
HAL Id: hal-02118440
https://hal.science/hal-02118440v1

Submitted on 3 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soyez efficace, rembobinez
Stéphane Devismes, Colette Johnen

To cite this version:
Stéphane Devismes, Colette Johnen. Soyez efficace, rembobinez. ALGOTEL 2019 - 21èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications, Jun 2019, Saint Laurent de la
Cabrerisse, France. �hal-02118440�

https://hal.science/hal-02118440v1
https://hal.archives-ouvertes.fr

Soyez efficace, rembobinez †

Stéphane Devismes1 et Colette Johnen2

1VERIMAG, Université Grenoble Alpes Grenoble, France - Stephane.Devismes@univ-grenoble-alpes.fr
2LaBRI, Université de Bordeaux, Bordeaux, France - Colette.Johnen@labri.fr

Nous proposons un algorithme, appelé SDR, qui réinitialise de manière autostabilisante et totalement distribuée un
réseau anonyme, lorsque c’est nécessaire, i.e., chaque processus, détectant localement une anomalie, peut déclencher
une réinitialisation. SDR est coopératif au sens où il coordonne les réinitialisations concurrentes afin de gagner en effi-
cacité. Nous utilisons SDR pour rendre autostabilisant des algorithmes distribués. Notre approche permet de résoudre
efficacement à la fois les problèmes statiques et dynamiques, comme le montrent les deux exemples d’algorithme
utilisant SDR que nous proposons. Un rapport technique en ligne (arxiv.org/abs/1901.03587) présente de
manière détaillée l’ensemble des résultats (corrections et complexités) de cet article.

Mots-clefs : autostabilisation, réinitialisation, compilateur autostabilisant, unisson, alliance.

1 Introduction
A self-stabilizing algorithm is able to recover a correct behavior in finite time, regardless of the arbitrary
initial configuration of the system, and therefore also after a finite number of transient faults. For more than
40 years of researches, many self-stabilizing solutions have been proposed to solve various problems in
various settings. Drawing on this experience, general algorithms, so-called transformers or compilers, that
make distributed algorithms self-stabilizing have been proposed. Many transformers, e.g., [6, 2], are based
on reset algorithms. Such algorithms are initiated when an inconsistency is discovered in the network,
and aim at reinitializing the system to a correct (pre-defined) configuration. A reset algorithm may be
centralized at a leader process, or fully distributed, meaning multi-initiator (as our proposal here). In the
fully distributed case, resets are locally initiated by processes detecting inconsistencies. This latter approach
is considered as more efficient when the concurrent resets are coordinated. In other words, concurrent resets
have to be cooperative to ensure the fast convergence of the system to a consistent global state.

Self-stabilization makes no hypotheses on the nature or extent of transient faults that could hit the system,
and a self-stabilizing system recovers from the effects of those faults in a unified manner. Now, such versa-
tility comes at a price, e.g., after transient faults cease, there is a finite period of time, called the stabilization
phase, during which the safety properties of the system are violated. Hence, self-stabilizing algorithms are
mainly compared according to their stabilization time, the maximum duration of the stabilization phase.

General schemes and efficiency are usually understood as orthogonal issues. In this paper we tackle this
problem by proposing an efficient self-stabilizing reset algorithm working in any anonymous connected
network. Our algorithm is written in the atomic-state model, where executions proceed in atomic steps (in
which a subset of enabled processes move, i.e., update their local states) and the asynchrony is captured
by the notion of daemon. The most general daemon is the distributed unfair daemon. Hence, solutions
stabilizing under such an assumption are highly desirable, because they work under any other daemon
assumption. The stabilization time is usually evaluated in terms of rounds, which capture the execution time
according to the speed of the slowest processes. Another crucial issue is the number of local state updates,
i.e. the number of moves. Indeed, the stabilization time in moves captures the amount of computations an
algorithm needs to recover a correct behavior. There are many self-stabilizing algorithms proven under the

†This study has been supported by the ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE (ANR-16 CE25-0009-03).

arxiv.org/abs/1901.03587

Stéphane Devismes et Colette Johnen

distributed unfair daemon. However, analyzes of the stabilization time in moves is rather unusual and this
is an important issue. Indeed, recently, several self-stabilizing algorithms which work under a distributed
unfair daemon have been shown to have an exponential stabilization time in moves in the worst case, e.g.,
the silent leader election algorithms from [4] (see [1]).

