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Abstract The need for an efficient method of integra-

tion of a dense normal field is inspired by several com-

puter vision tasks, such as shape-from-shading, pho-

tometric stereo, deflectometry, etc. Inspired by edge-

preserving methods from image processing, we study in

this paper several variational approaches for normal in-

tegration, with a focus on non-rectangular domains, free

boundary and depth discontinuities. We first introduce

a new discretization for quadratic integration, which is

designed to ensure both fast recovery and the ability

to handle non-rectangular domains with a free bound-

ary. Yet, with this solver, discontinuous surfaces can be

handled only if the scene is first segmented into pieces

without discontinuity. Hence, we then discuss several

discontinuity-preserving strategies. Those inspired, re-

spectively, by the Mumford-Shah segmentation method

and by anisotropic diffusion, are shown to be the most

effective for recovering discontinuities.

Keywords 3D-reconstruction, integration, normal

field, gradient field, variational methods, photometric

stereo, shape-from-shading.

1 Introduction

In this paper, we study several methods for numerical

integration of a gradient field over a 2D-grid. Our aim is
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to estimate the values of a function z : R2 → R, over a

set Ω ⊂ R2 (reconstruction domain) where an estimate

g = [p, q]> : Ω → R2 of its gradient ∇z is available.

Formally, we want to solve the following equation in the

unknown depth map z:

∇z(u, v) = [p(u, v), q(u, v)]
>︸ ︷︷ ︸

g(u,v)

, ∀(u, v) ∈ Ω (1)

In a companion survey paper [48], we have shown

that an ideal numerical tool for solving Equation (1)

should satisfy the following properties, appart accuracy:

• PFast: be as fast as possible;

• PRobust: be robust to a noisy gradient field;

• PFreeB: be able to handle a free boundary ;

• PDisc: preserve the depth discontinuities;

• PNoRect: be able to work on a non-rectangular do-

main Ω;

• PNoPar: have no critical parameter to tune.

Contributions. This paper builds upon the previous con-

ference papers [19,20,47] to clarify the building blocks

of variational approaches to the integration problem,

with a view to meeting the largest subset of these re-

quirements. As discussed in Section 2, the variational

framework is well-adapted to this task, thanks to its

flexibility. However, these properties are difficult, if not

impossible, to satisfy simultaneously. In particular, PDisc

seems hardly compatible with PFast and PNoPar.

Therefore, we first focus in Section 3 on the prop-

erties PFreeB and PNoRect. A new discretization strat-

egy for normal integration is presented, which is in-

dependent from the shape of the domain and assumes

no particular boundary condition. When used within a

quadratic variational approach, this discretization strat-

egy allows to ensure all the desired properties except
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PDisc. In particular, the numerical solution comes down

to solving a symmetric, diagonally dominant linear sys-

tem, which can be achieved very efficiently using pre-

conditioning techniques. In comparison with our previ-

ous work [20] which considered only forward finite dif-

ferences and standard Jacobi iterations, the properties

PRobust and PFast are better satisfied.

In Section 4, we focus more specifically on the inte-

gration problem in the presence of discontinuities. Sev-

eral variations of well-known models from image pro-

cessing are empirically compared, while suggesting for

each of them the appropriate state-of-the-art minimiza-

tion method. Besides the approaches based on total

variation and non-convex regularization, which we al-

ready presented, respectively, in [47] and [19], two new

methods inspired by the Mumford-Shah segmentation

method and by anisotropic diffusion are introduced.

They are shown to be particularly effective for handling

PDisc, although PFast and PNoPar are lost.

These variational methods for normal integration

are based on the same variational framework, which is

detailed in the next section.

2 From Variational Image Restoration to

Variational Normal Integration

In view of the PRobust property, variational methods,

which aim at estimating the surface by minimization of

a well-chosen criterion, are particularly suited for the

integration problem. Hence, we choose the variational

framework as basis for the design of new methods. This

choice is also motivated by the fact that the property

which is the most difficult to ensure is probably PDisc.

Numerous variational methods have been designed for

edge-preserving image processing: such methods may

thus be a natural source of inspiration for designing

discontinuity-preserving integration methods.

2.1 Variational Methods in Image Processing

For a comprehensive introduction to this literature, we

refer the reader to [4] and to pioneering papers such

as [11,16,34,38]. Basically, the idea in edge-preserving

image restoration is that edges need to be processed in a

particular way. This is usually achieved by choosing an

appropriate energy to minimize, formulating the inverse

problem as the recovery of a restored image z : Ω ⊂
R2 → R minimizing the energy:

E(z) = F(z) +R(z) (2)

where:

• F(z) is a fidelity term penalizing the difference be-

tween a corrupted image z0 and the restored image:

F(z) =

∫∫
(u,v)∈Ω

Φ
(
z(u, v)− z0(u, v)

)
dudv (3)

• R(z) is a regularization term, which usually penal-

izes the gradient of the restored image:

R(z) =

∫∫
(u,v)∈Ω

λ(u, v) Ψ (‖∇z(u, v)‖) dudv (4)

In (3), Φ is chosen accordingly to the type of corrup-

tion the original image z0 is affected by. For instance,

ΦL2
(s) = s2 is the natural choice in the presence of ad-

ditive, zero-mean, Gaussian noise, while ΦL1
(s) = |s|

can be used in the presence of bi-exponential (Lapla-

cian) noise, which is a rather good model when outliers

come into play (e.g., “salt & pepper” noise).

In (4), λ ≥ 0 is a field of weights which control the

respective influence of the fidelity and the regulariza-

tion terms. It can be either manually tuned beforehand

(if λ(u, v) ≡ λ, λ can be seen as a “hyper-parameter”),

or defined as a function of ‖∇z(u, v)‖.
The choice of Ψ must be made accordingly to a de-

sired smoothness of the restored image. The quadratic

penalty ΨL2(s) = s2 will produce “smooth” images,

while piecewise-constant images are obtained when choos-

ing the sparsity penalty ΨL0
(s) = 1− δ(s), with δ(s) =

1 if s = 0 and δ(s) = 0 otherwise. The latter ap-

proach preserves the edges, but the numerical solving

is much more difficult, since the regularization term is

non-smooth and non-convex. Hence, several choices of

regularizers “inbetween” the quadratic and the sparsity

ones have been suggested.

For instance, the total variation (TV) regularizer

is obtained by setting Ψ(s) = |s|. Efficient numerical

methods exist for solving this non-smooth, yet convex,

problem. Examples include primal-dual methods [13],

augmented Lagrangian approaches [23], and forward-

backward splittings [40]. The latter can also be adapted

to the case where the regularizer Ψ is non-convex, but

smooth [41]. Such non-convex regularization terms were

shown to be particularly effective for edge-preserving

image restoration [22,36,38].

Another strategy is to stick to quadratic regulariza-

tion (Ψ = ΨL2), but apply it in a non-uniform manner

by tuning the field of weights λ in (4). For instance, set-

ting λ(u, v) in (4) inversely proportional to ‖∇z(u, v)‖
yields the “anisotropic diffusion” model by Perona and

Malik [44]. The discontinuity set K can also be auto-

matically estimated and discarded by setting λ(u, v) ≡
0 over K and λ(u, v) ≡ λ over Ω\K, in the spirit of

Mumford and Shah’s segmentation method [37].
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2.2 Notations

Although we chose for simplicity to write the variational

problems in a continuous form, we are overall interested

in solving discrete problems. Two different discretiza-

tion strategies exist. The first one consists in using vari-

ational calculus to derive the (continuous) necessary

optimality condition, then discretize it by finite differ-

ences, and eventually solve the discretized optimality

condition. The alternative method is to discretize the

functional itself by finite differences, before solving the

optimality condition associated to the discrete problem.

As shown in [20], the latter approach eases the han-

dling of the boundary of Ω, hence we use it as dis-

cretization strategy. The variational models hereafter

will be presented using the continuous notations, be-

cause we find them more readable. The discrete nota-

tions will be used only when presenting the numerical

solving. Yet, to avoid confusion, we will use caligraphic

letters for the continuous energies (e.g., E), and capital

letters for their discrete counterparts (e.g., E). With

these conventions, it should be clear whether an opti-

mization problem is discrete or continuous. Hence, we

will use the same notation ∇z = [∂uz, ∂vz]
>

both for

the gradient of z and its finite differences approxima-

tion.

2.3 Proposed Variational Framework

In this work, we show how to adapt the aforemen-

tioned variational models, originally designed for im-

age restoration, to normal integration. Although both

these inverse problems are formally very similar, they

are somehow different, for the following reasons:

• The concept of edges in an image to restore is re-

placed by those of depth discontinuities and kinks.

• Unlike image processing functionals, our data con-

sist in an estimate g of the gradient of the unknown

z, in lieu of a corrupted version z0 of z. Therefore,

the fidelity term F(z) will apply to the difference

between ∇z and g, and it is the choice of this term

which will or not allow depth discontinuities.

• Regularization terms are optional here: all the meth-

ods we discuss basically work even with R(z) ≡ 0,

but we may use this regularization term to allow in-

troducing, if available, a prior on the surface (e.g.,

user-defined control points [30,33] or a rough depth

estimate obtained using a low-resolution depth sen-

sor [32]). Such feature “is appreciable, although not

required” [48].

We will discuss methods seeking the depth z as the

minimizer of an energy E(z) in the form (2), but with

different choices for F(z) and R(z):

• F(z) now represents a fidelity term penalizing the

difference between the gradient of the recovered depth

map z and the datum g:

F(z) =

∫∫
(u,v)∈Ω

Φ (‖∇z(u, v)− g(u, v)‖) dudv (5)

• The regularization term R(z) now represents prior

knowledge of the depth1:

R(z) =

∫∫
(u,v)∈Ω

λ(u, v)
[
z(u, v)− z0(u, v)

]2
(6)

where z0 is the prior, and λ(u, v) ≥ 0 is a user-

defined, spatially-varying, regularization weight. In

this work, we consider for simplicity only the case

where λ does not depend on z.

2.4 Choosing λ and z0

The main purpose of the regularization term R defined

in (6) is to avoid numerical instabilities which may arise

when considering solely the fidelity term (5): this fi-

delity term depends only on ∇z, and not on z itself,

hence the minimizer of (5) can be estimated only up to

an additive ambiguity.

