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ABSTRACT

Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap
between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime
targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the
Very Large Telescope.
Aims. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively,
in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-
contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy
distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in
debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved
by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such
parameters with detection limits obtained with SPHERE.
Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone
depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated
analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the
best formula for estimating a planet’s physical and dynamical properties required to open the observed gap. We then apply the formalism to the
case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular
orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived
from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE.
Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases
this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single
planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi
planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for
the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is
also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our
results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets
possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.

Key words. planet-disk interactions – Kuiper belt: general – instrumentation: high angular resolution – techniques: image processing –
methods: analytical – methods: observational

1. Introduction

Debris disks are optically thin, almost gas-free dusty disks ob-
served around a significant fraction of main sequence stars
(20–30%, depending on the spectral type, see Matthews et al.
2014b) older than about 10 Myr. Since the circumstellar dust
is short-lived, the very existence of these disks is considered as

? Based on observations collected at Paranal Observatory, ESO
(Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and
198.C-0209.

an evidence that dust-producing planetesimals are still present
in mature systems, in which planets have formed- or failed to
form a long time ago (Krivov 2010; Moro-Martin 2012; Wyatt
2008). It is inferred that these planetesimals orbit their host star
from a few to tens or hundreds of AU, similarly to the Asteroid
(∼2.5 AU) and Kuiper belts (∼30 AU), continually supplying
fresh dust through mutual collisions.

Systems that harbor debris disks have been previously in-
vestigated with high-contrast imaging instruments in order to
infer a correlation between the presence of planets and second
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generation disks. The first study in this direction was performed
by Apai et al. (2008) focused on the search for massive giant
planets in the inner cavities of eight debris disks with NAOS-
CONICA (NaCo) at the Very Large Telescope (VLT). Addi-
tional works followed, such as, for example, the Near-Infrared
Coronagraphic Imager (NICI; Wahhaj et al. 2013), the Strate-
gic Exploration of Exoplanets and Disks with the Subaru tele-
scope (SEEDS; Janson et al. 2013) statistical study of planets
in systems with debris disks, and the more recent VLT/NaCo
survey performed with the Apodizing Phase Plate on six sys-
tems with holey debris disks (Meshkat et al. 2015). However,
in all these studies single-component and multi-components de-
bris disks were mixed up and the authors did not perform a
systematic analysis on putative planetary architectures possibly
matching observations. Similar and more detailed analysis can
be found for young and nearby stars with massive debris disks
such as Vega, Fomalhaut, and ε Eri (Janson et al. 2015) or β Pic
(Lagrange et al. 2010).

In this context, the main aim of this work was to analyze
systems harboring a debris disk composed of two belts, some-
what similar to our Solar System: a warm Asteroid-like belt in
the inner part of the system and a cold Kuiper-like belt farther
out from the star. The gap between the two belts is assumed to
be almost free from planetesimals and grains. In order to ex-
plain the existence of this empty space, the most straightforward
assumption is to assume the presence of one or more planets
orbiting the star between the two belts (Kanagawa et al. 2016;
Su et al. 2015; Kennedy & Wyatt 2014; Schüppler et al. 2016;
Shannon et al. 2016).

The hypothesis of a devoid gap may not always be cor-
rect. Indeed, dust grains which populate such regions may be
too faint to be detectable with spatially resolved images and/or
from SED fitting of infrared excesses. This is for example the
case for HD 131835, that seems to have a very faint component
(barely visible from SPHERE images) between the two main
belts (Feldt et al. 2017). In such cases, the hypothesis of no free
dynamical space between planets, that we adopt in Sect. 6, could
be relaxed, and smaller planets, very close to the inner and outer
belts, respectively, could be responsible for the disk’s architec-
ture. However, this kind of scenario introduces degeneracies that
cannot be validated with current observation, whereas a dynami-
cally full system is described by a univocal set of parameters that
we can promptly compare with our data.

In this paper we follow the assumption of planets as responsi-
ble for gaps, which appears to be the most simple and appealing
interpretation for double belts. We explore different configura-
tions in which one or more planets are evolving on stable orbits
within the two belts with separations which are just above their
stability limit (packed planetary systems) and test the implica-
tions of adopting different values of mass and orbital eccentric-
ity. We acknowledge that other dynamical mechanisms may be
at play possibly leading to more complex scenarios character-
ized by further rearrangement of the planets’ architecture. Even
if planet-planet scattering in most cases causes the disruption of
the planetesimal belts during the chaotic phase (Marzari 2014b),
more gentle evolutions may occur like that invoked for the solar
system. In this case, as described by Levison et al. (2008), the
scattering of Neptune by Jupiter, and the subsequent outward mi-
gration of the outer planet by planetesimal scattering, leads to a
configuration in which the planets have larger separations com-
pared to that predicted only from dynamical stability. Even if
we do not contemplate these more complex systems, our model
gives an idea of the minimum requirements in terms of mass and
orbital eccentricity for a system of planets to carve the observed

double-belts. Even more exotic scenarios may be envisioned in
which a planet near to the observed belt would have scattered
inward a large planetesimal which would have subsequently
impacted a planet causing the formation of a great amount of
dust (Kral et al. 2015). However, according to Geiler & Krivov
(2017), in the vast majority of debris disks, which include also
many of the systems analyzed in this paper, the warm infrared
excess is compatible with a natural dynamical evolution of a
primordial asteroid-like belt (see Sect. 2). The possibility that
a recent energetic event is responsible for the inner belt ap-
pears to be remote as a general explanation for the stars in our
sample.

One of the most famous systems with double debris belts
is HR 8799 (Su et al. 2009). Around the central star and in
the gap between the belts, four giant planets were observed,
each of which has a mass in the range [5, 10] MJ (Marois et al.
2008, 2010a; Zurlo et al. 2016) and there is room also for a
fifth planet (Booth et al. 2016). This system suggests that multi-
planetary and packed architectures may be common in extrasolar
systems.

Another interesting system is HD 95086 that harbors a debris
disk divided into two components and has a known planet that
orbits between the belts. The planet has a mass of ∼5 MJ and was
detected at a distance of ∼56 AU (Rameau et al. 2013), close to
the inner edge of the outer belt at 61 AU. Since the distance
between the belts is quite large, the detected planet is unlikely
to be the only entity responsible for the entire gap and multi-
planetary architecture may be invoked (Su et al. 2015).

HR 8799, HD 95086 and other similar systems seem to point
to some correlations between planets and double-component
disks and a more systematic study of such systems is the main
goal of this paper. However, up to now very few giant planets
have been found orbiting far from their stars, even with the help
of the most powerful direct imaging instruments such as Spectro-
Polarimetric High-contrast Exoplanet REsearch (SPHERE) or
Gemini Planet Imager (GPI; Bowler 2016). For this reason, in
the hypothesis that the presence of one or more planets is re-
sponsible for the gap in double-debris-belt systems, we have to
estimate the dynamical and physical properties of these poten-
tially undetected objects.

We analyze in the following a sample of systems with de-
bris disks with two distinct components determined by fitting the
spectral energy distribution (SED) from Spitzer Telescope data
(coupled with previous flux measurements) and observed also
with the SPHERE instrument that performs high contrast direct
imaging searching for giant exoplanets. The two belts architec-
ture and their radial location obtained by Chen et al. (2014) were
also confirmed in the vast majority of cases by Geiler & Krivov
(2017) in a further analysis. In our analysis of these double belts
we assume that the gap between the two belts is due to the pres-
ence of one, two, or three planets in circular or eccentric or-
bits. In each case we compare the model predictions in terms of
masses, eccentricities, and semi-major axis of the planets with
the SPHERE instrument detection limits to test their observabil-
ity. In this way we can put stringent constraints on the potential
planetary system responsible for each double belt. This kind of
study has already been applied to HIP67497 and published in
Bonnefoy et al. (2017).

