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1. Introduction    

Among all the applications proposed by sonar systems is underwater demining. Indeed, 
even if the problem is less exposed than the terrestrial equivalent, the presence of 
underwater mines in waters near the coast and particularly the harbours provoke accidents 
and victims in fishing and trade activities, even a long time after conflicts. 
As for terrestrial demining (Milisavljevi  et al., 2008), detection and classification of various 
types of underwater mines is currently a crucial strategic task (U.S. Department of the Navy, 
2000). Over the past decade, synthetic aperture sonar (SAS) has been increasingly used in 
seabed imaging, providing high-resolution images (Hayes & Gough, 1999). However, as with 
any active coherent imaging system, the speckle constructs images with a strong granular 
aspect that can seriously handicap the interpretation of the data (Abbot & Thurstone, 1979). 
Many approaches have been proposed in underwater mine detection and classification 
using sonar images. Most of them use the characteristics of the shadows cast by the objects 
on the seabed (Mignotte et al., 1997). These methods fail in case of buried objects, since no 
shadow is cast. That is why this last case has been less studied. In such cases, the echoes 
(high-intensity reflection of the wave on the objects) are the only hint suggesting the 
presence of the objects. Their small size, even in SAS imaging, and the similarity of their 
amplitude with the background make the detection more complex. 
Starting from a synthetic aperture image, a complete detection and classification process 
would be composed of three main parts as follows: 
1. Pixel level: the decision consists in deciding whether a pixel belongs to an object or to the 

background. 
2. Object level: the decision concerns the segmented object which is “real” or not: are these 

objects interesting (mines) or simple rocks, wastes? Shape parameters (size,…) and 
position information can be used to answer this question. 

3. Classification of object: the decision concerns the type of object and its identification (type 
of mine). 

This chapter deals with the first step of this process. The goal is to evaluate a confidence that 
a pixel belongs to a sought object or to the seabed. In the following, considering the object 
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characteristics (size, reflectivity), we will always assume that the detected objects are actual 
mines. However, only the second step of the process previously described, which is not 
addressed in the chapter, would give the final answer. 
We propose in the chapter a detection method structured as a data fusion system. This type 
of architecture is a smart and adaptive structure: the addition or removal of parameters is 
easily taken into account, without any modification of the global structure. The inputs of the 
proposed system are the parameters extracted from an SAS image (statistical in our case). 
The outputs of the system are the areas detected as potentially including an object. 
The first part of the chapter presents the main principal of the SAS imaging and its use for 

detection and classification. The second part is on the extraction of a first set of parameters 

from the images based on the two first order statistical properties and the use of a mean – 

standard deviation representation, which allow to segment the image (Maussang et al., IEEE, 

2007). A third part enlarges this study to the higher order statistics (Maussang et al., 

EURASIP, 2007) and their interest in detection. Finally, the last part proposes a fusion 

process of the previous parameters allowing to separate the regions potentially containing 

mines (“object”) from the others (“non object”). This process uses the belief theory (Maussang 

et al., 2008). In order to assess the performances of the proposed classification system, the 

results, obtained on real SAS data, are evaluated visually and compared to a manually 

labeled ground truth using a standard methodology (Receiver Operating Characteristic 

(ROC) curves). 

2. SAS technology and underwater mines detection 

SAS (Synthetic Aperture Sonar) history is closely linked to the radar one. Actually, the 

airborne radar imagery was the first to develop the process of synthetic aperture in the 

1950’s (SAR : Synthetic Aperture Radar). Then, it was applied to satellite imagery. The first 

satellite to use synthetic aperture radar was launched in 1978. Civilian and military 

applications using this technique covered enlarged areas with an improved resolution cell. 

Such a success made the synthetic aperture technique essential to obtain high resolution 

images of the earth. Following this innovation, this technique is now frequently used in 

sonar imagery (Gough & Hayes, 2004). The first studies in synthetic aperture sonar occurred 

in the 1970’s with some patents (Gilmour, 1978, Walsh, 1969, Spiess & Anderson, 1983) and 

articles on SAS theory by Cutrona (Cutrona, 1975, 1977).  

2.1 SAS principle 

Synthetic aperture principle is presented on Fig. 1 and consists in the coherent integration of 

real aperture beam signals from successive pings along the trajectory. Thus, the synthetic 

aperture is longer than the real aperture. As the resolution cell is inversely proportional to 

the length of the aperture, longer the antenna, better the resolution. In practice, the synthetic 

aperture depends on the movements of the vehicle carrying the antenna. Movements like 

sway, roll, pitch or yaw are making the integration along the trajectory more difficult.  

The synthetic aperture resolution is that of the equivalent real aperture of length LERA, given 

by the expression: 

 
RERA )1(2 LVTNL  !"  (2.1) 
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Fig. 1. SAS principle 

where N is the number of pings integrated, V is the mean cross-range speed, T is the ping 
rate and LR is the real aperture length. 
Hence, the cross-range resolution at range R is given by: 

 

ERA

S
L

R 
! "  (2.2) 

The maximum travel length (N-1)VT corresponds normally (but not necessarily) to the 
cross-range width of the insonification sector, equal to R /Ltr when the transmitter has a 
uniform phase-linear aperture of length Ltr and operates in far field. For large N, the LERA 
given by (2.1) equals approximately twice this width;  hence, the resolution is independent 
of range and frequency, and is given by the expression: 
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Let us note that the cross-range resolution of the physical array !R = R /LR. The resolution 
gain g of the synthetic aperture processing is defined by the expression:  
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2.2 SAS challenges 

Nowadays, SAS is a mature technology used in operational systems (MAST’08). However, 
some challenges remain to enhance SAS performances. For example, a precise knowledge of 
the motion of the antenna will permit to obtain a better motion compensation and better 
focused images. There are also some studies to improve beamforming algorithms, more 
adapted to SAS processing. Another challenge lies in the reduction of the sonar frequency. 
Knowing that sound absorption increases with the frequency in environments like sea water 
or sediment, a logical idea is to decrease imagery sonar frequency. Yet, resolution is 
inversely proportional to frequency and length of antenna. So for a reasonable size of array, 
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the resolution remains quite low, especially for underwater minewarfare. SAS processing 
can then be used to artificially increase the length of the antenna and improve the resolution 
One of the purposes is the detection of objects buried in the sediment. Both civilian (pipeline 
detection, wreck inspection) and military (buried mines detection) applications are 
interested in this concept. GESMA conducted numerous sea experiments on SAS subject 
since the end of the 1990’s. Firstly, in 1999, in cooperation with the British agency DERA, 
high frequency SAS was mounted on a rail in Brest area (Hétet, 2000). The central frequency 
was 150 kHz, the frequency band was 60 kHz and the resolution obtained was 4 cm. Fig. 2 
presents two images resulting from this experiment. 
 

 

 

Fig. 2. On the left, SAS image and picture of the associated modern mine. On the right, SAS 
image and picture of the associated modern mines 

Then, GESMA decided to work on buried mines and conducted an experiment with a low 
frequency SAS mounted on a rail in 1999. It was in Brest area, the sonar frequency was 
between 14 and 20 kHz (Hétet, 2003). Fig. 3 presents results of this experiment. We notice 
the presence of a large echo coming from the cylinder.  
 

 

Fig. 3. SAS image of buried and proud objects at 20 m. C1 : buried cylinder ; R1 : buried 
rock ; S1 : buried sphere ; S2 : proud sphere 

Fig. 3 shows that low frequencies allow to penetrate the sediment and to detect buried 
objects. Moreover, echoes are more contrasted on this image and there is a lack of the 
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shadows for the objects, making the classification more difficult. To go a step further, in 
2002, a low frequency SAS was hull mounted onboard a minehunter (Hétet et al., 2004). 
Frequency was chosen between 15 and 25 kHz and Fig. 4 presents results of these trials 
conducted in cooperation with the Dutch agency TNO, Defence, Security and Safety. 
 

