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Isotope effect on hydrogen bond symmetrization in hydrogen 
and deuterium fluoride crystals by molecular dynamics 
simulation 
Hichem Dammak,†a Fabien Brieuc,a Grégory Geneste,b Marc Torrent b and Marc Hayoun c 

 

The isotope effect on the collective proton/deuteron transfer in hydrogen and 

deuterium fluoride crystals has been investigated at 100 K by ab initio quantum-

thermal-bath path-integral molecular dynamics (QTB-PIMD) simulation. The 

deuterons within a planar zigzag chain of the orthorhombic structure simultaneously 

flip between covalent and hydrogen bonds due to the barrier crossing through 

tunnelling. The height of the corresponding static barrier normalized for one deuteron 

is 29.2 meV. In the HF crystal, all the protons are located at the center of the heavy-

atom distance. This evidences the symmetrization of the H-bonds, and indicates that 

the proton zero-point energy is above the barrier top. The decrease of the heavy-atom 

distance due to quantum fluctuations in both HF and DF crystals corresponds to a large 

decrease and an increase of the hydrogen and covalent bond lengths, respectively. 

Upon deuteration, the increase of the heavy-atom distance (Ubbelohde effect) is in 

agreement with experimental data.

1 Introduction 
Proton hopping through a hydrogen bond network 

has been evidenced in various hydrogen-bonded 

systems1 such as liquid water2,3 and ordinary ice 

(hexagonal Ih)4 for example, but not in the hydrogen 

fluoride (HF) crystal. In fact, the orthorhombic 

structure of HF consisting of planar zigzag chains of 

HF molecules offers the possibility of collective 

multiple proton hopping through the formation and 

concomitant cleavage of covalent bonds involving 

neighbouring molecules. 

The small mass of the proton means that it is 

inherently quantum mechanical in nature, and 

nuclear quantum effects (NQE) such as zero-point 

motion, quantum delocalization, and quantum 

tunnelling are relevant. The potential seen by the 

protons of the HF zigzag chain is a symmetric double 

well energy surface and the zero-point energy can be 

below or above the barrier top, thus defining two limit 

cases. i) The occupied proton energy levels are above 

the barrier top and the maximum of the position 

probability density is at the barrier top. This 

corresponds to a symmetrized hydrogen bond and 

there is then no proton hopping. ii) The occupied 

proton energy levels are far below the barrier top and 

the proton transfer mostly corresponds to (non-

adiabatic) tunnelling. Proton tunnelling represents 

the motion of protons through the potential energy 

barrier that separates the final from the initial state 

when the thermally activated process of hopping over 

the barrier top is classically not possible. Proton 

tunnelling gets strongly enhanced upon decreasing 

the height and/or the width of the energy barrier. It 

typically requires short hydrogen bonds since the 

strength of hydrogen bonds is a key feature 

influencing the proton tunnelling.5 Among the 

hydrogen halides, HF is precisely the one having the 

strongest hydrogen bonds due to the largest 

electronegativity of fluorine and hence provides a 

rich playground for the study of the impact of NQE on 

proton position disorder. 

We report herein a simulation study in which we 

investigate the impact of NQE on the HF and DF 

crystals by using the quantum thermal bath path-

integral molecular dynamics (QTB-PIMD) simulation 

technique that efficiently takes into account the NQE. 

The interactions were modelled from first principles 

within the framework of density functional theory 

(DFT). The simulated system and the QTB-PIMD 

method are described in section 2. The results on the 

proton disorder, including the static energy profile, 

the position probability density, and the partial radial 
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distribution functions are given in section 3. Sections 

4 and 5 are dedicated to the discussion and the 

conclusion, respectively. 

2 System under study and methods 
2.1 Simulated System 

The structure of our simulated crystal is composed of 

two zigzag HF chains as shown in Fig. 1. Each H atom 

is bonded by a covalent bond to its first neighbour and 

by a hydrogen bond to its second neighbour. The 

protons within a chain could simultaneously flip 

between the covalent and the hydrogen bonds. 

 
Fig. 1   Simulated HF crystal (8 molecules) in the Bm21b structure. 
F and H atoms are black and white circles, respectively. Covalent 
and hydrogen bonds are also displayed. The orthorhombic 
primitive cell is indicated by the black rectangle whose lattice 
parameters 𝑏 and 𝑐 are shown. The 𝑎 axis is pointing into the 
page. The first chain is in the plane at 𝑥 = 0 while the second one 
is located in the plane at 𝑥 =

1

2
. 

