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Introduction

The SRT 2 2 vs. COH problem is a central question in computable combinatorics that aims to clarify the relationship between two well-studied combinatorial consequences of Ramsey's theorem for pairs in terms of their effective content. In this article, we establish a new partial result towards the resolution of this question, as well as a related more general one.

For completeness, and also to fix some notation, we begin by briefly reviewing the most relevant definitions below. We refer the reader to Hirschfeldt [? , Chapter 6] for a more thorough discussion and overview of computable combinatorics. We assume familiarity with computability theory and reverse mathematics, and refer to Soare [? ] and Simpson [? ], respectively, for background on these subjects. We also assume the basics of Weihrauch reducibility and computable reducibility, and refer, e.g., to Brattka, Gherardi, and Pauly [? ] for a detailed survey, or, e.g., to Cholak, Dzhafarov, Hirschfeldt, and Patey [? , Section 1] for an introduction aimed more specifically at the kinds of questions we will be dealing with here. Definition 1.1. Fix numbers n, k ≥ 1.

(1) For every set X ⊆ ω, let [X] n = {〈x 0 , . . . , x n-1 〉 ∈ ω n : 2 is stable if lim y c(〈x, y〉) exists for all x ∈ ω.

x 0 < • • • < x n-1 }. (2) A k-coloring of [ω] n is a map c : [ω] n → {0, . . . , k -1}. ( 3 
) A set H ⊆ ω is homogeneous for c if c ↾[H] n is constant. (4) A k-coloring of [ω]
(5) A set L ⊆ ω is limit-homogeneous for a stable c : [ω] 2 → k if lim y c(x, y) is the same for all x ∈ L.

When n = 2, we call c : [ω] 2 → k a k-coloring of pairs, or simply a coloring of pairs if k is understood. We will write c(x, y) in place of c(〈x, y〉).

The following definition is somewhat nonstandard and technical, but it will simplify the presentation in the sequel. Definition 1.2. Let R = 〈r 0 , r 1 , . . .〉 be a family of functions r i : ω → ω.
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(1) R is a bounded family of functions if for all n there is a k so that ran(r n ) < k.

(2) For k ∈ ω, R is a k-bounded family of functions if r n (x) < k for all n and x.

(3) A set X is cohesive for R if for each n there is a y ∈ ω such that f n (x) = y for all but finitely many x ∈ X.

The more typical definition of cohesiveness is with respect to a family 〈R 0 , R 1 , . . .〉 of subsets of ω, for which a set X is cohesive if for each n, either X ∩ R n or X ∩ R n is finite. Of course, if we identify sets with their characteristic functions then we see that this is just the same as being cohesive for a 2-bounded family of functions. We return to this below. We follow the now-standard practice of regarding Π 1 2 statements of second-order arithmetic as problems, equipped with a set of instances, and for each instance, a set of solutions, all coded or represented by subsets of 2 ω (see [? ], Definition 1.1). This facilitates their study both in the framework of reverse mathematics and in terms of Weihrauch and computable reducibilities. We shall not be explicit about this identification moving forward, as it is obvious for all of the principles we will be looking at. These are the following. Definition 1.3.

(1) Ramsey's theorem is the statement that for all n, k ≥ 

r ′ m (x) = 󰀫 r n (x) 󰁥 b(n,s) (i) if (∃n, s ∈ ω)(∃i < ┌log 2 󰁥 b(n, s)┐) m = 〈 󰁥 b(n, s), i〉 0 otherwise.
Then R ′ is a uniformly R-computable, and it is not difficult to see that every infinite cohesive set for R ′ is also cohesive for R. This completes the proof. □

A well-known fact about COH (in the parlance of Definitions ?? and ??) is that if X computes an infinite cohesive set for some 2-bounded family of functions R = 〈r 0 , r 1 , . . .〉, then so does any set Y satisfying R ≤ T Y and X ′ ≤ T Y ′ . By the preceding lemma, we see that the same holds for any bounded family of functions.

