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The archaeological record shows that typically human cultural
traits emerged at different times, in different parts of the world,
and among different hominin taxa. This suggests that their emer-
gence is the outcome of complex and non-linear evolutionary
trajectories—influenced by environmental, demographic and so-
cial factors—that need to be understood and traced at regional
scales. The application of predictive algorithms using archaeo-
logical and paleoenvironmental data allows one to estimate the
ecological niches occupied by past human populations and iden-
tify niche changes through time, thus providing the possibility
of investigating relationships between cultural innovations and
possible niche shifts. By using such methods to examine two
key southern Africa archaeological cultures, the Still Bay (76–71
thousand years ago; ka) and the Howiesons Poort (66–59 ka), we
identify a niche shift characterized by a significant expansion in the
breadth of the Howiesons Poort ecological niche. This expansion is
coincident with aridification occurring across Marine Isotope Stage
4 (ca. 72–60 ka) and especially pronounced at 60 ka. We argue
that this niche shift was made possible by the development of
a flexible technological system, reliant on composite tools and
cultural transmission strategies based more on “product copying”
rather than “process copying”. These results counter the one niche-
one human taxon equation. They indicate that what makes our
cultures, and probably those of other members of our lineage,
unique is their flexibility and ability to produce innovations that
allow a population to shift its ecological niche.

Middle Stone Age | Still Bay | Howiesons Poort | Ecological Niche
Modeling | Paleoclimate

Research on animal behavior has made it clear that culture
represents a second inheritance system that may have changed
the dynamics of evolution on a broad scale (1–3). Understanding
how this process has affected the evolution of our genus is a
major challenge in Paleoanthropology. In what ways, and through
what phases of evolutionary history, has human culture extended
beyond that seen in other species? Were the cultural adaptations
and associated cultural innovations that we observe in the archae-
ological record the direct consequence of our biological evolution
or are they the outcome of mechanisms largely independent of it?
In our lineage, if cultural innovations were directly linked to clas-
sic Darwinian evolutionary processes—such as isolation, random
mutation, selection and speciation—one would expect a clear
correspondence between the emergence of a new species and a
related set of novel cultural behaviors. By shaping a new hominin
species, natural selection would provide this species with a new
cognitive setting resulting in the capacity for particular cultural
innovations or behaviors. Such a mechanism would provide the
possibility for cultural variability but would narrow its range of ex-
pression to the species’ biologically dictated potential. Although
some would still argue that there is a direct link between cultural
behavior and hominin taxonomy and, as a consequence, that the
typically human secondary inheritance system only emerged with

our species, archaeological and paleogenetic research conducted
over the last 20 years challenge such a view.

Firstly, for periods < 200 thousand years ago (ka), it is
difficult to attribute a particular cognition and resulting cul-
tural behavior to a particular fossil species since paleogenetic
evidence shows that significant interbreeding occurred between
Neanderthals, Denisovans, and anatomically modern humans
(AMH) (4–6), thus blurring the concept of fossil species that
many paleoanthropologists had in the past when interpreting
morphological differences between human remains. Each new
round of publications concerning paleogenetics shows that we are
confrontedwith a complex network of genetic relationships rather
than distinct and simple lines of evolutionary descent. There is no
reason to assume that such a pattern did not characterize other
phases of our lineage’s evolution.