Contribution. We propose an efficient self-stabilizing reset algorithm, called SDR, working in any anony-
mous connected network. SDR is written in the atomic-state model, assuming a distributed unfair daemon.
It is based on local checking and is multi-initiator. Concurrent resets are locally initiated by processes
detecting inconsistencies, these latter being cooperative to gain efficient. SDR makes an input algorithm
recovering a consistent global state within at most 3n rounds, where n is the number of processes. During
a recovering, any process executes at most 3n+3 moves. Our reset algorithm allows to build efficient self-
stabilizing solutions for various problems and settings. In particular, it applies to both static and dynamic
specifications. In the static case, the self-stabilizing solution we obtain is also silent: a silent algorithm
converges within finite time to a configuration from which the values of the communication registers used
by the algorithm remain fixed. The silent property usually implies more simplicity in the algorithm design.
Moreover, a silent algorithm usually utilize less communication operations and communication bandwidth.
To illustrate the efficiency of our method, we propose two efficient reset-based self-stabilizing algorithms,
respectively solving the (asynchronous) unison problem in anonymous networks and the 1-minimal (f ,g)-
alliance in identified networks; see Section 3.

2 Self-Stabilizing Distributed Reset
The code of SDR is given in Algorithm 1. SDR aims at reinitializing an input algorithm I when necessary.
SDR is self-stabilizing in the sense that the composition of I and SDR, noted I ◦ SDR, is self-stabilizing for
the specification of I. Actually, I ◦ SDR is the distributed algorithm where the local program (I ◦ SDR)(u),
for every process u, simply consists of all variables and rules of both I(u) and SDR (u).

Algorithm SDR works in anonymous connected networks and is multi-initiator: a process u can initiate
a reset whenever it locally detects an inconsistency in I, i.e., whenever the predicate ¬P ICorrect(u)
holds (i.e., I is locally checkable). So, several resets may be executed concurrently. In this case, they
are coordinated: a reset may be partial since we try to prevent resets from overlapping. To that goal, each
process u maintains two variables in Algorithm SDR: stu ∈ {C,RB,RC}, the status of u with respect to the
reset, and du ∈N, the distance of u in a reset.

Variable stu. If u is not currently involved into a reset, then it has status C, which stands for correct. Oth-
erwise, u has status either RB or RF , which respectively mean reset broadcast and reset feedback. Indeed, a
reset is based on a (maybe partial) Propagation of Information with Feedback (PIF) where processes reset
their local state in I (using the macro reset) during the broadcast phase. When a reset locally terminates
at process u (i.e., when u goes back to status C by rule C(u)), each member v of its closed neighborhood
satisfies P reset(v) (n.b., we denote by N(u) the set of u’s neighbors, so N(u)∪{u} is the closed neighbor-
hood of u), meaning that they are all in a pre-defined initial state of I. At the global termination of a reset,
every process u involved into that reset has a state in I which is consistent w.r.t. that of its neighbors, i.e.,
P ICorrect(u) holds. Notice that, to ensure that P ICorrect(u) holds at the end of a reset and for liveness
issues, we enforce each process u stops executing I whenever a member of its closed neighborhood (in
particular, u itself) is involved into a reset: whenever ¬P Clean(u) holds, u is not allowed to execute I.

Variable du. This variable is meaningless when u is not involved into a reset (i.e., stu = C). Otherwise,
the distance values are used to arrange processes involved into resets as a Directed Acyclic Graph (DAG).
This distributed structure allows to prevent both livelock and deadlock. Any process u initiating a reset
(using rule rule R(u)) takes distance 0. Otherwise, when a reset is propagated to u (i.e., when rule RB(u)
is executed), du is set to the minimum distance of a neighbor involved in a broadcast phase plus 1.