The relationship between the stable Ramsey's theorem and the cohesiveness principle is the focus of a longstanding and ongoing investigation (see, e.g., [? ? ? ? ? ? ? ? ? ? ? ]). We refer the reader to [? , Section 1] for a discussion of some of the history of these principles, and their larger significance in the exploration of the logical strength of combinatorial principles. Our focus is on the questions below, which have emerged as the most central in this work. We first recall the definition of omniscient reducibility, introduced by Monin and Patey [? , Section 1.1]. Definition 1.5. Let P and Q be problems.

(1) P is omnisciently computably reducible to

Q if for every P-instance X there is a Q-instance 󰁥 X with the property that if 󰁥 Y is any Q-solution to 󰁥 X then X ⊕ 󰁥 Y computes a P-solution to X. (2) P is omnisciently Weihrauch reducible to Q if there is a Turing functional Ψ such that for every P-instance X there is a Q-instance 󰁥 X with the property that if 󰁥 Y is any Q-solution to 󰁥 X then Ψ(X ⊕ 󰁥 Y ) is a P-solution to X.
The reductions above are strong if the relevant computation of a P-solution to X works with just 󰁥 Y as an oracle, rather than X ⊕ 󰁥 Y .

Question and D 2 <∞ , so the rest of our discussion is formulated in terms of these principles. For completeness, we note also that Dzhafarov [? , Theorem 3.2 and Corollary 3.5] showed that SRT 2 2 is not omnisciently Weihrauch, or strongly omnisciently computably, reducible to D 2 <∞ , while Patey [? , Corollary 3.3] showed that for all k > ℓ ≥ 1, D 2 k is not strongly omnisciently computably reducible to SRT 2 ℓ . Thus, the relationships between different versions of the stable Ramsey's theorem and the ∆ 0 2 subset principle in terms of known reducibilities are fully understood.

Question ?? is ostensibly simpler than Question ??, but as described in [? , Sections 1 and 2], it already encapsulates most of the combinatorial difficulty involved in attacking Question ??. Question ?? be seen as The best partial results towards the resolution of the above questions are by Dzhafarov [? ] and Dzhafarov, Patey, Solomon, and Westrick [? ] who established that COH ≰ W SRT 2 <∞ and COH ≰ sc SRT 2 <∞ , respectively. Pushing the techniques from these papers to obtain a negative answer to Question ??, let alone to Question ?? or the SRT 2 2 vs. COH problem, has so far proved difficult. There is thus a wide gap between the current best results and the above questions. Our approach here is to narrow this gap by allowing for multiple functionals in the "backward" direction. For succinctness, we introduce the following definition: Definition 1.9. Let P and Q be problems.

(1) P is Weihrauch reducible to Q with finitely many functionals if there is a Turing functional Φ such that for every P-instance X there is a finite set of Turing functionals Ψ 0 , . . . ,

Ψ t-1 such that Φ(X) is a Q-instance and if 󰁥 Y is any Q-solution to Φ(X) then there is a t < s with Ψ t (X ⊕ 󰁥 Y ) a P-solution to X.
(2) P is computably reducible to Q with finitely many functionals if for every P-instance X there is a Q-instance 󰁥 X ≤ T X and a finite set of Turing functionals Ψ 0 , . . . ,

Ψ t-1 such that if 󰁥 Y is any Q-solution to 󰁥 X then there is a t < s with Ψ t (X ⊕ 󰁥 Y ) a P-solution to X. (3) 
P is hyperarithmetically computably reducible to Q with finitely many functionals if for every P-instance X there is a Q-instance 󰁥 X hyperarithmetical in X and a finite set of Turing functionals Ψ 0 , . . . , Ψ t-1 such that if 󰁥 Y is any Q-solution to 󰁥 X then there is a t < s with Ψ t (X ⊕ 󰁥 Y ) a P-solution to X. (4) P is omnisciently computably reducible to Q with finitely many functionals if for every P-instance X there is a Q-instance 󰁥 X and a finite set of Turing functionals Ψ 0 , . . . , Ψ t-1 such that if 󰁥 Y is any Q-solution to 󰁥 X then there is a t < s with Ψ t (X ⊕ 󰁥 Y ) a P-solution to X.