 

Fig. 4. Low frequency SAS images. On the left, SAS image of three cylinders. 
Downwards : proud cylinder, half buried cylinder, buried cylinder. In the middle : pictures 
of the supporting ship, the sonar and the three cylinders. On the right, SAS images of two 
wrecks in the bay of Brest. 

Considering previous figures, low frequency and high frequency SAS images present an 
important difference. High frequency images allow detecting and classifying underwater 
objects thanks to their shadow when low frequency images present no more shadow but 
strong echoes. The idea is thus to use specificities of low frequency SAS to define a new 
approach to detect and classify buried objects. 

3. Underwater mines detection using local statistical parameters 

The key issue when designing a classification algorithm is to choose the right parameters 
discriminating the classes of interest. The two main approaches are (i) use of statistical 
knowledge about the process, (ii) use of expert knowledge, eventually derived from a 
physical model of the process. In this application, the statistical characteristics of the seabed 
pixels are well known and follow statistical laws (Rayleigh and Weibull distributions for 
instance). As a consequence, the data fusion process is based on the comparison of the 
statistical characteristics locally extracted for each pixel and these laws. 

3.1 Statistical description of the SAS images 
The sonar images, as any image formed by a coherent system (radar imagery is another 
example), are seriously corrupted by the speckle effect. They thus have a strong granular 
aspect. This noise comes from the presence of a large number of elements (sand, rocks, etc.) 
that are smaller than the wavelength and randomly distributed over the seabed. The sensor 
receives the result of the interference of all the waves reflected by these small scatterers 
within a resolution cell (Goodmann, 1976). 



 Advances in Sonar Technology 

 

116 

3.1.1 Speckle noise and the Rayleigh law 

Sonar images provided by the sonar system are constructed by the speckle. This bottom 
reverberation comes from the presence of a large number of elements (sand, gravel, etc.) that 
are smaller than the wavelength of the used monochromatic and coherent illumination 
source. These elements are assumed to be randomly distributed on the seabed. As a 
consequence, the sensor records the result of the constructive and destructive interferences 
of all the waves reflected by these elementary scatterers contained in a resolution cell (Collet 
et al., 1998, Schmitt et al., 1996). 
The response of a resolution cell can thus be described by the following: 
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with A being the amplitude of the response on a resolution cell and # representing the 

phase. The phases are usually considered as independent and uniformly distributed 

over ],[ && "' . With these assumptions, and if the number of elementary scatterers Nd 

within the resolution cell is large enough, the central limit theorem applies: X and Y can be 
considered as Gaussian random values. Consequently, the probability density function of 

amplitude 22 YXA "! follows a Rayleigh distribution: 
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with / being the Rayleigh’s law specific parameter. This parameter is bound with the 
average intensity of the reflected waves. 
The  th-order moment of A is given by the following: 
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with ! being the Gamma function ( 3
"4

'!!"0
0

!)1( dttezz zt ). This results in an interesting 

property of the Rayleigh law: the standard deviation  A and the mean !A of the amplitude A 
are linked by a simple proportionality relation:  
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This property leads to modeling the speckle as a multiplicative noise. As a matter of fact, the 
variation of amplitude induced by the speckle and characterized by parameter  A is bound 
by the mean amplitude (!A) with a multiplicative coefficient kR. 

3.1.2 Non-Rayleigh models 

The previous description of the speckle is the most usual and the most popular one. 
However, it is not satisfactory when the number of scatterers within a resolution cell (noted 
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Nd in the previous paragraph) significantly decreases. The central limit theorem does not 
hold and the Rayleigh approximation is no longer valid. This case is frequently observed in 
high-resolution images (Collet et al., 1998, Mignotte et al., 1999) such as SAS images. In this 
case, the amplitude A is better described by a Weibull law: 
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with   being the scale parameter and ! representing the shape parameter, strictly positive. 
These two parameters provide an increased flexibility compared to the Rayleigh law. Note 
that this law is a simple generalization of the Rayleigh distribution (in the special case 

10 2. and ! = 2, the Weibull law turns to a simple Rayleigh law). 

For a Weibull distribution, the  th-order moment of A is given by: 
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Therefore, the proportionality between and still holds, but with a coefficient kW(! ) function 
of !: 
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Note that for ! = 2, corresponding to the Rayleigh law, we obtain the same coefficient as in 
(3.4). 
Other more complex non-Rayleigh approaches have been proposed in the literature to 

statistically describe the bottom reverberation in high-resolution sonar imaging. One of the 

most famous models is the K-distribution. For this model, the number of scatterers in a 

resolution cell Nd is supposed to be a random variable following a negative binomial 

distribution. The amplitude A is then described by a K-law (called generalized K-

distribution), a three parameters distribution function given by (Gu & Abraham, 2001): 
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where "1 is the shape parameter, µ is the scale parameter, and "0 is the parameter bound to 
the number of raw data averaged to figure out the pixel reflectivity. K"1- "0 is the modified 
Bessel function of the second kind and order  "1 - "0. This distribution describes a rapidly 
fluctuating Rayleigh component modulated by a slowly varying !² component. 
The  th-order moment of A is then given by: 
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The relationship between  A and !A is preserved, with a coefficient depending on the two 
parameters "1 and "0: 
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A Rayleigh mixture has been also proposed to describe SAS data, each scattering material 
within a resolution cell being characterized by one specific Rayleigh distribution (Hanssen et 
al., 2003). 

3.1.3 Application to experimental data 

In this section, the performances of the different statistical models are compared using the 
SAS data presented in section 2 (Fig. 2). For this purpose, two tests are considered: the  ² 
criterion and the Kolmogorov distance (Mignotte et al., 1999). The  ² criterion d ² is estimated 
according to the following relation (Saporta, 1990): 
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where ki is the number of realizations (number of pixels having the value i), Pi is the 
estimated probability of value i, r is the number of possible values, and n is the number of 
observations (in our case, the number of pixels). 
With k’i being the number of realizations from 1 to i and p’i being the value for i of the 
cumulative distribution function associated with pi, the Kolmogorov distance is defined as: 
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The parameters of the Rayleigh and the Weibull laws are evaluated on the SAS image using 

a maximum-likelihood (ML) estimator. The estimated parameter ML*̂ of the Rayleigh law 

(3.2) is given by the following (Schmitt et al., 1996): 
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where n is the number of pixels and yi is the amplitude of pixel i. 

Parameters   and ! of the Weibull law (3.5) are estimated by ML ̂ and ML!̂ , respectively, 

given by the following (Mignotte et al., 1999): 
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with  k = F( k-1),  0 = 1 (exponential law), and 
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These estimators are unbiased, consistent, and efficient (Collet et al., 1998). 
The estimation of the K-law parameters is more problematic. Actually, there is no analytic 
expression for the derivative of a modified second kind Bessel function. Consequently, no 
ML estimation can be performed without approximations (Joughin et al., 1993). A moment’s 
method can then be used (3.9), even though it does not offer a closed-form solution. 
These estimators are tested on the image presented in section 2 (Fig. 2 left). Fig. 5 presents in 
solid line the observed distribution (normalized histogram of the image) and compares it 
with the estimated Rayleigh and Weibull distributions (dashed lines).With a simple visual 
inspection, one immediately notices that the Weibull distribution and K-distribution fit the 
observed one better than the Rayleigh distribution1. This confirms the nonvalidity of the 
central limit theorem in the case of high-resolution images obtained in SAS imaging. This 
Rayleigh model will not be used subsequently. It is nevertheless included in this chapter 
 

 

Fig. 5. Rayleigh distribution, Weibull distribution, and K-distribution estimated on Fig. 2 

                                                 
1 In Fig. 2 a shadow can be seen behind the echoes reflected by the mine. Shadows are 
present on most sonar images containing underwater mines lying on the seabed. The 
shadow corresponds to a non illuminated region of the seabed and the sensor receives a 
weak acoustic wave from this region: the signal related to the shadow area essentially 
consists of the electronic noise from the processing chain. It can also come from the 
“differential shadow effect” due to the variation of the shadow zone position during the 
imaging process. The amplitude A of the pixels in this region can thus also be modeled by a 
Gaussian distribution and the models remain valid. 
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since the reader dealing with low-resolution sonar images may use the very same detection 
method proposed in this paper using the Rayleigh distribution. The K-distribution seems to 
provide a better statistical model of the background than the Weibull law. It especially fits 
better the “head” of the observed distribution. This is confirmed by the quantitative 
evaluation presented in Table 1. However, the “tail” of the distribution is accurately 
estimated by both models. 
 