Secondly, archaeological discoveries show that the cultural
innovations generally seen as reflecting modern cognition and
behavior did not emerge as a single package in conjunction with
the appearance of our species in Africa. We know that AMH
emerged in Africa between 200–160 ka (ky cal BP) (7–9), but
some behaviors considered as ‘modern’ are present in Africa
before this speciation event. Ochre use appears at around 300
ka (10), and laminar blade production is observed perhaps as
early as 500 ka (11). Other modern cultural traits are only ob-
served in the African archaeological record after ca. 100 ka.
This is the case with heating of stone to facilitate knapping or
retouching, pressure flaked bifacial projectile points, microlithic
armatures, mastic-facilitated hafting of stone tools, formal bone
tools, abstract engravings, the production of paint and pigment
containers, personal ornaments, and primary burials (12–15).
Furthermore, many key cultural innovations are present outside
Africa well prior to AMH dispersal. In Europe, Neanderthals
employed pigment at many sites by at least 250–200 ka. They also
used complex lithic technologies, composite tools, and complex
hafting techniques by at least 180 ka (16). At Bruniquel, France,
Neanderthals broke and moved four tons of stalagmites in order
to build a circular structure deep within a cave 176 ka (17). At
a number of sites, starting at 130 ka they used raptor claws and
feathers, probably for symbolic activities (18, 19). They made
abstract designs on a variety of media (20, 21). Neanderthals in
the Near East and Europe engaged very early in a variety of
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Fig. 1. Map of southern Africa indicating the locations
of Still Bay (red circles) and Howiesons Poort (green
triangles) archaeological sites, the geographical co-
ordinates of which were used as occurrence inputs
to estimate the two cultures’ respective ecological
niches. Sea level depicted at -70 m b.s.l.

Fig. 2. Left: Still Bay artifacts (a: bifacial points made of quartz and silcrete; b: perforated Nassarius kraussianus shell beads; c: bone points and an awl; d:
engraved ochre fragments; e: ochre fragment shaped by grinding. Right: Howiesons Poort artifacts (f: segment made of hornfels, g: segments made of quarzt;
h: flake and segments bearing residues of mastic; i: engraved ostrich egg shells; j: ochre fragments shaped by grinding; k: bone point and awls; a-b: Blombos
Cave; f, g, k: Sibudu Cave; h, I, j: Diepkloof Shelter. Scales = 1 cm. Sources: a (41); b (photos by FdE and CH); c (98); d (12); e (photo by CH); f (53); g (99); h (59);
i (61); j (100); k (55).

funerary practices including deliberate burials with simple grave
goods. The last Neanderthals in Italy and France produced formal
bone tools. They also produced a variety of personal ornaments
consisting of animal teeth, fossils, and marine shells, some of
which were colored with ochre (22, 23). Additionally, isolated oc-
currences of innovative cultural traits are recorded at much older
sites in Europe and Asia (24), and well-established innovations
(e.g., Middle Stone Age shell beads) disappear abruptly from
the archaeological record and similar behaviors later reappear in
different forms and sometimes on different media (14, 25).

This evidence demonstrates that typically modern human
cultural traits emerged at different times, in different parts of the
world, and among different hominin taxa. Such taxa appear more
and more to be the phenotypic expression of a largely shared,
plastic cognition (26, 27), and the emergence of typically human
innovations the result of complex and non-linear evolutionary
trajectories that need to be understood and traced at regional
scales.

It is clear that cultural innovations were triggered by several
interconnected and dynamic factors, likely biological, environ-
mental and cultural. Since speciation does not appear to have
played a role in the emergence of key innovations, we need

to explore the potential for relationships between biology and
culture at the population level, and in particular within those
past African populations that first developed behaviors that in-
corporated suites of these traits. Such an endeavor, though, is
handicapped on the biological side by a sparse Upper Pleistocene
hominin fossil record, the absence of pre-Holocene paleogenetic
data, and a long history of human presence and intra-continental
dispersals that complicate interpretations ofmodern genetic data.
Understanding how AMH were biologically structured in the
Middle Stone Age is also hampered by the fact that, as recently
shown by genetic analyses (6, 28) highlighting the introgression
of archaic genes into the African gene pool, they were certainly
not ubiquitous across the continent. In order to overcome such
limitations, research has focused on better defining the nature
and chronology of the cultural entities that may reflect past
population structure and distributions (29, 30), in addition to doc-
umenting the complexity of innovations recorded in the Middle
Stone Age and exploring their social and cognitive implications
(31–33). Others have attempted to identify a correspondence
between environmental or climatic variability and the emergence
of cultural innovations in the hope of identifying causal links
(34–38). These attempts, though, have no designed means, apart
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Fig. 3. Climate variability during the time interval
90 ka and 40 ka encompassing the Middle Stone
Age cultures Still Bay (76–71 ka: blue rectangle) and
Howiesons Poort (66–59 ka: red rectangle). From
top to bottom: a) Precession index (101); b) NGRIP
δ18O curve on the GICC05 chronology (68); c) Fe/Ca
curve from core CD154-17-17K collected from the
Eastern Cape margin indicating changes in river dis-
charge (38); d) Microcharcoal particle concentration
curve from core MD96-2098 collected off the Orange
River on the western South African margin indicat-
ing changes in fire regime and precipitation (65)
(this study); e) Nama Karoo and Fine-leaved savannah
pollen percentage record from core MD96-2098 indi-
cating changes in precipitation (67); and f) Tempera-
ture curve for Antarctica from the EPICA ice core (102).
Arrows situated between curves (c) and (d) indicate
long-term trends in humidity during the Still Bay and
Howiesons Poort intervals.

