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Abstract. In constraint programming the search strategy entirely guides the solv-
ing process, and drastically affects the running time for solving particular prob-
lem instances. Many features have been defined so far for the design of efficient
and robust search strategies, such as variables’ domains, constraint graph, or even
the constraints triggering fails. In this paper, we propose to use the objective func-
tions of constraint optimization problems as a feature to guide search strategies.
We define an objective-based function, to monitor the objective bounds modifica-
tions and to extract information. This function is the main feature to design a new
variable selection heuristic, whose results validate human intuitions about the ob-
jective modifications. Finally, we introduce a simple but efficient combination of
features, to incorporate the objective in the state-of-the-art search strategies. We
illustrate this new method by testing it on several classic optimization problems,
showing that the new feature often yields to a better running time and finds better
solutions in the given time.

1 Introduction

Solving combinatorial optimization problems is known to be a hard task, but constraint
programming (CP) enables tackling several of them [26, 22]. One of the CP strength
leans on an efficient search for a solution in the variables’ domain space. The resolu-
tion of industrial problems often relies on dedicated knowledge experts to build a good
search strategy (SS) [25, 23]. But such information, while appealing, is not always avail-
able nor possible. That is one of the main motivations for the development of black-box
constraint solvers, where the only user’s concern is to build an efficient model. Black-
box solvers need robust and efficient SSs, and many researches have been done [11,
18, 5, 16, 28]. Notably, in Constraint Programming, activity-based search (ABS) [14],
impact-based search (IBS) [20] and weighted degrees (Wdeg) [1] are well known state-
of-the-art search strategies for combinatorial problems.

In CP a search heuristic usually consists of choosing a pair (variable, value), called
a decision. Then, a binary search tree is built to explore the search space. The solving
time is highly correlated with the size of the search tree. A shorter run time is usually
expected when a smaller tree is explored. Since the search strategy determines how to
build the search tree, the solving time is strongly impacted by the search strategy, and
can differ by order of magnitude.
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Most search strategies use the first fail principle [7, 24]. This principle tries to fail
as soon as possible, in order to reduce the search tree size. The first fail principle is very
efficient in practice for constraint satisfaction problems (CSPs), for example SSs such
as IBS and ABS consider the variables’ domains as feature to make decisions, and try to
find variables having the potential to reduce the other variables domains, while WDeg
uses fail counters and the constraint graph.

A constraint optimization problem (COP) can be seen as a CSP with an objective
function to optimize. Solvers often have a variable representing the possible values of
the objective function. When a new solution is found, a constraint is added, requiring
the next one to be better. Once the best solution is found, the next step is to prove
its optimality. In other words, solving a COP includes: finding the best solution, and
proving that no better solution exists. In practice, it is unknown whether the current
solution is the best one until the exploration of the search tree is completed.

Search strategies are mostly designed to reduce the search space by focusing on
constraint satisfaction, but with COPs, the objective value can additionally be used to
reduce the search space. Two different solutions might prune the search space, depend-
ing on their respective objective values. In COP, finding a good solution can drastically
reduce the search space, by avoiding the exploration of less promising parts of the
search tree, with respect to the objective. This implies that the order in which solutions
are found has a strong impact on run-time for the complete space exploration, unlike
for CSPs.

This observation is one of the main motivations of this paper. Our idea, inspired by
integer programming [4], is to extract good features from the objective variable to make
good decisions. A recent CP work started exploring this area by using the objective to
design a value selector in order to find a first good solution [3]. An advantage of using
the objective as a feature is its ability to both optimize the objective value and to reduce
the search tree at the same time. Such information, as will be shown in the experimental
section, can drastically help SSs to make better decisions.

