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ABSTRACT

The debris disk known as “The Moth” is named after its unusually asymmetric surface brightness distribution. It is located around the
∼90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 μm. Polarimetric observations
suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature,
the result of interaction with the interstellar medium. We resolve both components at unprecedented resolution with VLT/NACO
H-band imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component
as a distinct narrow ring at inclination i = 84.3 ± 1.0◦. We determine a semi-major axis of a = 61.25 ± 0.85 AU and an eccentricity
of e = 0.045 ± 0.015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset
from the star by at least 2.75 ± 0.85 AU. The offset, together with a relatively steep inner rim, could indicate a planetary companion
that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object
above the deuterium-burning limit for separations down to 0.′′3. The ring shows a strong brightness asymmetry along both the major
and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and
SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the
ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring.

Key words. techniques: high angular resolution – circumstellar matter – protoplanetary disks – stars: individual: HD 61005

1. Introduction

Dust in planetary systems is most likely produced by collisions
of planetesimals that are frequently arranged in a ring-like struc-
ture (Wyatt 2008). These debris disks are therefore thought to
be brighter analogs of our solar system’s Kuiper belt or asteroid
belt. Previous studies found no correlation between the presence
of known massive planets and infrared dust emission from debris
disks (Moro-Martín et al. 2007; Bryden et al. 2009; Kóspál et al.
2009), but several systems are known to host both (e.g. HR 8799,
HD 69830). Scattered light imaging of debris disks has revealed
numerous structures thought to be shaped by planets. Warps in
the β Pic debris disks (Mouillet et al. 1997; Augereau et al. 2001)
are caused by a directly confirmed 9 ± 3 MJ planet (Lagrange
et al. 2009, 2010; Quanz et al. 2010). Fomalhaut hosts a debris
ring with a sharp inner edge and an offset between ring center

� Based on observations collected at the European Southern
Observatory, Chile, ESO program 0184.C-0567(E).
�� Appendices are only available in electronic form at
http://www.aanda.org

and star (Kalas et al. 2005), for which dynamical models sug-
gest the presence of a planet (Quillen 2006). A planetary candi-
date was indeed imaged (Kalas et al. 2008). Other larger scale
asymmetric structures, e.g. around HD 32297 (Kalas 2005), are
thought to result from interaction with the ambient interstellar
medium (ISM), such as movement through a dense interstellar
cloud (Debes et al. 2009). Alternatively, they might be perturbed
by a nearby star (e.g. HD 15115, Kalas et al. 2007).

The source HD 61005 (G8V, V = 8.22, H = 6.58, d =
34.5 ± 1.1 pc) was first discovered to host a debris disk by the
Spitzer/FEPS program (formation and evolution of planetary
systems, Meyer et al. 2006). It has the largest 24 μm infrared
excess with regard to the photosphere of any star observed in
FEPS (∼110%, Meyer et al. 2008). The star’s age was estimated
to be 90±40 Myr (Hines et al. 2007). The disk was resolved with
HST/NICMOS coronagraphic imaging at 1.1 μm (Hines et al.
2007) that revealed asymmetric circumstellar material with two
wing-shaped edges, that is the reason for in the nickname “the
Moth”. The disk was also resolved at 0.6μm with HST/ACS
imaging and polarimetry (Maness et al. 2009). The polarization
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suggests two distinct components, a nearly edge-on disk or ring
and a swept-back component that interacts with the ISM. Both
papers focused on the properties and origin of the swept-back
component. In this work, we present high-contrast ground-based
imaging with unprecedented angular resolution. We discover and
characterize a distinct asymmetric ring in the inner disk compo-
nent and discuss the probability of a planetary companion.

2. Observations and data reduction

We observed HD 61005 on February 17, 2010 with the NACO
instrument (Rousset et al. 2003; Lenzen et al. 2003) at the VLT.
The observations were obtained in the framework of the NaCo
Large Program Collaboration for Giant Planet Imaging (ESO
program 184.C0567). The images were taken in the H-band
(1.65 μm) in pupil-tracking mode (Kasper et al. 2009) to allow
for angular differential imaging (ADI, Marois et al. 2006). The
field of view was 14′′ × 14′′ and the plate scale 13.25 mas/pixel.
We performed the disk observations without a coronagraph, and
used the cube-mode of NACO to take 12 data cubes. Each cube
consisted of 117 saturated exposures of 1.7927 s, yielding a total
integration time of 41.95 min. The saturation radius was ∼0.′′15.
A total of 112◦ of field rotation was captured while the pupil
remained fixed. Before and after the saturated observations we
took unsaturated images with a neutral density filter to mea-
sure the photometry for the central star. The adaptive optics sys-
tem provided a point spread function (PSF) with a full-width at
half-maximum (FWHM) of 60 mas with ∼0.′′8 natural seeing in
H-band (22% Strehl ratio).