Sample Execution. Assume the system starts from a configuration where stu =C, for every process u. A
process u detecting an inconsistency in I (i.e., when ¬P ICorrect(u) holds) stops executing I and initiates
a reset using rule R(u), unless one of its neighbors v is already broadcasting a reset, in which case it joins

Soyez efficace, rembobinez

Algorithm 1 Algorithm SDR, code for every process u
Inputs:
• P ICorrect(u), P reset(u) : predicates from the input algorithm I
• reset(u) : macro from the input algorithm I

Variables: stu ∈ {C,RB,RF}, du ∈N
Predicates:
• P Correct(u) ≡ stu =C⇒ P ICorrect(u)
• P Clean(u) ≡ ∀v ∈ N(u)∪{u}, stu =C
• P R1(u) ≡ stu =C∧¬P reset(u) ∧ (∃v ∈ N(u) | stv = RF)
• P RB(u) ≡ stu =C∧ (∃v ∈ N(u) | stv = RB)
• P RF(u) ≡ stu = RB∧P reset(u) ∧ [∀v ∈ N(u), (stv = RB ∧ dv ≤ du) ∨ (stv = RF ∧P reset(v))]
• P C(u) ≡ stu = RF ∧ [∀v ∈ N(u)∪{u}, P reset(v) ∧ ((stv = RF ∧dv ≥ du)∨ (stv =C))]
• P R2(u) ≡ stu 6=C∧¬P reset(u)
• P Up(u) ≡ ¬P RB(u)∧ (P R1(u)∨P R2(u) ∨ ¬P Correct(u))

Rules:
rule RB(u) : P RB(u) → stu := RB; du := argmin(v∈N(u) ∧ stv=RB)(dv)+1; reset(u);
rule RF(u) : P RF(u) → stu := RF ;
rule C(u) : P C(u) → stu :=C;
rule R(u) : P Up(u) → stu := RB; du := 0; reset(u);

the broadcast of some neighbor by rule RB(u). To initiate a reset, u sets (stu,du) to (RB,0) meaning that
u is the root of a reset, and resets its I’s variables to an pre-defined state of I, which satisfies P reset(u),
by executing the macro reset(u). Whenever a process v has a neighbor involved in a broadcast phase of a
reset (status RB), it stops executing I and joins an existing reset using rule RB(v), even if its state in I is
correct, (i.e., even if P ICorrect(v) holds). To join a reset, v also switches its status to RB and resets its I’s
variables (reset(v)), yet it sets dv to the minimum distance of its neighbors involved in a broadcast phase
plus 1. Hence, if the configuration of I is not legitimate, then within at most n rounds, each process receives
the broadcast of some reset. Meanwhile, processes (temporarily) stop executing I until the reset terminates
in their closed neighborhood thanks to the predicate P Clean.

When a process u involved in the broadcast phase of some reset realizes that all its neighbors are involved
into a reset (i.e., have status RB or RF), it initiates the feedback phase by switching to status RF , using
rule RF(u). The feedback phase is then propagated up in the DAG described by the distance value: a
broadcasting process u switches to the feedback phase if each of its neighbors v has not status C and if
dv > du, then v has status RF . This way the feedback phase is propagated up into the DAG within at most
n additional rounds. Once a root of some reset has status RF , it can initiate the last phase of the reset: all
processes involves into the reset has to switch to status C, using rule C, meaning that the reset is done.
The values C are propagated down into the reset DAG within at most n additional rounds. A process u can
executing I again when all members of its closed neighborhood (that is, including u itself) have status C,
i.e., when it satisfies P Clean(u).

Hence, overall in this execution, the system reaches a configuration γ where all resets are done within
at most 3n rounds. In γ, all processes have status C. However, process has not necessarily kept a state
satisfying P reset (i.e., the initial pre-defined state of I) in this configuration. Indeed, some process may
have started executing I again before γ. However, the predicate P Clean ensures that no resetting process
has been involved in these latter (partial) executions of I. Hence, SDR ensures that all processes are in
I’s states that are coherent with each other from γ. That is, γ is a so-called normal configuration, where
P Clean(u)∧P ICorrect(u) holds for every process u.