Besides, one may also want to impose one or sev-

eral control points on the surface [30,33]. This can be

achieved very simply within the proposed variational

framework, by setting λ(u, v) ≡ 0 everywhere, except

on the control points locations (u, v) where a high value

for λ(u, v) must be set and the value z0(u, v) is fixed.

Another typical situation is when, given both a coarse

depth estimate and an accurate normal estimate, one

would like to “merge” them in order to create a high-

quality depth map. Such a problem arises, for instance,

when refining the depth map of an RGB-D sensor (e.g.,

a Kinect) by means of shape-from-shading [42], pho-

tometric stereo [25] or shape-from-polarization [32]. In

such cases, we may set z0 to the coarse depth map, and

tune λ so as to merge the coarse and fine estimates in

the best way. Non-uniform weights may be used, in or-

der to lower the influence of outliers in the coarse depth

map [25].

Eventually, in the absence of such priors, we will

use the regularization term only to fix the integration

constant: this is easily achieved by setting an arbitrary

prior (e.g., z0(u, v) ≡ 0), along with a small value for λ

(typically, λ(u, v) ≡ λ = 10−6).

1 We consider only quadratic regularization terms: studying
more robust ones (e.g., L1 norm) is left as perspective.



4 Yvain Quéau et al.

3 Smooth Surfaces

We first tackle the problem of recovering a “smooth”

depth map z from a noisy estimate g of ∇z. To this

end, we consider the quadratic variational problem:

min
z

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖2

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (7)

When λ ≡ 0, Problem (7) comes down to Horn and

Brook’s model [29]. In that particular case, an infinity

of solutions z ∈W 1,2(Ω) exist, and they differ by an ad-

ditive constant2. On the other hand, the regularization

term allows us to guarantee uniqueness of the solution

as soon as λ is strictly positive almost everywhere3,4.

If the depth map z is further assumed to be twice

differentiable, the necessary optimality condition as-

sociated to the continuous optimization problem (7)

(Euler-Lagrange equation) is written:

−∆z + λz = −∇ · g + λz0 over Ω (8)

(∇z − g) · η = 0 over ∂Ω (9)

with η a normal vector to the boundary ∂Ω of Ω, ∆

the Laplacian operator, and ∇· the divergence oper-

ator. This condition is a linear PDE in z which can

be discretized using finite differences. Yet, providing a

consistent discretization on the boundary of Ω is not

straightforward [26], especially when dealing with non-

rectangular domains Ω where many cases have to be

considered [6]. Hence, we follow a different track, based

on the discretization of the functional itself.

3.1 Discretizing the Functional

Instead of a continuous gradient field g : Ω → R2 over

an open set Ω, we are actually given a finite set of val-

ues {gu,v = [pu,v, qu,v]
>, (u, v) ∈ Ω}, where the (u, v)

represent the pixels of a discrete subset Ω of a regular

square 2D-grid5. Solving the discrete integration prob-

lem requires estimating a finite set of values, i.e. the |Ω|
unknown depth values zu,v, (u, v) ∈ Ω (| · | denotes the

cardinality), which are stacked columnwise in a vector

z ∈ R|Ω|.
2 Proof: by developing the terms inside the integral in (7),

and integrating by parts, Theorem 6.2.5 in [3] applies with
f := −∇ · g and g := g · η.
3 Proof: by developing the terms inside the integral in (7)

and integrating by parts, Theorem 6.2.2-(ii) in [3] applies with
f := −∇ · g + λz0 and g := g · η.
4 This condition makes the matrix of the associated discrete

problem strictly diagonally dominant, see Section 3.2.
5 To ease the comparison between the variational and the

discrete problems, we will use the same notation Ω for both
the open set of R2 and the discrete subset of the grid.

For now, let us use a Gaussian approximation for the

noise contained in g6, i.e., let us assume in the rest of

this section that each datum gu,v, (u, v) ∈ Ω, is equal

to the gradient ∇z(u, v) of the unknown depth map

z, taken at point (u, v), up to a zero-mean additive,

homoskedastic (same variance at each location (u, v)),

Gaussian noise:

gu,v = ∇z(u, v) + ε(u, v) (10)

where ε(u, v) ∼ N
(

[0, 0]
>
,

[
σ2 0

0 σ2

])
and σ is unknown7.

Now, we need to give a discrete interpretation of the

gradient operator in (10), through finite differences.

In order to obtain a second-order accurate discretiza-

tion, we combine forward and backward first-order fi-

nite differences, i.e. we consider that each measure of

the gradient gu,v = [pu,v, qu,v]
>

provides us with up

to four independent and identically distributed (i.i.d.)

statistical observations, depending on the neighborhood

of (u, v). Indeed, its first component pu,v can be under-

stood either in terms of both forward or backward finite

differences (when both the bottom and the top8 neigh-

bors are inside Ω), by one of both these discretizations

(only one neighbor inside Ω), or by none of these finite

differences (no neighbor inside Ω). Formally, we model

the p-observations in the following way:

pu,v =

∂+
u zu,v︷ ︸︸ ︷

zu+1,v − zu,v +ε+u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u+ 1, v) ∈ Ω}︸ ︷︷ ︸
Ω+
u

(11)

pu,v =

∂−u zu,v︷ ︸︸ ︷
zu,v − zu−1,v +ε−u (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u− 1, v) ∈ Ω}︸ ︷︷ ︸
Ω−u

(12)

where ε
+/−
u ∼ N (0, σ2). Hence, rather than considering

that we are given |Ω| observations p, our discretization

handles these data as |Ω+
u |+ |Ω−u | observations, some of

them being interpreted in terms of forward differences,

some in terms of backward differences, some in terms

of both forward and backward differences, the points

without any neighbor in the u-direction being excluded.

6 In 3D-reconstruction applications such as photometric
stereo [55], the assumption on the noise should rather be for-
mulated on the images. This will be discussed in more details
in Subsection 4.4.
7 The assumptions of equal variance σ2 for both compo-

nents and of a diagonal covariance matrix are introduced only
for consistency with the least-squares problem (7). They are
discussed with more care in Subsection 4.4.
8 The u-axis points “downwards”, the v-axis points “to the

right” and the z-axis points from the surface to the camera,
see Figure 1.



Variational Methods for Normal Integration 5

Symmetrically, the second component q of g corre-

sponds either to two, one or zero observations:

qu,v =

∂+
v zu,v︷ ︸︸ ︷

zu,v+1 − zu,v +ε+v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v + 1) ∈ Ω}︸ ︷︷ ︸
Ω+
v

(13)

qu,v =

∂−v zu,v︷ ︸︸ ︷
zu,v − zu,v−1 +ε−v (u, v),

∀(u, v) ∈ {(u, v) ∈ Ω | (u, v − 1) ∈ Ω}︸ ︷︷ ︸
Ω−v

(14)

where ε
+/−
v ∼ N (0, σ2). Given the Gaussianity of the

noises ε
+/−
u/v , their independence, and the fact that they

all share the same standard deviation σ and mean 0, the

joint likelihood of the observed gradients {gu,v}(u,v) is:

L({gu,v, (u, v) ∈ Ω} | {zu,v, (u, v) ∈ Ω})

=
∏

(u,v)∈Ω+
u

1√
2πσ2

exp

{
− [∂+

u zu,v − pu,v]
2

2σ2

}

×
∏

(u,v)∈Ω−u

1√
2πσ2

exp

{
− [∂−u zu,v − pu,v]

2

2σ2

}

×
∏

(u,v)∈Ω+
v

1√
2πσ2

exp

{
− [∂+

v zu,v − qu,v]
2

2σ2

}

×
∏

(u,v)∈Ω−v

1√
2πσ2

exp

{
− [∂−v zu,v − qu,v]

2

2σ2

}
(15)

and hence the maximum-likelihood estimate for the depth

values is obtained by minimizing:

FL2
(z) =

1

2

( ∑∑
(u,v)∈Ω+

u

[
∂+
u zu,v − pu,v

]2
+
∑∑

(u,v)∈Ω−u

[
∂−u zu,v − pu,v

]2)

+
1

2

( ∑∑
(u,v)∈Ω+

v

[
∂+
v zu,v − qu,v

]2
+
∑∑

(u,v)∈Ω−v

[
∂−v zu,v − qu,v

]2)
(16)

where the 1
2 coefficients are meant to ease the continu-

ous interpretation: the integral of the fidelity term in (7)

is approximated by FL2
(z), expressed in (16) as the

mean of the forward and the backward discretizations.

To obtain a more concise representation of this fi-

delity term, let us stack the data in two vectors p ∈ R|Ω|
and q ∈ R|Ω|. In addition, let us introduce four |Ω|×|Ω|
differentiation matrices D+

u , D−u , D+
v and D−v , asso-

ciated with the finite differences operators ∂
+/−
u/v . For

instance, the i-th line of D+
u reads:(

D+
u

)
i,· =

[
0, . . . , 0, −1︸︷︷︸

Position i

, 1︸︷︷︸
Position i+1

, 0, . . . , 0
]

if m(i) ∈ Ω+
u

0> otherwise

(17)

where m is the mapping associating linear indices i with

the pixel coordinates (u, v):

m : {1, . . . , |Ω|} → Ω

i 7→ m(i) = (u, v)
(18)

Once these matrices are defined, (16) is equal to:

FL2
(z) =

1

2

(∥∥D+
u z− p

∥∥2
+
∥∥D−u z− p

∥∥2
)

+
1

2

(∥∥D+
v z− q

∥∥2
+
∥∥D−v z− q

∥∥2
)

− 1

2

 ∑∑
(u,v)∈Ω\Ω+

u

pu,v
2+
∑∑

(u,v)∈Ω\Ω−u

pu,v
2


− 1

2

 ∑∑
(u,v)∈Ω\Ω+

v

qu,v
2 +
∑∑

(u,v)∈Ω\Ω−v

qu,v
2

 (19)

The terms in both the last rows of (19) being indepen-

dent from the z-values, they do not influence the actual

minimization and will thus be omitted from now on.

The regularization term (6) is discretized as:

R(z)=
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
=
∥∥Λ (z− z0

)∥∥2
(20)

withΛ a |Ω|×|Ω| diagonal matrix containing the values√
λu,v, (u, v) ∈ Ω.