The data were flat-fielded, bad-pixel corrected, and centered
on the star by manually determining the center for the middle
frame and aligning the others through cross-correlation. We re-
moved 3 bad-quality frames and averaged the remaining im-
ages in groups of three for a total of 467 frames. We then used
LOCI (locally optimized combination of images, Lafrenière
et al. 2007) and customized ADI to subtract the stellar PSF to
search for point sources and extended non-circular structures.

In ADI, each image is divided into annuli of 2 FWHM width.
For each frame and each annulus, a frame where the field ob-
ject has rotated by 2 FWHM is subtracted to remove the stel-
lar halo. Additionally, the resulting image is subtracted by a
back-rotated version of itself. Finally, all images are derotated
and median combined. In LOCI, each annulus is further di-
vided into segments, and for each segment an optimized PSF
is constructed from a linear combination of sufficiently rotated
frames. A minimum rotation of 0.75 FWHM is optimal for point
source detection and has led to several detections around other
targets (Marois et al. 2008; Thalmann et al. 2009; Lafrenière
et al. 2010). To reveal the extended nebulosity around LkCa 15,
Thalmann et al. (2010) used a much larger minimum separation
of 3 FWHM. For the nearly edge-on and therefore very narrow
debris disk around HD 61005, we obtain an optimal result for
a minimum separation of 1 FWHM, but using large optimiza-
tion areas of 10000 PSF footprints to lessen the self-subtraction
of the disk. We also reduced the data with LOCI with a separa-
tion criterion of 0.75 FWHM and small optimization segments of
300 PSF footprints to set hard detection limits on companions.

Additionally we attempted a classical PSF subtraction using
a reference star, which is detailed in Appendix A.

3. Results

The NACO H-band images obtained by reduction with LOCI
and ADI are shown in Fig. 1. The circumstellar material is

Fig. 1. High-contrast NACO H-band images of HD 61005, a) reduced
with LOCI, b) reduced with ADI. The slits used for photometry are
overlaid. The curved slit traces the maximum surface brightness of the
lower ring arc, while the rectangular boxes enclose the streamers. In
both images the scaling is linear, and 1′′ corresponds to a projected
separation of 34.5 AU. The arc-like structures in the background are ar-
tifacts of the observation and reduction techniques, and are asymmetric
because the field rotation center was offset from the star. The region
with insufficient field rotation is masked out. The plus marks the posi-
tion of the star, the cross the ring center.

resolved to an off-centered, nearly edge-on debris ring with a
clear inner gap and two narrow streamers originating at the NE
and SW edges of the ring. A strong brightness asymmetry is seen
between the NE and SW side and between the lower and upper
arc of the ring. The inner gap has not been previously resolved by
HST, where only the direction of the polarization vectors hinted
at a disk-like component separate from the extended material
that interacts with the ISM.

LOCI provides the cleanest view of the ring geometry with
respect to the background because it effectively removes the stel-
lar PSF while bringing out sharp brightness gradients. The neg-
ative areas near the ring result from oversubtraction of the ro-
tated disk signal embedded in the subtracted PSF constructed by
LOCI. In particular, the ring’s inner hole is enhanced. However,
tests with artificial flat disks showed that while self-subtraction
can depress the central regions, the resulting spurious gradients
are shallow and different from the steep gradients obtained from
the edge of a ring. Because of significant variable flux loss, pho-
tometry is unreliable in the LOCI image. In the ADI reduction,
the self-subtraction is deterministic and can be accounted for,
while the stellar PSF is subtracted adequately enough to allow
photometric measurements. In the image produced by reference
PSF subtraction (Fig. A.1) the stellar PSF is not effectively re-
moved. The image is unsuitable for a quantitative analysis, but
it confirms the streamers and the strong brightness asymmetry,
and also suggests the presence of a gap on the SW side.