In the following, we design a function (∆O) monitoring the objective bounds mod-
ifications along the solving process. This function is one possible implementation of an
objective-based feature extractor (∆̃O). We then define a variable selector based only
on ∆̃O, named Objective-Based Selector (OBS), which selects the variable maximiz-
ing ∆̃O. Lastly, in order to take advantage of this new objective feature and the many
existing ones, we propose a simple but efficient hybrid method to combine search strate-
gies, such as IBS, ABS etc, to take into account the newly introduced objective feature.
Finally, we show the efficacy of these new hybrid strategies compared to the original
strategies on all the optimization problems from the Minizinc challenge library [15].

2 Preliminaries

2.1 Constraint Satisfaction Problem (CSP)

A CSP is a pair P = (X,C) where X = {x1, x2, ..., xn} is a set of variables and
C = {C1, C2, ..., Cm} is a set of constraints. A variable xi is associated with a domain
D(xi), representing all of its possible values. A constraint Ci contains a set of all its
allowed tuples defined over a subset SCi

⊆ X of variables.
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A solution is a tuple of values (a1, a2, ..., an) such that the assignments x1 = a1,
x2 = a2 ..., xn = an respect all the constraints. The solving process for a CSP generally
involves a depth first search algorithm with backtracks in a decision tree. At each node
of the tree, a propagation algorithm is run, which iteratively uses a dedicated filtering
algorithm to check the validity of each constraint. Each filtering algorithm reduces the
search space by removing the values that cannot belong to a solution. Finally, a solution
is found when all variables are instantiated to a value.

A constraint optimization problem (COP) is a pair (P, FO), where P is a CSP and
FO is an objective function that has to be optimized. Without loss of generality, we
consider here only minimization problems. All solutions to a COP are not equivalent, as
their overall quality is determined by the objective value FO(sol). The solving process
of a COP is analogous to a CSP, except that it contains an objective constraint. This
constraint ensures that the next solution found will be better. This paper aims to use this
constraint in order to reduce the search space.

2.2 Search Strategies

A search strategy (SS) for constraint programming (CP) determines how the search tree
is built during the solving process. At each node of the search tree, the SS chooses a
non-assigned variable and a value belonging to its domain. A decision often corresponds
to a pair (variable, value) which can be seen as a backtrackable constraint variable =
value. Search strategies are crucially important to find good solutions, to reduce the
search space, and even to quickly find an initial feasible or good solution [3].

We briefly describe three state-of-the-art SSs. For a more complete description
please refer to their original publications.

Impact Based Search (IBS) [20] selects the variable whose choice is expected to pro-
vide the largest search space reduction. To do so, IBS considers the cardinality reduction
of the Cartesian product of the domains (called the impact). Thus the main feature of
this SS uses variables’ domains.

More formally, let x be a variable, and v be a value belonging to the current do-
main D(x). Let Pbefore (resp. Pafter) be the cardinality of the Cartesian product of
the domains before (resp. after) the application of the decision x = v. The impact of a
decision is:

I(x = v) = 1− Pafter

Pbefore

Let Ī(x = v) be the average impact of the decision x = v. Then, this impact of a
variable x with current domain D(x) is computed by the following formula:

Īx =
∑
v∈Dx

1− Ī(x = v)

At each node the free variable having the largest impact is assigned to its value
having the smallest impact. Note that this search is an adaptation of pseudo-cost-based
search from mixed integer programming.
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Activity Based Search (ABS) [14] selects the most active variable per domain value. A
variable’s activity is measured by counting how often its domain is reduced during the
search. Thus, once again, the feature of this SS uses the domains of the variables. More
formally, the number of modified variables is monitored and stored in A(x), which is
updated after each decision with the following rule:

∀x ∈ Xs.t.|D(x)| > 1 : A(x) = A(x)× γ
∀x ∈ X0 : A(x) = A(x) + 1

X0 represents the set of variables reduced by the decision and γ ∈ [0, 1] is the decay
parameter. ABS maintains an exponential moving average of activities by variables’
value. At each node, ABS selects the variable with the highest activity and the value
with the least activity.