from recurrence, with which to verify the hypothesis that climate
may have influenced culture, to identify the suites of environ-
mental parameters (i.e., the ecological niche) within which each
archaeological culture operated, nor to evaluate how these re-
lationships varied through space and time. The emergence of
key cultural innovations in our lineage may reflect changes in
the nature of such relationships. Identifying and disentangling
such relationships is a key challenge for the involved disciplines.
The failure to do so may result in oversimplified scenarios. For
example, Ziegler et al. (38) conclude that cultural innovations
during the Middle Stone Age in southern Africa were triggered
by periods of humidity that produced higher levels of biomass and
consequent increases in human population density. This scenario,
however, only relies on the mean age of each culture and climatic
conditions associated with those means, and it does not take into
consideration the full age range of each recognized archaeologi-
cal culture. Furthermore, their model insinuates hiatuses in the
archaeological record following the post-Howiesons Poort that
are not seen in most southern African archaeological sequences.

In a previous study, we stressed the need to consider the
relationship between past human cultures and environment as a

dynamic process that occurred at a regional level (39). We argued
that to do so, one needs to develop heuristic tools that enable
the quantitative comparison and evaluation of individual cultural
trajectories, their associated behavioural changes through time,
and the mechanisms that operated behind such trends. This may
allow for the identification of points in time during which human
cultures substantially reorganized their second inheritance sys-
tems thusmoving closer to the system characteristic of historically
known and present-day populations.

A regional cultural trajectory can be conceived of as a succes-
sion of cultural packages, which we term cohesive adaptive sys-
tems. A cohesive adaptive system is a cultural entity characterized
by shared and transmitted knowledge reflected by a recognizable
suite of cultural traits that a population uses to operate within
both cultural and environmental contexts (39). This concept dif-
fers from that of ‘technocomplex’ or ‘archaeological culture’, com-
monly employed in archaeology, in that exploited environmental
conditions (i.e., the eco-cultural niche) contribute to the defini-
tion a past cultural adaption. When faced with successive climate
changes, a cohesive adaptive system can conserve, expand, or
contract its ecological niche, with ‘ecological niche’ being defined
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Fig. 4. Ecological niche predictions for the Still Bay (SB) archaeological culture at 72 ka (a, b), the Howiesons Poort (HP) archaeological culture at 66 ka (c, d),
and the HP at 60 ka (e, f) produced with Bioclim and Maxent, respectively.

in the Grinnellian sense as the environmental and resources
conditions suitable for a species or population (40). Associated
cultural traits, and the way in which they were transmitted, may
also evolve in such situations and highlight significant changes in
the way in which culture influenced human populations. Research
strategies have been developed to investigate such interactions.

Predictive algorithms, originally created in the field of ecol-
ogy, are able to estimate the ecological niche occupied by a
past cohesive adaptive system (i.e., the eco-cultural niche) by
using the geographic locations of archaeological sites where
the cohesive adaptive system has been recognized along with
chronologically relevant paleoenvironmental data. Using these
data, the predictive algorithms first identify the environmental
parameters shared among the archaeological sites and define the
relationships between these parameters. These relationships are
then used to estimate a cohesive adaptive system’s ecological
niche. Another important capacity of these algorithms is that
they can be used to examine niches between time periods thereby
allowing one to determine whether or not successive populations

exploited different niches. By comparing the material cultures of
two or more successive cohesive adaptive systems, and taking into
account environmental frameworks within which they operated,
one can evaluate whether or not cultural innovations were a
response to environmental fluctuations. Equally as important,
one can identify the degree of resilience of a cohesive adaptive
system to environmental change.