3.1. Surface brightness of ring and streamers

The surface brightness of the ring and streamers (Fig. 2) is ob-
tained from the ADI image. We measure the mean intensity of
the bright ring arc as a function of angular separation from the
star in a curved slit of 5 pixels width (see Fig. 1b) following the
maximum brightness determined in Sect. 3.2. For the streamers
the slit is rectangular and of the same width. We calculate the
mean intensity in the intersection of the slit with annuli of 9 pix-
els width. To estimate the self-subtraction because of ADI, we

Page 2 of 5

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015799&pdf_id=1


E. Buenzli et al.: The off-centered debris ring around HD 61005

Fig. 2. H-band surface brightness of the brighter ring arc and the stream-
ers measured from the ADI image and corrected for self-subtraction.
Dotted lines indicate the error. The dotted dark line is the 1σ sky back-
ground. Solid dark lines are power-law fits with the obtained slope indi-
cated. The transition regions between ring and streamers are not fitted.

apply our ADI method to a model ring (Sect. 3.2). The measured
flux loss in our slit is 24 ± 5%, where the error includes varia-
tions with radius and between the two sides. For the true ring this
value might differ by a few percent. For lack of a good model for
the swept material, we apply the same correction factor for the
streamers, though the systematic error is likely larger. The domi-
nant source of error are subtraction residuals, which we measure
as the dispersion in wider slits rotated by ±45◦. To obtain ab-
solute photometry we use the observations of HD 61005 taken
in the neutral density filter as reference. The NE arc is about
1 mag arcsec−2 or a factor of 2–3 brighter than the SW arc, con-
sistent with the factor of 2 brightness asymmetry seen by HST
at shorter wavelengths. The surface brightness of the inner 1.′′1
of the SW arc is of the same order as the residuals, making a
power-law fit unreliable.

The two streamers are tilted by an angle of ∼23◦ with re-
spect to the ring’s semi-major axis. We detect material out to a
projected distance of ∼140 AU (4′′) from the star. Beyond 2.8′′
the S/N ratio is too low to perform a meaningful power-law fit.
Closer, the power-law slopes agree with those by Maness et al.
(2009) within errors. We do not detect the fainter, more homo-
geneously distributed swept material seen by HST because such
structures are subtracted by ADI. However, the streamers are
also seen in the reference PSF subtracted image and thus are the
most visible component of the swept material. They may repre-
sent the limb-brightened edges of the total scattering material.

3.2. Ring geometry and center offset

We convolve the LOCI image with the PSF and measure the
ring’s inclination and position angle by ellipse fitting through
points of maximum intensity in selected regions. Assuming that
the ring is intrinsically circular, the fit yields an inclination of
84.3◦ and position angle 70.3◦, with systematic errors of ∼1◦.
The position angle agrees well with the position angle of the
disk-component determined by HST, while we find the inclina-
tion to be ∼4◦ closer to edge-on. To determine the separation of
the ring ansae, we create inclined ring annuli and find for each
side the ring with maximum mean intensity around the ansa.
This fit yields a radius of 61.25 ± 0.85 AU, and a ring center
offset from the star by 2.75 ± 0.85 AU toward SW along the ap-
parent disk major axis. The radial extension of the ring agrees
with the location of the power-law break seen by HST at 0.6 μm.

To assess the effect of our PSF subtraction method and de-
termine additional ring parameters, we create synthetic scat-
tered light images with the GRaTer code for optically thin disks

Fig. 3. Comparison of a radial cut averaged over 5 pixels through the
midplane for the observation reduced with LOCI and the model disk
implanted into the reference star and reduced in the same way. The in-
tensity of the SW-side of the model is scaled down by a factor 1.3.

(Augereau et al. 1999). The models are inserted into the data
of our PSF reference star (cf. Appendix A) and the LOCI al-
gorithm is applied to allow direct comparison with the observa-
tions. We let the ring be intrinsically elliptical with the periastron
located along the apparent disk major axis, because our data can-
not constrain an offset along the minor axis. The radial structure
is described by a smooth combination of two power laws, rising
to the ring peak density position and fading with distance from
the star. Scattering is represented by a Henyey-Greenstein (HG)
phase function with an asymmetry parameter g.

We compare the model constructed from the parameters de-
rived above with the observation. An inclination of i = 84.3 ±
1.0◦ is also a good match for an intrinsically elliptical ring.
While the center offset leads to a small increase (factor of ∼1.2)
in surface brightness on the NE side with respect to the SW side,
models that are identical on the two sides except for the offset
still underestimate the extent of the enhancement by a factor of
∼1.3. That the brightness asymmetry is visible after all reduc-
tion methods and in the HST 0.6μm image suggests a physical
asymmetry in the density or grain properties. Because asymmet-
ric dust models that include the ISM interaction go beyond the
scope of this Letter, we focus on validating the ring geometry.