Weighted Degree (WDeg) [1] uses the constraint graph to make decisions. WDeg counts
the number of failures ωc for each constraint c . WDeg features are the constraint graph
and the fail counters. WDeg first computes, for each variable x, the value wdeg(x),
which is the weighted (ω) sum of the constraints involving at least one non-assigned
variable. WDeg then, selects the variable having the highest ratio |D(x)|

wdeg(x) .

3 Objective Function and Search Strategy

Search strategies aim to reduce the search space, but additionally aim to find good so-
lutions as quickly as possible. Most SSs choose the hardest variables to satisfy first, the
main challenge being to find such variables. While most SSs decisions were based on
variables domains, the constraint graph, etc, objective-value based decisions are rarely
done in CP. One of the reasons is that, in CP, we cannot easily back-propagate the ob-
jective to the variables to make decisions as done in Mixed Integer Programming. But
even if we can not have such exact information, not taking into account the variables
impacting the objective value can lead to an exponential loss in time. This is shown by
the following synthetic example.

Example Consider a COP having n+m variables and whose objective is the sum of the
lastm variables. This problem has an AllDifferent constraint [21] over all the variables.
Ignoring the objective value can lead to the search tree shown in Figure 1 (left). In this
example, the strategy focuses only on other features, without taking the objective into
account. Whereas a strategy that considers the objective detects variables having high
impact on the objective, and consider them earlier enabling a potential reduction of the
search tree.

Moreover, we can find high quality solutions earlier and these solutions prune the
search space more efficiently. As we can see, the processing of the m variables is re-
peated an exponential number of times (dn). This is because the variables that impact
the objective are chosen too late leading to a bigger search tree.

The search tree using the objective value as a feature is shown in Figure 1 (right).
The last m variables are selected higher in the search tree, yielding better solutions
faster and allowing to close the search using the objective sooner. Finally, by using the
objective value, we obtain a smaller search tree.
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Fig. 1. (left) A search failing to consider the objective value. (right) An objective based search.

This simple example shows that the objective value allows to assign variables having
high influence on the objective earlier and thus can help the solver to avoid considering
useless parts of the tree. The idea is to consider as soon as possible the variables im-
pacting the objective. We now define a new feature based on the objective, which we
will use to define an objective-based search strategy.

3.1 Objective modifications as a feature

The proposed feature focuses on the objective bounds modifications by using a function
∆O. The upper and lower bounds are separately considered as two different pieces of
information. Let O be the objective variable to optimize. Let s and s − 1 be respec-
tively the current and the previous node of the search tree. Let ∆O (resp. ∆O) be the
upper (resp. lower) bounds difference between its value before and after the decision
propagation. The function is defined as follows:

∆O(s) = a×∆O + b×∆O

We choose to consider the upper and lower bounds separately. The choice of the
parameters a and b defines the function behavior. The coefficients can take any value and
correspond to the importance (positive or negative) given to each bound. For instance,
in minimization problems, the coefficient a of lower bound modification corresponds
to the weight for the consideration of removing the best potential solutions. While, the
upper bound modification coefficient b, represents the weight to consider the deletion
of the worst potential solutions.

Note that this function has a more fine-grained description of the objective than
usual measures used in search strategies. Classic SSs monitor the modifications of the
decision variables, but in general, treating differently the lower and upper bounds, has
no meaning for such variables.
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3.2 Objective-Based Selector (OBS)

We propose a new variable selector based on the ∆O function: OBS. OBS first selects
the variables having the highest impact on the objective with regard to the∆O function.
To do so, the weighted sum of the ∆O function values for each x ∈ X is monitored
through ∆̃O(x), and updated after each decision involving the variable x. The parameter
γ is the degree of weighting decrease of the exponential moving average. The updated
value ∆̃O

′
(x) is processed as follow:

∆̃O

′
(x) =

∆̃O(x) ∗ (1− γ) + γ ∗∆O(x)

γ

At each decision, OBS selects the variable x ∈ X such that ∀y ∈ X, ∆̃O(x) ≥ ∆̃O(y).