The goal of this study is to apply this approach for the first
time to two key Middle Stone Age archaeological cultures, the
Still Bay (SB) and the Howiesons Poort (HP) of southern Africa.
The SB represents the first known cultural adaptation in which
technological and symbolic innovations of a comparable complex-
ity to those seen in modern hunter-gatherers appears as a coher-
ent and recognizable package. After a possible hiatus, we observe
a new archaeological culture, termed the HP, characterized by
dramatically different and simplified lithic technology, as well
as markedly different symbolic material culture. The available
archaeological and paleoenvironmental datasets of this period
are of sufficient resolution to make this period of the Middle
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Stone Age an ideal laboratory for exploring how typically human
behavioral packages arose and evolved in one particular region
and for identifying potential mechanisms at work.

Cultural and Chronological Contexts
The Still Bay
This archaeological culture, observed at sites located in

coastal areas of southern Africa and predominantly concentrated
in southwestern regions (Fig. 1), is characterized by the pro-
duction of bifacial foliate points, often made from fine-grained,
non-local lithic materials (Fig. 2a). At the key site of Blombos
Cave, the majority of these points have been heat-treated prior to
flaking with hard and soft hammer percussion, and finished using
a technique termed pressure flaking. The latter allows for more
refined shaping of the object by giving the knapper better control
over its final form. Modern-day experiments indicate that this
knapping technology requires a long period of apprenticeship. SB
bifaces were multifunctional and served as both projectiles and
cutting tools. Examinations of SB lithic assemblages (41) show
that these bifaces were often repeatedly resharpened and had
long use-lives indicating that they formed a curated component
of the SB lithic toolkit. The SB is also the first archaeological
culture in which formal bone tools (i.e. artefacts made of animal
osseous material shaped with techniques, such as scraping, grind-
ing and incising, specifically conceived for these materials) are
observed at multiple sites rather than as rare elements in single
assemblages. Technological and functional studies show that the
two different classes of tool—projectiles and awls (Fig. 2c)—were
produced with different techniques and that special attention was
paid to the finishing of the bone projectile points, suggesting
that they were highly valued and possible status items. The SB is
also the first archaeological culture in southern Africa associated
with personal ornaments. These take the form of marine shells
(Nassarius kraussianus) that were deliberately perforated, stained
with ochre, and strung together in a variety of arrangements (33)
(Fig. 2b). Use-wear analyses indicate that they were worn for
extended periods of time (42). Other elements of SB symbolic
material culture include elaborately engraved abstract patterns
on ochre pieces (Fig. 2d), as well as more simple engravings on
bone items. Also present in assemblages are ochre pieces bearing
traces indicating that they were processed in order to produce red
powder (Fig. 2e), which likely was used for both functional and
symbolic purposes.

With respect to chronology, a majority of SB sites have
yielded optically stimulated luminescence (OSL) ages that range
between 76 ka and 71 ka (34, 43–45). Debate exists as to accuracy
of this range due to older OSL and thermoluminescence (TL)
dates from Diepkloof rockshelter (45–48). Since the inexplicably
older set of dates from Diepkloof remains a unicum, we will
use the currently accepted chronology (45, 49, 50). Debate also
exists as to whether this culture is technologically homogeneous
or rather characterized by regional and temporal variability (41).
This, however, remains an open issue due to a lack of chrono-
logical resolution and the small number of contextually reliable
archaeological assemblages.

The Howiesons Poort
This archaeological culture, observed in both coastal and

inland regions of southwestern and northeastern South Africa
(Fig. 1), is principally characterized by the presence of backed
blades and bladelets (i.e., lithic blades steeply retouched on one
side to form crescent-shaped segments) (Fig. 2f, g) that were pre-
dominantly used as components in composite hunting weapons.
These tools, while not highly standardized dimensionally or mor-
phologically, were made with a lithic reduction system that was
geared towards the production of thin, straight blades, some
of which were retouched to make this culture’s fossil directeur
along with denticulated tools (29, 41, 51). Raw materials used
for the lithic technology were predominantly local or near-local