Distribution 
Estimated 

parameters 
 2 criterion 

Kolmogorov 
distance 

Rayleigh 5.1482ˆ  ML!  357.9 2.22 x 10-4 

Weibull 
7.1961ˆ  ML"  

604.1ˆ  ML#  
0.318 1.66 x 10-4 

K 

610300.4ˆ $ %  

882.0ˆ
0  &  

163.31̂  &  

0.044 1.41 x 10-4 

Table 1. Comparison of the performances of the distribution on the SAS image of Fig. 2 

3.1.4 Choice of the statistical model 

Considering the previous remarks, the K-distribution seems to be a better model than the 
Weibull model. However, as we have seen in section 3.1.2, the estimation of K-law 
parameters is more difficult (no ML estimators). The estimators of the K-parameters are not 
optimal and the estimation takes more time. 
The difference with the Weibull model is not enough to justify this difficulty. Moreover, 
Weibull law is largely used in the sonar community and it made its proofs in their 
applications. That is why we will use the Weibull model in the following, but we keep in 
mind the existence of other models such as K. 

3.1.5 Local statistical description 

In the previous sections, a global statistical description of the SAS images has been given, 
ignoring the presence of any echoes. This is fair since the number of target pixels in the image 
is too small to significantly modify the global statistics. The observed histogram matches 
indeed very well a Weibull law. In this section, we study local first- and second-order 
statistical properties. This is achieved by looking at the data through a small sliding window 
composed of few pixels. In this case, the potential presence of echoes can no longer be ignored. 
Each echo is modeled as a deterministic element with an amplitude D surrounded by a 
noisy background with a Weibull distribution. We assume that the noise correlation is 
smaller than the spatial extension of the target echo and that the amplitude fluctuation of 
the echo is negligible. This is consistent with the experiments where the echoes appear as 
small sets of connected pixels with an almost constant value. This is justified in Fig. 8(b) 
with the pixels corresponding to echoes fitting the predicted ellipse in the mean–standard 
deviation plane. 
We note p the proportion of deterministic pixels (i.e., pixels belonging to an echo) and (1 – p) 
the proportion of random values (i.e., pixels belonging to the background) within a small 
square window (Fig. 6). Considering  ’D(r),  ’N(r), and  ’W(r) , the rth-order noncentral 
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moments computed on the “echo part” of the window, the “background part” of the 
window, and the whole window, respectively, the following relation holds: 

 )()()( )1( rNrDrW pp    !"#!$!   (3.17) 

Considering  X =  ’X(1) and  ²X =  ’X(2) -  ’²X(1), the mean and the variance of X, respectively 
[X can be replaced by D, N, or W, as in (3.17)], we have: 

 NW pDp    )1( "#$   (3.18) 

 % & % & % & 222222 1 WNNDDW pp   ' '' "#"##$   (3.19) 

Moreover, echoes are considered as deterministic elements with an amplitude D, leading to: 
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and, consequently: 
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By combining (3.22) and (3.23), we obtain an interesting relationship between  W and  W: 

 % & % &DD NWNWW NN
 ( (  ' '' "#"#$# 22   (3.24) 

with % &NN D
N

 '(' "$ /2 . It is important to underline that this relation is independent of p. 

Also note that in limit cases, this relation remains valid: in the case of p = 0 (the window 
contains only background pixels),  W =  N  and  !W = !N  ; in the case of p = 1 (the echo is 
filling the whole window),  W = D  and !W = 0, which is consistent with (3.21). Remember 
that intermediate values of p correspond to windows being partially composed of echo 
pixels. 

3.2 First and second order parameters: segmentation 

The proportional relation of the statistical model describing the sea bed sonar data previously 
described is used to extract the two first parameters. The local mean and standard deviation 
are estimated on the SAS image using a square sliding window. These values become the 
coordinates of the processed pixel in the mean – standard deviation plane. 

3.2.1 Mean-standard deviation representation 

Inspired by a segmentation tool applied to spectrograms (Hory et al., 2002), this enables the 
separation of the echoes from the bottom reverberation, both features having different 
statistical characteristics as stated in section 3.1. In (Ginolhac et al., 2005), the link between 
first- and second-order statistics is highlighted using this representation. 
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Fig. 6. Modeled echo and various values of the parameter p: (a) p = 0, (b) p = 1/9, (c) p = 2/9, 
and (d) p = 1 

 

Fig. 7. Building of the mean–standard deviation representation 

Whereas in (Ginolhac et al., 2005) this link is simply illustrated as a justification to use first- 

and second-order statistics, the method presented in this chapter actually performs a 

segmentation of the mean–standard deviation plane. 

The idea is to change the representation space of the data to highlight local statistical 

properties. The chosen space is the mean–standard deviation plane. For each pixel, the local 

standard deviation and the local mean are estimated within a square-centered computation 

window with the following conventional equations: 
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where N is the number of pixels in the computation window ( N = Nx.Ny with Nx and Ny 
being the length and the width of the window, respectively) and yi is the value of pixel in 

the window. The pair  !WW "# ˆ,ˆ becomes the coordinates representing the current pixel in 

the mean–standard deviation plane (Fig. 7). The performances of these estimators are 
evaluated by computing their moments (Hory et al., 2002). For the mean estimator, the mean 

 !WM "̂ and the variance  !WV "̂ are: 
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The mean estimator is unbiased and consistent with a variance varying as 1/N. For the 

standard deviation estimator, the mean  !WM #̂  and the variance  !WV #̂  are given by: 
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with mW(4) being the fourth central moment computed on the window. These equations come 

from the approximation  !  !  !XMXVXV 4& with X being a random variable (Kendall & 

Stuart, 1963). This estimator is asymptotically unbiased and is consistent with a variance 
varying as 1/N. 
The choice of the size of the computation window is a tradeoff. On one hand, the variance of 
the estimators [see (3.25) and (3.26)] increases for small values of N. N should thus not be too 
small to enable an accurate estimation. On the other hand, if N is too high, echoes being 
small elements, the proportion p of the deterministic elements in the computation windows 
remains low and echoes are lost in the background speckle [see (3.24)]. Consequently, the 
computation window should be chosen as slightly larger than the spatial extension of the 
echoes, this size depending on the resolution of the sonar image and the quality of the 
preprocessing chain. 
The mean–standard deviation representation of Fig. 2 image is built with a 5 x 5-cm² 
window and is presented in Fig. 9. A general linear orientation is observed, as well as some 
pixels distancing the main direction on the right [see Fig. 8(b)]. Three different linear 
regressions of the data in the mean–standard deviation plane can be computed. They are 
shown in Fig. 8(a). The first line, with a slope of approximately 1.91, corresponds to the 
proportionality relation between the mean and the standard deviation estimated when 
assuming that the bottom reverberation is modeled by a Rayleigh law (3.4). The second line, 
with a slope of approximately 1.57, corresponds to the proportionality relation estimated 
with a Weibull model (3.7). At the given computation accuracy, the same line is obtained by 
a linear regression using a mean square method on the pixels representatives. To describe 
the global linear orientation of the data in the mean–standard deviation plane, the 
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proportionality coefficient estimated with the Weibull assumption clearly outperforms the 
estimation based on a Rayleigh law. This confirms the previous results for the case of high-
resolution data (Table I). In Fig. 8(b), the curve corresponding to the local relationship 
between mean–standard deviation on a computation window (3.24) is plotted considering a 
deterministic element with an amplitude of D = 3.4 × 10-4, approximately corresponding to 
the typical amplitude of the main echo on the original SAS image. This curve is a part of an 
ellipse and is a fairly good estimation of the main structure. Results obtained on other data 
sets could not be presented in this paper for confidentiality reasons. We will see following 
that each structure can be associated with one echo on the SAS image. 