Further analysis involves the time needed for planets to dig
the gap. In Shannon et al. (2016) they find a relation between the
typical time scales, tclear, for the creation of the gap and the num-
bers of planets, N, between the belts as well as their masses: for
a given system’s age they can thus obtain the minimum masses
of planets that could have carved out the gap as well as their
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typical number. Such information is particularly interesting for
young systems because in these cases we can put a lower limit
on the number of planets that orbit in the gap. We do not take
into account this aspect in this paper since our main purpose
is to present a dynamical method but we will include it in fur-
ther statistical studies. Other studies, like the one published by
Nesvold & Kuchner (2015), directly link the width of the dust-
devoid zone (chaotic zone) around the orbit of the planet with
the age of the system. From such analyses it emerges that the
resulting gap for a given planet may be wider than expected
from classical calculations of the chaotic zone (Wisdom 1980;
Mustill & Wyatt 2012), or, equivalently, observed gaps may be
carved by smaller planets. However, these results are valid only
for ages ≤107 yr and, since very few systems in this paper are
that young, we do not take into account the time dependence in
chaotic zone equations.

In Sect. 2 we illustrate how the targets were chosen; in Sect. 3
we characterize the edges of the inner and outer components of
the disks; in Sect. 4 we describe the technical characteristics of
the SPHERE instrument and the observations and data reduction
procedures; in Sects. 5 and 6 we present the analysis performed
for the case of one planet, and two or three planets, respectively;
in Sect. 7 we study more deeply some individual systems of the
sample; and in Sect. 8, finally, we provide our conclusions.

2. Selection of the targets

The first step of this work is to choose the targets of interest. For
this purpose, we use the published catalog of Chen et al. (2014;
from now on, C14) in which they have calibrated the spectra
of 571 stars looking for excesses in the infrared from 5.5 µm to
35 µm (from the Spitzer survey) and when available (for 473 sys-
tems) they also used the MIPS 24 µm and/or 70 µm photometry
to calibrate and better constrain the SEDs of each target. These
systems cover a wide range of spectral types (from B9 to K5, cor-
responding to stellar masses from 0.5 M� to 5.5 M�) and ages
(from 10 Myr to 1 Gyr) with the majority of targets within 200 pc
from the Sun.

In Chen et al. (2014), the fluxes for all 571 sources were
measured in two bands, one at 8.5−13 µm to search for weak
10 µm silicate emission and another at 30−34 µm to search
for the longer wavelengths excess characteristic of cold grains.
Then, the excesses of SEDs were modeled using zero, one, and
two blackbodies because debris disks spectra typically do not
have strong spectral features and blackbody modeling provides
typical dust temperatures. We select amongst the entire sample
only systems with two distinct blackbody temperatures, as ob-
tained by Chen et al. (2014).

SED fitting alone suffers from degeneracies and in some
cases systems classified as double belts can also be fitted as sin-
gles belts by changing belt width, grain properties, and so on.
However, in Geiler & Krivov (2017), the sample of 333 double-
belt systems of C14 was reanalyzed to investigate the effective
presence of an inner component. In order to perform their anal-
ysis, they excluded 108 systems for different reasons (systems
with temperature of blackbody T1,BB ≤ 30 K and/or T2,BB ∼

500 K; systems for which one of the two components was too
faint with respect to the other or for which the two components
had similar temperatures; systems for which the fractional lumi-
nosity of the cold component was less than 4 × 10−6) and they
ended up with 225 systems that they considered to be reliable
two-component disks. They concluded that of these 225 stars,
220 are compatible with the hypothesis of a two-component

disk, thus 98% of the objects of their sample. Furthermore,
they pointed out that the warm infrared excesses for the great
majority of the systems are compatible with a natural dynami-
cal evolution of inner primordial belts. The remaining 2% of the
warm excesses are too luminous and may be created by other
mechanisms, for example by transport of dust grains from the
outer belt to the inner regions (Kral et al. 2017b).

The 108 discarded systems are not listed in Geiler & Krivov
(2017) and we cannot fully crosscheck all of them with the
ones in our sample. However, two out of three exclusion cri-
teria (temperature and fractional luminosity) can be replicated
just using parameters obtained by Chen et al. (2014). This re-
sults in 79 objects not suitable for their analysis, and between
them only HD 71155, β Leo, and HD 188228 are in our sample.
We cannot crosscheck the last 29 discarded systems but, since
they form a minority of objects, we can apply our analysis with
good confidence.

Since the gap between belts typically lies at tens of AU from
the central star the most suitable planet hunting technique to de-
tect planets in this area is direct imaging. Thus, we crosschecked
this restricted selection of objects of the C14 with the list of tar-
gets of the SHINE GTO survey observed with SPHERE up to
February 2017 (see Sect. 4). A couple of targets with uncon-
firmed candidates within the belts are removed from the sample
as the interpretation of these systems will heavily depend on the
status of these objects. We end up with a sample of 35 main
sequence young stars (t ≤ 600 Myr) in a wide range of spec-
tral types, within 150 pc from the Sun. Stellar properties are
listed in Table C.1. We adopted Gaia parallaxes (Lindegren et al.
2016), when available, or Hipparcos distances as derived by
van Leeuwen (2007). Masses were taken from C14 (no error
given) while luminosities have been scaled to be consistent with
the adopted distances. The only exception is HD 106906 that was
discovered to be a close binary system after the C14 publica-
tion and for which we used the mass as given by Lagrange et al.
(2016). Ages, instead, were obtained using the method described
in Sect. 4.2.

3. Characterization of gaps in the disks

For each of the systems listed in Table C.2, temperatures of the
grains in the two belts, T1,BB and T2,BB, were available from
C14. Then, we obtain the blackbody radii of the two belts (Wyatt
2008) using the equation

Ri,BB =

(
278 K
Ti,BB

)2( L∗
L�

)0.5

AU, (1)

with i = 1, 2.
However, if the grains do not behave like perfect blackbod-

ies a third component, the size of dust particles, must be taken
into account. Indeed, now the same SED could be produced by
smaller grains further out or larger particles closer to the star.
Therefore, in order to break this degeneracy, we searched the
literature for debris disks in our sample that have been previ-
ously spatially resolved using direct imaging. In fact, from di-
rect imaging data many peculiar features are clearly visible and
sculptured edges are often well constrained. We found 19 re-
solved objects and used positions of the edges as given by images
of the disks (see Appendix B). We note, however, that usually
disks resolved at longer wavelengths are much less constrained
than the ones with images in the near IR or in scattered light
and only estimations of the positions of the edges are possible.
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Moreover, images obtained in near IR and visible wavelengths
usually have higher angular resolutions. This is not the case for
ALMA that works at sub-millimeter wavelengths using interfer-
ometric measurements with resulting high angular resolutions.
For these reasons, we preferred, for a given system, images of
the disks at shorter wavelengths and/or, when available, ALMA
data.

For all the other undetected disks by direct imaging, we ap-
plied the correction factor Γ to the blackbody radius of the outer
belt which depends on a power law of the luminosity of the star
expressed in solar luminosity (Pawellek & Krivov 2015). More
details on the Γ coefficient are given in Appendix A. We indi-
cate with R2 in Table C.2 the more reliable disk radii obtained
multiplying R2,BB by Γ.