Putting it altogether, our quadratic integration method

reads as the minimization of the discrete functional:

EL2
(z) =

1

2

(∥∥D+
u z− p

∥∥2
+
∥∥D−u z− p

∥∥2
)

+
1

2

(∥∥D+
v z− q

∥∥2
+
∥∥D−v z− q

∥∥2
)

+
∥∥Λ(z− z0

)∥∥2
(21)

3.2 Numerical Solution

The optimality condition associated with the discrete

functional (21) is a linear equation in z:

Az = b (22)

where A is a |Ω| × |Ω| symmetric matrix9:

A =

L︷ ︸︸ ︷
1

2

[
D+
u
>

D+
u + D−u

>
D−u + D+

v
>

D+
v + D−v

>
D−v

]
+Λ2 (23)

9 A and b are purposely divided by two in order to ease
the continuous interpretation of Subsection 3.3.
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and b is a |Ω| × 1 vector:

b =

Du︷ ︸︸ ︷
1

2

[
D+
u
>

+ D−u
>
]

p +

Dv︷ ︸︸ ︷
1

2

[
D+
v
>

+ D−v
>
]

q

+Λ2z0 (24)

The matrix A is sparse: it contains at most five non-

zero entries per row. In addition, it is diagonal domi-

nant: if (Λ)i,i = 0, the value (A)i,i of a diagonal entry

is equal to the opposite of the sum of the other en-

tries (A)i,j , i 6= j, from the same row i. It becomes

strictly superior as soon as (Λ)i,i is strictly positive.

Let us also remark that, when Ω describes a rectangu-

lar domain and the regularization weights are uniform

(λ(u, v) ≡ λ), A is a Toeplitz matrix. Yet, this struc-

ture is lost in the general case where it can only be

said that A is a sparse, symmetric, diagonal dominant

(SDD) matrix with at most 5|Ω| non-zero elements. It

is positive semi-definite when Λ = 0, and positive defi-

nite as soon as one of the λu,v is non-zero.

System (22) can be solved by means of the conju-

gate gradient algorithm. Initialization will not influence

the actual solution, but it may influence the number of

iterations required to reach convergence. In our exper-

iments, we used z0 as initial guess, yet more elaborate

initialization strategies may yield faster convergence [6].

To ensure PFast, we used the multigrid preconditioning

technique [35], which has a negligible cost of compu-

tation and still bounds the computational complexity

required to reach a ε relative accuracy10 by:

O (5n log(n) log(1/ε)) (25)

where n = |Ω|11. This complexity is inbetween the com-

plexities of the approaches based on Sylvester equa-

tions [26] (O(n1.5)) and on DCT [53] (O(n log(n))). Be-

sides, these competing methods explicitly require that

Ω is rectangular, while ours does not.

By construction, the integration method consisting

in minimizing (21) satisfies the PRobust property (it

is the maximum-likelihood estimate in the presence of

zero-mean Gaussian noise). The discretization we in-

troduced does not assume any particular shape for Ω,

neither treats the boundary in a specific manner, hence

PFreeB and PNoRect are also satisfied. We also showed

that PFast could be satisfied, using a solving method

10 In our experiments, the threshold of the stopping criterion
is set to ε = 10−4.
11 In (25), the factor 5n is nothing else than the number
of non-zero elements in A. Therefore, exploiting sparsity is
not as “fruitless” as argued in [26] when it comes to solving
large linear systems faster than using Gaussian elimination
(complexity O(n3)).

based on the preconditioned conjugate gradient algo-

rithm. Eventually, let us recall that tuning λ and/or

manually fixing the values of the prior z0 is necessary

only to introduce a prior, but not in general. Hence,

PNoPar is also enforced. In conclusion, all the desired

properties are satisfied, except PDisc. Let us now pro-

vide additional remarks on the connections between the

proposed discrete approach and a fully variational one.

3.3 Continuous Interpretation

System (22) is nothing else than a discrete analogue of

the continuous optimality conditions (8) and (9):

Lz︸︷︷︸
≈−∆z

+Λ2z︸︷︷︸
≈λz

= Dup + Dvq︸ ︷︷ ︸
≈−∇·g

+Λ2z0︸ ︷︷ ︸
≈λz0

(26)

where the matrix-vector products are easily interpreted

in terms of the differential operators in the continuous

formula (8). One major advantage when reasoning from

the beginning in the discrete setting is that one does not

need to find out how to discretize the natural12 bound-

ary condition (9), which was already emphasized in [20,

26]. Yet, the identifications in (26) show that both the

discrete and continuous approaches are equivalent, pro-

vided that an appropriate discretization of the contin-

uous optimality condition is used. It is thus possible to

derive O(5n log(n) log(1/ε)) algorithms based on the

discretization of the Euler-Lagrange equation, contrar-

ily to what is stated in [26]. The real drawback of such

approaches does not lie in complexity, but in the dif-

ficult discretization of the boundary condition. This is

further explored in the next subsection.

3.4 Example

To clarify the proposed discretization of the integration

problem, let us consider a non-rectangular domain Ω

inside a 3× 3 grid, like the one depicted in Figure 1.

The vectorized unknown depth z and the vectorized

components p and q of the gradient write in this case:

z =



z1,1

z2,1

z3,1

z1,2

z2,2

z3,2

z1,3

z2,3


p =



p1,1

p2,1

p3,1

p1,2

p2,2

p3,2

p1,3

p2,3


q =



q1,1

q2,1

q3,1

q1,2

q2,2

q3,2

q1,3

q2,3


(27)

12 As stated in [26], homogeneous Neumann boundary con-
ditions of the type ∇z · η = 0, used e.g. in [1], should be
avoided.
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(1, 1)

v

u (1, 3)(1, 2)

(2, 1) (2, 3)(2, 2)

(3, 1) (3, 2)

Fig. 1 Example of non-rectangular domain Ω (solid dots)
inside a 3× 3 grid. When invoking the continuous optimality
condition, the discrete approximations of the Laplacian and
of the divergence near the boundary involve several points
inside ∂Ω (circles) for which no data is available. First-order
approximation of the natural boundary condition (9) is thus
required. Relying only on discrete optimization simplifies a
lot the boundary handling.

The sets Ω
+/−
u/v all contain five pixels:

Ω+
u = {(1, 1) , (2, 1) , (1, 2) , (2, 2) , (1, 3)} (28)

Ω−u = {(2, 1) , (3, 1) , (2, 2) , (3, 2) , (2, 3)} (29)

Ω+
v = {(1, 1) , (2, 1) , (3, 1) , (1, 2) , (2, 2)} (30)

Ω−v = {(1, 2) , (2, 2) , (3, 2) , (1, 3) , (2, 3)} (31)

so that the differentiation matrices D
+/−
u/v have five non-

zero rows according to their definition (17). For in-

stance, the matrix associated with the forward finite

differences operator ∂+
u reads:

D+
u =



−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 0


(32)

The negative Laplacian matrix L defined in (23) is

worth:

L =



2 −1 0 −1 0 0 0 0

−1 3 −1 0 −1 0 0 0

0 −1 2 0 0 −1 0 0

−1 0 0 3 −1 0 −1 0

0 −1 0 −1 4 −1 0 −1

0 0 −1 0 −1 2 0 0

0 0 0 −1 0 0 2 −1

0 0 0 0 −1 0 −1 2


(33)

One can observe that this matrix describes the connec-

tivity of the graph representing the discrete domain Ω:

the diagonal elements (L)i,i are the numbers of neigh-

bors connected to the i-th point, and the off-diagonals

elements (L)i,j are worth −1 if the i-th and j-th points

are connected, 0 otherwise.

Eventually, the matrices Du and Dv defined in (24)

are equal to:

Du =
1

2



−1 −1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 −1 −1 0 0 0

0 0 0 1 0 −1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 1 1


(34)

Dv =
1

2



−1 0 0 −1 0 0 0 0

0 −1 0 0 −1 0 0 0

0 0 −1 0 0 −1 0 0

1 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 −1

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 1 1


(35)

Let us now show how these matrices relate to the

discretization of the continuous optimality condition (8).

Using second-order central finite differences approxi-

mations of the Laplacian (∆zu,v ≈ zu,v−1 + zu−1,v +

zu+1,v + zu,v+1 − 4zu,v) and of the divergence operator

(∇ · gu,v ≈ 1
2 (pu+1,v − pu−1,v) + 1

2 (qu,v+1 − qu,v−1)),

we obtain:

[4zu,v−zu,v−1−zu−1,v−zu+1,v−zu,v+1]+λu,vzu,v =

1

2
[pu−1,v − pu+1,v]+

1

2
[qu,v−1 − qu,v+1]+λu,vz

0
u,v (36)

The pixel (u, v) = (2, 2) is the only one whose four

neighbors are inside Ω. In that case, (36) becomes:

[4z2,2 − z2,1 − z1,2 − z3,2 − z2,3]︸ ︷︷ ︸
=(L)5,·z

+ λ2,2z2,2︸ ︷︷ ︸
=(Λ2)5,·z

=
1

2
[p1,2 − p3,2]︸ ︷︷ ︸
=(Du)5,·p

+
1

2
[q2,1 − q2,3]︸ ︷︷ ︸
=(Dv)5,·q

+ λ2,2z
0
2,2︸ ︷︷ ︸

=(Λ2)5,·z
0

(37)

where we recognize the fifth equation of the discrete

optimality condition (26). This shows that, for pixels

having all four neighbors inside Ω, both the continuous

and the discrete variational formulations yield the same

discretizations.
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Now, let us consider a pixel near the boundary, for

instance pixel (1, 1). Using the same second-order dif-

ferences, (36) reads:

[4z1,1 − z1,0 − z0,1 − z2,1 − z1,2] + λ1,1z1,1

=
1

2
[p0,1 − p2,1] +

1

2
[q1,0 − q1,2] + λ1,1z

0
1,1 (38)

which involves the values z1,0 and z0,1 of the depth map,

which we are not willing to estimate, and the values p0,1

and q1,0 of the gradient field, which are not provided as

data. To eliminate these four values, we need to resort

to boundary conditions on z, p and q. The discretiza-

tions, using first order forward finite differences, of the

natural boundary condition (9), at locations (1, 0) and

(0, 1), read:

z1,1 − z1,0 = q1,0 (39)

z1,1 − z0,1 = p0,1 (40)

hence the unknown depth values z1,0 and z0,1 can be

eliminated from Equation (38):

[2z1,1 − z2,1 − z1,2] + λ1,1z1,1

=
1

2
[−p0,1 − p2,1] +

1

2
[−q1,0 − q1,2] + λ1,1z

0
1,1 (41)

Eventually, the unknown values p0,1 and q1,0 need to

be approximated. Since we have no information at all

about the values of g outside Ω, we use homogeneous

Neumann boundary conditions13:

∇p · η = 0 over ∂Ω (42)

∇q · η = 0 over ∂Ω (43)

Discretizing these boundary conditions using first order

forward finite differences, we obtain:

p0,1 = p1,1 (44)

q1,0 = q1,1 (45)

Using these identifications, the discretized optimality

condition (41) is given by:

[2z1,1 − z2,1 − z1,2]︸ ︷︷ ︸
=(L)1,·z

+ λ1,1z1,1︸ ︷︷ ︸
=(Λ2)1,·z

=
1

2
[−p1,1 − p2,1]︸ ︷︷ ︸

=(Du)1,·p

+
1

2
[−q1,1 − q1,2]︸ ︷︷ ︸

=(Dv)1,·q

+ λ1,1z
0
1,1︸ ︷︷ ︸

=(Λ2)1,·z
0

(46)

which is exactly the first equation of the discrete opti-

mality condition (26).