The basic relationships between the above reducibilities are as follows: is Weihrauch reducible to D 2 2 with finitely many (in fact, two) functionals. We can now state our main result: Theorem 1.10. COH is not hyperarithmetically computably reducible to D 2 <∞ (or, therefore, to SRT 2 <∞ ) with finitely many functionals. That is, we build a family of sets R = 〈R 0 , R 1 , . . .〉 such that for every stable coloring hyperarithmetical in R and every finite collection of Turing functionals Ψ 0 , . . . , Ψ s-1 , there exists an infinite limit-homogeneous set H for c such that Ψ t (G ⊕ H) is not an infinite cohesive set for G, for any t < s. (Note that the parenthetical comment follows from our remark in the preceding paragraph.)

P ≤ W Q =⇒ P is
The rest of this paper is dedicated to a proof of Theorem ??. For ease of understanding, we organize this into two parts. In Section ?? we present a proof just for the case of stable 2-colorings. Then, in Section ??, we explain how the argument can be adapted to obtain the theorem in its full generality.

Construction

Our approach uses an elaboration on the forcing methods introduced by Dzhafarov [? ] for building instances of COH, and by Cholak, Jockusch, and Slaman [? , Section 4] for building solutions to D 2 2 . With respect to the latter, our proof here has a crucial innovation. As in other applications, we force with Mathias conditions, defined below. But here, our reservoirs are not computable or low, or indeed absolute sets of any other kind. Rather, they are names for sets in the forcing language we use to build our COH instance. This allows us to control not just the COH instance and the D 2 2 solution separately, as is done, e.g., in [? ] or [? ], but also to control their join. We refer the reader to Shore [? , Chapter 3] and Sacks [? , Section IV.3] for background on forcing in arithmetic, and the latter specifically for an introduction to forcing over the hyperarithmetic hierarchy.

In what follows, several notions of forcing are defined. When no confusion can arise, we refer to the conditions and extension relation in each of these simply as "conditions" and "extension", without explicitly labeling these by the forcing itself.

Generic instances of COH.

Definition 2.1. Let P be the notion of forcing whose conditions are tuples p = (σ 0 , . . . , σ |p|-1 , f ) as follows:

• |p| ∈ ω; • σ n ∈ 3 <ω for each n < |p|; • f is a function |p| → 3 ∪ {u}. A condition q = (τ 0 , . . . , τ |q|-1 , g) extends p, written q ≤ p, if: • |p| ≤ |q|; • f ≼ g; • σ n ≼ τ n for all n < |p|; • if f (n) ∕ = u for some n < |p| then τ n (x) = f (n) for all x ∈ [|σ n |, |τ n |).
Given a P-condition p = (σ 0 , . . . , σ |p|-1 , f ), we also write σ p n and f p for σ n and f , respectively. If G is a (sufficiently) generic filter on P then we can define

G G n = 󰁞 p∈G,|p|>n σ p n and G G = 󰁏 n∈ω G G n .
Note that this is an instance of COH 3 , and that by genericity, there are infinitely many n such that lim x G G n (x) exists, and infinitely many n such that lim x G G n (x) does not exist. The P forcing language and forcing relation are defined inductively as usual, and we use Ġn and Ġ as names for G G n and G G . More generally, we help ourselves to names (or P-names) for all definable sets in the forcing language and use these as parameters in other definitions. Lemma 2.2. Let ϕ( Ġ) be a Σ 0 2 ( Ġ) formula in the forcing language that is forced by some condition p. Let q be the condition that is the same as p, only there is some n < |p| such that f p (n) = u and f q (n) ∕ = u. Then q forces ϕ( Ġ).