The new radii that we obtain need a further correction to be
suitable for our purposes. Indeed, they refer to the mid-radius
of the planetesimal belt, since we predict that the greater part of
the dust is produced there, and do not represent the inner edge
of the disk that is what we are looking for in our analysis. Such
error should be greater with increasing distance of the belt from
the star. Indeed, we expect that the farther the disk is placed, the
wider it is due to the weaker influence of the central star and to
effects like Poynting-Robertson and radiation pressure (Krivov
2010; Moro-Martin 2012). Thus, starting from data of resolved
disks (see Table B.1) we adopt a typical value of ∆R/R2 = 0.2,
where ∆R = R2 − d2 is the difference between the estimated po-
sition of the outer belt and the inner edge of the disk. Such a
value for the relative width of the outer disk is also supported
by other systems that are not in our sample, such as, for ex-
ample, ε Eridani, for which ∆R = 0.17 (Booth et al. 2017) or
the Solar System itself, for which ∆R = 0.18 for the Kuiper
belt (Gladman et al. 2001). Estimated corrected radii and inner
edges for each disk can be found in Table C.2 in Cols. 6 (R2) and
7 (d2).

Following the same arguments as Geiler & Krivov (2017),
we do not apply the Γ correction to the inner component since
it differs significantly with respect to the outer one, having, for
example, quite different distributions of the size as well as of the
composition of the grains. However, for the inner belts, results
from blackbody analysis should be more precise as confirmed
in the few cases in which the inner component was resolved
(Moerchen et al. 2010). Moreover, in systems with radial veloc-
ity planets, we can apply the same dynamical analysis that we
present in this paper and estimate the position of the inner belt.
Indeed, for RV planets, the semi-major axis, the eccentricity, and
the mass (with an uncertainty of sin i) are known and we can es-
timate the width of the clearing zone and compare it with the
expected position of the belt. Results from such studies seem to
point to a correct placement of the inner component from SED
fitting (Lazzoni et al., in prep.).

In Table C.2, we show, for each system in the sample, the
temperature of the inner and the outer belts, T1,BB and T2,BB, and
the blackbody radius of the inner and outer belts, R1,BB and R2,BB,
respectively. In column d2,sol of Table C.2, we show the positions
of the inner edge as given by direct imaging data for spatially
resolved systems. We also want to underline that the systems in
our sample are resolved only in their farther component, with the
exception of HD 71155 and ζ Lep that also have resolved inner
belts (Moerchen et al. 2010). Indeed, the inner belts are typically
very close to the star, meaning that, for the instruments used, it
was not possible to separate their contributions from the flux of
the stars themselves. We illustrate all the characteristics of the
resolved disks in Table B.1.

4. SPHERE observations

4.1. Observations and data reduction

The SPHERE instrument is installed at the VLT (Beuzit et al.
2008) and is designed to perform high-contrast imaging and
spectroscopy in order to find giant exoplanets around relatively
young and bright stars. It is equipped with an extreme adaptive
optics system, SAXO (Fusco et al. 2006; Petit et al. 2014), us-
ing 41 × 41 actuators, pupil stabilization, and differential tip-
tilt control. The SPHERE instrument has several coronagraphic
devices for stellar diffraction suppression, including apodized
pupil Lyot coronagraphs (Carbillet et al. 2011) and achromatic
four-quadrant phase masks (Boccaletti et al. 2008). The instru-
ment has three science subsystems: the Infra-Red Dual-band
Imager and Spectrograph (IRDIS; Dohlen et al. 2008), an Inte-
gral Field Spectrograph (IFS; Claudi et al. 2008), and the Zimpol
rapid-switching imaging polarimeter (ZIMPOL; Thalmann et al.
2008). Most of the stars in our sample were observed in IRDIFS
mode with IFS in the Y J mode and IRDIS in dual-band imag-
ing mode (DBI; Vigan et al. 2010) using the H2H3 filters. Only
HR 8799, HD 95086, and HD 106906 were also observed in a
different mode using IFS in the YH mode and IRDIS with K1K2
filters.

Observation settings are listed for each system in Table C.3.
Both IRDIS and IFS data were reduced at the SPHERE data
center hosted at OSUG/IPAG in Grenoble using the SPHERE
Data Reduction Handling (DRH) pipeline (Pavlov et al. 2008)
complemented by additional dedicated procedures for IFS
(Mesa et al. 2015) and the dedicated Specal data reduction soft-
ware (Galicher, in prep.) making use of high-contrast algorithms
such as PCA, TLOCI, and CADI.

Further details and references can be found in the various
papers presenting SpHere INfrared survEy (SHINE) results on
individual targets; for example, Samland et al. (2017). The ob-
servations and data analysis procedures of the SHINE survey
will be fully described in Langlois et al. (in prep.), along with
the companion candidates and their classification for the data
acquired up to now.

Some of the datasets considered in this study were pre-
viously published in Maire et al. (2016), Zurlo et al. (2016),
Lagrange et al. (2016), Feldt et al. (2017), Milli et al. (2017b),
Olofsson et al. (2016), and Delorme et al. (2017).

4.2. Detection limits

The contrast for each dataset was obtained using the procedure
described in Zurlo et al. (2014) and in Mesa et al. (2015). The
self-subtraction of the high-contrast imaging methods adopted
was evaluated by injecting simulated planets with known flux in
the original datasets and reducing these data applying the same
methods.

To translate the contrast detection limits into companion
mass detection limits we used the theoretical model AMES-
COND (Baraffe et al. 2003) that is consistent with a hot-start
planetary formation due to disk instability. These models predict
lower planet mass estimates than cold-start models (Marley et al.
2007) which, instead, represent the core accretion scenario, and
affect detection limits considerably. We do not take into ac-
count the cold model since with such a hypothesis we would
not be able to convert measured contrasts in Jupiter masses
close to the star. Spiegel & Burrows (2012) developed a com-
promise between the hottest disk instability and the coldest core
accretion scenarios and called it warm-start. For young systems
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(≤100 Myr) the differences in mass and magnitude between the
hot- and warm-start models are significant. Thus, the choice of
the former planetary formation scenario has the implication of
establishing a lower limit to detectable planet masses. We would
like to highlight, however, that even if detection limits were
strongly influenced by the choice of warm- in place of hot-start
models, our dynamical conclusions (as obtained in the following
sections) would not change significantly. Indeed, in any case we
would obtain that for the great majority of the systems in our
sample the gap between the belts and the absence of revealed
planets would only be explained by adding more than one planet
and/or considering eccentric orbits.

In order to obtain detection limits in the form ap vs. Mp, we
retrieved the J, H, and Ks magnitudes from 2MASS and the dis-
tance to the system from Table C.2. The age determination of the
targets is based on the methodology described in Desidera et al.
(2015) together with adjustments of the ages of several young
moving groups to the latest results from Vigan et al. (2017).

Eventually, the IFS and IRDIS detection limits were com-
bined in the inner parts of the field of view (within 0.7 arcsec),
adopting the lowest in terms of companions masses. Detection
limits obtained by such procedures are mono-dimensional since
they depend only on the distance aP from the star. More precise
bi-dimensional detection limits could be implemented to take
into account the noise due to the luminosity of the disk and its in-
clination (see for instance Fig. 11 of Rodet et al. 2017). Whereas
the disk’s noise is, for most systems, negligible (it becomes rel-
evant only for very luminous disks), the projection effects due to
inclination of the disk could strongly influence the probability of
detecting the planets. We consider the inclination caveat when
performing the analysis for two and three equal-mass planets on
circular orbits in Sect. 6.

5. Dynamical predictions for a single planet

5.1. General physics

A planet sweeps an entire zone around its orbit that is propor-
tional to its semi-major axis and to a certain power law of the
ratio µ between its mass and the mass of the star.

One of the first to reach a fundamental result in this field
was Wisdom (1980) who estimated the stability of dynamical
systems for a non-linear Hamiltonian with two degrees of free-
dom. Using the approximate criterion of the zero-order reso-
nance overlap for the planar circular-restricted three-body prob-
lem, he derived the following formula for the chaotic zone that
surrounds the planet

∆a = 1.3µ2/7ap, (2)

where ∆a is the half width of the chaotic zone, µ the ratio be-
tween the mass of the planet and the star, and ap is the semi-
major axis of the planet’s orbit.