13 This assumption is weaker than the homogeneous Neu-
mann boundary condition ∇z · η = 0 used by Agrawal et al.
in [1].

Using a similar rationale, we obtain equivalence of

both formulations for the eight points inside Ω. Yet, let

us emphasize that discretizing the continuous optimal-

ity condition requires treating, on this example with a

rather “simple” shape for Ω, not less than seven dif-

ferent cases (only pixels (3, 2) and (2, 3) are similar).

More general shapes bring out to play even more par-

ticular cases (points having only one neighbor insideΩ).

Furthermore, boundary conditions must be invoked in

order to approximate the depth values and the data out-

side Ω. On the other hand, the discrete functional pro-

vides exactly the same optimality condition, but with-

out these drawbacks. The boundary conditions can be

viewed as implicitly enforced, hence PFreeB is satisfied.

3.5 Empirical Evaluation

We first consider the smooth surface from Figure 2,

whose normals are analytically known [26], and com-

pare three discrete least-squares methods which all sat-

isfy PFast, PRobust and PFreeB: the DCT solution [53],

the Sylvester equations method [26], and the proposed

one. As shown in Figures 2 and 3, our solution is slightly

more accurate. Indeed, the bias near the boundary in-

duced by the DCT method is corrected. On the other

hand, we believe the reason why our method is more

accurate than that from [26] is because we use a combi-

nation of forward and backward finite differences, while

[26] relies on central differences. Indeed, when using

central differences to discretize the gradient, the second-

order operator (Laplacian) appearing in the Sylvester

equations from [26] involves none of the direct neigh-

bors, which may be non-robust for noisy data (see, for

instance, Appendix 3 in [4]). For instance, let us con-

sider a 1D domain Ω with 7 pixels. Then, the following

differentiation matrix is advocated in [26]:

Du =
1

2



−3 4 −1 0 0 0 0

−1 0 1 0 0 0 0

0 −1 0 1 0 0 0

0 0 −1 0 1 0 0

0 0 0 −1 0 1 0

0 0 0 0 −1 0 1

0 0 0 0 1 −4 3


(47)

The optimality condition (Sylvester equation) in [26]

involves the following second-order operator Du
>Du:

Du
>Du =

1

4



10 −12 2 0 0 0 0

−12 17 −4 −1 0 0 0

2 −4 3 0 −1 0 0

0 -1 0 2 0 -1 0

0 0 −1 0 3 −4 2

0 0 0 −1 −4 17 −12

0 0 0 0 2 −12 10


(48)
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Fig. 2 Qualitative evaluation of the PRobust property. An additive, zero-mean, Gaussian noise with standard deviation
0.1‖g‖∞ was added to the (analytically known) gradient of the ground-truth surface, before integrating this gradient by
three least-squares methods. Ours qualitatively provides better results than the Sylvester equations method from Harker and
O’Leary [26]. It seems to provide similar robustness as the DCT solution from Simchony et al. [53], but the quantitative
evaluation from Figure 3 shows that our method is actually more accurate.

The bolded values of this matrix indicate that com-

putation of the second-order derivatives for the fourth

pixel does not involve the third and fifth pixels. On

the other hand, with the proposed operator defined

in Equation (24), the second-order operator always in-

volves the “correct” neighborhood:

Du
>Du =



1 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 -1 2 -1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 1


(49)

In addition, as predicted by the complexity analy-

sis in Subsection 3.2, our solution relying on precon-

ditioned conjugate gradient iterations has an asymp-

totic complexity (O(5n log(n) log(1/ε))) which is in-

between that of the Sylvester equations approach [26]

(O(n1.5)) and of DCT [53] (O(n log(n))). The CPU

times of our method and of the DCT solution, measured

using Matlab codes running on a recent i7 processor, ac-

tually seem proportional: according to this complexity

analysis, we guess the proportionality factor is around

5 log(1/ε). Indeed, with ε = 10−4, which is the value

we used in our experiments, 5 log(1/ε) ≈ 46, which is

consistent with the second graph in Figure 3.
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Fig. 3 Quantitative evaluation of the PRobust (top) and
PFast (bottom) properties. Top: RMSE between the depth
ground-truth and the ones reconstructed from noisy gradients
(adding a zero-mean Gaussian noise with standard deviation
σ‖g‖∞, for several values of σ). Bottom: Computation time
as a function of the size |Ω| of the reconstruction domain Ω.
The method we put forward has a complexity which is inbe-
tween those of the methods of Simchony et al. [53] (based on
DCT) and of Harker and O’Leary [26] (based on Sylvester
equations), while being slightly more accurate than both of
them.

Besides its improved accuracy, the major advan-

tage of our method over [26,53] is its ability to handle

non-rectangular domains (PNoRect). This makes possi-

ble the 3D-reconstruction of piecewise-smooth surfaces,

provided that a user segments the domain into pieces

where z is smooth beforehand (see Figure 4). Yet, if

the segmentation is not performed a priori , artifacts

are visible near the discontinuities, which get smoothed,

and Gibbs phenomena appear near the continuous, yet

non-differentiable kinks. We will discuss in the next sec-

tion several strategies for removing such artifacts.

RMSE = 0.11

RMSE = 4.66

Fig. 4 3D-reconstruction of surface Svase (see Figure 3
in [48]) from its (analytically known) normals, using the
proposed discrete least-squares method. Top: when Ω is re-
stricted to the image of the vase. Bottom: when Ω is the
whole rectangular grid. Quadratic integration smooths the
depth discontinuities and produces Gibbs phenomena near
the kinks.

4 Piecewise Smooth Surfaces

We now tackle the problem of recovering a surface which

is smooth only almost everywhere, i.e. everywhere ex-

cept on a “small” set where discontinuities and kinks

are allowed. Since all the methods discussed hereafter

rely on the same discretization as in Section 3, they in-

herit its PFreeB and PNoRect properties, which will not

be discussed in this section. Instead, we focus on the

PFast, PRobust, PNoPar, and of course PDisc properties.

4.1 Recovering Discontinuities and Kinks

In order to clarify which variational formulations may

provide robustness to discontinuities, let us first con-

sider the 1D-example of Figure 5, with Dirichlet bound-

ary conditions. As illustrated in this example, least-

squares integration of a noisy normal field will provide

a smooth surface. Replacing the least-squares estimator

ΦL2(s) = s2 by the sparsity one ΦL0(s) = 1− δ(s) will

minimize the cardinality of the difference between g and

∇z, which provides a surface whose gradient is almost

everywhere equal to g. As a consequence, robustness to

noise is lost, yet discontinuities may be preserved.
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Ground truth

Least-squares

Sparsity

Fig. 5 1D-illustration of integration of a noisy normal field
(arrows) over a regular grid (circles), in the presence of discon-
tinuities. The least-squares approach is robust to noise, but
smooths the discontinuities. The sparsity approach preserves
the discontinuities, but is not robust to noise. An ideal inte-
gration method would inherit robustness from least-squares,
and the ability to preserve discontinuities from sparsity.

These estimators can be interpreted as follows: least-

squares assume that all residuals defined by ‖∇z(u, v)−
g(u, v)‖ are “low”, while sparsity assumes that most

of them are “zero”. The former is commonly used for

“noise”, and the latter for “outliers”. In the case of nor-

mal integration, outliers may occur when: 1) ∇z(u, v)

exists but its estimate g(u, v) is not reliable; 2)∇z(u, v)

is not defined because (u, v) lies within the vicinity of

a discontinuity or a kink. Considering that situation 1)

should rather be handled by robust estimation of the

gradient [31], we deal only with the second one, and use

the terminology “discontinuity” instead of “outlier”, al-

though this also covers the concept of “kink”.

We are looking for an estimator which combines

the robustness of least-squares to noise, and that of

sparsity to discontinuities. These abilities are actually

due to their asymptotic behaviors. Robustness of least-

squares to noise comes from the quadratic behavior

around 0, which ensures that “low” residuals are consid-

ered as “good” estimates, while this quadratic behav-

ior becomes problematic in ±∞: discontinuities yield

“high” residuals, which are over-penalized. The spar-

sity estimator has the opposite behavior: treating the

high residuals (discontinuities) exactly as the low ones

ensures that discontinuities are not over-penalized, yet

low residuals (noise) are. A good estimator would thus

be quadratic around zero, but sub-linear around ±∞.

Obviously, only non-convex estimators hold both these

properties. We will discuss several choices “inbetween”

the quadratic estimator ΦL2 and the sparsity one ΦL0

(see Figure 6): the convex compromise ΦL1
(s) = |s| is

studied in Subsection 4.2, and the non-convex estima-

tors Φ1(s) = log(s2 + β2) and Φ2(s) = s2

s2+γ2 , where β

and γ are hyper-parameters, in Subsection 4.3.
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Φ1(s)

Φ2(s)

Fig. 6 Graph of some robust estimators. The ability of ΦL2

to handle noise (small residuals) comes from its over-linear
behavior around zero, while that of ΦL0

to preserve disconti-
nuities (large residuals) is induced by its sub-linear behavior
in +∞. An estimator holding both these properties is neces-
sarily non-convex (e.g., Φ1 and Φ2, whose graphs are shown
with β = γ = 1), although ΦL1

may be an acceptable convex
compromise.