in origin, in clear contrast to what is seen for SB bifaces. Similar
to the SB, though, HP groups also sometimes heated lithic raw
materials before they were reduced to produce blades (52) and
occasionally used pressure flaking (53). Bifacial points are absent
in the HP, with the exception of a single site where specimens that
are smaller and of lower quality have been recovered (54). Bone
tools recovered from HP sites consist of awls, pressure flakers,
shaped splintered pieces (pièces esquillées), and small projectile
points (55) (Fig. 2k). It has been argued that HP backed segments
and bone points were used as bow-delivered arrow points based
on use-wear, fracture patterns, and morphometrics (56–58). The
interpretation that these tools were hafted is supported by the
presence of mastic remnants observed on some backed pieces
(31, 59) (Fig. 2h). At present, with the exception of a perforated
conus shell found within an infant burial at Border Cave (60),
personal ornaments are lacking in HP assemblages, and undis-
puted symbolic behavior is limited to the decoration of ostrich
egg shell water containers with a variety of abstract designs made
up of linear engravings (51, 61) (Fig. 2i). Red ochre (Fig. 2j), also
sometimes incorporated into mastic mixtures, was widely used by
HP groups.

The HP has predominantly been dated with OSL and TL
techniques and appears to have lasted for a slightly longer period
of time than the SB. HP dates range between roughly 66 ka and
59 ka (34, 51, 62). As with the SB, some OSL dates of the HP at
Diepkloof are significantly older (47, 48) than the corpus of dates
available from other South African sites, as well as from other
OSL dates obtained at the same site (63). Based on the fact that
the newly re-calculated dates for the Diepkloof HP (63) cluster
with the HP dates from other dated contexts (50), we will use the
66–59 ka range as the chronological interval for the HP in this
study. Shortly after ca. 59 ka, we observe the appearance of the
post-Howiesons Poort archaeological culture.

Paleoenvironmental Context
These two archaeological cultures occurred during two very

different climatic phases (Fig. 3). At the orbital scale, the SB
occurs in a phase of precession maximum during which one
observes higher seasonality and an increase in precipitation in
the Southern Hemisphere (64–67). To the contrary, the HP is
contemporaneous with a decrease in precession with the mini-
mum reached towards its end (ca. 60–59 ka). This resulted in
lower seasonality and drier conditions (SI Appendix, Fig. S1). In
addition to orbital climatic variability, SB and HP cultures were
also subjected to suborbital climatic fluctuations, the so-called
Dansgaard-Oeschger (D-O) cycles expressed over Greenland by
alternating cold stadials and temperate interstadials, as well as
intermittent and extreme cooling episodes recorded in the North
Atlantic, termed Heinrich Stadials. These millennial-scale events
are also recorded in Antarctic paleoclimatic records.

The SB occurs during a period comprised by Greenland
Interstadial (GI) 20, Greenland Stadial (GS) 20, and GI 19 (Fig.
3) (68). This culture disappears from the archaeological record
during the initial phase of GS 19 (GS 19.2). The HP appears
towards the end of GS 19 and is present across GI 18 and GS
18 (ca. 64.4–59.4 ka, which corresponds to Heinrich Stadial (HS)
6) (69). The suite of diagnostic elements characteristic of this
archaeological culture are no longer present by ca. 59–58 ka, a
period marked by rapid climatic oscillations (i.e., GI 17.1, GS
17.1, GI 16.2, GS 16.2). It is following this interval that the Post-
Howiesons Poort adaptation appears.