x1 6= 1

x1 6= 2

x1 = 3

x2 = 2

x3 = 1

x1 = 2

x2 = 4

x3 6= 1x3 = 1

x1 = 1
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x3 6= 3x3 = 3

Fig. 2. Comparison of the search tree by a lexicographic search (left) and an objective based
search (right)

Example Consider the didactic COP defined by the variables (x1, x2, x3, x4) having
each as domain D = [1, 4] and an AllDifferent constraint on the 4 variables. The COP’s
objective is minx3 + x4. We use the parameters (a = −1,b = 1) for the ∆O function,
in order to penalize lower bound modifications and reward upper bound modification.

The tree search from Figure 2 shows the application of the objective based search
strategy versus a lexicographic search. In this example, when a variable is selected, it is
assigned to its minimum value. The lexicographic search on the left has more decisions
than OBS on the right because it cannot identify which variable are important to satisfy
the constraints and improve the objective.

At the beginning of the exploration, in the right tree showing OBS search, the vari-
ables x1, x2 and x3 are selected and set to their minimum values. Each of these assign-
ments has an effect on the objective’s bounds and thus modifies∆O. When the decision
x1 = 1 is propagated, ∆O(x1) is set to −2 because of the changes of the objective
domain from [2, 8] to [4, 8]. The propagation of x2 = 2 reduces the objective’s domain
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from [4, 8] to [6, 8] implying ∆O(x2) = −2. When the variable x3 is selected, the ob-
jective is instantiated to 7. This implies a ∆O(x3) = 0. A solution is found with the
value 7, so the next solution has to be smaller than 7. Afterwards the decision x3 = 3
is refuted and the search tree is backtracked to the decision x2 = 2 which is refuted,
implying x2 6= 2. Then x3 which has the highest ∆O value is selected and instantiated
to its domain’s minimal value: 2. Then x4 is the next free variable with the highest ∆O

value, 0. We thus select x4 and assign it to its smallest value, 3. We find a solution equal
to 5. Finally, when this branch is closed, the decision x1 = 1 is refuted and by applying
the OBS selection, the branch leading to the best solution is explored. An important
aspect of this search is that it is close to human intuition to choose first variables x3 and
x4 since they belong to the objective.

Note that the maintenance of ∆̃O values and the selection process are simple and
not intrusive in solvers. Moreover, OBS does not need to change the constraints imple-
mentations.

3.3 Hybridization of search strategies

In this section we show how the objective and classical features can be combined to-
gether, to benefit from both. But most strategies should not be directly combined due to
the range differences of their feature. For example, the IBS strategy has a value range
between [0, 1], while ABS one is between [0, n]. We propose to normalize all these val-
ues to fit in the interval [0, 1] in order to combine them. Note that this applies to the ∆O

function as well.
Let S̃n(x) be the normalized value of a search strategy S based on a classical fea-

ture. And let ∆̃n
O(x) be the normalized values for OBS. We combine the two pieces of

information with the following formula:

SO(x) = α ∗ S̃n(x) + (1− α) ∗ ∆̃n
O(x)

The hybrid search strategy selects the variable maximizing SO. The values α and (1−α)
represent the importance given to each feature. Note that α is in [0, 1].

Example with ABSO: While the ABS strategy uses the Ã values, storing the activities
involved by the variables, our modification of the value associated with each variable is
the sum:

ABSO(x) = α ∗ Ãn(x) + (1− α) ∗ ∆̃n
O(x)

ThisABSO(x) value contains both pieces of information: the activity and the objective
modifications.

Remarks: The hybridization of many others strategies is as simple as for ABS. For
the following sections, we respectively denote the hybridized versions of ABS, IBS
and WDeg by ABSO, IBSO and WDegO.
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4 Experiments

4.1 The Experimental Setting

Configurations All experiments were done on a Dell machine having four Intel E7-
4870 Intel processors and 256 GB of memory, running Scientific Linux. We imple-
mented these new strategies in the Choco 4 CP solver [19]. The code can be found on
our GitHub1. Each run used a time limit of 30 minutes. The strategies were warmed up
with a diving step, using up to 1000 restarts, or by ensuring a certain number of deci-
sions. The same warm up (method and seed) was used for all the methods, in order to
avoid any bias.