It is useful to consider the approximate one-

dimensional double-well model, in which all the 

protons in one of the two chains are constrained at 

intermediate positions between their two 

neighbouring F atoms. The corresponding reaction 

coordinate was chosen as the difference between the 

distance of the protons from their neighbouring F 

atoms: 

 = 𝑑(H − F(2)) − 𝑑(H − F(1)) (1) 

When  = 0, the protons of one chain are exactly in the 

center of the F–F distance. 

2.2 Quantum Thermal Bath Path-Integral Molecular 

Dynamics Simulation 

NQE cannot be neglected in HF and DF and can be 

accounted for by using the path-integral (PI) 

formalism.6,7 In this formulation of quantum 

statistical mechanics, the canonical partition function 

𝑍 is written as a discretized imaginary time path 

integral. For a quantum system containing 𝑁 

(distinguishable) particles of mass 𝑚, 𝑍 can be 

expressed according to: 

𝑍 = lim
𝑃→∞

(
2𝜋 𝑚 𝑃 𝑘𝐵𝑇

ℎ2
)

3𝑁𝑃

2
×

∫ 𝑒
−𝛽𝑉𝑒𝑓𝑓({𝐫𝑁}

(1)
,…,{𝐫𝑁}

(𝑃)
){𝑑𝐫𝑁}(1) ⋯ {𝑑𝐫𝑁}(𝑃) (2) 

The integral is over 𝑃 (Trotter number) replicas of the 

system, labelled by the integer s, each replica being a 

set of N positions of the atoms {𝐫𝑁}(𝑠) = (𝐫1
(𝑠)

, … , 𝐫𝑁
(𝑠)

). 

These replicas come from the discretization of the PI 

in imaginary time. The effective potential 𝑉𝑒𝑓𝑓 which 

depends on all atomic positions of all replicas is 

composed of two terms, the physical potential energy, 

𝑉, computed in each replica and averaged over them, 

and a harmonic coupling term, of angular frequency 

𝜔𝑃 = √𝑃/𝛽ℏ, between replicas: 

𝑉𝑒𝑓𝑓({𝐫𝑁}(1), … , {𝐫𝑁}(𝑃)) = ∑ [
1

𝑃
𝑉({𝐫𝑁}(𝑠)) +𝑃

𝑠=1

∑
1

2
𝑚𝜔𝑃

2 (𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

)
2

𝑁
𝑖=1 ]  (3) 

This effective potential has the particularity to 

depend on the atomic masses and on the temperature. 

Each particle 𝑖 of the replica 𝑠 is thus interacting 

through harmonic forces with the particles 𝑖 of the 

replicas (𝑠 + 1) and (𝑠 − 1), forming a polymer ring that 

closes on itself by periodic boundary conditions, 

𝐫𝑖
(𝑃+1)

= 𝐫𝑖
(1). In the limit where the Trotter number 𝑃 →

∞, this equivalent classical system has the same 

partition function as that of the quantum system. As a 

consequence, MD simulation can be applied to the 

classical equivalent to numerically estimate the static 

properties of the quantum system. For a PIMD 

simulation in the microcanonical ensemble, the 

corresponding equation of motion of each particle 𝑖 in 

each replica 𝑠 writes 

𝑚 𝐫̈𝑖
(𝑠)

= −
1

𝑃
∇

𝐫𝑖
(𝑠) 𝑉({𝐫𝑁}(𝑠)) − 𝑚𝜔𝑃

2 (2𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

− 𝐫𝑖
(𝑠−1)

) 

  (4) 

In practical PIMD simulations, the Trotter number is 

finite, and must be chosen to converge the estimated 

quantities. For instance, the average total energy of 

the system is given by the following estimator: 
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〈𝐸〉 = 〈∑ ∑
(𝐩𝑖

(𝑠)
)

2

2𝑚

𝑁
𝑖=1

𝑃
𝑠=1 − ∑ ∑

1

2
𝑚𝜔𝑃

2 (𝐫𝑖
(𝑠)

− 𝐫𝑖
(𝑠+1)

)
2

𝑁
𝑖=1

𝑃
𝑠=1 〉 +

〈∑
1

𝑃
𝑉({𝐫𝑁}(𝑠))𝑃

𝑠=1 〉  (5) 

where the first and second averages are the kinetic 

and the potential energies, respectively. This 

primitive estimator can be derived from − 𝜕𝐿𝑛(𝑍) 𝜕𝛽⁄ . 