Another strategy consists in keeping least-squares as

basis, but using it in a non-uniform manner. The sim-

plest way would be to remove the discontinuity points

from the integration domain Ω, and then to apply our

quadratic method from the previous section, since it

is able to manage non-rectangular domains. Yet, this

would require detecting the discontinuities beforehand,

which might be tedious. It is actually more convenient

to introduce weights in the least-squares functionals,

which are inversely proportional to the probability of ly-

ing on a discontinuity [47,50]. We discuss this weighted

least-squares approach in Subsection 4.4, where a statis-

tical interpretation of the Perona and Malik’s anisotropic

diffusion model [44] is also exhibited. Eventually, an ex-

treme case of weighted least-squares consists in using bi-

nary weights, where the weights indicate the presence

of discontinuities. This is closely related to Mumford

and Shah’s segmentation method [37], which simulta-

neously estimates the discontinuity set and the surface.

We show in Subsection 4.5 that this approach is the

one which is actually the most adapted to the problem

of integrating a noisy normal field in the presence of

discontinuities.
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4.2 Total Variation-like Integration

The problem of handling outliers in a noisy normal field

has been tackled by Du, Robles-Kelly and Lu, who com-

pare in [18] the performances of several M-estimators.

They conclude that regularizers based on the L1 norm

are the most effective ones. We provide in this sub-

section several numerical considerations regarding the

discretization of the L1 fidelity term:

FL1(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖1dudv

=

∫∫
(u,v)∈Ω

{
|∂uz(u, v)− p(u, v)|

+ |∂vz(u, v)− q(u, v)|
}

dudv (50)

When p(u, v) ≡ 0 and q(u, v) ≡ 0, (50) is the so-

called “anisotropic total variation” (anisotropic TV)

regularizer, which tends to favor piecewise-constant so-

lutions while allowing discontinuity jumps. Considering

the discontinuities and kinks as the equivalent of edges

in image restoration, it seems natural to believe that

the fidelity term (50) may be useful for discontinuity-

preserving integration.

This fidelity term is not only convex, but also de-

couples the two directions u and v, which allows fast

ADMM-based (Bregman iterations) numerical schemes

involving shrinkages [24,47]. On the other hand, it is

not so natural to use such a decoupling: if the value

of p is not reliable at some point (u, v), usually that

of q is not reliable either. Hence, it may be wortwhile

to use instead a regularizer adapted from the “isotropic

TV”. This leads us to adapt the well-known model from

Rudin, Osher and Fatemi [49] to the integration prob-

lem:

ETV(z) =

∫∫
(u,v)∈Ω

‖∇z(u, v)− g(u, v)‖

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (51)

Discretization. Since the term ‖∇z(u, v)−g(u, v)‖ can

be interpreted in different manners, depending on the

neighborhood of (u, v), we need to discretize it appro-

priately. Let us consider all four possible first-order dis-

cretizations of the gradient ∇z, associated to the four

following sets of pixels:

ΩUV = ΩUu ∩ΩVv , (U, V ) ∈ {+,−}2 (52)

The discrete functional to minimize is thus given by:

ETV(z)=
1

4

(∑∑
(u,v)∈Ω++

√[
∂+
u zu,v−pu,v

]2
+
[
∂+
v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω+−

√[
∂+
u zu,v−pu,v

]2
+
[
∂−v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω−+

√[
∂−u zu,v−pu,v

]2
+
[
∂+
v zu,v−qu,v

]2
+
∑∑

(u,v)∈Ω−−

√[
∂−u zu,v−pu,v

]2
+
[
∂−v zu,v−qu,v

]2)

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(53)

Minimizing (53) comes down to solving the following

constrained optimization problem:

min
z,{rUV }

1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

‖rUVu,v ‖

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
s.t. rUVu,v = ∇UV zu,v − gu,v (54)

where we denote ∇UV = [∂Uu , ∂
V
v ]>, (U, V ) ∈ {+,−}2,

the discrete approximation of the gradient correspond-

ing to domain ΩUV .

Numerical Solution. We solve the constrained optimiza-

tion problem (54) by the augmented Lagrangian method,

through an ADMM algorithm [21] (see [9] for a recent

overview of such algorithms). This algorithm reads:

z(k+1) = argmin
z∈R|Ω|

α

8

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

∥∥∥∇UVzu,v
−
(
gu,v+rUVu,v

(k)−bUVu,v
(k)
)∥∥∥2

+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(55)

rUVu,v
(k+1)

= argmin
r∈R2

α

8

∥∥∥r−(∇UVz(k+1)
u,v −gu,v +bUVu,v

(k)
)∥∥∥2

+ ‖r‖ (56)

bUVu,v
(k+1)

= bUVu,v
(k)

+∇UV z(k+1)
u,v − gu,v − rUVu,v

(k+1)

(57)

where the bUV are the scaled dual variables, and α > 0

corresponds to a descent stepsize, which is supposed

to be fixed beforehand. Note that the choice of this

parameter influences only the convergence rate, not the

actual minimizer. In our experiments, we used α = 1.

The z-update (55) is a linear least-squares problem

simimilar to the one which was tackled in Section 3.
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σ = 0% - RMSE = 4.52 σ = 0.5% - RMSE = 4.62 σ = 1% - RMSE = 4.79

Fig. 7 Depth estimated after 1000 iterations of the TV-like approach, in the presence of additive, zero-mean, Gaussian noise
with standard deviation equal to σ‖g‖∞. The indicated RMSE is computed on the whole domain. In the absence of noise,
both discontinuities and kinks are restored, although staircasing artifacts appear. In the presence of noise, the discontinuities
are smoothed. Yet, the 3D-reconstruction near the kinks is still more satisfactory than the least-squares one: Gibbs phenomena
are not visible, unlike in the second row of Figure 4.

Its solution z(k+1) is the solution of the following SDD

linear system:

ATVz(k+1) = b
(k)
TV (58)

with :

ATV =
α

8

∑∑
(U,V )∈{+,−}2

[
DU
u

>
DU
u + DV

v

>
DV
v

]
+Λ2 (59)

b
(k)
TV =

α

8

∑∑
(U,V )∈{+,−}2

[
DU
u

>
pUV

(k)
+ DV

v

>
qUV

(k)
]
+Λ2z0 (60)

where the D
U/V
u/v matrices are defined as in (17), the

Λ matrix as in (20), and where we denote pUV
(k)

and

qUV
(k)

the components of g + rUV
(k) − bUV

(k)
.

The solution of System (58) can be approximated

by conjugate gradient iterations, choosing at each iter-

ation the previous estimate z(k) as initial guess (setting

z(0), for instance, as the least-squares solution from Sec-

tion 3). In addition, the matrix ATV is always the same:

this allows computing the preconditioner only once.

Eventually, the r-updates (56), (u, v) ∈ Ω, are basis

pursuit problems [17], which admit the following closed-

form solution (generalized shrinkage):

rUVu,v
(k+1)

=max

{
‖sUVu,v

(k+1)‖ − 4

α
, 0

}
sUVu,v

(k+1)

‖sUVu,v
(k+1)‖

(61)

with:

sUVu,v
(k+1)

= ∇UV z(k+1)
u,v − gu,v + bUVu,v

(k)
(62)

Discussion. This TV-like approach has two main ad-

vantages: apart from the stepsize α which controls the

speed of convergence, it does not depend on the choice

of a parameter, and it is convex. The initialization has

influence only on the speed of convergence, and not on

the actual minimizer: convergence towards the global

minimum is guaranteed [51]. It can be shown that the

convergence rate of this scheme is ergodic, and this rate

can be improved rather simply [23]. We cannot con-

sider that PFast is satisfied since, in comparison with the

quadratic method from Section 3, yet the TV approach

is “reasonably” fast. Possibly faster algorithms could

be employed, as for instance the FISTA algorithm from

Beck and Teboulle [7], or primal-dual algorithms [13],

but we leave such improvements as future work.

On the other hand, according to the results from

Figure 7, discontinuities are recovered in the absence of

noise, although staircasing artifacts appear (such arti-

facts are partly due to the non-differentiability of TV in

zero [38]). Yet, the recovery of discontinuities is deceiv-

ing when the noise level increases. On noisy datasets,

the only advantage of this approach over least-squares

is thus that it removes the Gibbs phenomena around

the kinks i.e., where the surface is continuous, but non-

differentiable (e.g., the sides of the vase).

Because of the staircasing artifacts and of the lack of

robustness to noise, we cannot find this first approach

satisfactory. Yet, since turning the quadratic functional

into a non-quadratic one seems to have positive influ-

ence on discontinuities recovery, we believe that explor-

ing non-quadratic models is a promising route. Stair-

casing artifacts could probably be reduced by replacing

total variation by total generalized variation [10], but

we rather consider now non-convex models.

4.3 Non-convex Regularization

Let us now consider non-convex estimators Φ in the

fidelity term (5), which are often referred to as “Φ-

functions” [4]. As discussed in Subsection 4.1, the choice

of a specific Φ-function should be made according to

several principles:

• Φ should have a quadratic behavior around zero,

in order to ensure that the integration is guided by

the “good” data. The typical choice ensuring this

property is ΦL2
(s) = s2, which was discussed in

Section 3;
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• Φ should have a sublinear behavior at infinity, so

that outliers do not have a predominant influence,

and also to preserve discontinuities and kinks. The

typical choice is the sparsity estimator ΦL0
(s) = 0

if s = 0 and ΦL0(s) = 1 otherwise;

• Φ should ideally be a convex function.

Obviously, it is not possible to simultaneously sat-

isfy these three properties. The TV-like fidelity term

introduced in Subsection 4.2 is a sort of “compromise”:

it is the only convex function being (over-) linear in 0

and (sub-) linear in ±∞. Although it does not depend

on the choice of any hyper-parameter, we saw that it

has the drawback of yielding the so-called “staircase

effect”, and that discontinuities were not recovered so

well in the presence of noise. If we accept to lose the

convexity of Φ, we can actually design estimators which

better fit both other properties. Although there may

then be several minimizers, such non-convex estima-

tors were recently shown to be very effective for image

restoration [36].