Benchmarks The experimental evaluation used on the MiniZinc Benchmark library[15],
with benchmarks that have been widely studied, often by different communities, includ-
ing template design, still life, RCPSP, golomb ruler, etc. Many problem specifications
can be found in [6]. Every class of optimization problems from the MiniZinc library
has been considered. Since the number of instances per family is huge, and has a large
variance between families, we have randomly selected up to 10 instances per family.
Such subset selection preserves the diversity of instances, and do not favor a specific
kind of family in plots. The problems have been translated into the FlatZinc format, us-
ing the MiniZinc global constraints library provided by Choco-solver, which preserves
the global constraints.

Plots The scatters and curves presented in this section are in log scale. A scatter plot
shows the comparison of two strategies instance by instance. The diagonal separates
the instances where each method has performed better than the other. The points above
(resp under) the line correspond to the instances where the ordinate (resp the abscissa )
strategy is less efficient. Larger is the gap between the axis line and the point, bigger is
the difference between the strategies. Extreme points above and on the right correspond
to the timeouts.

Terminology An instance is said to be solved, when the best solution has been found
and its value proved to be optimal. The term solution quality is used when the search is
incomplete, and only the best found solution can be judged.

4.2 OBS evaluation

Once again, the OBS selector is highly configurable: each bound can have its own coef-
ficient impacting the selection process. The running time of several configurations with
different bounds importance have been profiled. The values−1, 1 and 0 have been tested
to respectively give : negative, positive, or no importance to the considered bound. All
possible pairs of (a,b) from (−1, 0, 1)× (−1, 0, 1)\{(0, 0)} have been tested.

The performance of different OBS parameters are shown in Figure 3. This cumu-
lative plot shows how many instances can be solved by each method, for a given time
limit. This plot shows that a negative cost to the lower bound outperforms zero or posi-
tive cost, regardless of the upper bound.
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Fig. 3. Comparison of the number of solved instances for different OBS configuration.

Configurations weighting the lower bound negatively solve approximately 50 more
instances than the alternatives. The solution quality has been compared as well: Figure
4 shows how many time a search has found the best solution (not necessarily opti-
mal) compared to its alternatives. Once again, the searches weighting the lower bound
negatively show better results. One intuitive explanation is that choosing the variables
impacting the less the bound which has to be optimized, concentrates the search into
the most promising parts and like shown in Example 2 helps to back-propagate the ob-
jective to prune the tree search. Furthermore, the upper bound in optimization problems
(here minimization, without loss of generality) does not have a big impact on resolution
time. In addition to our previous intuitions, the upper bound seems to be very sensitive
to initialization and to propagation. For instance in some constraints such as sum, which
often determines the objective value, no arc consistency can be achieved in polynomial
time. But, often, only the bounds are filtered, making less consistent the variations of
this variable. Based on different OBS experiments, the configurations (a=-1,b=0) and
(a=-1,b=-1) seem to be the most promising.

4.3 Evaluation of Hybrid Strategies

We tried the hybridization with all the OBS configurations in order to select the most
promising one. The configuration (a = −1, b = 0) got better results within the hy-
bridization, both in run-times and best objectives, which confirms our previous results.
In the following, when no configuration is specified for OBS, then it means that the
configuration (a = −1, b = 0) has been used. Like OBS, the hybridization method is

1 Link
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Fig. 4. Comparison of the objective quality between different OBS configurations.

configurable in different ways. More or less importance can be given to the objective,
or to the classical feature. In order to find the best parameter α, different experiments
have been done. Figure 5 shows the comparison of different values of α on ABS. When
OBS and ABS are not hybridized (α = 1 and α = 0), they clearly show orthogonal
behaviors: the timeout are observed on different instances. By looking at the Figure 5,
it can be seen that ABSO(0.5) dominates the others: less timeout and better run-times
are observed. Only a full comparison of ABS is presented here. We intentionally omit
the remaining combinations to preserve clarity, but similar results are observed with the
others hybridized strategies. The best combinations are reached when α = 0.5. Thus in
the following, when we are going to talk about a hybridized version, it will be always
with α = 0.5.