After this first analytical result, many numerical simulations
have been performed in order to refine this formula. One par-
ticularly interesting expression regarding the clearing zone of a
planet on a circular orbit was derived by Morrison & Malhotra
(2015). The clearing zone, compared to the chaotic zone, is a
tighter area around the orbit of the planet in which dust particles
become unstable and from which are ejected rather quickly. The
formulas for the clearing zones interior and exterior to the orbit
of the planet are

(∆a)in = 1.2µ0.28ap, (3)

(∆a)ext = 1.7µ0.31ap. (4)

The last result we want to highlight is the one obtained by
Mustill & Wyatt (2012) using again N-body integrations and
taking into account also the eccentricities e of the particles. In-
deed, particles in a debris disk can have many different eccen-
tricities even if the majority of them follow a common stream
with a certain value of e. The expression for the half width of the
chaotic zone in this case is given by

∆a = 1.8µ1/5e1/5ap. (5)

The chaotic zone is thus larger for greater eccentricities of par-
ticles. Equation (5) is only valid for values of e greater than a
critical eccentricity, ecrit, given by

ecrit ∼ 0.21µ3/7. (6)

For e < ecrit this result is not valid anymore and Eq. (2) is more
reliable. Even if each particle can have an eccentricity due to
interactions with other bodies in the disk, such as for example
collisional scattering or disruption of planetesimals in smaller
objects resulting in high e values, one of the main effects that
lies beneath global eccentricity in a debris disk is the presence of
a planet on eccentric orbit. Mustill & Wyatt (2009) have shown
that the linear secular theory gives a good approximation of the
forced eccentricity ef even for eccentric planet and the equations
giving ef are:

ef,in ∼
5aep

4ap
, (7)

ef,ex ∼
5apep

4a
, (8)

where ef,in and ef,ex are the forced eccentricities for planetes-
imals populating the disk interior and exterior to the orbit of
the planet, respectively; ap and ep are, as usual, semi-major axis
and eccentricity of the planet, while a is the semi-major of the
disk. We note that such equations arise from the leading-order
(in semi-major axis ratio) expansion of the Laplace coefficients,
and hence are not accurate when the disk is very close to the
planet.

It is common to take the eccentricities of the planet and disk
as equal, because this latter is actually caused by the presence of
the perturbing object. Such approximation is also confirmed by
Eqs. (7) and (8). Indeed, the term 5/4 is balanced by the ratio
between the semi-major axis of the planet and that of the disk
since, in our assumption, the planet gets very close to the edge
of the belt and thus the values of ap are not so different from that
of a, giving ef ∼ ep.

Other studies, such as the ones presented in Chiang et al.
(2009) and Quillen & Faber (2006), investigate the chaotic zone
around the orbit of an eccentric planet and they all show very
similar results to the ones discussed here above. However, in no
case does the eccentricity of the planet appear directly in analyt-
ical expressions, with the exception of the equations presented
in Pearce & Wyatt (2014) that are compared with our results in
Sect. 5.2.

5.2. Numerical simulations

All the previous equations apply to the chaotic zone of a planet
moving on a circular orbit. When we introduce an eccentricity
ep, the planet varies its distance from the star. Recalling all the
formulations for the clearing zone presented in Sect. 5.1 we can
see that it always depends on the mean value of the distance
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between the star and the planet, ap, that is assumed to be almost
constant along the orbit.

The first part of our analysis considers one single planet as
the only responsible for the lack of particles between the edges
of the inner and external belts. We show that the hypothesis of
circular motion is not suitable for any system when considering
masses under 50 MJ. For this reason, the introduction of eccen-
tric orbits is of extreme importance in order to derive a complete
scheme for the case of a single planet.

In order to account for the eccentric case we have to intro-
duce new equations. The empirical approximation that we use
(and that we support with numerical simulations) consists in
starting from the old formulas (2) and (5) suitable for the cir-
cular case and replace the mean orbital radius, ap, with the posi-
tions of apoastron, Q, and periastron, q, in turn. We thus get the
following equations

(∆a)ex = 1.3µ2/7Q, (9)

(∆a)in = 1.3µ2/7q, (10)

which replace Wisdom formula (2), and

(∆a)ex = 1.8µ1/5e1/5Q, (11)

(∆a)in = 1.8µ1/5e1/5q, (12)

which replace Mustill & Wyatt’s Eq. (5) and in which we choose
to take as equal the eccentricities of the particles in the belt and
that of the planet, e = ep. The substitution of ap with apoastron
and periastron is somehow similar to considering the planet as
split into two objects, one of which is moving on circular orbit
at the periastron and the other on circular orbit at apoastron, and
both with mass Mp.

In parallel with this approach, we performed a complemen-
tary numerical investigation of the location of the inner and outer
limits of the gap carved in a potential planetesimal disk by a mas-
sive and eccentric planet orbiting within it to test the reliability
of the analytical estimations in the case of eccentric planets.

We consider as a test bench a typical configuration used in
numerical simulations with a planet of 1 MJ around a star of
1 M� and two belts, one external and one internal to the orbit of
the planet, composed of massless objects. The planet has a semi-
major axis of 5 AU and eccentricities of 0, 0.3, 0.5, and 0.7 in the
four simulations. We first perform a stability analysis of random
sampled orbits using the frequency map analysis (FMA; Marzari
2014a). A large number of putative planetesimals are generated
with semi-major axis a uniformly distributed within the intervals
ap + RH < a < ap + 30RH and ap − 12RH < a < ap − RH,
where RH is the radius of the Hill’s sphere of the planet. The
initial eccentricities are small (lower than 0.01), meaning that
the planetesimals acquire a proper eccentricity equal to the one
forced by the secular perturbations of the planet. This implicitly
assumes that the planetesimal belt was initially in a cold state.

The FMA analysis is performed on the non-singular vari-
ables h and k, defined as h = e sin$ and k = e cos$, of each
planetesimal in the sample. The main frequencies present in the
signal are due to the secular perturbations of the planet. Each
dynamical system composed of planetesimal, planet, and central
star is numerically integrated for 5 Myr with the RADAU inte-
grator and the FMA analysis is performed using running time
windows extending for 2 Myr. The main frequency is computed
with the FMFT high-precision algorithm described in Laskar
(1993) and Šidlichovský & Nesvorný (1996). The chaotic dif-
fusion of the orbit is measured as the logarithm of the relative
change of the main frequency of the signal over all the windows,

Fig. 1. Numerical simulation for a planet of 1 MJ around a star of 1 M�
with a semi-major axis of 5 AU and eccentricity of 0.3. We plot the
fraction of bodies that are not ejected from the system as a function
of the radius. Green lines represent the stability analysis on the radial
distribution of the disk. Red lines represent the radial distributions of
4000 objects.

cs. The steep decrease in the value of cs marks the onset of long-
term stability for the planetesimals and it outlines the borders of
the gap sculpted by the planet.

This approach allows a refined determination of the half
width of the chaotic zone for eccentric planets. We term the in-
ner and outer values of semi-major axis of the gap carved by
the planet in the planetesimal disk ai and ao, respectively. For
e = 0, we retrieve the values of ai and ao that can be derived
from Eq. (2) even if ao is slightly larger in our model (6.1 AU
instead of 5.9 AU). For increasing values of the planet eccen-
tricity, ai moves inside while ao shifts outwards, both almost lin-
early. However, this trend is in semi-major axis while the spatial
distribution of planetesimals depends on their radial distance.

For increasing values of ep, the planetesimals eccentricities
grow as predicted by Eqs. (7) and (8) and the periastron of the
planetesimals in the exterior disk moves inside while the apoas-
tron in the interior disk moves outwards. As a consequence,
the radial distribution trespasses ai and ao reducing the size of
the gap. To account for this effect, we integrated the orbits of
4000 planetesimals for the interior disk and just as many for the
exterior disk.