Exact results can be obtained by PIMD simulations 

but often at the price of a high computational cost. 

The quantum thermal bath (QTB) MD8 is an 

approximate alternative method including the 

quantum fluctuations, and is based on a modification 

of the Langevin thermostat.9 The cartesian 

component 𝛼 of the random force, 𝑅𝑖𝛼, applied on the 

atom 𝑖, is not a white noise and its power spectral 

density, 𝐼𝑅, is derived from the quantum dissipation-

fluctuation theorem,10 and is related to the Fourier 

transform of the autocorrelation function, 

〈𝑅𝑖𝛼(𝑡)𝑅𝑖𝛼(𝑡 + 𝜏)〉, according to the Wiener−Khinchin 

theorem: 

〈𝑅𝑖𝛼(𝑡)𝑅𝑖𝛼(𝑡 + 𝜏)〉 = ∫ 𝐼𝑅(𝜔, 𝑇) exp(−𝑖𝜔𝜏)
d𝜔

2𝜋

+∞

−∞
 (6) 

𝐼𝑅(𝜔, 𝑇) =  2𝑚 𝛾 𝜃(𝜔, 𝑇)  (7) 

where 𝛾 is the frictional coefficient. 𝜃(𝜔, 𝑇) is the 

average energy of the harmonic oscillator: 

𝜃(𝜔, 𝑇) = ℏ𝜔 [
1

2
+

1

exp(𝛽ℏ𝜔)−1
]  (8) 

where 𝜔 is the angular frequency of the oscillator, ℏ is 

the reduced Planck constant and 𝛽 the statistical 

temperature (1 𝑘𝐵𝑇⁄ ). The equation of motion is thus: 

𝑚 𝐫̈𝑖 = −𝛁𝐫𝑖
𝑉({𝐫𝑁}) − 𝑚𝛾𝐫̇𝑖 + 𝐑𝑖  (9) 

In contrast to the Langevin thermostat, 𝐼𝑅 is 𝜔-

dependent and the random force components are 

generated using the procedure detailed in Ref. 11 and 

12). The QTB method provides exact results in the 

case of purely harmonic systems. For anharmonic 

systems and as for all methods based on classical 

trajectories,13 QTB-MD can fail due to zero-point 

energy leakage (ZPEL), which is the consequence of 

the coupling between vibrational modes. In this case, 

the resulting energy distribution does not match Eq. 

(8), it is intermediate between the quantum 

distribution and the classical homogeneous 

distribution. Weakly anharmonic systems can be 

successfully simulated by QTB-MD by increasing the 

value of 𝛾, whereas for strongly anharmonic systems 

the ZPEL cannot be suppressed and QTB-MD should 

not be used. 

It is thus suitable to combine the QTB and PIMD,14 in 

a way similar to that developed by Ceriotti et al.15 in 

order to improve the convergence of the PIMD and/or 

to correct potential failures of the QTB-MD technique 

especially in the case of strongly anharmonic systems. 

This combination requires the modification of the 

power spectral density of the random forces applied 

on each atom of each replica. Indeed, for not 

converged Trotter number, quantum fluctuations are 

already partially included within the ring polymer of 

the PIMD. The QTB random forces will thus only bring 

the missing part of the NQE which is dependent on the 

Trotter number. In practice, 𝜃(𝜔, 𝑇) in Eq. (7) is 

replaced by the adequate function 𝜅𝑃(𝜔, 𝑇), which is 

solution of the following equation 

1

𝑃

𝑘𝐵𝑇

𝑚 𝜔𝑘=0
2 +

1

𝑃
∑

𝜅𝑃(𝜔𝑘,𝑇)

𝑚 𝜔𝑘
2

𝑃−1
𝑘=1 =

𝜃(𝜔,𝑇)

𝑚 𝜔2  (10) 

where 𝜔𝑘 is the angular frequency of the normal 

modes of the ring polymer in the harmonic 

approximation: 

𝜔𝑘
2 =

𝜔2

𝑃
+ 4𝜔𝑃

2 sin2 (
𝑘𝜋

𝑃
)  (11) 

For the normal modes at 𝑘 > 0, the power spectral 

density is thus given by: 

𝐼𝑅(𝜔, 𝑇) =  2𝑚 𝛾 𝜅𝑃(𝜔, 𝑇)  (12) 

whereas the normal mode at 𝑘 = 0 (centroid of the 

ring polymer) is classically considered (2𝑚 𝛾 𝑘𝐵𝑇). 

