaches have been proposed to deal
with growing urban areas, their performances are usually limited
due to outliers in Satellite Image Time Series (SITS). In this study,
in order to discriminate urban growth from the other changes, we
exploit spatial connectivity of the changed pixels. To do so, we first
stack SITS to a single synthetic image whose pixel values denote
the temporal variability along the series. Then, we propose to rely
on efficient and well-established spatial filtering by means of the
max-tree image representation, leading to a novel approach for
detecting changes in urban areas, and more precisely focusing on
the spatial extent of such changes in relationship with the urban
growth. Experimental results obtained on Landsat imagery of
Dar es Salaam showed that our approach helps to remove outliers
from the change map and provides satisfactory accuracy.

Index Terms—Urban monitoring, change detection, Attribute
filtering, Satellite Image Time Series, Max-Tree.

I. INTRODUCTION

Analysis of satellite image time series (SITS) have shown
growing interest due to the availability of high temporal
frequency Earth Observation data provided by the new satellite
missions (e.g. Sentinel) [1]. Change detection [2] receives
most of attention since it allows to monitor urban areas, and
such urban growth information is required for city planners,
disaster management, infrastructure, etc.

SITS data do not always include homogeneous combination
of time series information. There are several challenges to
overcome, such as cloud, haze, shadows, etc. [3]. Thus,
outliers that are due to missing temporal samples, atmospheric
contamination, viewing angle, cloud, etc. lead to abnormal
pixel values that have then to be carefully addressed by change
detection methods. As such, purely pixel-based approaches
may be inadequate to deal with such outliers. Therefore,
spatial connectivity appears as an important information for
urban change monitoring [4]. Among recent works that embed
spatial information are the multi-level change detection using
stereo images from [5], and the comparison of pixel-based and
object-based approaches for urban monitoring in [6]. However,
these works only compare two satellite images, and clouds are
not specifically addressed (but rather either filtered with a prior
outlier detection method or by considering Synthetic Aperture
Radar (SAR) images instead of optical ones).

Recently, morphological hierarchies through tree-based rep-
resentations have appeared as an efficient way to implement

(spatially) connected filters [7] over ordered sets such as
grayscale images. However, to the best of our knowledge,
extension of such hierarchies to time series has only been
addressed in [8], where temporal connectivity is considered
between two Synthetic Aperture Radar (SAR) Images to
build a Binary Partition Tree. Another strategy consists in
considering SITS as multivariate data, where each pixel is
assigned a vector made of its values at different dates. It thus
allows to access multivariate morphological approaches [9].
But conversely to color images for which vector orderings have
been extensively studied, to the best of the authors’ knowledge,
there is no ordering of time series able to cope with its specific
challenges (outliers, irregular sampling, etc.) yet.

Aiming at change detection, [10] performs a pixelwise
comparison between two images, comparing each pair of
pixels based on respective attribute profiles (AP). AP are com-
puted from successive applications of connected filters, and
changes are measured in each pixel coordinates by summing
differences between all filtered images (or scales). Extension
of these approaches to longer time series is not straightforward.

In this paper, we propose to monitor changes in urban areas
by combining spatial and temporal information. Temporal
information is provided by Landsat SITS, that is first analyzed
to derive a synthetic image embedding the temporal variabil-
ity for each pixel. Then, spatial connectivity is taken into
account through connected filtering, efficiently implemented
with hierarchical representations. For the sake of illustration
and validation, we applied our method to a dataset covering
the Dar es Salaam city during the last 30 years, and compared
the results with some public reference data.

II. METHODOLOGY

As already mentioned, change detection for urban moni-
toring based on spatial information has accomplished great
success w.r.t. pixel based approaches with long time series,
and morphological hierarchies have been proved to be a good
detector for changes between two images. We build upon these
ideas to design a spatially-aware change detector relying on
tree-based representation of long time series. Our approach
is based on two steps: first we conduct a temporal analysis
to find the highly possible changed areas, before filtering the
resulting image using spatial information.
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A. Temporal processing
While a SITS is made of a series of satellite images,

it can also be seen as a single image where each pixel is
associated to a time series containing its values in the images
corresponding to the different dates. In order to deal with long
time series, we propose here to reduce SITS to such a single
image by using pixel time series information for each location.
We thus project each pixelwise time series to a single scalar
value that is further used to form a unique image. By doing
so, we limit the memory requirements brought by long term
SITS data and also access to the efficient implementation of
connected filters through max-trees that are uniquely defined
for grayscale images (while there is no unique choice for
multivariate images, see [11]).

Let I be a gray scale image, [x, y] the pixel coordinates,
and It[x, y] the pixel value in the tth frame of the SITS data
made of T dates. In the sequel, we consider various functions
to project pixel time series into scalar values, written as

Inew[x, y] = f(I1[x, y], . . . , It[x, y], . . . , IT [x, y]), (1)

where Inew represent the created synthetic image.
Since we aim to find changed areas, we measure in Inew the

spread of the time series data. Statistical dispersion functions
such as range, inter-quartile range and standard deviation are
well-known to calculate such variability or spread [12]. Indeed,
if spreading of the data is high, possibility of the change would
be high as well. Higher pixel value of the new synthetic image
commits higher change for each location.