The bodies belonging to the exterior disk are generated with
semi-major axis a larger than ao while for the interior disk a
is smaller than ai. After a period of 10 Myr, long enough for
their pericenter longitudes to be randomized, we compute the
radial distribution. This will be determined by the eccentricity
and periastron distributions of the planetesimals forced by the
secular perturbations. In Fig. 1 we show the normalized radial
distribution for ep = 0.3. At the end of the numerical simulation
the radial distribution extends inside ao and outside ai.

The inner and outer belts are detected by the dust produced in
collisions between the planetesimals. There are additional forces
that act on the dust, like the Poynting-Robertson drag, slightly
shifting the location of the debris disk compared to the radial dis-
tribution of the planetesimals. However, as a first approximation,
we assume that the associated dusty disk coincides with the loca-
tion of the planetesimals. In this case the outer and inner borders
d2 and d1 of the external and internal disk, respectively, can be
estimated as the values of the radial distance for which the den-
sity distribution of planetesimals drops to 0. Alternatively, we
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Table 1. Position of the inner belt.

ep Cut d1,num (AU) Wisdom Mustill
0 0 4.1 4.11 4.11
0 1/3 4.48 4.11 4.11
0 1/4 4.48 4.11 4.11

0.3 0 2.5 2.88 2.27
0.3 1/3 2.8 2.88 2.27
0.3 1/4 3.1 2.88 2.27
0.5 0 1.74 2.05 1.53
0.5 1/3 1.96 2.05 1.53
0.5 1/4 2.24 2.05 1.53
0.7 0 1.1 1.23 0.87
0.7 1/3 1.32 1.23 0.87
0.7 1/4 1.38 1.23 0.87

Table 2. Position of the outer belt.

ep Cut d2,num (AU) Wisdom Mustill
0 0 6.1 5.89 5.89
0 1/3 6.26 5.89 5.89
0 1/4 6.26 5.89 5.89

0.3 0 8.9 7.66 8.79
0.3 1/3 7.84 7.66 8.79
0.3 1/4 7.56 7.66 8.79
0.5 0 10.27 8.84 10.42
0.5 1/3 9.52 8.84 10.42
0.5 1/4 9.24 8.84 10.42
0.7 0 11.6 10.02 12.05
0.7 1/3 11.0 10.02 12.05
0.7 1/4 10.79 10.02 12.05

can require that the borders of the disk are defined as being where
the dust is bright enough to be detected, and this may occur when
the radial distribution of the planetesimals is larger than a given
ratio of the peak value, fM , in the density distribution.

We arbitrarily test two different limits, one of 1/3 fM and the
other of 1/4 fM , for both the internal and external disks. In this
way, the low-density wings close to the planet on both sides are
cut away under the assumption that they do not produce enough
dust to be detected.

The d2 and d1 outer and inner limits of the external and inter-
nal disks are given in all three cases (0, 1/3, and 1/4) in Tables 1
and 2 for each eccentricity tested. The first three columns report
the results of our simulations and are compared to the estimated
values of the positions of the belts (last two columns) that we ob-
tained in the first place, calculating the half width of the chaotic
zone from Eqs. (10) and (12) for the inner belt and Eqs. (9) and
(11) for the outer one, and then we use the relations

(∆a)in = q − d1, (13)
(∆a)ex = d2 − Q, (14)

obtaining, in the end, d1 and d2.
We plot the positions of the two belts against the eccentricity

for a cut-off of one third in Fig. 2. As we can see, results from
simulations are in good agreement with our approximation. Par-
ticularly, we note how Wisdom is more suitable for eccentrici-
ties up to 0.3 (result that has already been proposed in a paper by
Quillen & Faber (2006) in which the main conclusion was that
particles in the belt do not feel any difference if there is a planet
on circular or eccentric orbit for ep ≤ 0.3). For greater values of
ep, Eqs. (11) and (12) also give reliable results.

Fig. 2. Position of the inner (up) and external (down) belts for cuts off
of one third.

In Pearce & Wyatt (2014) a similar analysis is discussed re-
garding the shaping of the inner edge of a debris disk due to an
eccentric planet that orbits inside the latter. As known from the
second Kepler’s law, the planet has a lower velocity when it or-
bits near apoastron and thus it spends more time in such regions.
Thus, they assumed that the position of the inner edge is mainly
influenced by scattering of particles at apocenter in agreement
with our hypothesis. Using the Hill stability criterion they obtain
the following expression for the chaotic zone,

∆aex = 5RH,Q, (15)

where RH,Q is the Hill radius for the planet at apocenter, given
by

RH,Q ∼ ap(1 + ep)
[

Mp

(3 − ep)M∗

]1/3

· (16)

Comparing ∆aext to Eqs. (9), (11), and (15) for a planet of 1 MJ
that orbits around a star of 1 M� with a semi-major axis of
ap = 5 AU (the typical values adopted in Pearce & Wyatt 2014)
and eccentricity ep = 0.3, we obtain results that are in good
agreement and differ by 15%. For the same parameters but higher
eccentricity (ep = 0.5) the difference steeply decreases down
to 2%. Thus, even if our analysis is based on different equa-
tions with respect to Eq. (15) the clearing zone that we obtain
is in good agreement with values as expected by Pearce & Wyatt
(2014), further corroborating our assumption for planets on ec-
centric orbits.
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5.3. Data analysis

Once we have verified the reliability of our approximations,
we proceed with analyzing the dynamics of the systems in the
sample.

The first assumption that we tested is of a single planet on a
circular orbit around its star. We use the equations for the clear-
ing zone of Morrison & Malhotra (3) and (4). We vary the mass
of the planet between 0.1 MJ, that is, Neptune/Uranus sizes, and
50 MJ in order to find the value of Mp, and the corresponding
value of ap, at which the planet would sweep an area as wide as
the gap between the two belts. 50 MJ represents the approximate
upper limit of applicability of the equations, since they require
that µ is much smaller than 1. Since (∆a)in + (∆a)ex = d2 − d1,
knowing Mp, we can obtain the semi-major axis of the planet by

ap =
d2 − d1

1.2µ0.28 + 1.7µ0.31 · (17)

With this starting hypothesis we cannot find any suitable solution
for any system in our sample. Thus objects more massive than
50 MJ are needed to carve out such gaps, but they would clearly
lie well above the detection limits.

Since we get no satisfactory results for the circular case, we
then consider one planet on an eccentric orbit. We use the ap-
proximation illustrated in the previous paragraph with one fur-
ther assumption: we consider the apoastron of the planet as the
point of the orbit nearest to the external belt while the periastron
as the nearest point to the inner one. We let again the masses vary
in the range [0.1, 50] MJ and, from Eqs. (9)–(12), we get the val-
ues of periastron and apoastron for both Wisdom and Mustill &
Wyatt formulations, recalling also Eqs. (13) and (14). Therefore,
we can deduce the eccentricity of the planet through

ep =
Q − q
Q + q

· (18)

Equation (5) contains itself the eccentricity of the planet ep, that
is our unknown. The expression to solve in this case is

ep −
d2(1 − 1.8(µep)1/5) − d1(1 + 1.8(µep)1/5)
d2(1 − 1.8(µep)1/5) + d1(1 + 1.8(µep)1/5)

= 0, (19)

for which we found no analytic solution but only a numerical
one. We can now plot the variation of the eccentricity as a func-
tion of the mass. We present two of these graphics, as examples,
in Fig. 3.

In each graphic there are two curves, one of which repre-
sents the analysis carried out with the Wisdom formulation and
the other with Mustill & Wyatt expressions. In both cases, the
eccentricity decreases with increasing planet mass. This is an
expected result since a less massive planet has a tighter chaotic
zone and needs to come closer to the belts in order to separate
them of an amount d2 − d1, that is fixed by the observations (and
vice versa for a more massive planet that would have a wider
∆a). Moreover, we note that the curve that represents Mustill &
Wyatt’s formulas decreases more rapidly than Wisdom’s curve.
This is due to the fact that Eq. (5) also takes into account the
eccentricity of the planetesimals (in our case e = ep) and thus ∆a
is wider.