We compare a radial cut along the midplane averaged over
5 pixels (Fig. 3), artificially lowering the model intensity on the
faint side by a factor of 1.3. Indeed, models with an offset o = a·e
of 2.75 ± 0.85 AU, where a is the semi-major axis for the peak
density (61.25± 0.85AU) and e the eccentricity (0.045± 0.015),
still provide a decent match after reduction with LOCI. Models
without offset are worse particularly out to ∼63 AU for each ring
side because the shift in peak intensity is missing. Therefore the
offset does not appear to be an artifact of the data reduction.

Model comparison suggests an inner surface density power-
law slope of ∼7, but a fit is difficult because reduction artifacts
differ for models and observations. The outer slope (fixed to −4)
is uncertain because we do not model the ISM interaction. In
any case, the inner rim appears to be significantly steeper than
the outer rim. From the brightness asymmetry between the upper
and lower arc we estimate the asymmetry parameter to |g| ∼ 0.3.
This value is uncertain because the weak arc is strongly contam-
inated by reduction residuals. Additionally, the HG phase func-
tion is a simplistic model for scattering in debris disks. A posi-
tive g-value, assuming that the brighter side is the front, would
indicate forward scattering grains. This may not always be the
case (see e.g. Min et al. 2010).

3.3. Limits on companions to HD 61005

In our full image (Fig. B.1) we detect six point sources at
r > 3′′. These are seen in the Hines et al. (2007) data as well.
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Fig. 4. Contrast for companions around HD 61005 detectable at the
5σ level. The numbers indicate the mass limit at the horizontal lines
for an age of 90 Myr, based on the COND models by Baraffe et al.
(2003). One arcsec corresponds to a projected separation of 34.5 AU.

Astrometric tests show that their relative proper motion is con-
sistent with all objects being background sources (cf. App. B).

In the LOCI image reduced with the smaller minimum ro-
tation we search for closer companions. After convolving the
resulting image with an aperture of 5 pixels diameter, we calcu-
late the noise level at a given separation as the standard deviation
in a concentric annulus. To determine the flux loss from partial
self-subtraction we implant artifical sources in the raw data. The
measured contrast curve is corrected for this flux loss to yield
the final 5σ detectable constrast curve (Fig. 4). We translate the
contrast to a mass limit using the COND evolutionary models
by Baraffe et al. (2003). We assume an age of 90 Myr. We do not
detect any companion candidates, but are able to set limits well
below the deuterium burning limit.

4. Discussion

The high-resolution image enables us to distinguish the actual
debris ring from the material that appears to be streaming away
from the system. The results reveal a ring center offset of ∼3 AU
and an additional brightness asymmetry suggesting density vari-
ations. The eccentricity of the debris ring could be shaped by
gravitational interaction with a companion on an eccentric or-
bit. A similar system is Fomalhaut with a belt eccentricity of
0.11 (Kalas et al. 2005). Mass constraints were discussed for
Fomalhaut b by Chiang et al. (2009). A rough adaptation of their
result to HD 61005 shows that a planet below our detection limit
of ∼3–4 MJ located beyond ∼40 AU at maximum angular sepa-
ration could perturb the ring. Because of the high inclination a
planet of higher mass and lower semi-major axis could also hide
within the residuals at smaller projected separation from the star.

Models of the spectral energy distribution by Hillenbrand
et al. (2008) suggested that the debris required multiple tem-
perature components. This could be fitted by either an extended
debris model (Rinner < 10 AU and Router > 40 AU) or more likely
an inner warm ring and an outer cool ring, which could coincide
with the dust detected in the scattered light images.

To explain the structure of the interacting material, Maness
et al. (2009) explored several scenarios, and proposed that a
low-density cloud is perturbing grain orbits because of ram pres-
sure. The streamers would be barely bound, sub-micron sized
grains on highly eccentric orbits, consistent with the observed
blue color and the brightness profile. Their model currently can-
not reproduce the sharpness of the streamers, but the observed
geometry of the parent body ring might help improve the models
to validate this theory. These might then answer whether the ring
offset could also be caused by the ISM interaction rather than

a planet. Obtaining colors of the ring through high-resolution
imaging at other wavelengths could indicate if a grain size dif-
ference exists between parent body ring and swept material.