 
                                           (a)                                                                              (b) 

Fig. 8. Mean–standard deviation representation of the SAS image (5 cm x 5-cm window). 
The linear approximations are estimated by the Rayleigh law, the Weibull law, and a 
regression. (a) Linear approximations. (b) Echo model 

 
                                  (a)                                                                                      (b) 

Fig. 9. Comparison between the SAS image (Fig. 2) and its mean–standard deviation 
representation. (a) Zoom of the SAS image. (b) Representation 

The fact that no pixel is on the Y-axis of this representation comes from the size of the 
computation window sensibly larger than the echoes. Therefore, no window contains only 
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echo pixels and all the windows have a part of background. Moreover, the hypothesis of a 
constant deterministic echo is not strictly valid, the pixels of one echo having different, but 
similar, values. However, the value of our model is not called into question to explain the 
results described previously. 
To highlight interesting properties of the mean–standard deviation representation, it is 
compared with the original image. Fig. 9 presents a zoom of the original image featuring  
two mine echoes and the corresponding mean–standard deviation representation. For a 
better understanding, a manual labeling of the sonar image is performed: pixels 
corresponding to the echoes are selected and corresponding points on the mean–standard 
deviation representation can be inspected. It turns out that the cluster of points close to the 
origin of the mean–standard deviation plane corresponds to the bottom reverberation pixels 
on the SAS image, with low means and low standard deviations. On the contrary, horn-
shaped structures (actually parts of ellipses) correspond to the echoes on the sonar image. 
Two main structures can be seen with different positions and dimensions, each one 
corresponding to one specific echo. The extremities of these structures correspond to the 
centers of the echoes which are deterministic elements (high mean and relatively low 
standard deviation). The intermediary points correspond to the transition between echoes 
and background (increasing standard deviation and decreasing mean). These properties can 
be used to classify the different elements on the sonar image by observing the mean–
standard deviation plane and the characteristics of the different structures. 

3.2.2 Segmentation 

Based on the statistical study and the observations previously presented, we propose in this 
section a segmentation method. The aim is to design an automatic algorithm isolating the 
echoes from the reverberation background on the sonar images. The proposed method is 
decomposed into the following steps. 

  The  Weibull distribution best fitting the observed normalized histogram is estimated 
with an ML estimator; 

  The original amplitude data are mapped in the mean–standard deviation plane; 

  In this representation, echoes appear as horn-shaped structures whereas background 
pixels are closer to the origin (low mean and low standard deviation). Therefore, a 
double threshold (both in mean and in standard deviation) allows a separation of the 
echoes pixels from the background pixels. The threshold value in standard deviation is 
set, either manually or automatically as will be described following; 

  Corresponding threshold value for the mean is obtained by multiplying the standard 
deviation threshold by the proportionality coefficient estimated for the Weibull law [see 
(3.7)]; 

  Application of both thresholds in the mean–standard deviation plane isolates 
corresponding echoes pixels in the original image. 

Fig. 10(b) presents an original sonar image. Corresponding mean–standard deviation 
representation is presented in Fig. 10(a) where the dashed line represents the 
proportionality coefficient between mean and standard deviation (estimated with the 
Weibull law), and the solid lines feature the threshold values. Corresponding segmentation 
of the image is presented in Fig. 10(c): the echoes have been correctly set apart. 
To automate the segmentation algorithm proposed, we now propose a method to 
automatically set the standard deviation threshold value (the threshold value for the mean  
 



 Advances in Sonar Technology 

 

126 

  

Fig. 10. Segmentation of the SAS image of Fig. 2 (thresholds: standard deviation: 4000; mean: 
6751). (a) Thresholds (in thick lines). (b) SAS image. (c) Result of the segmentation 

is then set accordingly). This is achieved in stepwise fashion by means of a progressive 
segmentation: the results obtained with decreasing standard deviation thresholds are 
computed. For each result, the spatial distribution of the segmented pixels is studied by 
computing corresponding entropies2 with respect to the two axes, until a maximum value 
was reached. For each result, the histograms of the segmented pixels along the X- and the Y-
axis are computed and normalized (so that they sum to 1). See Fig. 12 for one example. 
Then, the entropy Haxis on each axis is computed by the following: 

   !  "
#

$%

Ii

axisaxisaxis ipipH 2log   (3.31) 

with paxis(i) being the number of segmented pixels (after normalization) in the column 
(respectively, the line) number i, I = {I = 1…Naxis with paxis   0}, and Naxis being the number of 
columns (respectively, lines) of the original image. These entropies characterize the 
spreading of the segmented pixels in the SAS image: a uniform distribution of the 
segmented pixels over the image leads to high entropies, whereas much localized regions 
lead to small entropies. 
As a consequence, a decrease of the threshold value (more pixels are segmented) leads to an 
increase of the entropy (segmented pixels tend to distribute over the whole image). 
However, this increase is not regular (see Fig. 13): for instance, two slope break points 
clearly appear in the entropy evolution along the azimuth axis and one appears for the sight 
axis (they are pointed out by arrows in Fig. 13. They correspond to the standard deviation 
threshold of about 6250 and 4000, respectively). For a better understanding of these 
irregularities, the segmentations corresponding to different threshold values are presented 
in Fig. 11: when the threshold progressively decreases, the first echo begins to be segmented; 
then, the second echo is segmented as well which explains the rapid increase of the entropy 
(break point 1). Finally, the random background reverberation is reached, with segmented 
pixels spread all over the image. This explains the sharp increase of entropy (break point 2). 
Note that with the two segmented echoes being parallel to the azimuth axis, the first slope 
breaking is only visible on the azimuth axis (the sight axis only “sees” one echo). 

                                                 
2 Entropy-based segmentation algorithms have already been proposed in the literature. For 
example, Pun used an entropy criterion, evaluated on the gray level histogram (Pun, 1980, 
1981). 



From Statistical Detection to Decision Fusion: Detection of Underwater Mines  
in High Resolution SAS Images 

 

127 

As a conclusion, the optimal segmentation, detecting both echoes with a maximal size but 

with no background element, is obtained with a threshold corresponding to the highest 

slope breaking (with a lower threshold, structures from the background are segmented 

generating false alarms in the system). This optimal threshold value is automatically 

detected from the derivative profile of the entropy. For this purpose, the maximum3 of the 

two entropies defined previously is computed [see Fig. 14(a)]. The maximum of the 

derivative points out the highest slope breaking. However, to detect the real beginning of 

this slope breaking, the threshold corresponding to the half of this maximum is selected [see 

Fig. 14 (b)]. The result obtained on the SAS image from this threshold is presented in Fig. 12: 

the two echoes are correctly segmented. 

Note that the computed threshold value is used in the following for the fusion process. 
 