Comparing the graphics of the two systems, representative
of the general behavior of our targets, we note that whereas for
HD 35114, for increasing mass, the eccentricity reaches inter-
mediate values (≤0.4), HD1466 needs planets on very high ec-
centric orbits even at large masses (≥0.6). From Table C.2, the
separation between the belts in HD35114 is of ∼86 AU whereas

Fig. 3. ep vs. Mp for HD 35114 (up) and HD 1466 (down).

in HD1466 this is only ∼40 AU. We can then wonder why in the
first system planets with smaller eccentricity are needed to dig
a gap larger than the one in the second system. The explanation
regards the positions of the two belts: HD35114 has the inner
ring placed at 6 AU whereas for HD1466 it is at 0.7 AU. From
Eqs. (2) and (5) we obtain a chaotic zone that is larger for further
planets since it is proportional to ap.

From the previous discussion, we deduce that many factors
in debris disks are important in order to characterize the prop-
erties of the planetary architecture of a system: first of all the
radial extent of the gap between the belts (the wider the gap, the
more massive and/or eccentric are the planets needed); but also
the positions of the belts (the closer to the star, the more difficult
to sculpt) and the mass of the star itself.

For most of our systems the characteristics of the debris disks
are not so favorable to host one single planet since we would
need very massive objects that have not been detected. For this
reason we now analyze the presence of two or three planets
around each star.

Before considering multiple planetary systems, however, we
want to compare our results with the detection limits available
in the sample and obtained as described in Sect. 4.2. We show,
as an example, the results for HD 35114 and HD 1466 in Fig. 4
in which we plot the detection limits curve, the positions of the
two belts (the vertical black lines) and three values of the mass.
From the previous method we can associate a value of ap and ep
to each value of the mass, noting that, as mentioned above, Wis-
dom gives more reliable results for ep ≤ 0.3, whereas Mustill &
Wyatt for ep > 0.3. Moreover, we choose three values of masses
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Fig. 4. SPHERE detection limits for HD 35114 (up) and HD 1466
(down). The bar plotted for each Mp represents the interval of distances
covered by the planet during its orbit, from a minimum distance (peri-
astron) to the maximum one (apoastron) from the star. The two vertical
black lines represent the positions of the two belts. Projection effects in
the case of significantly inclined systems are not included.

because they represent well the three kinds of situation that we
could find: for the smallest mass the planet is always below the
detection limits and so never detectable; for intermediate mass
the planet crosses the curve and thus it is detectable at certain
radii of its orbit and undetectable at others (we note however,
that the planet spends more time at apoastron than at periastron
meaning that it is more likely detectable in this latter case); the
higher value of Mp has only a small portion of its orbit (the area
near to the periastron) that is hidden under the curve and thus
undetectable.

We note that in both figures there is a bump in the detection
limit curves: this is due to the passage from the deeper obser-
vations done with IFS that has field of view ≤0.8 arcsec to the
IRDIS ones that are less deep but cover a greater range of dis-
tances (up to 5.5 arcsec).

6. Dynamical predictions for two and three planets

6.1. General physics

In order to study the stability of a system with two planets, we
have to characterize the region between the two. From a dynam-
ical point of view, this area is well characterized by the Hill cri-
terion. Let us consider a system with a star of mass M∗, the inner
planet with mass Mp,1, semi-major axis of ap,1, and eccentricity

ep,1, and the outer one with mass Mp,2, semi-major axis ap,2 and
eccentricity ep,2. In the hypothesis of small planet masses, that
is, Mp,1 � M∗, Mp,2 � M∗ and Mp,2 + Mp,1 � M∗, the system
will be Hill stable (Gladman 1993) if

α−3
(
µ1 +

µ2

δ2

)
(µ1γ1 + µ2γ2δ)2 ≥ 1 + 34/3 µ1µ2

α4/3 , (20)

where µ1 and µ2 are the ratio between the mass of the inner/outer
planet and the star respectively, α = µ1 + µ2, δ =

√
1 + ∆/ap,1

with ∆ = ap,2 − ap,1 and, at the end, γi =
√

1 − e2
p,i with i = 1, 2.

If the two planets in the system have equal mass, the previous
Equation, taking Mp,2 = Mp,1 = Mp and µ = Mp/M∗, can be
rewritten in the form

α−3
(
µ +

µ

2δ2

)
(µγ1 + µγ2δ)2 − 1 − 34/3 µ2

α4/3 ≥ 0, (21)

and substituting the expressions for α, δ, ∆, and γi we obtain
1
8

(
1+

ap,1

ap,2

)(√
1 − e2

p,1 +

√
1 − e2

p,2

√
ap,2

ap,1

)2
−1−

(3
2

)4/3
µ2/3 ≥ 0.

(22)

Thus, the dependence of the stability on the mass of the two
planets, in the case of equal mass, is very small since it appears
only in the third term of the previous equation in the form µ2/3,
with µ � 1 and µ ≥ 0, and, for typical values, it is two orders
of magnitude smaller than the first two terms. The leading terms
that determine the dynamics of the system are the eccentricities
ep,1 and ep,2. For this reason, we expect that small variation in
the eccentricities will lead to great variation in mass.

A further simplification to the problem comes when we con-
sider two equal-mass planets on circular orbits. In this case the
stability Eq. (20) takes the contracted form

∆ ≥ 2
√

3RH, (23)

where ∆ is the difference between the radii of the planets’ or-
bits and RH is the planets mutual Hill radius that, in the general
situation, is given by

RH =

(
Mp,1 + Mp,2

3M∗

)1/3 (ap,1 + ap,2

2

)
· (24)

In the following, we investigate both the circular and the eccen-
tric cases with two planets of equal mass.

The last case that we present is a system with three copla-
nar and equal-mass giant planets on circular orbits. The physics
follows from the previous discussion since the stability zone be-
tween the first and the second planet, and between the second
and the third is again well described by the Hill criterion. Once
fixed, the inner planet semi-major axis ap,1, the semi-major axis
of the second, and third planets is given by

ap,i+1 = ap,i + KRHi,i+1, (25)

where the K value that ensures stability is a constant that depends
on the mass of the planets and RHi,i+1 is the mutual Hill radius
between the first and the second planets for i = 1 and between
the second and the third for i = 2. K produces parametrization
curves, called K-curves, that are weakly constrained. However,
we can associate to K likely values that give us a clue on the
architecture of the system. Following Marzari (2014a), the most
used values of K for giant planets are:

– K ∼ 8 for Neptune-size planets;
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– K ∼ 7 for Saturn-size planets;
– K ∼ 6 for Jupiter-size planets.

There is no analysis in the literature that gives analytical tools
to explore the case of three or more giant planets with different
masses and/or eccentric orbits. Thus, further investigations are
merited even if they go beyond the scope of this work.

As we see in the following Sections, once we have estab-
lished the stability of a multi-planetary system, we apply again
the equations for the chaotic/clearing zone derived previously
for a single planet as a criterion to describe the planet-disk
interaction. However, for two and three planets, more com-
plex dynamical effects due to mean motion and secular reso-
nances may change the expected positions of the edges. We have
compared our analytical predictions with the results obtained
by Moro-Martín et al. (2010) who performed numerical simula-
tions in four systems (HD 128311, HD 202206, HD 82943, and
HR 8799) with known companions in order to determine the po-
sitions of the gap. While the outer edge of the inner belt is well
reproduced by the formulas we have exploited, the inner edge
of the outer belt is slightly shifted farther out for each system in
the numerical modeling. This is in part related to the stronger
and more stable mean motion resonances in the single-planet
case. A full investigation of this problem is complex since the
parameter space is wide as both the mass and eccentricity of the
planets may change. However, we are interested in a first-order
study and the differences due to the dynamical models are com-
patible with the error bars on the positions of the belts. Since
we want only to give a method to obtain a rough estimation of
possible architectures of planetary systems, such corrections are
not included in this paper but we stress that deeper analyses are
needed to obtain stronger and more precise conclusions.