Proof. As we are employing strong forcing, it suffices to consider the case that ϕ( Ġ) is Π 0 1 ( Ġ). Thus, ϕ( Ġ) can be put in the form ¬(∃x)ψ( Ġ, x), where ψ has only bounded quantifiers and has no free variables other than x. If q does not force this formula then by definition there is some r ≤ q and some a ∈ ω such that r forces ψ( Ġ, a). Now, as Ψ( Ġ, a) has no free variables, it can be put in quantifier-free conjunctive normal form. But the fact that each clause in this conjunction is forced by r depends only on the strings σ r 0 , . . . , σ r |r|-1 . So let r ′ be the condition that is the same as r, except that f r ′ (n) = f p (n) = u. Then r ′ still forces Ψ( Ġ, a), and hence also (∃x)ψ( Ġ, x). But r ′ is an extension of p, and hence witnesses that p could not force ¬(∃x)ψ( Ġ, x) or ϕ( Ġ), a contradiction. □ Lemma 2.3. If G is a generic filter on P then there is no infinite cohesive set for G G which is low over G G .

Proof. By the remark following Lemma ??, it suffices to show that G G has no G Gcomputable infinite cohesive set. Fix any functional ∆, and any condition p. We exhibit an extension of p forcing that ∆( Ġ) is not an infinite cohesive set for Ġ. This density fact and the genericity of G will yield the lemma. Let n = |p|. Let q be any extension of p with |q| = n + 1 and f q (n) = u. If q forces that for each i < 3 and each z ∈ ω there is an x > z such that ∆( Ġ)(x) ↓= 1 and Ġn (x) = i, then we can take q to be the desired extension. So suppose otherwise. Then there is an i < 3, a z ∈ ω, and an r ≤ q such that no extension of r forces that there is an x > z with ∆( Ġ)(x) ↓= 1 and Ġn (x) = i. In this case, let s be the condition that is the same as r, except that f s (n) = i. Then s ≤ p and forces that for all x > max{x, |σ s n |} we have ∆( Ġ)(x) ≃ 0. □ 2.2. Generic limit-homogeneous sets. Throughout this section, let Γ be a fixed hyperarithmetical operator, and let Ψ 0 , . . . , Ψ s-1 be fixed Turing functionals. Let p Γ be a fixed P-condition forcing that Γ( Ġ) is a stable coloring [ω] 2 → 2 with no infinite limit-homogeneous set which is low over Ġ. For each i < 2 we let Ȧi be a name for the set {x ∈ ω : lim y Γ( Ġ)(x, y) = i}.

Definition 2.4. Let Q pΓ be the notion of forcing whose conditions are tuples (p, D 0 , D 1 , İ) as follows:

• p is a P-condition extending p Γ ;

• D i is a finite set for each i < 2, and p forces that D i ⊆ Ȧi ;

• İ is a P-name, and p forces that İ is an infinite set which is low over Ġ, and max D 0 ∪ D 1 < min İ.

then we can take this to be L and then we are done by Lemma ??. So assume otherwise, and choose p Γ ∈ G forcing that Γ( Ġ) is a stable coloring [ω]2 → 2 with no infinite limit-homogeneous set which is low over Ġ. Define Ȧ0 , Ȧ1 , and Q pΓ as in the previous section. Since G is generic, we may fix a p * ∈ G, a Q pΓ -condition (p * , D * 0 , D * 1 , İ * ), and a maximal subset M of 2 × s as in Lemma ??. We define a sequence of