The impact of the D-O millennial scale climatic variability
and HSs on the Southern Hemisphere regional climates has
been recently investigated.Model experiments and climate recon-
structions suggest that GS and HS events resulted in increased
sea surface temperatures and humidity in the South Atlantic
and Southwestern Indian Ocean (70–74). For southern Africa,
Ziegler et al. (38) examined the elemental composition of marine
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sediments from an Indian Ocean core and proposed that GS
and HS events are characterized by increased erosion reflecting
higher precipitation that triggered increases in vegetation cover
and biomass. Recent research has provided direct data concern-
ing vegetation cover and biomass for this region. Pollen and
microcharcoal records from marine core MD96-2098, retrieved
off southwestern Africa (65, 67) (this study), show repeated
millennial-scale changes in humidity during the last glacial period
that also indicate, within the uncertainties of the independent ice
and marine chronologies, that GS and HS events were associated
with increases in humidity. Such increases are inferred from
peaks in microcharcoal concentration due to grass-fueled fires
and decreases in pollen from vegetation characteristic of open
environments, such as NamaKaroo and fine-leaved savanna (Fig.
3d, e). However, when the entire chronological interval for both
the SB and HP is taken into account, a more complex climatic
pattern is observed, characterized by an alternation of wet and
dry events. Despite this variability, the general pattern revealed
by all available continental proxies across the entire range of
each archaeological culture shows an overall trend towards higher
humidity during the SB and generally dryer conditions during the
HP. The contradictory pattern proposed by Ziegler et al. (38) is
probably due to the fact that they do not consider the entire range
of these two cultures, but rather only look at the humidity trends
coincident with each culture’s mean age.

Materials and Methods
Paleoclimate modeling

To estimate ecological niches exploited by the SB and HP, we used
paleoclimatic and vegetation simulations produced by Woillez and collab-
orators (66) (SI Appendix, Paleoclimatic simulations) for the periods of 72
ka and 60 ka. Since the two simulations are primarily constrained by orbital
parameters and do not estimate sub-orbital variability, we used the 72 ka
simulation to represent climatic and environmental conditions for the SB and
the initial HP (ca. 66–63 ka), and the 60 ka simulation to represent conditions
for the terminal HP (ca. 63­–59 ka). The use of the 72 ka simulation as a
proxy for climatic conditions of the initial HP is justified by the relatively
high humidity observed at the onset of HS6, as evidenced by vegetation,
fire activity, and erosion proxies (Fig. 3e, d, c, respectively). To estimate the
SB and HP eco-cultural niches, we used temperature of the coldest month,
maximum precipitation, minimum precipitation, mean annual precipitation,
mean annual temperature, and a measure of biomass from the relevant
paleoclimatic simulations.

Ecological Niche Modeling and Hypothesis Testing

In order to reconstruct the potential ecological (eco-cultural) niches ex-
ploited by the SB and HP and evaluate whether cultural changes between the
two are associated with an ecological niche shift, we constructed a georefer-
enced list of archaeological sites with levels that can be securely attributed to
one of these cultures (Fig. 1; Table S1). We then used these occurrence data to
conduct tests using both Bioclim (75) and Maxent (76) predictive algorithms
within the ‘dismo’ R package (77, 78) (see SI Appendix, Ecological Niche
Modeling). We use these two algorithms in order to explore the differences
seen when models are allowed to extrapolate freely into combinations of
environments that were unavailable during model training (Maxent) versus
models that are constrained so that they do not extrapolate beyond the
minima and maxima of the marginal environmental distributions of the
examined population (Bioclim). Due to Maxent’s ability to extrapolate, we
anticipate that similarity between different target populations will generally
be seen to be higher when environmental niches are modeled using Maxent
as opposed to Bioclim. With these two algorithms we reconstructed both SB
and HP niches using relevant climatic outputs and simulated biomass from
the 72 ka simulation and compared these results. We also reconstructed the
HP niche using simulation outputs for 60 ka and compared these estimations
to those of the SB at 72 ka. A series of Monte Carlo randomization tests were
conducted to assess the differences in the set of environments occupied by
each culture. This approach is based on widely used methods in evolutionary
ecology (the “background” or “similarity” test) (79, 80) that are used to
assess whether two populations exhibit statistically significant differences
in their environmental tolerances or associations (SI Appendix, Ecological
Niche Modeling). We also conducted tests using measures of niche breadth
(81, 82) to determine whether any observed differences between the two
cultures’ environmental niches represent a statistically significant expansion
of the niche. Because some of these evaluations were conducted using
different climate layers for the SB and HP (72 ka and 60 ka, respectively),
modifications that employ Latin hypercube sampling were made to the
background similarity tests (SI Appendix, Ecological Niche Modeling; Fig. S2).