6.2. Data analysis
6.2.1. Two and three planets on circular orbits
The first kind of analysis that we perform consists in taking into
account two coplanar planets on circular orbits. In this case, be-
tween the two belts the system is divided into three different
zones from a stability point of view. The first one extends from
the outer edge of the internal disk to the inner planet and it is de-
termined from interaction laws between two massive bodies (the
star and the planet) and N massless objects. The second zone is
included between the inner and the outer planets and is domi-
nated by the Hill’s stability. Eventually, the third zone goes from
the outer planet to the inner edge of the external belt and is an
analog of the first one.

From Eq. (23) we note that a system with two planets is sta-
ble if ∆ = ap,2 − ap,1 is greater or equal to a certain quantity.
However, since we do not observe any amount of dust grains in
the region between the planets, we expect it to be completely
unstable for small particles. The condition needed to reach such
a situation is called max packing, whereby the two planets are
made to become as close as possible whilst remaining a stable
system. Therefore, the max packing condition is satisfied by the
equation

ap,2 − ap,1 = 2
√

3
(

2 Mp

3 M∗

)1/3 (ap,1 + ap,2

2

)
· (26)

The other two equations that we need are the ones of Morrison
& Malhotra, Eqs. (3) and (4), from which we obtain ap,1 and ap,2
in the form

ap,1 =
d1

1 − 1.2µ0.28 , (27)

ap,2 =
d2

1 + 1.7µ0.31 , (28)

and substituting in Eq. (26) we get

d2 − d1 =
√

3
(

2
3

)1/3

µ1/3(d1 + d2)

+
√

3
(2
3

)1/3
(d11.7µ0.31+1/3 − d21.2µ0.28+1/3)

+ 1.2d2µ
0.28 + d11.7µ0.31. (29)

This is a very complex equation to solve for Mp and we need to
make some simplifications. We note that all the exponents of µ
have very similar values with the exception of the two µ in the
third term on the right side of the equation, in which, however,
the exponents are about double of all others. Thus, we choose
µ0.31 as a mean value, and µ0.62 in the third term for both terms
in the brackets. Calling x = µ0.31 we have now to solve the
quadratic equation

√
3
(2
3

)1/3
(1.2d2 − 1.7d1)x2

−
(
1.2d2 + 1.7d1 +

√
3
(2
3

)1/3
(d1 + d2)

)
x + d2 − d1 = 0. (30)

We can finally obtain the value of Mp, given the positions of the
two belts and the mass of the star

Mp = M∗

(1.2d2 + 1.7d1 +
√

3
(

2
3

)1/3
(d1 + d2)

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

−

√(
1.2d2 + 1.7d1 +

√
3
(

2
3

)1/3
(d2 + d1)

)2

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

−4
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)(d2 − d1)

2
√

3
(

2
3

)1/3
(1.2d2 − 1.7d1)

)10/31

· (31)

The numerical outcomes of the equation show that this formula
is reliable. We recall that our equations are valid only for µ � 1,
thus we choose again as upper limit 50 MJ and arbitrarily we
consider only masses bigger than 0.1 MJ. In the case of two
equal-mass planets on coplanar circular orbits we obtain satis-
fying results only in 8 cases out of 35 presented in Table C.2.

The case of three planets of equal mass on circular orbits
is quite similar and of particular interest. Indeed, systems of
three (or more) lower-mass planets may be more likely sculp-
tors than two massive planets on eccentric orbits that will be
considered in the following section, both because the occurrence
rate of lower-mass planets is higher than Jovian planets (at least
in regions close to the star) as seen, for example, from Kepler
(Howard et al. 2012) or RV (Mayor et al. 2011; Raymond et al.
2012) planet occurrence rates, and because the disk would not
have to survive planet-planet scattering without being depleted
(Marzari 2014b).

For the three-planet case, we have to consider four zones of
instability for the particles: the first and the fourth are determined
by the inner and the outer planet assuming Eqs. (3) and (4) re-
spectively, while the second and the third by the Hill criterion.
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Fig. 5. Masses (Mp/MJ) for the systems with two and three equal-mass
planets on circular orbits: red circles represent a system with two planets
that are detectable, while green and blue circles represent three planets
detectable and undetectable, respectively. Since the equations are not
fully correct for more massive planets, for the two-planet case we show
only systems for which MP ≤ 50 MJ whereas for the three-planet case
we show only systems for which MP ≤ 15 MJ.

From Eq. (25), we can express the mutual dependence be-
tween the positions of the three planets as

ap,2 = ap,1 + K
(2Mp

M∗

)1/3 ap,1 + ap,2

2
, (32)

ap,3 = ap,2 + K
(2Mp

M∗

)1/3 ap,2 + ap,3

2
· (33)

We can obtain ap,2 from Eq. (32) and substituting it in Eq. (33)
we get

ap,3 = ap,1

(
1 + K

2

(
2
3µ

)1/3)2

(
1 − K

2

(
2
3µ

)1/3)2 , (34)

where ap,1 and ap,3 are determined by Eqs. (3) and (4). The final
expression to solve for Mp becomes

d2

d1

1 − 1.2µ0.28

1 + 1.7µ0.31 =

(
1 + K

2

(
2
3µ

)1/3)2

(
1 − K

2

(
2
3µ

)1/3)2 · (35)

In analogy with the previous cases, we impose a lower limit on
the mass at 0.1 MJ but we have a further constraint on the upper
one since values of K are valid only up to some Jupiter masses.
Thus we take as upper limit for the three planets model 15 MJ.
The values of K are the ones described in the previous para-
graph, with K = 8 for masses up to 0.3 MJ, K = 7 for masses
in the range [0.3, 0.9]MJ and K = 6 for Mp ≥ 1MJ. For three
equal-mass planets on circular coplanar orbits we obtain more
encouraging results since with such configuration the gap could
be explained in 25 cases out of 35. Results of the analysis of two
and three planets on circular orbits are shown in Fig. 5.

Together with the values of the masses for each system suit-
able to host two and/or three planets on circular orbits, we in-
dicate the detectability of such planets, comparing their masses
and semi-major axis with SPHERE detection limits. The condi-
tion for detectability in this case is that at least one object in the
two- or three-planet model is above the detection limits curve.

However, as mentioned in Sect. 4, inclination of the disk may
affect the detectability of the putative planets due to projection
effects. Indeed, objects that are labeled as detectable in Fig. 5
are always observable only if the disk is face-on. With increas-
ing inclination, the chance of detecting the planets decreases.
Whereas for the two-planet case the probability of detecting at
least the outer objects is usually very high due to the big masses
obtained, for the three-planet case, half of the systems labeled as
detectable are indeed observable only 50% of the time (the worst
case is for the outer putative planet of HD 133863 which would
be detectable only 37% of the time).

With the exception of very few systems, such as for exam-
ple HD 174429, HR 8799, HD 206893, and HD 95086, no giant
planets or brown dwarfs have been discovered between the two
belts in the systems of our selected sample using direct imaging
techniques. Thus, we expect that if planets are indeed present,
they must remain undetectable with our observations. In all sys-
tems, two planets on circular orbits would have been detected,
since large masses are required. The situation improves signifi-
cantly for the three-planet model because many systems can be
explained with planets that would remain undetected. Therefore,
in most cases, the assumption of three equal-mass planets on cir-
cular orbits is more suitable than the one with two planets with
the same characteristics.