R p * ,D * 0 ,D * 1 , İ * -conditions (p 0 , D 0,0 , D 0,1 , u 0 ) ≥ (p 1 , D 1,0 , D 1,1 , u 1 ) ≥ (p 2 , D 2,0 , D 2,1 , u 2 ) ≥ • • • with p z ∈ G for all z ∈ ω.
If there is an i < 2 such that 〈i, t〉 ∈ M for all t < s, let (p 0 , D 0,0 , D 0,1 , u 0 ) = (p * , D * 0 , D * 1 , İ * ). Now given (p z , D z,0 , D z,1 , u z ) for some z, apply Lemma ?? to find an extension (p z+1 , D z+1,0 , D z+1,1 , u z+1 ) with p z+1 ∈ G and |D z+1,i | = |D z,i | + 1 for each i < 2. Thus, L = 󰁖 z∈ω D z,i is an infinite limit homogeneous set for Γ(G G ), and by assumption, and the definition of M , we have Ψ t (G G ⊕L)(x) ≃ 0 for all t < s and all sufficiently large x. In particular, Ψ t (G G ⊕ L) is not an infinite cohesive set for G G , as desired. Now suppose that for each i < 2 there is at least one t < s with 〈i, t〉 / ∈ M . Let p 0 be any extension of p * in G such that f p0 (n) = u for some n ∈ [|p * |, |p 0 |), and denote the least such n by n 0 . Let D 0 i = D * i for each i < 2, and u 0 = 0, so that (p 0 , D 0,0 , D 0,1 , u 0 ) = (p 0 , D * 0 , D * 1 , İ * ). Assume next that we have defined (p z , D z,0 , D z,1 , u z ) for some z. If z is even, define (p z+1 , D z+1,0 , D z+1,1 , u z+1 ) as in the preceding case, thereby ensuring that |D z+1,i | = |D z,i | + 1 for each i < 2. Next, suppose z is odd. Assume we have a fixed map h from the odd integers onto the set [({0} × s) × ({1} × s) 󰄀 M 2 ] × 3, in which the pre-image of every element in the range is infinite. Say h(z) = 〈〈0, t 0 〉, 〈1, t 1 〉, j〉. We then apply Lemma ?? to find (p z+1 , D z+1,0 , D z+1,1 , u z+1 ) extending (p z , D z,0 , D z,1 , u z ) with p z+1 ∈ G such that for some i < 2 and x > z we have that p z+1 forces Ψ ti ( Ġ ⊕ D z+1,i )(x) ↓= 1 and Ġn0 (x) = j. Now, let L i = 󰁖 z∈ω D z,i for each i < 2, which is an infinite limit-homogeneous set for Γ(G G ). If, for each i < 2, there is t i < s such that Ψ ti (G G ⊕ L i ) is an infinite cohesive set for G G , then by genericity of G and the definition of M , it must be that 〈i, t i 〉 / ∈ M . For each j < 3, there are infinitely many odd numbers z such that h(z) = 〈〈0, t 0 〉, 〈1, t 1 〉, j〉, and by construction, for each such z, there is an i < 2 and an x > z such that Ψ ti (G G ⊕ L i )(x) ↓= 1 and G G n0 (x) = j. Denote the least such i by i z . Thus, for each j < 3 there must be a k j < 2 such that i z = k j for infinitely many z with h(z) = 〈〈0, t 0 〉, 〈1, t 1 〉, j〉. Fix j, j ′ < 3 with j ∕ = j ′ and k j = k j ′ , and denote the latter by i. Then there are infinitely many x such that Ψ ti (G G ⊕ L i )(x) ↓= 1 and G G n0 (x) = j, and infinitely many x such that Ψ ti (G G ⊕ L i )(x) ↓= 1 and G G n0 (x) = j ′ . Thus, Ψ ti (G G ⊕ L i ) is not cohesive for G G , a contradiction.

We conclude that there is an i < 2 such that Ψ t (G G ⊕ L i ) is not an infinite cohesive set for G G , for any t < s, as was to be shown. □

Extensions to arbitrary colorings

To prove Theorem ?? in full generality, we need to modify our construction of the family G = 〈G 0 , G 1 , . . .〉. Specifically, whereas a 3-bounded family of functions

For fixed k ≥ 1, COH k is the restriction of COH ω to k-bounded families of functions.

  For all k ≥ 2, we have COH ≡ sW COH k ≡ sW COH ω .Proof. Obviously, COH ≤ sW COH k ≤ sW COH ω . It remains only to show that COH ω ≤ sW COH. For all k, y ∈ ω, let y k be y written in binary, either truncated or prepended by 0s to have exactly ┌log 2 k┐ many digits. We view y k as a string, and write y k (i) for its ith digit. Now fix a bounded family of functions R = 〈r 0 , r 1 , . . .〉.