The run-time and timeout comparisons between the others searches and their hy-
bridized version are shown in Figure 6. It is import to remark that WDegO seems to
outperform its original version, unlike IBSO which has an orthogonal behavior. The
figure 7 shows how the objective feature impacts the search to find good solutions. It
compares the number of times a search against its hybridized version has found a better
solution. Unlike IBS, ABS and WDeg seem to benefit from the objective features, since
their hybridized versions often find better solution than the original ones. For instance,
the classical ABS find less than 10 better solution compared to its hybridized version
which find more than 100 times.

To support again the interest of the hybridization method, we have extracted some
interesting problem families in the Table 1. In this Table, even if OBS is not the best
strategy, it is often able to solve problems where classical strategies do not. Further-
more, this table shows the interest of the hybridization, which most of the time takes
advantage and improve the search considering only one feature. A good example is tal-
ent scheduling problem, OBS has 8 timeouts and ABS 7, but the hybridized version have
only 4.
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Family OBS ABS WDeg IBS ABSO WDegO IBSO

tdtsp 2 5 5 5 5 5 5
prize-collecting 2 7 7 7 7 2 8
2DBinPacking 7 8 8 8 6 8 8

mrcpspmm 0 3 1 1 0 0 0
mario 0 4 2 0 4 0 3

tpp 7 7 10 10 5 10 10
depot placement 3 7 7 1 4 6 4

p1f 2 1 7 1 2 7 3
table-layout 0 0 10 4 0 3 5

filters 2 1 5 1 1 5 1
amaze 4 3 5 4 3 5 4

open stack 8 5 10 7 4 9 6
talent scheduling 8 7 8 7 4 8 7

Table 1. Number of timeout in some families of instances.

From the different plots and table presented, we remark that IBS is an exception
because neither the original nor the hybridized version dominates each other and thus
does not benefit as much as other search strategies from the hybridization. Actually, IBS
contains already some information about the objective bounds modifications. The im-
pact is computed over all variables including the objective. This is why the combination
of the two features does not lead to a domination, but only an improvement in several
problems and a decrease in some others. The resulting search is an orthogonal search to
IBS.
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4.4 Overall evaluation

Figure 9 shows how many instances were solved as a function of time over all strategies.
Without any hybridization IBS is the best strategy. However, with the hybridization, ABS
shows the best improvements and so ABSO become the best strategy. ABSO has the
largest number of solved instances under the allotted time. Furthermore, the hybridized
versions are very competitive and improve the number of solved instances. Such a result
confirms that using the objective as feature leads to strong improvement in solving time.

Most of the time, in real life problems, the optimal solution cannot be found or
proved due to time limits. That is why we now compare the capabilities of OBS and
the hybridized versions to find good solutions under an allotted time. The new hybrid
strategies are very competitive in finding good solutions under a given amount of time
as well. Figure 8 shows how many times a search strategy has found a strictly better
solution than all the others. Searches using the objective feature are depicted in yellow
and the others in blue.
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Fig. 8. Number of instances where each search strategy has found a strictly better objective com-
pared to all the other.

ABSO surpass the others and was able to find 30 times a strictly better objective
than the others, while its original version ABS never finds a better solution. IBS and
OBS seem to be the second best search strategies in terms of score. The hybridization
shows again its advantages since ABSO is strictly better than ABS. WDegO slightly
dominates WDeg and OBS has a good rank.