Since the corresponding random forces are intended 

to be applied to the normal modes, the random forces 

applied on the atoms are obtained through an 

orthogonal transformation which can be found in Ref. 

14. 

2.3 Computational details 

The proton/deuteron transfers require the quantum 

mechanical description of the electronic structure 

that allows for the breaking and the formation of the 

chemical and hydrogen bonds. This description is 

achieved by using density-functional theory (DFT) 

calculations within the GGA-PBE functional.16 We 

employed the ABINIT code17 and our simulations are 

performed in the framework of the projector 
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augmented-wave (PAW) method.18-20 We used, in all 

the MD simulations, an 8-molecules supercell 

consisting of 1 × 2 × 1 orthorhombic cells of 4 HF (DF) 

molecules, containing two zig-zag chains along the y 

direction. The Brillouin zone of this supercell is 

sampled with a 4 × 2 × 3 Monkhorst-pack k-point 

mesh, and the plane-wave cut-off is set to 30 hartrees; 

in the augmentation regions it is set to 60 hartrees for 

the density. The lattice constants of the supercell are 

maintained fixed in all the MD runs, based on the 

values found by structural optimization of the 

primitive cell, i.e. 𝑎 = 4.080 Å, 𝑏 =  4.062 Å and 

𝑐 =  5.615 Å. 

The QTB-PIMD technique, we implemented in the 

parallel version of the ABINIT code,17,19 was used to 

simulate the proton (deuteron) transfers in HF (DF) 

with a Trotter number 𝑃 =  56, for which the 

calculations were converged. This simulation 

provides a description based on the atomic-position 

probability density at equilibrium and cannot give 

any information about the kinetics of the process. The 

simulations were carried out, with the static lattice 

constants, at 𝑇 =  100 K in the canonical (NVT) 

ensemble through the QTB thermostat. The nuclear 

masses were taken at 1 amu for H, 2 amu for D and 19 

amu for F. The time step and the effective frictional 

coefficient were set at 𝛿𝑡 =  0.726 fs and 𝛾 =  2 THz. The 

systems were equilibrated for about 2-3 ps, and once 

equilibrated, averages were computed along runs of 

about 25 ps and 74 ps as long for HF and DF, 

respectively. 

3 Results 
3.1 Static calculation 

The first step of the investigation was the static 

calculation of the collective proton transfer. It 

consists in the determination at 𝑇 = 0 K of the free 

energy along the reaction coordinate given by Eq. (1). 

The protons within one chain simultaneously flip 

between the covalent and the hydrogen bonds. 

We computed the static energy profile, that is 

experienced by the protons of one chain, by using the 

Nudged Elastic Band method21 implemented in the 

ABINIT code. The result thus obtained is shown by the 

open circles in Fig. 2. This symmetric double-well 

energy profile can be expressed through the relation: 

 

 
Fig. 2   Double-well energy profile normalized for one proton as a 
function of the reaction coordinate,  (Eq. (1)). Open circles: static 
free energy computed by the Nudged Elastic Band method 
implemented in ABINIT; solid line: result of the fitting on the open 
circles of the parameters 𝑉0 and 

0
 of 𝑉() in Eq. (2). The 

evolution of the distance between the first and second neighbours 
of the proton, 𝑑(F − F), is also displayed as a function of . 

𝑉() = 𝑉0 [1 − ( 
0

⁄ )
2

]
2
  (13) 

The values of the two parameters 𝑉0 and 0 have been 

fitted on the calculated energy profile. The height of 

the barrier is 𝑉0 = 29.2 meV and the distance between 

the two wells is 2 
0

=  0.73 Å. Fig. 2 also displays the 

atomic configurations associated to the two energy 

minima,  =  0, and to the saddle point,  = 0. 

Moreover, during the transfer, the distance between 

the first and second neighbours of the proton, 𝑑(𝐹 −

𝐹), varies and reaches a minimum value at  = 0. The 

amplitude of variation of this distance is 0.077 Å. Such 

a correlation between the two coordinates,  and 

𝑑(𝐹 − 𝐹), is clearly evidenced by the two-dimensional 

energy surface shown in Fig. 3. 