We will consider two classical Φ-functions, whose

graphs are plotted in Figure 6:

Φ1(s) = log(s2 + β2)

Φ2(s) =
s2

s2 + γ2

⇒


Φ′1(s) =

2 s

s2 + β2

Φ′2(s) =
2 γ2 s

(s2 + γ2)2

(63)

Let us remark that these estimators were initially

introduced in [19] in this context, and that other non-

convex estimators can be considered, based for instance

on Lp norms, with 0 < p < 1 [5].

Let us now show how to numerically minimize the

resulting functionals:

EΦ(z) =

∫∫
(u,v)∈Ω

Φ (‖∇z(u, v)− g(u, v)‖)

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (64)

Discretization. We consider the same discretization strat-

egy as in Subsection 4.2, aiming at minimizing the dis-

crete functional:

EΦ(z) =
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(∥∥∇UVzu,v − gu,v

∥∥)
+
∑∑
(u,v)∈Ω

λu,v
[
zu,v − z0

u,v

]2
(65)

which resembles the TV functional defined in (53), and

where ∇UV represents the finite differences approxima-

tion of the gradient used over the domain ΩUV , with

{U, V } ∈ {+,−}2.

Introducing the notations:

f(z)=
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(
‖∇UVzu,v − gu,v‖

)
(66)

g(z) = ‖Λ(z− z0)‖2 (67)

the discrete functional (65) is rewritten:

EΦ(z) = f(z) + g(z) (68)

where f is smooth, but non-convex, and g is convex

(and smooth, although non-smooth functions g could

be handled).

Numerical Solution. The problem of minimizing a dis-

crete energy like (68), yielded by the sum of a con-

vex term g and a non-convex, yet smooth term f , can

be handled by forward-backward splitting. We use the

“iPiano” iterative algorithm by Ochs et al. [41], which

reads:

z(k+1)=(I+α1∂g)
−1
(
z(k)−α1∇f(z(k))+α2

(
z(k)−z(k−1)

))
(69)

where α1 and α2 are suitable descent stepsizes (in our

implementation, α2 is fixed to 0.8, and α1 is chosen by

the “lazy backtracking” procedure described in [41]),

(I + α1∂g)
−1

is the proximal operator of g, and∇f(z(k))

is the gradient of f evaluated at current estimate z(k).

We detail hereafter how to evaluate the proximal oper-

ator of g and the gradient of f .

The proximal operator of g writes, using (67):

(I + α1∂g)
−1

(x̂) = argmin
x∈R|Ω|

‖x− x̂‖
2

+ α1g(x) (70)

=
(
I + 2α1Λ

2
)−1 (

x̂ + 2α1Λz0
)

(71)

where the inversion is easy to compute, since the matrix

involved is diagonal.

In order to obtain a closed-form expression of the

gradient of f defined in (66), let us rewrite this function

in the following manner:

f(z)=
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

Φ
(
‖DUV

u,v z− gu,v‖
)

(72)

where DUV
u,v is a 2 × |Ω| finite differences matrix used

for approximating the gradient at location (u, v), using

the finite differences operator ∇UV , {U, V } ∈ {+,−}2:

DUV
u,v =

[(
DU
u

)
m−1(u,v),·(

DV
v

)
m−1(u,v),·

]
(73)

where we recall that the mapping m associates linear

indices with pixel coordinates (see Equation (18)).
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β = 0.1 - RMSE = 4.60 β = 0.5 - RMSE = 4.42 β = 1 - RMSE = 5.08

γ = 0.5 - RMSE = 4.51 γ = 1 - RMSE = 4.44 γ = 5 - RMSE = 4.67

Fig. 8 Non-convex 3D-reconstructions of surface Svase, using Φ1 (top) or Φ2 (bottom). An additive, zero-mean, Gaussian
noise with standard deviation σ‖g‖∞, σ = 1%, was added to the gradient field. The non-convex approaches depend on the
tuning of a parameter (β or γ), but they are able to reconstruct the discontinuities in the presence of noise, unlike the TV
approach. Staircasing artifacts indicate the presence of local minima (we used as initial guess z(0) the least-squares solution).

The gradient of f is thus given by:

∇f(z) =
1

4

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

{
DUV
u,v

> (
DUV
u,v z− gu,v

)
×

Φ′
(
‖DUV

u,v z− gu,v‖
)

‖DUV
u,v z− gu,v‖

}
(74)

Given the choices (63) for the Φ-functions, this can be

further simplified:

∇f1(z)=
1

2

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

DUV
u,v
> (

DUV
u,v z− gu,v

)
‖DUV

u,v z− gu,v‖2 + β2

(75)

∇f2(z)=
1

2

∑∑
(U,V )∈{+,−}2

∑∑
(u,v)∈ΩUV

γ2DUV
u,v
> (

DUV
u,v z− gu,v

)(
‖DUV

u,v z− gu,v‖2 + γ2
)2

(76)

Discussion. Contrarily to the TV-like approach (see

Subsection 4.2), the non-convex estimators require set-

ting one hyper-parameter (β or γ). As shown in Fig-

ure 8, the choice of this parameter is crucial: when it is

too high, discontinuities are smoothed, while setting a

too low value leads to strong staircasing artifacts. Inbe-

tween, the values β = 0.5 and γ = 1 seem to preserve

discontinuities, even in the presence of noise (which was

not the case using the TV-like approach).

Yet, staircasing artifacts are still present. Despite

their non-convexity, the new estimators Φ1 and Φ2 are

differentiable, hence these artifacts do not come from

a lack of differentiability, as this was the case for TV.

They rather indicate the presence of local minima. This

is illustrated in Figure 9, where the 3D-reconstruction

of a “Canadian tent”-like surface, with additive, zero-

mean, Gaussian noise (σ = 10%), is presented. When

using the least-squares solution as initial guess z(0), the

3D-reconstruction is very close to the genuine surface.

Yet, when using the trivial initialization z(0) ≡ 0, we

obtain a surface whose slopes are “almost everywhere”

equal to the real ones, but unexpected discontinuity

jumps appear. Since only the initialization differs in

these experiments, this clearly shows that the artifacts

indicate the presence of local minima.

Although local minima can sometimes be avoided

by using the least-squares solution as initial guess (e.g.,

Figure 9), this is not always the case (e.g., Figure 8).

Hence, the non-convex estimators perform overall bet-

ter than the TV-like approach, but they are still not

optimal. We now follow other routes, which use least-

squares as basis estimator, yet in a non-uniform man-

ner, in order to allow discontinuities.

4.4 Integration by Anisotropic Diffusion

Both previous methods (total variation and non-convex

estimators) replace the least-squares estimator by an-

other one, assumed to be robust to discontinuities. Yet,

it is possible to proceed differently: the 1D-graph in

Figure 5 shows that most of data are corrupted only by

noise, and that the discontinuity set is “small”. Hence,

applying least-squares everywhere except on this set

should provide an optimal 3D-reconstruction. To achieve

this, a first possibility is to consider weighted least-
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Ground-truth

z(0) = least-squares solution - RMSE = 0.78

z(0) ≡ 0 - RMSE = 13.16

Fig. 9 3D-reconstruction of a “Canadian tent”-like surface
from its noisy gradient (σ = 1%), by the non-convex inte-
grator Φ1 (β = 0.5, 12000 iterations), using two different
initializations. The objective function being non-convex, the
iterative scheme may converge towards a local minimum.

squares:

min
z

∫∫
(u,v)∈Ω

‖W(u, v) [∇z(u, v)− g(u, v)]‖2

+ λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (77)

where W is a Ω → R2×2 tensor field, acting as a weight

map designed to reduce the influence of discontinuity

points. The weights can be computed beforehand ac-

cording to the integrability of g [47], or by convolution

of the components of g by a Gaussian kernel [1]. Yet,

such approaches are of limited interest when g contains

noise. In this case, the weights should rather be set as

a function inversely proportional to ‖∇z(u, v)‖, e.g.:

W(u, v) =
1√(

‖∇z(u,v)‖
µ

)2

+ 1

I2 (78)

with µ a user-defined hyper-parameter. The latter ten-

sor is the one proposed by Perona and Malik in [44]:

the continuous optimality condition associated to (77)

is related to their “anisotropic diffusion model” 14. Such

tensor fields W : Ω → R2×2 are called “diffusion ten-

sors”: we refer the reader to [54] for a complete overview.

The use of diffusion tensors for the integration prob-

lem is not new [47], but we provide hereafter additional

comments on the statistical interpretation of such ten-

sors. Interestingly, the diffusion tensor (78) also appears

when making different assumptions on the noise model

than those we considered so far. Up to now, we assumed

that the input gradient field g was equal to the gradient

∇z of the depth map z, up to an additive, zero-mean,

Gaussian noise: g = ∇z + ε, ε ∼ N
(

[0, 0]>,

[
σ2 0

0 σ2

])
.

This hypothesis may not always be realistic. For in-

stance, in 3D-reconstruction scenarii such as photomet-

ric stereo [55], one estimates the normal field n : Ω →
R3 pixelwise, rather than the gradient g : Ω → R2,

from a set of images. Hence, the Gaussian assumption

should rather be made on these images. In this case,

and provided that a maximum-likelihood for the nor-

mals is used, it may be assumed that the estimated nor-

mal field is the genuine one, up to an additive Gaussian

noise. Yet, this does not imply that the noise in the

gradient field g is Gaussian-distributed. Let us clarify

this point.

Assuming orthographic projection, the relationship

between n = [n1, n2, n3]
>

and ∇z is written, in every

point (u, v) where the depth map z is differentiable:

n(u, v) =
1√

‖∇z(u, v)‖2 + 1

[
−∇z(u, v)>, 1

]>
(79)

which implies that [−n1

n3
,−n2

n3
]> = [∂uz, ∂vz]

> = ∇z. If

we denote n = [n1, n2, n3]
>

the estimated normal field,

it follows from (79) that [−n1

n3
,−n2

n3
]> = [p, q]> = g.

Let us assume that n and n differ according to an

additive, zero-mean, Gaussian noise:

n(u, v) = n(u, v) + ε(u, v) (80)

where :

ε(u, v) ∼ N

[0, 0, 0]>,

σ2 0 0

0 σ2 0

0 0 σ2

 (81)

Since n3 is unlikely to take negative values (this

would mean that the estimated surface is not oriented

14 Although (78) actually yields an isotropic diffusion model,
since it “utilizes a scalar-valued diffusivity and not a diffusion
tensor” [54].
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towards the camera), the following Geary-Hinkley trans-

forms:

t1 =
n3

(
n1

n3

)
− n1√

σ2

((
n1

n3

)2

+ 1

) (82)

t2 =
n3

(
n2

n3

)
− n2√

σ2

((
n2

n3

)2

+ 1

) (83)

both follow standard Gaussian distributionN (0, 1) [27].