 

Fig. 11. Segmentation results for different thresholds in standard deviation. (a) Threshold 
1000. (b) Threshold 5000. (c) Threshold 8000 

 

Fig. 12. Segmented SAS image and repartition of the segmented pixels according to the two 
axes. Computed entropies: X-axis: 3.46; Y -axis: 4.58 

                                                 
3 Similar results are obtained with other combination operators (simple sum, quadratic sum, 
etc.). 
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Fig. 13. Entropy variation on the two axes in function of the threshold in standard deviation. 
(a) Azimuth axis. (b) Sight axis 

 

Fig. 14. Maximum of the entropies, its derivative, and setting of the threshold (see the 
arrows). (a) Entropy (max). (b) Derivate entropy 

3.3 Higher order statistics 

Pertinent information regarding SAS data can also be extracted from higher-order statistics 
(HOSs). In particular, the relevance of the third-order (skewness) and the fourth order 
(kurtosis) statistical moments for the detection of statistically abnormal pixels in a noisy 
background is discussed in (Maussang et al., EURASIP, 2007). In this previous work, an 
algorithm aiming at detecting echoes in SAS images using HOS is described. It basically 
consists in locally estimating the HOS on a square sliding window. 

3.3.1 HOS estimators 

The two most classically used HOSs are the skewness (derived from the 3rd-order 
moment) and the kurtosis (derived from the 4th-order moment) (Kendall & Stuart, 1963). 
One should underline that beyond these two standard statistics, other statistics with an 
order greater than 4 can be mathematically defined. However, these statistics are 
extremely difficult to estimate in a reliable and robust way and are thus practically never 
used. Noting  X(r) as the rth order central moment of a random variable X, the definition 
of the skewness is given by: 
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A definition of the kurtosis is given by: 
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The skewness measures the symmetry of a random distribution, while the kurtosis 
measures whether the data distribution is peaked or flat relative to a normal distribution. 
These statistics are theoretically zero for the normal distribution. 
To estimate the skewness and the kurtosis on a sample X of finite size N, k-statistics kX(r) can 
be used. kr is defined as the unique symmetric unbiased estimator of the cumulant  X(r) on X 
(Kendall & Stuart, 1963). An unbiased estimator of the skewness is then given by: 
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Defining the rth sample central moment of X by the following expression: 
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/1 and xi are the N samples of X, we can derive another definition of 

this estimator. Actually, considering the relationships between kX(r) and mX(r), we have: 
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In the same way, we derive the following estimator for the kurtosis: 
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Asymptotic statistical properties are studied for high values of N. Firstly, we can mention 
that these estimators are biased in the first order and that they are correlated (the bias being 
dependent on higher-order moments). However, exact results can be derived in the 
Gaussian case. In this case, M and V being the mean and the variance respectively, we have: 
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In the general case, there is no analytical expression for unbiased estimators independently 
from the probability density function of the random value. However, one should note that 
in the case of a normal distribution, the estimators are unbiased. Nevertheless, variances of 
these estimators are relatively high and it is well known that a reliable estimation requires a 
large set of samples. 

3.3.2 Application on sonar images  

We have seen in section 3.1 that a good statistical model of the background noise in the case 
of high resolution sonar images is given by the Weibull law. With such a non-Gaussian 
distribution, background values of the skewness and the kurtosis are not null anymore. On 
real SAS data,   [see (3.5)] is function of the resolution of the image, but it is generally 
approximated by 1.65 (Maussang et al., 2004). This corresponds to skewness and kurtosis 
values close to 1 (Fig. 15). 
 

 

Fig. 15. Weibull background HOS values in function of the parameter   of the Weibull law 

Considering the echoes generated by the mines as deterministic elements, the SNR is 
sufficiently high to have higher values of the HOS if the calculus window contains an echo 
(Maussang et al., EURASIP, 2007). 
Fig. 16 presents the kurtosis results obtained on SAS image of Fig. 3 where all the objects of 
interests are framed by high values of the kurtosis, the size of the frame being linked to the 
size of the computation window. A theoretical model of these frames is used to perform a 
matched filtering and thus refocus the detection precisely at the center of the objects of 
interest. The last step consists in rebuilding the objects using a morphological dilation 
(Maussang et al., EURASIP, 2007). The corresponding detection result is presented in Fig. 
16(c): all the objects of interest are marked by high values, thus providing a good detection. 
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However, some false alarms remain, and the detection is not as accurate as with the first 
algorithm (see section 3.2). This will be taken into account for the fusion process (section 4). 
 

 

                (a)SAS image                             (b) Kurtosis               (c) Detection 

Fig. 16. Detection on the SAS data of Fig. 3 (kurtosis 11 × 11, matched filtering 15 × 15, SD = 3). 

4. Underwater mines detection using belief function theory 

In the previous section, we have presented two algorithms aiming at detecting echoes in 
SAS images. In order to further improve the detection performances, we present a fusion 
scheme taking advantage of the different extracted parameters. The combination of 
parameters in a fusion process can be addressed using probabilities. This popular 
framework has a solid mathematical background (Duda & Hart, 1973). Numerous papers 
have been written on this theory using modeling tools (parametric laws with well-studied 
properties) and model learning. However, these methods are affected by some 
shortcomings. Firstly, they do not clearly differentiate doubt from conflict between sources 
of information. Single hypothesis being considered, the doubt between two hypotheses is 
not explicitly handled and the corresponding hypotheses are usually considered as 
equiprobable. Conflict is handled in the same way. Moreover, probabilities-based fusion 
methods usually need a learning step using a large amount of data, which is not necessarily 
available for an accurate estimation. 
Another solution consists in working within the belief function theory (Shafer, 1976). The 
main advantage of this theory is the possibility to deal with subsets of hypotheses, called 
propositions, and not only with single hypothesis. It allows to easily model uncertainty, 
inaccuracy, and ignorance. It can also handle and estimate the conflict between different 
parameters. Regarding the problem of detection, this theory enables the combination of 
parameters with different scales and physical dimensions. Finally, the inclusion of doubt in 
the process is extremely valuable for the expert who can incorporate this information for the 
final decision. As a conclusion, the belief function theory is selected to address the 
considered application. The proposed fusion scheme is described in the next subsection. 

4.1 Fusion scheme and definition of the mass functions 

For the detection of echoes in SAS images, the frame of discernment   defined for each pixel 
is composed of the two following hypotheses: 
i.  “object” (O) if the pixel belongs to an echo reflected by an object; 
ii.  “nonobject” (NO) if it belongs to the noisy background or a shadow cast on the seabed. 
The set of propositions 2  is thus composed of four elements: the two single hypothesis, also 
called singletons, O and NO, the set   = {O,NO}, noted O U NO (U means logical OR) and 
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called “doubt,” and the empty set called “conflict.” In this application, the world is obvious 
closed (  contains all the possible hypotheses). 
The proposed fusion process uses the local statistical parameters extracted from the SAS 
image, as presented in section 3. These parameters are fused as illustrated on Fig. 17: the 
relationship between the first two statistical orders is taken into account by using the 
thresholds in standard deviation and mean estimated by the automatic segmentation, the 
third and fourth statistical moments are used after focusing and rebuilding operations. 

 

Fig. 17. Main structure of the proposed detection system 

The mass of belief is the main tool of the belief function theory as the probability for the 
probability theory. The definition of the mass functions enables to model the knowledge 
provided by a source on the frame  . In this application, every parameter is used as a source 
of information. For one given source i, a mass distribution mit on 2  is associated to each 
value t of the parameter. This type of functions verifies the following property: 

1)(
2

 ! "
#A

Am . We propose to define each mass function by trapezes or semi trapezes. 