	(3) The ∆ 0 2 subset principle, denoted D 2 <∞ , is the statement for all k ≥ 1, every stable c : [ω] 2 → k has an infinite limit-homogeneous set. (4) The cohesiveness principle for bounded families, denoted COH ω , is the prin-
	ciple that every bounded family of functions has an infinite cohesive set.
	(5) For fixed n, k ≥ 1, RT n k denotes the restriction of Ramsey's theorem to k-colorings of [ω] n .
	k and D 2 k denote the restrictions of SRT 2 <∞ and D 2 <∞ , (6) For fixed k ≥ 1, SRT 2 respectively, to k-colorings.
	(7) For n = 2, the traditional notation for COH 2 is COH, and we shall follow this
	below. However, we can really use the various restrictions of COH ω defined above
	interchangeably, as the following lemma shows.
	Lemma 1.4. Let b : ω → ω be the function b(n) = (µk)(∀x)[r n (x) < k] for all n ∈ ω. Then b is uniformly R ′ -computable. So we can fix a uniformly R-computable approximation
	󰁥 b : ω 2 → ω to b, so that lim s 󰁥 b(n, s) = b(n) for all n. Define a 2-bounded family of functions R ′ = 〈r ′ 0 , r ′ 1 , . . .〉 as follows: for all m, x ∈ ω,

1, every c : [ω] n → k has an infinite homogeneous set. (2) Stable Ramsey's theorem for pairs, denoted SRT 2 <∞ , is the restriction of Ramsey's theorem to stable colorings of pairs.
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A condition (q, E 0 , E 1 , J) extends (p, D 0 , D 1 , İ) if:

• q ≤ p; • D i ⊆ E i for each i < 2;

• q forces that E i 󰄀 D i ⊆ İ for each i < 2, and that J ⊆ İ.

Thus, we can think of Q pΓ -condition as p, together with a pair of Mathias conditions, (D 0 , İ) and (D 1 , İ), that share a common reservoir.

For the remainder of this section, let Ψ 0 , . . . , Ψ s-1 be a fixed collection of Turing functionals.

Lemma 2.5. The collection of P-conditions p * with the following property is dense below p Γ : there exists a Q pΓ -condition (p * , D * 0 , D * 1 , İ) * and a maximal subset M of 2 × s such that for all 〈i, t〉 ∈ M , p * forces that there is a z ∈ ω such that Ψ t ( Ġ ⊕ (D * i ∪ F ))(x) ≃ 0 for all finite sets F ⊆ İ * and all x > z. Proof. Let p ≤ p Γ be given. We exhibit a p * as above below p. Fix an enumeration of all pairs 〈i, t〉 ∈ 2 × s. Define M 0 = ∅, and and let (p 0 , D 0 0 , D 0 1 , İ0 ) be the Q pΓcondition (p, ∅, ∅, ω). By induction, suppose that we have defined M k ⊆ 2 × s for some k < 2s, along with some 

1 , İ * -condition. We now assemble a couple of density facts that we will use to prove our theorem. Lemma 2.7. Let (p, D 0 , D 1 , u) be an R p * ,D * 0 ,D * 1 , İ * -condition. The collection of Pcondition q for which there exists an

Proof. Fix any r ≤ p. Let q be any extension of r deciding, for each i < 2, if there is an x ≥ u in İ * ∩ Ȧi . If for some i < 2, q forces that there is no such x, then q forces that İ * ∩ [u, ∞) ⊆ A 1-i . But as q ≤ p * , we have that q forces that İ * is an infinite set which is low over Ġ, and hence that İ * ∩ [u, ∞) is an infinite set which is low over Ġ. But by assumption, p Γ forces that there is no such set contained in Ȧ1-i , so since q ≤ p Γ this is a contradiction. Thus, it must be that q forces, for each i < 2, that there is an x ≥ u in İ * ∩ Ȧi . We can thus fix an x i ≥ u for each i < 2 such that q forces that