After some algebra, this can be rewritten as:

1

σ
√

1 + p2
√
‖∇z‖2 + 1

[∂uz − p] ∼ N (0, 1) (84)

1

σ
√

1 + q2
√
‖∇z‖2 + 1

[∂vz − q] ∼ N (0, 1) (85)

This rationale suggests the use of the following fi-

delity term:

FPM(z) =

∫∫
(u,v)∈Ω

‖W(u, v) [∇z(u, v)− g(u, v)]‖2 dudv

(86)

where W(u, v) is the following 2×2 anisotropic diffusion

tensor field:

W(u, v)=
1√

‖∇z(u, v)‖2+1

[
1√

1+p(u,v)2
0

0 1√
1+q(u,v)2

]
(87)

Unfortunately, we experimentally found with the

choice (87) for the diffusion tensor field, discontinuities

were not always recovered. Instead, following the pio-

neering ideas from Perona and Malik [44], we introduce

two parameters µ and ν to control the respective in-

fluences of the terms depending on the gradient of the

unknown ‖∇z‖ and on the input gradient (p, q). The

new tensor field is then given by:

W(u, v)=
1√(

‖∇z(u,v)‖
µ

)2

+1

 1√
1+(p(u,v)

ν
)
2

0

0 1√
1+(q(u,v)

ν
)
2

 (88)

Replacing the matrix in (88) by I2 yields exactly the

Perona-Malik diffusion tensor (78), which reduces the

influence of the fidelity term on locations (u, v) where

‖∇z(u, v)‖ increases, which are likely to indicate dis-

continuities. Yet, our diffusion tensor (88) also reduces

the influence of points where p or q is high, which are

also likely to correspond to discontinuities. In our ex-

periments, we found that ν = 10 could always be used,

yet the choice of µ has more influence on the actual

results.

Discretization. Using the same discretization strategy

as in Subsections 4.2 and 4.3 leads us to the following

discrete functional:

EPM(z) =
1

4

∑∑
(U,V )∈{+,−}2

{∥∥AUV (z)
(
DU
u z−p

)∥∥2

+
∥∥BUV (z)

(
DV
v z−q

)∥∥2

}
+
∥∥Λ (z− z0

)∥∥2
(89)

where the AUV (z) and BUV (z) are |Ω| × |Ω| diagonal

matrices containing the following values:

aUVu,v =
1√

1 +
(pu,v

ν

)2√ (∂Uu zu,v)2+(∂Vv zu,v)2

µ2 + 1
(90)

bUVu,v =
1√

1 +
( qu,v

ν

)2√ (∂Uu zu,v)2+(∂Vv zu,v)2

µ2 + 1
(91)

with (U, V ) ∈ {+,−}2.

Numerical Solution. Since the coefficients aUVu,v and bUVu,v
depend in a nonlinear way on the unknown values zu,v,

it is difficult to derive a closed-form expression for the

minimizer of (89). To deal with this issue, we use the

following fixed point scheme, which iteratively updates

the anisotropic diffusion tensors and the z-values:

z(k+1) = argmin
z∈R|Ω|

1

4

∑∑
(U,V )∈{+,−}2

{∥∥∥AUV (z(k))
(
DU
u z−p

)∥∥∥2

+
∥∥∥BUV (z(k))

(
DV
v z−q

)∥∥∥2
}

+
∥∥Λ (z− z0

)∥∥2
(92)

Now that the diffusion tensor coefficients are fixed, each

optimization problem (92) is reduced to a simple linear

least-squares problem. In our implementation, we solve

the corresponding optimality condition using Cholesky

factorization, which we experimentally found to provide

more stable results than conjugate gradient iterations.

Discussion. We first experimentally verify that the pro-

posed anisotropic diffusion approach is indeed a statis-

tically meaningful approach in the context of photomet-

ric stereo. As stated in [39], “in previous work on pho-

tometric stereo, noise is [wrongly] added to the gradi-

ent of the height function rather than camera images”.

Hence, we consider the images from the “Cat” dataset

presented in [52], and add a zero-mean, Gaussian noise

with standard deviation σ‖I‖∞, σ = 5%, to the im-

ages, where ‖I‖∞ is the maximum graylevel value. The

normals were computed by photometric stereo [55] over
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the part representing the cat. Then, since only the nor-

mals ground-truth is provided in [52], and not the depth

ground-truth, we a posteriori computed the final nor-

mal maps by central finite differences. This allows us to

calculate the angular error, in degrees, between the real

surface and the reconstructed one. The mean angular

error (MAE) can eventually be computed over the set

of pixels for which central finite differences make sense

(boundary and background points are excluded).

Least-squares Anisotropic diffusion

(MAE = 9.29 degrees) (MAE = 8.43 degrees)

Fig. 10 Top row: three out of the 96 input images used for
estimating the normals by photometric stereo [55]. Middle
row, left: 3D-reconstruction by least-squares integration of
the normals (see Section 3). Bottom row, left: angular error
map (blue is 0 degree, red is 60 degrees). The estimation is
biased around the occluded areas. Middle and bottom rows,
right: same, using anisotropic diffusion integration with the
tensor field defined in (87). The errors remain confined in the
occluded parts, and do not propagate over the discontinuities.

Figure 10 shows that the 3D-reconstruction obtained

by anisotropic diffusion outperforms that obtained by

least-square: discontinuities are partially recovered, and

robustness to noise is improved (see Figure 11). How-

ever, although the diffusion tensor (87) does not require

any parameter tuning, the restoration of discontinuities

is not as sharp as with the non-convex integrators, and

artifacts are visible along the discontinuities.
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Fig. 11 Mean angular error (in degrees) as a function of
the standard deviation σ‖I‖∞ of the noise which was added
to the photometric stereo images. The anisotropic diffusion
approach always outperforms least-squares. For the meth-
ods [26,53], the gradient field was filled with zeros outside
the reconstruction domain, which adds even more bias.

Although the parameter-free diffusion tensor (87)

seems able to recover discontinuities, this is not always

the case. For instance, we did not succeed in recov-

ering the discontinuities of the surface Svase. For this

dataset, we had to use the tensor (88). The results from

Figure 12 show that with an appropriate tuning of µ,

discontinuities are recovered and Gibbs phenomena are

removed, without staircasing artifact. Yet, as in the ex-

periment of Figure 10, the discontinuities are not very

sharp. Such artifacts were also observed by Badri et

al. [5], when experimenting with the anisotropic diffu-

sion tensor from Agrawal et al. [1]. Sharper discontinu-

ities could be recovered by using binary weights: this is

the spirit of the Mumford-Shah segmentation method,

which we explore in the next subsection.

4.5 Adaptation of the Mumford and Shah Functional

Let z0 : Ω → R be a noisy image to restore. In order to

estimate a denoised image z while perserving the dis-

continuities of the original image, Mumford and Shah

suggested in [37] to minimize a quadratic functional

only over a subset Ω\K of Ω, while automatically esti-

mating the discontinuity set K according to some prior.

A reasonable prior is that the length of K is “small”,

which leads to the following optimization problem:

min
z,K

µ

∫∫
(u,v)∈Ω\K

‖∇z(u, v)‖2 dudv +

∫
K

dσ

+ λ

∫∫
(u,v)∈Ω\K

[
z(u, v)− z0(u, v)

]2
dudv (93)

where λ and µ are positive constants, and
∫
K
dσ is the

length of the set K. See [4] for a detailed introduction

to this model and its qualitative properties.
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µ = 0.02 - RMSE = 2.38

µ = 0.2 - RMSE = 2.19

µ = 2 - RMSE = 5.09

Fig. 12 Integration of the noisy gradient of Svase (σ = 1%)
by anisotropic diffusion. As long as µ is small enough, discon-
tinuities are recovered. Besides, no staircasing artifact is vis-
ible. Yet, the restored discontinuities are not perfectly sharp.

Several approaches have been proposed to numeri-

cally minimize the Mumford-Shah functional: finite dif-

ferences scheme [12], piecewise constant approximation

[14], primal-dual algorithms [46], etc. Another approach

consists in using elliptic functionals. An auxiliary func-

tion w : Ω → R is introduced. This function stands for

1 − χK , where χK is the characteristic function of the

set K. Ambrosio and Tortorelli have proposed in [2] to

consider the following optimization problem:

min
z,w

µ

∫∫
(u,v)∈Ω

w(u, v)2 ‖∇z(u, v)‖2 dudv

+

∫∫
(u,v)∈Ω

[
ε ‖∇w(u, v)‖2+

1

4ε
[w(u, v)−1]2

]
dudv

+ λ

∫∫
(u,v)∈Ω

[
z(u, v)− z0(u, v)

]2
dudv (94)

By using the theory of Γ -convergence, it is possible to

show that (94) is a way to solve (93) when ε→ 0.

We modify the above models, so that they fit our

integration problem. Considering g as basis for least-

squares integration everywhere except on the disconti-

nuity set K, we obtain the following energy:

EMS(z,K) = µ

∫∫
(u,v)∈Ω\K

‖∇z(u, v)− g(u, v)‖2 dudv +

∫
K

dσ

+

∫∫
(u,v)∈Ω\K

λ(u, v)
[
z(u, v)−z0(u, v)

]2
dudv (95)

for the Mumford-Shah functional, and the following

Ambrosio-Tortorelli approximation:

EAT(z, w) = µ

∫∫
(u,v)∈Ω

w(u, v)2 ‖∇z(u, v)− g(u, v)‖2 dudv

+

∫∫
(u,v)∈Ω

[
ε ‖∇w(u, v)‖2+

1

4ε
[w(u, v)− 1]2

]
dudv

+

∫∫
(u,v)∈Ω

λ(u, v)
[
z(u, v)− z0(u, v)

]2
dudv (96)

where w : Ω → R is a smooth approximation of 1−χK .