A simple spreading measure is range, i.e. difference between
the maximum and minimum values in each location:

Irange[x, y] = max
t∈[1,T ]

(It[x, y])− min
t∈[1,T ]

.(It[x, y]) (2)

A second measurement is the inter-quartile range (IQR)
which is the difference between the 75th (third quartile, Q3)
and 25th (first quartile, Q1) percentile of the data:

IIQR[x, y] = Q3[x, y]−Q1[x, y]. (3)

Quartile coefficient of dispersion is also computed by using
first and third quartiles:

IQcoef
[x, y] =

Q3[x, y]−Q1[x, y]

Q3[x, y] +Q1[x, y]
. (4)

Another measure of spread is standard deviation. It is calcu-
lated in terms of how far the data differs from the average:

Istd.dev[x, y] =

√√√√ 1

T

T∑
t=1

(
It[x, y]− Ī[x, y]

)2
, (5)

with

Ī[x, y] =
1

T

T∑
t=1

It[x, y] (6)

Although other statistical dispersion measurements have
been introduced (e.g. entropy [13]), we limit ourselves to these
basic functions for our preliminary experiments. Dispersion
measures were computed for every pixel location separately,
and gathered into a new synthetic image as already explained.

B. Spatial processing

We have shown how we stack pixel time series into scalar
values in order to obtain a single image that gathers pixelwise
temporal variability. We now analyze this image by taking into
account spatial information. To do so, we rely on attribute
filters that are a class of connected filters (i.e. filters operating
on connected components, or connected sets of neighboring
pixels sharing the same value) whose filtering criterion relates
to a predefined attribute [14].

Various attributes have been used so far, such as size, shape
and contrast. We use here the popular area attribute (measured
as the number of pixels) since we aim to distinguish between
large connected components denoting the urban extent and
smaller ones that can be seen as outliers or noise.

As already stated, attribute filters can be efficiently imple-
mented through the representation of the input image as a
morphological hierarchy or a tree structure such as the max-
tree. More precisely, since I is a gray scale image, it admits
an ordering relation ≤. So we can define, for each threshold
L ∈ Z or L ∈ R (for images with integer and real-valued
pixels, respectively), the upper threshold set

[I ≥ L] = {[x, y], I[x, y] ≥ L}. (7)

This set is made of several connected components CL
h that

are further nested into the so-called max-tree hierarchy, whose
definition for integer-valued images is:

∀L ∈ [0, 255[,∀h, ∃j s.t. CL
h ⊆ CL+1

j (8)

We prefer here max-tree over other alternatives since we
focus on higher values corresponding to high possible changes
(see [7] for a recent survey). Such a hierarchical representation
allows for very efficient attribute filtering, that only consists
in computing one (or several) attribute A for each node, and
filtering out the nodes that do not fulfill a given criterion (i.e.
threshold) λ. Since we use here an increasing attribute (area),
the filtering is straightforward: if A(CL

h ) < λ, CL
h is removed

with all its descendants CL′

j ⊆ CL
h . The final (filtered) image

is then reconstructed from the pruned tree.
Area filtering was applied with several thresholds, that were

here defined empirically. We assume that urban growth areas
are connected sets of changed pixels whose area is larger than
those of other parts of the satellite images such as clouds. If
the spatial extent of cloudy areas is lower than the threshold,
they will be filtered out, as illustrated in Sec. III-B.

III. EXPERIMENTS

A. Data

We consider here the Dar es Salaam region in Tanzania, that
is known for careful assessment of its urban cover expansion
(from 12,988 to 20,607 hectares, about 47% increase [15]).
We illustrate such expansion through reference maps given in
Fig. 1 and taken from [16]. In these maps dating from 1992,
1998 and 2002 respectively, urban areas are identified in white
areas. Furthermore, we also include a 2017 reference taken
from OpenStreetMap [17].



(a) 1992 (b) 1998 (c) 2002 (d) 2017

Fig. 1: Reference data for Dar es Salaam, Tanzania.

(a) 1991-1992 (b) 1992-1995 (c) 1995-1997 (d) 1997-1998

(e) 1998-2000 (f) 2000-2011 (g) 2011-2017

Fig. 2: Difference between the Landsat images.

The SITS is made of Landsat-5 (1991, 1992, 1995, 1997,
1998, 2000, 2011) and Landsat-8 images (2017), with a 30m
spatial resolution provided by the United States Geological
Survey (USGS). Among available spectral bands , we select
only the blue band (first band) with the shortest wavelength
(0.45-0.52µm) and 30m spatial resolution. This choice is
motivated by the higher dynamic range and its proven ability
to detect clouds [18]. Let us note that using the spectral
information would most probably lead to better results.