Results
Niche estimations and similarity evaluations

Niche estimations for the SB at 72 ka produced with Bio-
clim and Maxent both indicate a high probability of presence
primarily restricted to the extreme southern and eastern portions
of present-day South Africa (Fig. 4a, b). The most noticeable
differences are that the Maxent prediction includes areas in
the southwestern Cape as well as immediately coastal regions
along the southeastern and eastern coasts. This broader Maxent
prediction is due to this algorithm’s propensity to extrapolate into
environments not directly associated with the input occurrence
data (i.e., archaeological sites). The predicted niches for the
HP at 66 ka, produced with the proxy 72 ka outputs, include
those regions predicted for the SB, as well as more inland areas
including the Great Escarpment, the Highveld and Kaap Plateau,
and broader areas within the southwestern Cape and western
coastal regions (Fig. 4c, d). The niche estimations for theHP at 60
ka remain geographically broader than those for the SB and still
include major inland plateaus but are visibly shifted towards the
east and northeast (Fig. 4e, f), which represent areas that were less
affected by the eastward expansion of desert areas during Marine
Isotope Stage (MIS) 4 (66).

Background similarity tests of overlap between the SB and
HP niches both modeled with Maxent using the 72 ka climatic
data produced no statistically significant result (SI Appendix,
Fig. S3a; Table S2) meaning that their respective niches are not
statistically different from one another. As pointed out above,
this lack of significant difference between predictions is likely the
result (see Materials and Methods) of the employed algorithm.
To the contrary, these same tests using Bioclim found instead
that SB and HP niche estimations using 72 ka climate outputs
were less similar than expected by chance (I-statistic: p ∼ .022; SI
Appendix, Fig. S3c; Table S2). Although HP niche estimates are
slightly broader than those of the SB at 72 ka with both Maxent
and Bioclim, these differences are not statistically significant (SI
Appendix, Fig. S3b, d; Table S2). Niche overlap between Maxent
models for the SB at 72 ka and the HP at 60 ka was neither
greater nor less than expected by chance (SI Appendix, Fig.
S3e; Table S2). However, overlap of Bioclim predictions for the
SB at 72 ka and the HP at 60 ka was significantly lower than
would be expected by chance (I-statistic: p ∼ .013; SI Appendix,
Fig. S3g; Table S2), indicating that the two cultures occupied
different ecological niches. Change in niche breadth between
Maxent predictions for the SB at 72 ka and the HP at 60 ka is
not statistically different from random expectations, although the
approximate p value is fairly low (p∼ 0.11) (SIAppendix, Fig. S3f;
Table S2), suggesting that a greater sample size might establish
the HP niche at 60 ka as significantly broader than the SB at 72
ka. The difference in niche breadth for Bioclim models is greater
than expected by chance (p ∼ .027) (SI Appendix, Fig. S3h; Table
S2), indicating that the HP 60 ka niche is broader than that of the
SB at 72 ka and points to an ecological niche expansion.

Discussion and Conclusions
To what extent does this study allow us to understand how