1 , İ * -condition, and assume that f p (n) = u for some n ∈ [|p * |, |p|). For all z ∈ ω, j < 3, and 〈0, t 0 〉, 〈1, t 1 〉 ∈ 2 × s 󰄀 M , the collection of P-conditions q with the following property is dense below p: there exists an R p * ,D * 0 ,D * 1 , İ * -condition (q, E 0 , E 1 , v) extending (p, D 0 , D 1 , u) and numbers i < 2 and x > z such that q forces that Ψ ti ( Ġ ⊕ E i )(x) ↓= 1 and Ġn (x) = j.

Proof. Fix any r ≤ p. Consider the Π 0 1 ( Ġ, İ * ) formula ψ( Ġ, İ * , X 0 , X 1 ) of two set variables asserting:

Let ϕ( Ġ, İ * ) be the formula (∃X 0 , X 1 )ψ( Ġ, İ * , X 0 , X 1 ). Then ϕ( Ġ, İ * ) is also Π 0 1 ( Ġ, İ * ), and we can thus fix some 󰁥 r ≤ r that decides this formula. Suppose first that 󰁥 r forces ϕ( Ġ, İ * ). Let 󰁥 r ′ be the condition that is the same as 󰁥 r except that f 󰁥 r ′ (n) = j for each i < 2. We claim that 󰁥 r ′ forces ϕ( Ġ, İ * ). Indeed, as ϕ( Ġ, İ * ) is Π 0 1 ( Ġ, İ * ) and p * forces that İ * is low over Ġ, it follows that there is a Σ 0 2 ( Ġ) formula θ( Ġ) that p * forces is equivalent to ϕ( Ġ, İ * ). Since n ≥ |p * | we have that 󰁥 r, 󰁥 r ′ ≤ p * , and so this equivalence is still forced by 󰁥 r and 󰁥 r ′ . Thus, 󰁥 r forces θ( Ġ), and hence so does 󰁥 r ′ by Lemma ??. Now it follows that 󰁥 r ′ forces ϕ( Ġ, İ * ), as desired.

By the uniformity of the low basis theorem, we can fix names Ẋ0 and Ẋ1 and a condition 󰁥 r ′′ ≤ 󰁥 r ′ forcing that Ẋ0 ⊕ Ẋ1 is low over Ġ and ψ( Ġ, İ * , Ẋ0 , Ẋ1 ) holds. We may further assume that 󰁥 r ′′ decides, for each i < 2, whether or not Ẋi is infinite. Since 󰁥 r ′′ forces that İ * is infinite and Ẋ0 ∪ Ẋ1 = İ * ∩ [u, ∞), we can fix i < 2 such that 󰁥 r ′′ forces that Ẋi is infinite. But now consider the Q pΓ -condition (󰁥 r ′′ , D 0 , D 1 , Ẋi ). This is an extension (in Q pΓ ) of (p * , D * 0 , D * 1 , İ * ), and 󰁥 r ′′ forces that Ψ ti ( Ġ ⊕ (D i ∪ F ))(x) ↓≃ 0 for all finite subset F of Ẋi and all x > z. By maximality of M , this means that 〈i, t i 〉 should be in M , even though we assumed it was not. This is a contradiction.

We conclude that 󰁥 r actually forces ¬ϕ( Ġ, İ * ), and so some q ≤ 󰁥 r must force

In particular, there is an i < 2, an x > z, and a finite set F such that q forces that

, and let v = max F . Then q is the desired extension of r, as witnessed by (q, E 0 , E 1 , v). □

2.3.

Putting it all together. We are now ready to prove the main theorem of this section, which is Theorem ?? for stable 2-colorings. In fact, we prove following stronger result which clearly implies it.