3.2 Probability density for collective proton transfer 

The probability densities,  , computed by QTB-PIMD 

for the proton/deuteron in HF/DF along the reaction 

coordinate,  , are given in Fig. 4. The probability 

density for DF (blue distribution) displays two 

maxima. This indicates that the deuterons flip 
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between two stable positions due to the barrier 

crossing through the tunnel effect. This effect is 

important as shown by the value of  =  0.61 Å-1 at  =

0. Without this effect, i.e. in the classical regime, the 

system would remain in one of the two potential 

energy minima as obtained by standard MD (grey 

peak). Another significant impact of quantum effects 

is the negative shift of the stable position by about 

−0.1 Å. In the case of HF (red distribution), the only 

most probable position is around  = 0, meaning that 

the protons are located at mid-distance between their 

two first fluoride neighbours. Hence, the image of 

protons linked to the two fluoride ions by a covalent 

bond and a H-bond probably no longer holds. In fact, 

protons are linked to the two fluoride ions by two 

equivalent bonds. It is a case of symmetrization of the 

hydrogen bond22 occurring when the proton zero-

point energy is above the barrier top.23 The 

comparison of the probability densities of HF and DF 

clearly evidences an important isotope effect.  

 

 
Fig. 3   Energy surface normalized for one proton as a function of 
the reaction coordinate  and 𝑑(F − F), as obtained by a static 
calculation without any relaxation of the atomic positions on the 
Bm21b structure. The energy path of Fig. 2 is displayed by the red 
dashed line. 

 

Fig. 4   Probability density, , at 𝑇 = 100 K for the proton in HF 
(red lines) or deuteron in DF (blue lines) as a function of the 
reaction coordinate  (Eq. (1)). Solid lines: QTB-PIMD, 𝑃 = 56; red 
dashed-line: PIMD, 𝑃 = 128; blue dashed-line: QTB-MD, 
  =  410−3 a.u. The light-grey line is the probability density as 
obtained by standard MD without NQE. 

 

Note that the PIMD probability density for HF, 𝜌, 

requires 128 replicas (red dashed-line) to approach 

the converged QTB-PIMD result, 𝜌0. The discrepancy 

between the two curves can be evaluated by 

calculating the divergence factor, 𝑑𝜌: 

𝑑𝜌 = [
∫(𝜌−𝜌0)2 𝑑

∫ 𝜌0
2 𝑑

]
1/2

  (14) 

which is similar to the reliability factor used in the 

Rietveld method.24 Its value is  𝑑𝜌 ≈  3%. In addition, 

QTB-MD with a very high value of the friction 

coefficient provides an approximate distribution for 

DF (blue dashed-line) which is qualitatively similar to 

the QTB-PIMD probability density but the tunnelling 

effect is underestimated. The divergence factor with 

respect to the QTB-PIMD result is  𝑑𝜌 ≈  12%. 

The simulated probability density along the reaction 

coordinate, , using the centroid positions at 𝑇 =  100 K 

can be used to determine the effective free energy 

profiles25 for proton/deuteron. These profiles are 

displayed in Fig. 5 as a function of the reaction 

coordinate, . The effective barrier height is lowered 

through tunnelling for DF (blue line). Its decrease is 

about 40% with respect to the static barrier height 

(29.2 meV). For HF (red line) the proton behaves as if 

there was no barrier, indicating that the proton zero-

point energy is above the barrier top. 

3.3 Radial distribution functions 

 
Fig. 5   Energy profiles normalized for one proton/deuteron as a 
function of the reaction coordinate,  (Eq. 1). Simulated free 
energy profiles at 𝑇 =  100 K in HF (red line) and DF (blue line) 
deduced from the probability densities,  

𝑐
, using the centroid 
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positions (QTB-PIMD, 𝑃 =  56) through the expression 
− 𝑘𝐵𝑇 ln(𝑐 𝑚𝑎𝑥

⁄ ), where  𝑚𝑎𝑥  is the maximum value of the 
probability density. Black line: static double-well energy, 𝑉(), of 
Fig. 2. 

 

Fig. 6 displays the radial distribution functions, 𝑔(𝑟), 

obtained from QTB-PIMD trajectories at 𝑇 =  100 K. 