In the considered application, only the three propositions (O), (NO), and (O U NO) are 
concerned. Four thresholds must thus be defined namely, ti1, ti2, ti3, and ti4 (see Fig. 18). They 
are set using knowledge on local and global statistics of sonar images. They also take into 
account the minimization of the conflicts while preserving the detection performances (no 
nondetection). 
The first mass function concerns the two first statistical orders simultaneously because they 
are linked by the proportional relationship. In order to build the trapezes, we consider the 
pair (mean; standard deviation) as used for the automatic segmentation. Fig. 19 illustrates 
the design of the corresponding mass function, based on the mean standard deviation 
representation. We first describe this function in the general case, the setting of the 
parameters being described afterward.  
Pixels with a local standard deviation below t11 are assigned a mass equal to one for the 
proposition “nonobject” and a mass equal to zero for the others. Pixels with a local standard 
deviation between t11 and t12 are assigned a decreasing mass (from one to zero) for the 
proposition “nonobject,” an increasing mass (from zero to one) for the proposition “doubt,” 
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meaning “object OR nonobject” (O U NO). These variations are linear in function of the 
standard deviation. 
The construction of the mass functions goes in a similar way for t13 and t14. This mass 
function is function of the standard deviation, but, considering the proportional relation 
holding between the mean and the standard deviation, an equivalent mass function can 
easily be designed for the mean. Then the mass function corresponding to the mean being 
redundant with the standard deviation is not computed. 
We propose to set the different parameters of these mass functions using the following 
expressions: 

 !BWMt "̂1
1 # ; 

 !  !BWBW VMt "" ˆˆ2
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where B"̂ stands for the background standard deviation estimated, using the Weibull model 

previously computed, on a region of the image without any echo.  s is the threshold in 
standard deviation fixed by the algorithm described in section 3.2. MW and VW are the mean 
and variance of the standard estimators (Kendall & Stuart, 1963) applied on  s considering 
the size of the computation window used for mean standard deviation building. This allows 
taking into account the uncertainty in the statistical parameters estimation by the fuzziness 
of the mass distributions. 

 

Fig. 18. Definition of the mass functions 

The two other mass functions concern the HOSs: the skewness and the kurtosis, respectively. 
As mentioned in section 3.3, the corresponding detector provides less accurate results, which 
prevent a precise definition of the areas of interest. Furthermore, some artifacts generate false 
alarms. As a consequence, the information provided by these parameters will only be 
considered to assess the certainty of belonging to the background. A null mass is thus 
systematically assigned to the proposition “object,” whatever are the values of the HOS. The 
mass is distributed over the two remaining propositions: “nonobject” and “doubt.” This is 
illustrated on Fig. 20: only two parameters remain t21 and t22. 
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Fig. 19. Definition of the mass functions for the first two-order statistical parameters: 

 !WVtttt "̂3
1

4
1

1
1

2
1 #$#$ (the thresholds obtained from the automatic segmentation are in 

red. The mean standard deviation graph given on this figure has been calculated on the 
image presented on Fig. 4). 

 

Fig. 20. Definition of the mass functions for the higher-order statistics (the graphic is valid 
for definition of t31 and t32) 

Parameters t21 and t22 (skewness) are set by considering the normalized cumulative 

histogram, noted H(t), of the HOS values over the whole SAS image. This is illustrated in 

Fig. 21. Considering that pixels with low HOS values necessarily belong to the noisy 

background and that pixels with high values (that might belong to an echo of interest) are 

extremely rare, the following expressions are used: 

 !75.011
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  !90.012
2

"# Ht   (4.2) 

These equations are valid for t31 and t32 (kurtosis). This assumes that at least 75% of the 
image belongs to the background, which is easily fulfilled. Similarly, the 10% pixels with the 
highest HOS values are considered as potential objects (doubt has a mass equal to one). 
 

 

Fig. 21. Example of histogram and cumulative histogram of a kurtosis image (after focusing 
and rebuilding, as presented on Fig. 16(c)) 

Based on the local statistical moments of the data, three mass functions have been defined. 
The data fusion aims at improving the detection performances and eases the final decision 
by the expert. It is performed using the following conjunctive rule: 

 3213,2,1 mmmm $$#   (4.3) 

where $  is the conjunctive sum:  ! ! )()( 2121 CmBmAmm
ACB% #&

#$  with A a 

proposition. 
Note that, for the sake of simplicity, the superscript t of the mass mit, corresponding to the 
parameter value, is removed from the notations. 
A conflict between the different sources can appear during this combination phase. This 
information is preserved as it is valuable to assess the adequacy of the fused parameters. If 
one of the fused parameters provides irrelevant information, the conflict is high. Further 
investigations are then required to determine the cause of this situation (bad estimation of 
the parameter, limits of the data, etc.). 

4.2 Decision 

The results of the fusion step can be used in different ways, producing different end user 
products: 
i. “binary” representations can be generated, providing segmented images and giving a 

clear division of the image into regions likely to contain objects or not; 
ii. “enhanced” representations of the original SAS image can also be constructed from the 

results of the fusion. 
These representations should somehow underline the regions of interest while smoothing 
the noise, but leave the decision to the human expert. The “binary” representations only use 
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the results of the fusion process in order to classify each pixel according to the belief, the 
plausibility, or the pignistic value. A simple solution consists in thresholding the belief or 
plausibility for the proposition “object,” for instance, all the pixels with a belief above 0.5 are 
assigned to the class “echo.” A binary image is obtained, separating the echoes from the 
background. However, this method requires the setting of the threshold by the user. In 
order to overcome this shortcoming, another strategy consists in associating each pixel to 
the hypothesis (“object” or “nonobject,” resp.) with the highest belief. This unsupervised 
method also provides a binary image. The same methods can be used with the plausibility. 
However, since the space of discernment only contains two elements, plausibility and belief 
actually provide the same results. The corresponding results are presented on different 
datasets on Fig. 22(d) and Fig. 23(d). 
Beyond the binary result, a more precise classification can be constructed by assigning every 
pixel to the class with the highest mass of evidence (including the conflict). The resulting 
image is divided into four classes: “object,” “nonobject,” “doubt,” and “conflict.” 
Corresponding results are presented on Fig. 22(c) and Fig. 23(c). This nonbinary 
representation leaves more flexibility to the expert for the final interpretation. A similar 
strategy has been used in the frame of medical imaging in (Bloch, 1996). 
 

 

Fig. 22. Presentation of the fusion results—image of Fig. 3 
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Fig. 23. Presentation of the fusion results—image of Fig. 4 

These representations are well suited for a “robotics oriented” detection: regions of interest 
are defined, and an automatic system, such as an autonomous underwater vehicle (AUV), 
can be sent to identify the objects. However, such representations lose a lot of potentially 
valuable information (environment, relief, intensity, etc.). Such information may be useful 
for a human expert to actually identify the objects and solve some ambiguities. Therefore, 
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other representations can be considered. For instance, we propose to combine the results of 
the fusion with the original image in order to enhance information. This is achieved by 
weighting the pixels of the original image by a factor linearly derived from the belief (or the 
plausibility) of the class “object.” The intensity of pixels likely NOT being echoes is 
decreased (low belief), thus enhancing the contrast with the pixels most likely being echoes. 
For instance, Fig. 22(b) and Fig. 23(b) feature the resulting images with the weighting factor 
linearly ranging from 0.3 for a null plausibility to 1 for a plausibility of 1. On these images, 
the background tends to disappear, but all potential objects of interest are preserved. 
Finally, another solution consists in performing an adaptive filtering of the sonar image in 
function of the belief. This is described in (Maussang et al., 2005). 

4.3 Performance estimation 

The decision coming from the results of the fusion process is valid only if the algorithm 
generating these results is sufficiently efficient. That is why, assessing the performances of the 
proposed algorithm is a crucial problem. In this section, we propose and discuss different 
approaches. A manually labelled ground truth can be taken into account or not, the evaluation 
can work on a direct analysis of the mass functions or on the classification results. 
Note that in this section mi(A) denotes the mass value associated to the proposition A for the 
pixel i after fusion. 

4.3.1 Intrinsic qualities of the mass functions 

The evaluation of the detection performances can first be addressed by directly considering 
the quality of the resulting mass distribution. The first criterion is the nonspecificity (Klir & 
Wierman, 1999). This value estimates the ambiguity remaining in the mass distribution: it is 
low if the largest part of the mass of evidence is on a singleton or a single hypothesis (certain 
response); it is high if the mass is on a proposition of higher cardinal (doubt on several 
hypotheses). The nonspecificity is defined on a mass m by the following expression: 

  
!"