Theorem 2.9. Let G be a generic filter on P. Then for every stable coloring c : [ω] 2 → 2 hyperarithmetical in G G , and every finite collection of Turing functionals Ψ 0 , . . . , Ψ s-1 , there exists an infinite limit-homogeneous set L for c such that Ψ t (G G ⊕ L) is not an infinite cohesive set for G G , for any t < s.

Proof. Let c and Ψ 0 , . . . , Ψ s-1 be given. Fix a hyperarithmetical operator Γ such that c = Γ(G G ). If c has an infinite limit-homogeneous set which is low over G G , sufficed to defeat all potential stable 2-colorings, we will in general need a (k + 1)bounded family to defeat all stable k-colorings. For this reason, we introduce the following modification of the forcing notion P defined earlier.

Definition 3.1. Let P ω be the notion of forcing whose conditions are tuples p = (σ 0 , . . . , σ |p|-1 , b, f ) as follows:

We write σ p n , b p , f p for σ n , b, and f , as before. It is clear that if G is a generic filter on

, is now an instance of COH ω . Everything else transfers from P to P ω analogously, with obvious changes. In particular, this is true of Lemmas ?? and ??. Now, fix a hyperarithmetical operator Γ, and Turing functionals Ψ 0 , . . . , Ψ s-1 . Suppose p Γ is a P ω -condition forcing, for some k ≥ 2, that Γ( Ġ) is a stable coloring [ω] 2 → k with no infinite limit-homogeneous set which is low over Ġ. For each i < k, let Ȧi be a name for the set {x ∈ ω : lim y Γ( Ġ)(x, y) = i}. We define a suitable modification of the forcing notion Q pΓ . Definition 3.2. Let Q ω,pΓ be the notion of forcing whose conditions are tuples (p, D 0 , . . . , D k-1 , İ) as follows:

• p is a P-condition extending p Γ ;

• D i is a finite set for each i < k, and p forces that D i ⊆ Ȧi ;

• İ is a P ω -name, and p forces that İ is an infinite set which is low over Ġ, and max 󰁖 i<k D i < min İ. A condition (q, E 0 , . . . , E k-1 , J) extends (p, D 0 , . . . , D k-1 , İ) if:

• q ≤ p;

We get an analogue of Lemma ??, stated below. The proof is entirely the same.

Lemma 3.3. The collection of P ω -conditions p * with the following property is dense below p Γ : there exists a Q ω,pΓ -condition (p * , D * 0 , . . . , D * k-1 , İ * ) and a maximal subset M of k × s such that for all 〈i, t〉 ∈ M , p * forces that there is a z ∈ ω such that Ψ t ( Ġ ⊕ (D * i ∪ F ))(x) ≃ 0 for all finite sets F ⊆ İ * and all x > z. Fixing (p * , D * 0 , . . . , D * k-1 , İ) * and M as above, we can define an analogue of the restricted forcing of Definition ??, and obtain analogues of Lemmas ?? and ??. For clarity, we include the definition and statements, and omit the proofs, which carry over from above, mutatis mutandis. , |p|). For all z ∈ ω, j < 3, and 〈0, t 0 〉, . . . , 〈k -1, t k-1 〉 ∈ k × s 󰄀 M , the collection of P ω -conditions q with the following property is dense below p: there exists an R ω,p * ,D * 0 ,...,D * k-1 , İ * -condition (q, E 0 , . . . , E k-1 , v) extending (p, D 0 , . . . , D k-1 , u) and numbers i < k and x > z such that q forces that Ψ ti ( Ġ ⊕ E i )(x) ↓= 1 and Ġn (x) = j.

Everything can now be put together as in the proof of Theorem ?? above, to prove the theorem below, from which Theorem ?? follows. Theorem 3.7. Let G be a generic filter on P ω . Then for every k ≥ 2 and every stable coloring c : [ω] 2 → k hyperarithmetical in G G , and every finite collection of Turing functionals Ψ 0 , . . . , Ψ s-1 , there exists an infinite limit-homogeneous set L for c such that Ψ t (G G ⊕ L) is not an infinite cohesive set for G G , for any t < s.