The H–F and D–F 𝑔(𝑟) show peaks in the 0.8–1.6 Å 

range. For DF (blue curve of Fig. 6a), the first peak at 

1.04 Å and the second peak at 1.33 Å correspond to 

the covalent and hydrogen bonds, respectively. In 

comparison to the classical case (grey curve of 

Fig. 6a), the covalent bond length is slightly enlarged 

while that of the H-bond is greatly shrinked. Indeed, 

quantum fluctuations probe the anharmonic region of 

the potential energy and are more relevant for 

shallow energy profiles. The hydrogen bond is 

weaker than the covalent one and therefore more 

sensitive to quantum effects. This quantum effect is 

more pronounced in the crystal with the lighter 

isotope (red curve of Fig. 6a) and leads to a single 

peak at 1.1 Å, which corresponds to a symmetrization 

of the hydrogen bond. Note also that the increase of 

the hydrogen bond length with deuteration is known 

as the Ubbelohde effect.26 

The 𝑔(𝑟) of Fig. 6b indicates that the F–F distance 

between the first and second neighbours of H 

(2.346 Å) and D (2.371 Å) is shortened in both crystals 

due to quantum fluctuations. The overall decrease of 

the F–H–F length corresponds to a large decrease of 

the H-bond length and an increase of the length of the 

covalent bond. The discrepancy with respect to the 

MD result (grey curve) is about -0.054 Å and -0.033 Å 

for HF and DF, respectively. In the case of HF, our 

value is larger than the one (-0.035 Å) found by Li et 

al.5 showing that their PIMD calculation was not fully 

converged, since they used a too small number of 

replicas (𝑃 = 16). Moreover, our PIMD calculations 

showed that 𝑃 = 16 is not sufficient to have the H-bond 

symmetrization, and provides a probability density 

with two maxima. On the other hand, these authors 

point out the correct effect, i.e. that in strong H-

bonded systems, as HF, NQE result in shorter H-

bonds. 

The effect of deuteration on the F–F distance has been 

estimated from neutron powder diffraction on DF at 

𝑇 =  85 K by Johnson et al.27 (2.51±0.02 Å) and from X-

ray diffraction on HF at 𝑇 =  148 K by Atoji et al.28 

(2.49±0.01 Å). It results in an elongation of the F–F 

distance of about 0.02 Å which is satisfactorily 

reproduced by our QTB-PIMD simulations, 0.025 Å, at 

𝑇 =  100 K. 

In contrast, the 𝑔(𝑟) for H–H and D–D of Fig. 6c display 

a rather small impact of quantum effects on the first 

peak, resulting in a slight shift (-0.03 Å) and widening 

with respect to the classical case. 

3.4 Crystal structure 

The centroid position distributions of the 

protons/deuterons in the bc plane at 𝑇 =  100 K in 

HF/DF are displayed in Fig. 7. Here, all the 

protons/deuterons positions are explicitly shown. In 

HF, the symmetrization clearly occurs for all the 

hydrogen bonds leading to the Bmmb space group 

symmetry. In contrast, all the deuterons in DF occupy 

two favoured positions, in between their two 

neighbours, to which they are bonded either by a 

covalent bond or a H-bond. Moreover, one can note 

that the zigzag chain structure is antiparallel with 

respect to the orientations of the covalent bonds. This 

corresponds to the Pmnb space group symmetry. It is 

important to mention that the detailed analysis of the 

simulation trajectory shows that only 65% of the 

configurations are in the antiparallel structure. 

Moreover, within the statistical accuracy of the 

computation, the antiparallel and parallel structures 

could have the same probability. We note, that 

although our conclusion on the antiparallel chain 

structure could be correct, it is the opposite of the 

parallel-chain model considered to represent the 

structure in the neutron powder diffraction study on 

DF at 𝑇 =  85 K by Johnson et al.27 

4 Discussion 
Among the possible space groups, Atoji et al.28 

proposed the Bmmb structure for HF at  𝑇 =  148 K 

without any experimental evidence for the location of 

the protons, since they used the X-ray diffraction 

method. In this space group, the authors suggested 
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that the protons occupy either of two equally 

probable positions on both sides of the centre of F–H–

F. However, according to this symmetry the protons 

can occupy the centre of F–H–F, corresponding to the 

symmetrization of the hydrogen bond we observed 

(Fig. 7). The important broadening of the infrared 

absorption bands of HF compared to those of other 

hydrogen halide crystals (HI, HBr and HCl) evidenced 

the presence of very strong hydrogen bonds.29 

 
Fig. 6   Partial radial distribution functions, 𝑔(𝑟), computed at 𝑇 =
100 K in HF (red lines) and DF (blue lines) by QTB-PIMD (𝑃 = 56) 
compared to standard MD (light grey). (a) H-F (D-F), (b) F-F, (c) 
H-H (D-D). The same scale is used for the abscissa axes. 