Stabilization of SDR. If a process u is in an incorrect state of Algorithm SDR (i.e., if P R1(u)∨P R2(u)
holds), we proceed as for inconsistencies in Algorithm I. Either it joins an existing reset (using rule RB(u))
because at least one of its neighbors is in a broadcast phase, or it initiates its own reset using rule R(u).
Notice also that starting from an arbitrary configuration, the system may contain some reset in progress.
However, similarly to the typical execution, the system stabilizes within at most 3n rounds to a normal
configuration. Finally, Algorithm SDR is also efficient in moves. Such an efficiency is mainly due to
the coordination of the resets which, in particular, guarantee that if a process u is enabled to initiate a reset

Stéphane Devismes et Colette Johnen

(P Up(u)) or the root of a reset with status RB, then it satisfies this disjunction since the initial configuration.

Requirements on I. According to the previous explanation, I should satisfy the following prerequisites:
1. I should not write into the variables of SDR, i.e., variables stu and du, for every process u.
2. For each process u, I should provide the two input predicates P ICorrect(u) and P reset(u) to SDR,

and the macro reset(u). Those inputs should satisfy:
(a) P ICorrect(u) does not involve any variable of SDR and is closed by I.
(b) P reset(u) involves neither a variable of SDR nor a variable of a neighbor of u.
(c) If ¬P ICorrect(u)∨¬P Clean(u) holds (n.b. P Clean(u) is defined in SDR), then no rule of I

is enabled at u.
(d) If P reset(v) holds, for every process in its closed neighborhood, then P ICorrect(u) holds.
(e) If u performs a move of SDR where it in particular modifies its variables in I only by executing

reset(u) (only), then P reset(u) holds in the resulting configuration.

3 SDR-Based Applications
To show the efficiency of our method, we have proposed two SDR-based self-stabilizing algorithms.

(f ,g)-alliance. Given a graph G = (V,E), and two non-negative integer-valued functions on processes
f and g, a subset of processes A ⊆ V is an (f ,g)-alliance of G if and only if every process u /∈ A has
at least f (u) neighbors in A, and every node v ∈ A has at least g(v) neighbors in A. The (f ,g)-alliance
problem is the problem of finding a subset of processes forming an (f ,g)-alliance of the network. The
(f ,g)-alliance problem is a generalization of several problems, e.g., the k-domination problem is a (k,0)-
alliance. The minimum (f ,g)-alliance problem is N P -hard. Here, we consider the problem of finding a
1-minimal (f ,g)-alliance. The set A is a 1-minimal (f ,g)-alliance if deletion of just one member of A
causes A to be no more an (f ,g)-alliance. Our self-stabilizing 1-minimal (f ,g)-alliance algorithm is silent.
Its stabilization time is in O(n) rounds and O(∆.n.m) moves, where D is the network diameter and m is the
number of edges in the network. Until now there was no self-stabilizing algorithm solving that problem
without any restriction on f and g.

Unison. We have then considered the problem of (asynchronous) unison. This problem is a clock syn-
chronization problem: each process u holds a variable called clock. Each process should increment its
clock infinitely often (liveness). Moreover, the difference between clocks of every two neighbors should be
at most one increment at each instant (safety). We consider here periodic clocks, i.e., the clock incremen-
tation is modulo a so-called period K > n. Our self-stabilizing unison algorithm has a stabilization time in
O(n) rounds and O(∆.n2) moves. Actually, its stabilization times in round matches the one of the previous
best existing solution [3]. However, it achieves a better stabilization time in moves, since the algorithm
in [3] stabilizes in O(D.n3+α.n2) moves (as shown in [5]), where α is greater than the length of the longest
chordless cycle in the network.

References
[1] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader election in polynomial steps.

Inf. Comput., 254:330–366, 2017.

[2] A. Arora and M. G. Gouda. Distributed reset. IEEE Trans. Computers, 43(9):1026–1038, 1994.

[3] C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In PODC’04, pages 150–159,
2004.

[4] A. K. Datta, L. L. Larmore, and P. Vemula. An O(N)-time self-stabilizing leader election algorithm. JPDC,
71(11):1532–1544, 2011.

[5] S. Devismes and F. Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects of Dynamic Distributed
Systems, (TADDS ’12), pages 20–25, 2012.

[6] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. Distributed Computing, 7(1):17–
26, 1993.

	Introduction
	Self-Stabilizing Distributed Reset
	SDR-Based Applications