For the sake of evaluation, we clipped the Landsat data
according to the reference maps shown in Fig. 1, leading to
an image size of 1595 × 1076 pixels. We highlight changes
between successive images in Fig. 2. Quantitative evaluation
is performed by comparing the obtained results with the
difference map between 1992 and 2017 (see Fig. 4a).

B. Results

Conversely to existing works that detect changes between
only two dates, our approach accommodates with long time
series data. Long time series data is useful for some applica-
tions such as reverted changes, vegetation dynamic [19], etc.
As discussed in Sec. II, we stacked the SITS in a synthetic
image that measures temporal spread. To do so, we consider
in this paper the following functions: Range, IQR, Quartile
Coefficient, and Standard Deviation. As shown in Fig. 3, these

(a) Range (b) Std. Dev. (c) IQR (d) Q. coeff.

Fig. 3: Synthetic images computed from the SITS.

(a) Reference (b) λ=10,000 (c) Unfiltered (d) Corrected

Fig. 4: Urban growth estimation: reference data, result with
and without spatial filtering, and difference in between.

functions darken the stationary city area comparing to changed
areas that are given higher values. Nevertheless, we can see
that clouds still bring some artifacts in these images. We
then apply an area filter over each of these images, with an
efficient implementation based on a max-tree structure. We
have considered different thresholds for the area filtering and
report here the observed results.

We provide in Fig. 4 a visual comparison between the
reference change map (a) made of difference between ref-
erence maps from 1992 and 2017, and the results provided
by our method (b) considering range as the spread function.
The color codes are as follows: red, green and yellow pixels
represent false negative (i.e. wrongly classified non-urban
areas), false positive (i.e. wrongly classified urban areas) and
true positive (i.e. pixels correctly identified as new urban
areas), respectively. The effect of spatial filtering is further
assessed by comparing with the temporal stacking only (c),
with corrected errors given in (d). As it can be observed,
the dataset is challenging due to the presence of clouds and
changes over a 25 years period. We can see the effect of using
an area filtering, that allows to remove areas smaller than a
given threshold such as clouds. One of them is highlighted
with red box in Fig. 4c and corresponds to a cloudy area
(see Fig. 2f). As emphasized by differences between Fig. 4b
and 4c, spatially filtering of time series information allows
to reduce artifacts due to noise or clouds. White box in
Fig. 4b shows the correctly detected urban area after filtering
comparing to same area in 4c. However, there are still wrongly
classified parts caused by clouds connected to urban changes
(see blue boxes in Fig. 4b, 2c and 2e). Such an issue might
be addressed with advanced connectivity [20].

Finally, we report quantitative evaluation in Figs. 5a and 5b.



We first show in Fig. 5a the stability of the synthetic image
w.r.t. the chosen threshold value. We can observe that after
a severe decrease, increasing further the area has a limited
filtering effect. Fig. 5b provides a comparison analysis in terms
of true positive rate w.r.t. the threshold value, that confirms
the stable behavior. We can observe the relevance of the
spatial filtering, with significant improvement (+5-10%) over
the temporal (pixel) analysis only, and better results being
obtained with higher area thresholds. Also, we can notice
that the presence of clouds does not affects too strongly the
accuracy with only a few points lost w.r.t. a cloud-free dataset
(see discussion below). The whole process takes 24 seconds
with a MacBook Pro 2.6 GHz Intel Core i5 processor and
Python implementation. It can be further reduced with efficient
implementations of tree-based processing [21].
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Fig. 5: Results with different dispersion functions, compared
with cloudless data and without the spatial filtering.

For the sake of comparison, we compare the different
synthetic images with and without the spatial filtering. Fur-
thermore, we also compare with two variants inspired from
[10], for which we set the thresholds similar to our settings.
The first one computes a change map as the difference between
respective AP from the first and last dates. While it can reaches
a high accuracy (89%) when applied to cloudless images (1992
and 2017), it remains ineffective when applied to cloudy data
(30% if 2017 is compared with the cloudy 1991 image).
The second variant computes the sum of AP differences of
successive frames. Again, we assess it on both the standard
dataset made of all dates (i.e. containing clouds) and on a
subset ignoring cloudy images (1991, 1997, 2000). It reaches
an accuracy of 50% and 75% respectively, showing its higher
sensitivity to clouds than the proposed approach.

IV. CONCLUSION

We have proposed a novel method for monitoring urban
growth areas, based on a spatial analysis of changed detected
within a satellite image time series. We assumed that urban
growth areas could be characterized by connected sets of
changed pixels with a spatially significant extent. We thus pro-
posed to stack all images of a time series into a single image
where changes are highlighted, before performing spatial area
filtering over this image. Area filtering allows us to remove
insignificant changes and outliers from the image, and it can be

efficiently implemented using hierarchical representations such
as max-tree. Preliminary experimental assessment provides
promising results but also calls for further work to define
optimal area threshold, for which automatic methods have
been introduced recently [22]. Furthermore, we have not take
into account longitudinal growing yet, but it can be addressed
using time series of Digital Elevation Models or SAR images.
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