This experimental observation could be the 

consequence of quantum fluctuations of the proton 

feeling a strongly anharmonic potential energy 

similar to the red energy profile of Fig. 5. 

Nevertheless, the experimental evidence of the 

symmetrization of the H-bond in HF by Raman 

spectroscopy30 was found at pressures higher than 

6 GPa, whereas our computation was carried out at a 

lower pressure. Indeed, the pressure along b, which is 

the relevant axis for the zigzag chain structure is 

about −1 GPa. It is worth noting that the zigzag 

structure of the chains allows the free variation of the 

bond lengths, since the F-H-F-H-F angles (in the bc 

plane) can accommodate the constraint induced by 

the fixed size of the box along b. The pressure shift 

from the experimental value can be interpreted by a 

proton transfer barrier height too low due to the use 

of the PBE functional. Indeed, standard GGA 

functionals are usually thought as underestimating 

proton transfer barriers, at least for molecules in the 

gas phase31 and to a lesser extent for single proton 

transfers in some bulk materials.23,32 This 

underestimation is attributed to a self-interaction 

error.33 In water, the PBE functional can also reverse 

the sign of the isotope fractionation between liquid 

and vapour through an important softening of the 

covalent bond.34 However, recent works35-37 

moderate this trend since in some 2D or 3D hydrogen 

bond networks, proton transfer barriers as described 

by PBE are in good agreement with barriers obtained 

by more sophisticated functionals such as PBE0 or 

HSE. In the present 1D hydrogen bond network, a 

slight underestimation of the proton transfer barrier 

height may thus be expected, in relation with a 

slightly too strong hydrogen bond, which is reflected 

in the underestimation of the b lattice constant by ~ 

5% within PBE. In addition, Zhang et al.38 found the 

symmetrization of the H-bond at 25 GPa within a 

static calculation by DFT at 𝑇 =  0 K. They claim an 

excellent agreement with experiment30 despite the 

absence of any NQE. This agreement probably results 

from the fact that the error of PBE on the transfer 

barrier would be cancelled by the absence of NQE in 

the calculation. 

In the case of DF, no symmetrization of the H-bond is 

found neither in our computation (pressure along b 

of −0.6 GPa) nor by experimental Raman spectroscopy 

at pressures up to 12 GPa.30 

5 Conclusions 
NQE in the HF and DF crystals have been investigated 

by QTB-PIMD simulation at 𝑇 = 100 K. An important 

isotope effect on the proton position disorder has 

been observed. 
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We have evidenced a collective deuteron transfer in 

the zigzag chains of molecules located in the (a,b) 

plane of the orthorhombic structure. The deuterons 

within a chain simultaneously flip between covalent 

and hydrogen bonds. Correlatively, the distances 

between their two first fluoride neighbours vary and 

reach a minimum value at the saddle point. The height 

of the associated static barrier normalized for one 

deuteron is 29.2 meV between the two wells 

corresponding to a deuteron hopping length of about 

0.36 Å. The simulated probability density for DF 

indicates that the deuterons cross the barrier through 

tunnelling. The effective barrier height is then 19 meV 

and the associated hopping length is 0.29 Å. In 

addition, with a probability of 65% the zigzag chain 

structure in DF was found to be antiparallel with 

respect to the orientations of the covalent bonds. 

 

 
Fig. 7   Centroid position distributions of all protons/deuterons in 
the crystallographic bc plane at 𝑇 =  100 K in HF (upper part) and 
DF (lower part), as obtained from equilibrium QTB-PIMD 
trajectories. The mean positions of the F atoms are shown by the 
green spheres. 

In the case of HF, the protons are located in the centre 

of the F–F distance resulting in a symmetrization of all 

the hydrogen bonds. This indicates that the proton 

zero-point energy is above the barrier top. As 

expected, the NQE are more pronounced in the HF 

crystal, owing to the smaller mass of hydrogen. 

Finally, the overall decrease of the shortest heavy-

atom distance in both crystals consists especially in a 

large decrease of the H-bond length. In addition, the 

deuteration results in the (conventional) Ubbelohde 

effect which corresponds to an increase of the 

hydrogen bond length and an elongation of the F–F 

distance. 
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