#

2

2log).()(

A

AAmmN   (4.4) 

where |A| is the cardinal of the subset A. The nonspecificity can take values in the 
following interval: 

 !$$ 2log)(0 mN   (4.5) 

The bottom limit (zero) is reached in the case of !"ia  with %  ! " 1#iam  (total certainty). It 

reaches the upper limit with ! " 1#$m  (total ignorance). The lower is the nonspecificity, the 

better and more accurate is the detection. A nonspecific mass function gives few false 
responses (limited risk), but brings limited information (all the hypotheses can be true). On 
the contrary, a specific response is accurate, but has a higher risk of error. 
For the addressed application, the space of discernment is composed of two hypotheses. The 

nonspecificity is only computed for the mass associated with the proposition “doubt.” 

Moreover, this value is bound with each pixel of an image. We choose then to define the 

density of nonspecificityestimating the quality of the fusion result on the whole image. It is 

defined by the following expression: 
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with n the size of the image (in pixels) and mi(O U NO) the mass of “doubt” for the pixel i 
after the fusion. The values of this density are between 0 and 1. The lower is this density, the 
more certain is the response of the fusion. 
On the other hand, the higher is the specificity, the higher is the risk of conflict. 
Consequently, the conflict between sources must be analyzed. As previously, we define a 
density of conflict with the following expression: 
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This density is between 0 and 1. Obviously, the lower is this density, the more coherent are 
the sources of information and the more reliable is the result. 

4.3.2 Assessing the quality of the mass functions when a ground truth is available 

In order to validate the results of the fusion process, additional information can be used. For 
instance a ground truth can be designed by the expert. Fig. 24(b) features such a segmented 
image where the expert roughly isolated the pixels likely to correspond to actual echoes 
(class “objects” (O), in black) from the background (class “nonobjects” (NO), in white). 

If B denotes the environment truth ( %&B , e.g., see Fig. 24: B = O if the pixel is in black, B = 
NO if the pixel is in white), we define the rate of nonspecificity knowing the environment 
truth B: 
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N(m/B) corresponds to the sum of the elements including B, weighted by their cardinal. For 
instance, for one given pixel, if B = O, the rate of nonspecificity is estimated using the 
masses of A = O and A = O U NO, respectively. 
This expression is applied to SAS images and a rate of nonspecificity density associated with 
the hypothesis B can be defined by: 
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with  i(B) = 1 if the pixel i has label B (“object” or “nonobject”) in the environment truth, 
 i(B) = 0, otherwise. In this way, only the pixels with the correct assignment B are taken into 
account in the density estimation. This density consequently allows to characterize the 
nonspecificity previously estimated (see (44)): it can either come from doubt on object 
detection (the most dangerous situation) or on the background. 
It is obvious that addition of the density B = O and the density B = NO is equal to the 
density of nonspecificity of (4.6): 

 )/()/()( NOmNOmNmN ddd )#   (4.10) 
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In a similar way, we define a rate of error knowing the environment truth by the following 
expression: 
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Considering our application, the rate of density of error, associated with B, is defined by: 
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with ' (NOOB ,)  and B the complementary set of B. As a matter of fact, for a given B, only 

the mass associated to B is taken into account: B and O U NO have at least one common 
element with B. The total error density can also be calculated by adding the two errors 
corresponding to B = O and B =NO: 

 )/()/()( NOmErOmErmEr ddd %#   (4.13) 

where dEr(m) is an estimation of the detection quality, considering potential mistakes on the 
pixel nature (“object” or “nonobject”). It should be as low as possible. 
In this part, it is assumed that the designed ground truth actually corresponds to the truth. 
However, in real cases, this might be different as the expert might hesitate on the actual 
nature of some pixels (fuzzy boundaries of the objects of interest, false alarms, etc.). This 
results in errors that appear in the error parameters. 
A last criterion measuring the performance comes from the assumption that a decision is 
taken for each pixel, considering the corresponding mass functions. The images of belief and 
plausibility associated with the hypothesis “object” are segmented by applying a threshold. 
50 different threshold values, between 0 and 1, are applied. For each threshold, the detection 
and false-alarm probabilities are computed on the resulting binary image. This is achieved 
by comparing the segmentation with the environment truth. The plot of these 50 points in 
the false-alarm rate versus detection probability plane features the ROC curve that is 
classically used to assess the performances of detection systems in sonar imagery. 
 

 
Fig. 24. Example of image used for the environment truth 
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4.4 Results on sonar images 

The fusion process presented in this paper is applied on the sonar images presented in 
section 2. 
The first image (Fig. 3) features several buried or partially buried objects.  In this image, the 
echoes are hardly visible apart from a partially buried cylindrical mine on the left (at 16m in 
sight). For each pixel and for each parameter, we firstly estimate the mass associated to each 
proposition (“object,” “doubt,” and “nonobject,” resp.) by using the mass functions 
previously defined (Fig. 25, Fig. 26, and Fig. 27, resp.). These images are combined using the 
orthogonal rule in order to obtain the mass images associated to each proposition (Fig. 28). 
This results in an image of belief (corresponding to the mass of the class “object”) and an 
image of plausibility (corresponding to the sum of the masses of the classes “object” and 
“doubt”) associated to the proposition “object” (Fig. 29). One should underline that all the 
objects in the image are efficiently detected: belief and plausibility are close to 1 in the 
regions likely to contain echoes. The plausibility highlights some spurious regions at the 
bottom of the image. These regions have a small area and could be easily removed, for 
instance, by a morphological filter. The first- and second-order parameters are 
complementary to the third- and fourth-order ones. Actually, the doubt on Fig. 25 (1st and 
2nd order) is decreased by the mass “nonobject” brought by the higher-order statistical 
parameters (Fig. 26 and Fig. 27). On the other hand, the doubt coming from HOS is limited 
by the mass “object” and “nonobject” provided by the first orders. The first-order 
parameters provide precise information, but with some false alarms (Fig. 25), whereas 
higher orders provide a few false alarms (consider the “doubt” image), but imprecise 
information (Fig. 26 and Fig. 27). It illustrates the usual duality between certainty and 
accuracy, and how a fusion process can take advantage of multiple complementarities 
sources. 
Some conflict appears in the result of the fusion (Fig. 28(d)). However, it remains low (the 

sum of the masses of the focal elements is strictly inferior but close to 1), and isolated. This 

result shows the good concordance of the parameters. 

4.4.1 Evaluation of the performances on the sonar image 

A first evaluation of the fusion process consists in analyzing the contribution of each 

parameter to the final result. This is achieved by combining the parameters two by two. As 

previously observed, the addition of one HOS parameter decreases the mass “doubt” 

(compare Fig. 30(b) with Fig. 25(b)). The fusion of three parameters further decreases this 

mass (Fig. 29(b)). The more parameters are added to the fusion process, the more accurate is 

the response. Note that the addition of one parameter to the fusion process “selects” more 

accurately the masses: the “object” mass that differs from the values 0 or 1 are fewer. 