Miscellaneous discussions The objective can be monitor in many different ways. The
∆O(t) was not our only trial, we tried to monitor the changes through a qualitative func-
tion counting how many times a variable modifies either the lower or the upper bounds.
On the Minizinc Library, the qualitative function was dominated by the quantitative
one.
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Fig. 9. Comparison of the number of instances solved by the different strategies as a function of
time.

Furthermore the ∆O(t) function was used to designed a value selector. Different
variants have been tried: first to select the value minimizing ∆O(t), with possibly dif-
ferent values for a and b. Second to select the value using the new value heuristic from
[3]. However, even if on some instances such as ghoulomb or openstack these selector
showed a real improvement, they seem to globally be dominated in the Minizinc prob-
lems set by minVal. The definition of a good value heuristic seems to still be a challenge
to solve.

Our experimental section shows that combining classic search strategies with our
objective-based feature leads to better performances and the ability to solve new prob-
lems. It shows that for ABS and WDeg adding an objective-based feature seems to dom-
inate their performance. Finally it shows that the objective as a feature can play an
important role in finding a good solution faster, as already claimed [3].

5 Related Work

The objective variable in COPs has already been considered in other fields such as max-
SAT [8] to choose which literal to select, or in Soft-CSP for the decision value [10].
Large Neighborhood Search (LNS) framework also consider the objective: for example
by changing the term of the weighted sum to minimize [13]. In constraint programming,
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the objective information is not yet well used. In [12], the authors propose a heuristic
for weighted constraint satisfaction problems based on the solution quality to guide
the value selection during the search. In [2], the authors propose a machine learning
approach to learn the objective function from the variables’ values, but not directly on
the variables themselves.

More recently, counting based search has been adapted for optimization problems [17],
the main idea being to consider objective-based solution density instead of a simple so-
lution density. This is done by adding to each objective-based constraint an additional
algorithm processing these values. Also, in MIP, the objective is widely used in the
heuristic [4]: the variables having the best impact on the objective value of the relaxed
problem are selected first. This approach differs from our, since CP does not have good
relaxation as MIP and we consider the hybridization of the search strategies. A recent
work [3] uses the objective information in order to select the variable value, leaving
the variable selection to another strategy. Our method differs from [3] since we pro-
pose a variables selector, while [3] proposed a value selector. Secondly, we are trying
to learn on-the-fly all along the search tree which variable seems to be the most promis-
ing, unlike [3]. In [3] the value is selected by testing all the possible assignments of the
variable’s domains to determine after the propagation which value is the best. More-
over, our feature is more fine-grained because it can be determined how strongly to
emphasize bound modifications, using positive or negative parameters. In addition, in
this paper we propose an hybridization of existing searches with the objective feature.
More particularly our new strategies can be added into the set of available strategies to
choose to solve a problem, even in online fashion [27].

6 Conclusion

In this paper we have demonstrated the need for using the objective variable as a fea-
ture for decisions within search strategies in constraint programming. We have defined
a fine grain feature based on objective bound modifications. By using this new feature,
we have designed a new variable selector named OBS. This new variable selector is
not the most efficient, but it is able to overpass the existing ones on some class of prob-
lems. Moreover, we have proposed a hybridization method to combine our proposed
objective-based feature with many existing search strategies. Our evaluation has shown
that the hybridized searches give great results and are better than the original strategy
in term of run time and solution quality. Some searches are dominated by their hybrid
versions. Through this new perspective, we have shown that using the objective as a
feature to make decisions can lead to strong results. In addition, further work can be
done, for example, with non valued SSs like the ones using a ranking criteria such as
COS [5]. Directly applying this work on such SSs is not trivial, and should be a next
step.

For both the ∆O(t) function and the hybridization, we consider here only a linear
combination of the values. More complex combination scheme can be considered. For
example, non linear function or ranking function could be studied.

Finally, parameter optimization methods [9] could be used in order to find the best
values of a, b and α for a given family of problem while solving it.
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