As a solar-type star, and with a debris ring at a radius not
much larger than that of the Kuiper belt, the HD 61005 system
provides an interesting comparison to models of the young so-
lar system. Booth et al. (2009) calculate the infrared excess of
the solar system as a function of time based on strong assump-
tions consistent with the Nice model. At ∼90 Myr the calcu-
lated 70 μm excess ratio F70/F70� is about four times lower than
that observed for HD 61005 (Hillenbrand et al. 2008). Indeed,
HD 61005 is one of the most luminous debris disks known. Its
other obvious unusual feature is the morphology of the swept
component. Perhaps further modeling will provide a causal con-
nection between its high observed dust generation rate and this
apparent interaction with the ISM. It is also an interesting tar-
get for future deeper searches for planetary mass companions as
well as remnant gas that could be associated with the debris.
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Appendix A: Subtraction of stellar halo with a PSF
reference star

Fig. A.1. Reference PSF subtracted image of HD 61005.

To check that the revealed structures are not artifacts of
the ADI methods, a classical PSF subtraction was applied to
HD 61005 using the unresolved star TYC-7188-571-1, observed
3 h after HD 61005 in the same observing mode. A total of
400 frames matching the same parallactic angle variation for
HD 61005 and the reference star were considered. After shift-
and-add, a scaling factor was derived from the ratio of the az-
imuthal average of the HD 61005 median image to the azimuthal
average of the recentered median image of the PSF. The me-
dian of the PSF sequence was then subtracted from all individ-
ual frames of HD 61005. The resulting cube was derotated and
collapsed to obtain the final PSF-subtracted image (Fig. A.1).
Additional azimuthal and low-pass filtering was applied to im-
prove the disk detection.

Appendix B: Astrometry of background sources

In addition to our VLT data, we used the HST/NICMOS
observations of Hines et al. (2007) (program-10527) obtained
in November 20, 2005 and June 18, 2006 to identify the
status of the six faint sources detected in our VLT/NaCo field
(marked as fs-1, 2, 3, 4, 5 and 6 in Fig. A.1). The relative
positions recorded at different epochs can be compared to
the expected evolution of the position measured at the first
epoch under the assumption that the sources are either sta-
tionary background objects or comoving companions. For the
range of explored semi-major axes, any orbital motion can be
considered to be of lower order compared with the primary
proper and parallactic motions. Considering a proper motion
of (μα, μδ) = (−56.09 ± 0.70, 74.53 ± 0.65) mas yr−1 and
a parallax of π = 28.95 ± 0.92 mas for HD 61005 as well
as the relative positions of all faint sources at each epoch
(see Table B.1), a χ2 probability test of 2 × Nepochs degrees
of freedom (corresponding to the measurements: separa-
tions in the Δα and Δδ directions for the number Nepochs of
epochs) was applied. None of the six sources are comoving

Fig. B.1. Full field of view of our NACO H-band data reduced by dero-
tating, adding and spatially filtering. Six background sources are iden-
tified.

Table B.1. Relative positions of the faint sources 1 to 6 (Fig. B.1).

Name UT Date ΔRA ΔDec
(mas) (mas)

fs-1 2006-06-18 –1929 2918
2010-02-17 –2189 3080

fs-2 2005-11-20 –4672 4669
2010-02-17 –4449 4441

fs-3 2005-11-20 –2326 9321
2010-02-17 –2068 9034

fs-4 2005-11-20 –8487 –15
2010-02-17 –8222 –370

fs-5 2006-06-18 –1586 –6848
2010-02-17 –1358 –7123

fs-6 2006-06-18 –1148 –7671
2010-02-17 –1336 –8024

Notes. A conservative astrometric error of 1 pixel has been considered
for the relative position measurements obtained with HST/NICMOS
and VLT/NaCo observations (i.e. 75.8 mas and 13.25 mas).

with HD 61005 with a probability higher than 99.99%. They
are found to be background stationary objects with a probabil-
ity higher than 60%. We can therefore fully exclude the pos-
sibility that these sources are physically bound companions of
HD 61005. Maness et al. (2009) had already determined that four
sources visible in their image were background sources. Two of
these correspond to fs-3 and fs-4, and we here confirm their re-
sult. Their other two sources are outside of our field of view. We
therefore provide a new result for the four sources fs-1, fs-2, fs-5
and fs-6.
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