A quantitative evaluation can also be completed by estimating conflict and nonspecificity 

densities, independently from the environment truth, or a combination of these values (rate 

of density of nonspecificities and error). The results are listed in Table 2. The results confirm 

the previous qualitative remarks as follows: 

i.    nonspecificity decreases when new parameters are added. Note that this density is high 
      for the two HOS parameters and their fusion; 
ii.  conflict can increase with the addition of one parameter, but this is not obvious in this 
     application. 
That proves the good reliability of the chosen parameters. 
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Fig. 25. Mass images obtained for each proposition after the fusion of the mean standard 
deviation parameter (segmentation) in Fig. 3 

 

Fig. 26. Mass images obtained for each proposition with the skewness parameter in Fig. 3 
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Fig. 27. Mass images obtained for each proposition with the kurtosis parameter in Fig. 3 

 

 
 

Fig. 28. Mass images obtained after fusion of the three parameters in Fig. 3 
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Fig. 29. Belief and plausibility object images obtained after fusion of the three parameters in 
Fig. 3 

 

Fig. 30. Mass images obtained for each proposition after the fusion of the mean standard 
deviation (segmentation) and kurtosis parameters in Fig. 3 
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These values also estimate the amount of information brought by each parameter: if adding 
one parameter does not significantly decrease the density of nonspecificity, the 
corresponding parameter can be considered as bringing very little information. Moreover, if 
the density of conflict increases, this parameter is contradictory with the others and the 
reliability of this parameter (or one of the other) should be questioned. 
The environment truth is a source of information that can be used to assess the 
performances of the system. The addition of one HOS parameter slightly decreases the error, 
which remains low for the HOS. As a matter of fact, the fuzzy definition of the mass 
functions keeps the error bounded (if the mass “doubt” is 1, the error is null). On the 
contrary, the relatively high value of error on the areas selected as “object” can be explained 
by the large size of the regions selected by the expert. This rough selection actually includes 
a part of the region selected as “background” by the fusion process; but this should not be 
considered as a bad detection: the echoes are well detected, but are only smaller than the 
masks of the original reference image. This will be confirmed by the ROC curves (the 
maximum detection probability is smaller than one). 
The nonspecificity is greater for the “nonobject” pixels on the reference image than for the 
“object” pixels. This is a promising conclusion for the fusion process: the result is more 
accurate if a potentially dangerous object is present. 
Finally, ROC curves of the fusion results are built and compared with the curves obtained 
with each parameter alone (segmentation with the 1st and 2nd order, the skewness, or the 
kurtosis). They are also compared with the ROC curves obtained with the standard detector 
consisting in directly thresholding the original data. 
The first comment on the results presented in Fig. 31 concerns the lack of points between 
low values of false alarms (until 0.03) and the point of probability equal to 1. This is a 
consequence of the pixels declared as “echo” by the expert, but classified as “nonobject” by 
the system. In order to include these pixels as “object” by the system, all the pixels of the 
image must be selected (this is, achieved with a threshold of zero). These pixels are not 
significant at all and come only from the rough design of the regions containing echoes. This 
results in the maximum false-alarm and detection probabilities being far from the point (1, 
1) (see the arrow on Fig. 31 (b)). In the same way, minimum detection and false-alarm 
probabilities exist for belief and plausibility obtained with a threshold of 1. 
 

Densities 
(x 10-3) 

1- 2 3 4 1-2 + 3 1-2 + 4 3 + 4 1-2 + 3 + 4 

conflict 0 0 0 0.0299 0.0885 0 0.105 

nonspecificity 51.0 166.1 166.1 23.8 20.9 121.3 19.0 

/O 7.9 18.8 17.5 6.7 6.1 17.4 6.1 

/NO 43.0 147.3 148.6 17.1 14.8 103.9 12.9 

error 5.0 2.2 3.5 6.2 6.8 3.5 6.8 

/O 4.5 2.2 3.5 5.7 6.3 3.5 6.3 

/NO 0.557 0 0 0.520 0.535 0 0.518 

Table. 2. Performances of the fusion in Fig. 3, 
(1-2: mean standard deviation (segmentation), 3: skewness, 4: kurtosis) 

The second comment is that the false-alarm rates and detection probabilities are lower for 
belief than plausibility. This is linked to the certainty/accuracy duality previously 
mentioned. Moreover, note that the plausibility and the belief curves are both above all the 
other curves: this assesses the improvement of the detection performances obtained thanks 
to the fusion process. 
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4.4.2 Results on other data 

In this section, the proposed fusion process is tested on two more SAS images. Image of Fig. 
4 (Fig. 32) represents a region of 40m × 20m of the seabed with a pixel size of about 4 cm in 
both directions (see section 2). It contains three cylindrical mines: one mine is lying on the 
sea floor (top of image), another one is partially buried (approximately in the middle of the 
image), and the last one is completely buried under the sea floor (lower part of image). 
Fig. 32 represents the belief and plausibility after fusion, and Fig. 33 presents the 
corresponding ROC curves. Moreover, quantitative criteria estimated for this image are 
presented in Table 3 and can be compared with the results of the first image. The fusion 
process has been performed with mass functions defined previously, in function of the 
corresponding standard deviation thresholds and higher order statistics histogram. 
The same comments and conclusions hold for this new image. The detection performances 
are improved (in particular, see the belief image). However, the fusion with the skewness 
parameter does not significantly affect the result in image of Fig. 4: the nonspecificity, error, 
and conflict densities are similar whether two or three parameters are aggregated. 
 

Densities 
(x 10-3) 

1- 2 3 4 1-2 + 3 1-2 + 4 3 + 4 1-2 + 3 + 4 

conflict 0 0 0 0.406 0.527 0 0.528 

nonspecificity 8.1 159.0 162.8 3.9 3.5 122.0 3.4 

/O 1.8 13.5 12.0 1.8 1.5 12.0 1.5 

/NO 6.3 145.4 150.8 2.2 1.9 110.0 1.9 

error 6.5 0.0446 1.6 6.0 6.2 1.6 6.2 

/O 4.4 0.0446 1.6 4.4 4.6 1.6 4.6 

/NO 2.0 0 0 1.6 1.6 0 1.6 

Table 3. Performances of the fusion in Fig. 4, 
(1-2: mean standard deviation (segmentation), 3: skewness, 4: kurtosis) 

 

Fig. 31. ROC curves of each of the three parameters compared with the results of the fusion 
process (belief and plausibility) in Fig. 3 
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Fig. 32. Belief and plausibility images obtained after fusion of the three parameters in Fig. 4 

5. Conclusion and perspectives 

This chapter presented the interest of the use of high resolution images formed thanks to 
SAS system, and proposed a fusion architecture aiming at taking advantage of the 
complementary properties of sources, based on statistical properties, in order to improve the 
detection performances. 
Being able to handle conflicts between sources and doubt between different hypotheses, the 
belief theory is well suited to represent and characterize the information provided by the 
different sources. It also provides a fusion rule. The fused data can be used either to take a 
decision or to enhance the data adaptively, leaving the final decision to an expert. 
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Fig. 33. ROC curves of each of the three parameters compared with the results of the fusion 
process (belief and plausibility) in Fig. 4 

The design of the mass functions is fairly simple and flexible. A general knowledge about 
the acquisition system and the induced statistical properties on the SAS image enables the 
setting of the few parameters (trapeze-shaped functions). Confronted to different datasets, 
these settings were not modified, thus assessing the robustness of the whole procedure. 
The evaluation of the proposed architecture is based on new parameters, some of them 
classically taking a manually labelled ground truth into account, some others being 
independent from this ground truth and aiming at directly assessing the quality of the 
available information. 
These last criteria determine intrinsic properties of the mass functions, such as 
nonspecificity and conflicts densities. The first set of criteria concerns the properties 
conditioned by the ground truth: rates of nonspecificity and error densities, probabilities of 
detection and false alarm. 
The fusion architecture has been tested on two real SAS images and convincing results have 
been obtained: the fusion actually improves the detection performances of the different 
sources taken separately. 
The proposed process may be improved by incorporating new parameters (statistical, 
morphological, criteria characterizing the spatial distribution of the features, etc.) coming 
either from a deeper knowledge of the data or from new sonar images (multiple acquisitions). 
The interest of such a fusion structure lies in its flexibility: the addition of new parameters is 
easy to work out and does not need any change of structure or parameterization. Moreover, it 
is possible to estimate the quantity of information brought by each of the new parameter. This 
allows to reach the next levels in the detection and classification process, as described in the 
introduction, by deciding if the regions previously segmented actually contain a sought object 
and by identifying this object (mine, kind of mine, etc.). 
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