human culture extended beyond behavioral adaptations observed
in other species? Most species exhibit niche conservatism, con-
traction or, more rarely, extinction when faced with climate
change (83–85). Human populations, however, are unique in their
capacity of cumulative culture and associated complex cultural
transmission strategies that allow them to potentially adapt to
climate change and environmental reorganization via cultural
means. We observe such a pattern between the Still Bay and the
Howiesons Poort of Southern Africa. The Still Bay was a coastal
adaptation that exploited a relatively narrow niche during mild
climatic conditions across a large region. To exploit that niche,
Still Bay populations developed a variety of complex technologies
and symbolic practices, some of which certainly entailed costly
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modes of cultural transmission. A number of Still Bay cultural
features, such as bifacial points and complex beadworking, could
only be transmitted by communication and learning strategies
that emphasize imitation (high fidelity copying) over emulation
(low fidelity) (86, 87). Howiesons Poort populations significantly
increased the breadth of their niche compared to the Still Bay.
This expansion incorporated more arid and high altitude inland
environments and demonstrates their ability to successfully cope
with the more arid climatic conditions and higher ecological risk
associated with MIS 4, and in particular its latter phase. This was
made possible by developing a cohesive adaptive system reliant
on more flexible technologies. The variety of employed lithic
raw materials, blank production techniques, methods to retouch
and shape those blanks to produce segments, which vary in form
and size, are indicative of a flexible toolkit, and in this case one
reliant on composite tools. With effective hafting techniques,
such a toolkit would have been easily repaired and maintained.
Due to its modular nature, the Howiesons Poort toolkit could be
effectively employed in diverse environments. More importantly,
the communicative strategies needed to transmit the knowledge
necessary to perpetuate this technology can be based more
on “product copying” (emulation) rather than “process copying”
(imitation). In the latter, morphological similarity is associated
with the same, or very similar, manufacturing techniques and
sequences. For the former, one would expect to see artifacts that
are morphologically similar despite being made from a variety of
raw materials and techniques, as is observed in the Howiesons
Poort. Such patterns could have been the result of a collapse
of previously existing long distance cultural networks leading to
the formation of more local “traditions”, again, which is exactly
what we observe in Howiesons Poort bone and lithic technologies
(53, 55, 88). The mechanism or mechanisms that operated behind
such a process remain unclear (e.g., demographic changes, popu-
lation replacement, cultural drift, etc.). While the Still Bay and
Howiesons Poort certainly had adaptive strategies in common,
it is probable that their cultural transmission strategies differed.
Considering the niche and technological changes observed be-
tween the two cultures, along with the expertise implicit in some
Still Bay technological innovations, we propose that training to
create specialists, or “selective oblique transmission” (89), was
used during the Still Bay to effectively convey these complex
technologies and that this strategy was not, or to a greatly lesser
degree, employed during the Howiesons Poort.

Numerous studies support the hypothesis that hunter-
gatherer toolkit structure is driven, in part, by the risk of resource
failure, i.e. more diverse and complex toolkits are associated with
riskier environments (90–92). Data do not always support this
prediction, though, and it has been proposed that the impact
of risk on toolkits is dependent on the scale of risk differences
among the studied populations (93). The degree of reliance on

copying (94), population size (95), and mobility (96) are other
factors that may condition toolkit structure. None of these stud-
ies, however, are able to routinely predict what factors were
implicated in shifts in toolkit structure among early AMH, nor
address the issue of how past human niches may have changed
when shifts in technology were concomitant with major climatic
changes. The approach that we have applied here is an effec-
tive means with which to explore relationships between climate
variability and cohesive adaptive systems at key moments in our
evolutionary history. Its application to other regions and periods
should allow us to follow, at regional scales, the complex inter-
play between cultural innovation, changes in modes of cultural
transmission, and environmental variability. The results of the
present study may be improved in the future by producing paleo-
climatic simulations that capture millennial-scale environmental
variability and by developing and employing methods (e.g., date
estimations, Bayesian age modeling) that would allow one to
attribute more precisely archaeological site levels to millennial-
scale climatic phases. While the former is technically possible,
employing such models will not be productive as long as the latter
remains beyond our grasp, at least at present. By capturing the
main climatic trends characteristic of the end ofMIS 5 andMIS 4,
our paleoclimatic simulations appear appropriate for examining
culture-environment relationships when one considers the degree
of chronological uncertainty associated with the two targeted
cultures.

Our results demonstrate that in some early AMH regional
cultural trajectories niche expansion was not always associated
with cultural complexification (for an opposite case, see (97)). In
this study’s case, complex cultural behaviors and inferred trans-
mission strategies were replaced during a period of pronounced
aridification with more flexible adaptations that were used to
exploit a broader ecological niche. Increased cultural complexity
and elaborated social learning strategies apparently were not
always necessary for a culture to expand its ecological niche.
Our findings support the view that the path followed by past
human populations to produce adaptations and cultural traits,
which most researchers would qualify as typically human, is not
the outcome of classic Darwinian evolutionary processes in which
the appearance of a new niche is often associated with a new
species. Rather, the innovations characteristic of the Howiesons
Poort represent cultural exaptation—innovations that use exist-
ing skills, techniques and ideas in new ways. The consolidation of
these innovations depends on a population’s ability to develop,
when necessary, new modes of cultural transmission that allow
such innovations to be maintained through time.
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