Numerical Solution. We use the same strategy as in

Section 3 for discretizing∇z(u, v) inside Functional (96),

i.e. all the possible first-order discrete approximations

of the differential operators are summed. Since disconti-

nuities are usually “thin” structures, it is possible that a

forward discretization contains the discontinuity while

a backward discretization does not. Hence, the defini-

tion of the weights w should be made accordingly to

that of ∇z. Thus, we define four fields w
+/−
u/v : Ω → R,

associated with the finite differences operators ∂
+/−
u/v .

This leads to the following discrete analogue of Func-

tional (96):

EAT(z,w+
u ,w

−
u ,w

+
v ,w

−
v ) =

µ

2

(∥∥W+
u

(
D+
u z− p

)∥∥2
+
∥∥W−

u

(
D−u z− p

)∥∥2

+
∥∥W+

v

(
D+
v z− q

)∥∥2
+
∥∥W−

v

(
D−v z− q

)∥∥2

)
+
ε

2

(∥∥D+
uw+

u

∥∥2
+
∥∥D−uw−u

∥∥2
+
∥∥D+

v w+
v

∥∥2
+
∥∥D−v w−v

∥∥2
)

+
1

8ε

(∥∥w+
u −1

∥∥2
+
∥∥w−u −1

∥∥2
+
∥∥w+

v − v1
∥∥2

+
∥∥w−v −1

∥∥2
)

+
∥∥Λ (z− z0

)∥∥2
(97)

where w
+/−
u/v ∈ R|Ω| is a vector containing the values of

the discretized field w
+/−
u/v , and W

+/−
u/v = Diag(w

+/−
u/v )

is the |Ω|×|Ω| diagonal matrix containing these values.
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µ = 1 - RMSE = 4.94 µ = 45 - RMSE = 2.37 µ = 100 - RMSE = 4.14

Fig. 13 3D-reconstructions from the noisy gradient of Svase (σ = 1%), using the Mumford-Shah integrator. If µ is tuned
appropriately, sharp discontinuities can be restored, without staircasing artifacts.

We tackle the nonlinear problem (97) by an alter-

nating optimization scheme:

z(k+1) = argmin
z∈R|Ω|

EAT(z,w+
u

(k)
,w−u

(k)
,w+

v
(k)
,w−v

(k)
) (98)

w+
u

(k+1)
=argmin

w∈R|Ω|
EAT(z(k+1),w,w−u

(k)
,w+

v
(k)
,w−v

(k)
) (99)

and similar straightforward updates for the other in-

dicator functions. We can choose as initial guess, for

instance, the smooth solution from Section 3 for z(0),

and w+
u

(0)
= w−u

(0)
= w+

v
(0)

= w−v
(0) ≡ 1.

At each iteration (k), updating the surface and the

indicator functions requires solving a series of linear

least-squares problems. We achieve this by solving the

resulting linear systems (normal equations) by means

of the conjugate gradient algorithm. Contrarily to the

approaches that we presented so far, the matrices in-

volved in these systems are modified at each iteration.

Hence, it is not possible to compute the preconditioner

beforehand. In our experiments, we did not consider

any preconditioning strategy at all. Thus, the proposed

scheme could obviously be accelerated.

Discussion. Let us now check experimentally, on the

same noisy gradient of surface Svase as in previous ex-

periments, whether the Mumford-Shah integrator sat-

isfies the expected properties. In the experiment of Fig-

ure 13, we performed 50 iterations of the proposed al-

ternating optimization scheme, with various choices for

the hyper-parameter µ. The ε parameter was set to

ε = 0.1 (this parameter is not critical: it only has to

be “small enough”, in order for the Ambrosio-Tortorelli

approximation to converge towards the Mumford-Shah

functional). As it was already the case with other non-

convex regularizers (see Subsection 4.3), a bad tuning

of the parameter leads either to over-smoothing (low

values of µ) or to staircasing artifacts (high values of

µ), which indicate the presence of local minima. Yet,

by appropriately setting this parameter, we obtain a

3D-reconstruction which is very close to the genuine

surface, without staircasing artifact.

The Mumford-Shah functional being non-convex, lo-

cal minima may exist. Yet, as shown in Figure 14, the

choice of the initialization may not be as crucial as with

the non-convex estimators from Subsection 4.3. Indeed,

the 3D-reconstruction of the “Canadian tent” surface is

similar using as initial guess the least-squares solution

or the trivial initialization z(0) ≡ 0.

z(0) = least-squares solution - RMSE = 0.74

z(0) ≡ 0 - RMSE = 1.84

Fig. 14 3D-reconstructions of the “Canadian tent” surface
from its noisy gradient (σ = 1%), by the Mumford-Shah in-
tegrator (µ = 20), using two different initializations. The ini-
tialization matters, but not as much as with the non-convex
estimators from Subsection 4.3.

Hence, among all the variational integration meth-

ods we have studied, the adaptation of the Mumford-

Shah model is the approach which provides the most

satisfactory 3D-reconstructions in the presence of sharp

features: it is possible to recover discontinuities and

kinks, even in the presence of noise, and with limited

artifacts. Nevertheless, local minima may theoretically

arise, as well as staircasing if the parameter µ is not

tuned appropriately.
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Table 1 Main features of the five methods of integration proposed in this paper. The quadratic method has all desirable prop-
erties, except PDisc. The others lose PFast but hold PDisc. Sharpest features are recovered by using non-convex regularization
or the Mumford-Shah approach, yet staircasing artifacts and local minima may appear. In addition, all discontinuity-preserving
methods except TV require tuning at least one hyper-parameter. Yet, TV is not able to recover discontinuities in the presence
of noise. Overall, we recommend using: quadratic integration if speed is the most important issue; the Mumford-Shah approach
if recovering discontinuities is the most important issue; and anisotropic diffusion if discontinuities are present, but limited.

Method PFast PRobust PFreeB PDisc PNoRect PNoPar Local minima Staircasing
Quadratic + + + + + − + + No No

Total variation + + + + + + No Yes
Non-convex regularization − + + + + + + − Yes Yes

Anisotropic diffusion − + + ++ + −− No No
Mumford-Shah − + + + + + + −− Yes Yes

5 Conclusion and Perspectives

We proposed several new variational methods for solv-

ing the normal integration problem. These methods were

designed to satisfy the largest subset of properties that

were identified in a companion survey paper [48] enti-

tled Normal Integration: A Survey.

We first detailed in Section 3 a least-squares solu-

tion which is fast, robust and parameter-free, while as-

suming neither a particular shape for the integration

domain nor a particular boundary condition. However,

discontinuities in the surface can be handled only if

the integration domain is first segmented into pieces

without discontinuities. Therefore, we discussed in Sec-

tion 4 several non-quadratic or non-convex variational

formulations aiming at appropriately handling discon-

tinuities. As we have seen, the latter property can be

satisfied only if (slow) iterative schemes are used and /

or one critical parameter is tuned. Therefore, there is

still room for improvement: a fast, parameter-free in-

tegrator, able to handle discontinuities remains to be

proposed.

Table 1 summarizes the main features of the five

new integration methods proposed in this article. Con-

trarily to Table 1 in [48], which recaps the features of

state-of-the-art methods, this time we use a more nu-

anced evaluation than binary features +/−. Among the

new methods, we believe that the least-squares method

discussed in Section 3 is the best if speed is the most

important criterion, while the Mumford-Shah approach

discussed in Subsection 4.5 is the most appropriate one

for recovering discontinuities and kinks. Inbetween, the

anisotropic diffusion approach from Subsection 4.4 rep-

resents a good compromise.

Future research directions may include accelerating

the numerical schemes and proving their convergence

when this is not trivial (e.g., for the non-convex inte-

grators). We also believe that introducing additional

smoothness terms inside the functionals may be use-

ful for eliminating the artifacts in anisotropic diffusion

integration. Quadratic (Tikhonov) smoothness terms

were suggested in [26]: to enforce surface smoothness

while preserving the discontinuities, we should rather

consider non-quadratic ones. In this view, higher-order

functionals (e.g., total generalized variation methods [10])

may reduce not only these artifacts, but also staircas-

ing. Indeed, as shown in Figure 15, such artifacts may

be visible when performing photometric stereo [55] with-

out prior segmentation. Yet, this example also shows

that the artifacts are visible only over the background,

and do not seem to affect the relevant part.

3D-reconstruction is not the only application where

efficient tools for gradient field integration are required.

Although the assumption on the noise distribution may

differ from one application to another, PDE-based imag-

ing problems such as Laplace image compression [45] or

Poisson image editing [43] also require an efficient inte-

grator. In this view, the ability of our methods to han-

dle control points may be useful. We illustrate in Fig-

ure 16 an interesting application. From an RGB image
I, we selected the points where the norm of the gra-

dient of the luminance (in the CIE-LAB color space)

was the highest (conserving only 10% of the points).

Then, we created a gradient field g equal to zero ev-

erywhere, except on the control points, where it was

set to the gradient of the color levels. The prior z0 was

set to a null scalar field, except on the control points

where we retained the original color data. Eventually,

λ is set to an arbitrary small value (λ = 10−9) ev-

erywhere, except on the control points (λ = 10). The

integration of each color channel gradient is performed

independently, using the Mumford-Shah method to ex-

trapolate the data from the control points to the whole

grid. Using this approach, we obtain a nice piecewise-

constant approximation of the image, in the spirit of

the “texture-flattening” application presented in [43].

Besides, by selecting the control points in a more opti-

mal way [8,28], this approach could easily be extended

to image compression, reaching state-of-the-art lossy

compression rates. In fact, existing PDE-based meth-
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(a) (b) (c) (d)

(e) (f)

Fig. 15 3D-reconstruction using photometric stereo. (a-c) All (real) input images. (d) 3D-reconstruction by least-squares on
the whole grid. (e) 3D-reconstruction by least-squares on the non-rectangular reconstruction domain corresponding to the
images of the bust. (f) 3D-reconstruction using the Mumford-Shah approach, on the whole grid. When discontinuities are
handled, it is possible to perform photometric stereo without prior segmentation of the object.

ods can already compete with the compression rate of

the well-known JPEG 2000 algorithm [45]. We believe

that the proposed edge-preserving framework may yield

even better results.

Eventually, some of the research directions already

mentioned in the conclusion section of our survey pa-

per [48] were ignored in this second paper, but they

remain of important interest. One of the most appeal-

ing examples is multi-view normal field integration [15].

Indeed, discontinuities represent a difficulty in our case

because they are induced by occlusions, yet more infor-

mation would be obtained near the occluding contours

by using additional views.
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