Obviously in this paragraph we have made very restrictive
hypotheses: circular orbits and equal-mass planetary systems.
Varying these two assumptions would give many suitable com-
binations in order to explain what we do (or do not) observe.

6.2.2. Two planets on eccentric orbits

The last model we want to investigate comprises two equal-mass
planets on eccentric orbits. The system is again divisible into
three regions of stability. The zone between the two planets fol-
lows the Hill criterion for the condition of max packing given
by Eq. (22) with the equal sign. For the outer and inner regions
the force is exerted by the planets on the massless bodies in the
belts. This time, however, we use Wisdom and Mustill & Wyatt
expressions instead of Morrison & Malhotra’s, suitable only for
the circular case. Precisely, we apply the equation of Wisdom
for eccentricities up to 0.3 whereas for greater values of ep we
use Mustill & Wyatt, together with the substitution of ap with
apoastron and periastron of the planets.

We have four different situations:

– if ep,1 and ep,2 are both ≤0.3, then we used equations of Wis-
dom (9) and (10), from which we obtain ap,1 and ap,2 in the
form

ap,1 =
d1

1 − 1.3µ2/7

1
1 − ep,1

, (36)

ap,2 =
d2

1 + 1.3µ2/7

1
1 + ep,2

; (37)

– if ep,1 ≤ 0.3 and ep,2 > 0.3 we apply at the inner planet the
equation of Wisdom (10) and at the outer one Eq. (11) from
Mustill & Wyatt, thus obtaining

ap,1 =
d1

1 − 1.3µ2/7

1
1 − ep,1

, (38)

ap,2 =
d2

1 + 1.8µ1/5e1/5
p,2

1
1 + ep,2

; (39)
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Fig. 6. Analysis for HD 35114 with two equal-mass planets on eccentric
orbits. On the axes, the eccentricity of the inner (e1) and outer (e2) plan-
ets. The graduation of colors represents values of Mp/MJ. The black
line represents the approximate detection limits: points above the line
are undetectable whereas points below are detectable. The discontinu-
ity at e = 0.3 is due to the passage from Wisdom’s equation to Mustill
and Wyatt’s one.

– if ep,1 > 0.3 and ep,2 ≤ 0.3 we have the opposite situation
with respect to the one described above, thus we use Mustill
& Wyatt for the inner planet and Wisdom for the outer one

ap,1 =
d1

1 − 1.8µ1/5e1/5
p,1

1
1 − ep,1

, (40)

ap,2 =
d2

1 + 1.3µ2/7

1
1 + ep,2

; (41)

– if ep,1 and ep,2 are both > 0.3 we use Mustill & Wyatt for the
two planets

ap,1 =
d1

1 − 1.8µ1/5e1/5
p,1

1
1 − ep,1

, (42)

ap,2 =
d2

1 + 1.8µ1/5e1/5
p,2

1
1 + ep,2

· (43)

Thus, depending on the values of ep,1 and ep,2 we substitute in
Eq. (22) expressions of ap,1 and ap,2 as obtained above. Varying
the masses in the range [0.1, 25] MJ, we obtain the respective
values of eccentricities for the two planets. We note that we are
implicitly assuming that the two eccentric planets will remain on
the same orbits for their whole lifetime whereas, in reality, their
eccentricities will fluctuate. This may imply lower masses of the
two planets required to dig the gap as the systems are unlikely to
be observed at the peak of an eccentric cycle.

We show in Fig. 6 the results of this analysis for HD 35114.
For each system, we obtain a set of suitable points identified by
the three coordinates [ep,1, ep,2,Mp] (we recall that the two plan-
ets in the system have the same mass). Therefore, we prepare a
grid with the two values of eccentricities on the axes and we as-
sociate a scale of colors to the mass range (see Fig. 6). Moreover,
in order to determine which planets would have been detected,
we confront, as always, values of semi-major axis and mass with
the detection limit curves and use as a criterion of detectability,
the condition in which at least one of the two planets is above
the curve even just in partial zones of its orbit (see Fig. 6).

In the graphics, we indicate with a black line the approximate
detection limits: points above the line are undetectable whereas
points below are detectable. From Fig. 6 it is clearly visible how

mass (and thus detectability) decreases with increasing eccen-
tricities. Moreover, small variations of ep,1 and/or ep,2 cause a
great damp in mass since, as already mentioned above, the sta-
bility depends very little on the mass of the two planets.

From this study emerges the fact that the apparent lack of
giant planets in the sample of systems analyzed can easily be
explained by taking quite eccentric planets of moderate masses
that lay beneath the detection limit curve. Indeed, large ec-
centricities are common features of exoplanets (Udry & Santos
2007) and thus we must not abandon the hypothesis that gaps
between two planetesimal belts can be dug by massive objects
that surround the central star.

7. Particularly interesting systems

7.1. HD 106906

HD 106906AB is a close binary system (Lagrange et al. 2016)
where both stars are F5 and are located at a distance of 91.8 pc.
They belong to the Lower Centaurus Crux (LCC) group, which
is a subgroup of the Scorpius-Centaurus (Sco-Cen) OB as-
sociation. Bailey et al. (2014) detected a companion planet,
HD 106906 b, of 11 ± 2 MJ located at ∼650 AU in projected
separation and an asymmetric circumbinary debris disk nearly
edge-on resolved by different instruments (see Appendix B). The
evident asymmetries of the disk could suggest interactions be-
tween the planet and the disk (Rodet et al. 2017; Nesvold et al.
2017). The gap in the disk is located between 13.1 AU and 56 AU
and the detected companion orbits far away from this area. Since
the gap is quite small, we find promising results for one or more
undetected companions. As mentioned in Sect. 5, it is not pos-
sible to explain the gap with a single planet (with MP ≤ 50 MJ)
on a circular orbit. In Fig. 7 we show ep vs. Mp for one eccen-
tric planet to be responsible for the empty space between the
belts: we do not need particularly high eccentricity even at low
masses. Thus the gap, together with the non detection of another
companion (besides HD 106906 b), could be explained by a sin-
gle planet on an eccentric orbit as shown in Fig. 8. For example,
a planet with a mass of 1 MJ, semi-major axis ap ∼ 45 AU and
a reasonable value of eccentricity, ep ∼ 0.4, would be able to
dig the gap and be undetectable at the same time. However, we
can consider a more complex architecture. In Figs. 8 and 9 we
show two and three equal-mass planets on circular orbits and
two planets on eccentric orbits: whereas two planets on circular
orbits would have been easily detected, two of the planets of the
three-circular-planets case are undetectable and the farthest one
is very close to detection limits. Moreover, combining the orbital
parameters of the third planet with the projection effects due to
the inclination of the disk (i = 85◦), we obtain that it would be
detectable only 55% of the time. Two planets on eccentric orbits
with eccentricities ≥0.2 could be under the detection limit curve.

7.2. HD 174429 (PZ Tel)

HD 174429, or PZ Tel A, is a G9IV star member of the mov-
ing group β Pictoris. It is located at a distance of 49.7 pc and
an M brown dwarf companion was discovered independently by
Mugrauer et al. (2010) and Biller et al. (2010) to orbit this star
at a separation of ∼25 AU on a very eccentric orbit (e > 0.66,
Maire et al. 2016). The mass of PZ Tel B varies in the range
[20, 40] MJ depending on the age of the system (Ginski et al.
2014; Schmidt et al. 2014).

From SED fitting, Chen et al. (2014) found that the de-
bris disk of PZ Tel is better represented by two components.

A43, page 12 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731426&pdf_id=6


C. Lazzoni et al.: Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

Fig. 7. One planet on an eccentric orbit around HD 106906.

Fig. 8. Three different values of mass (1, 5, and 10 MJ) of putative
planets with their respective semi-major axis and eccentricities and the
detection limit curve for the HD 106906 system (pink lines) and two
(green circles) and three (red circles) planets on circular orbits around
HD 106906.

Fig. 9. Predictions and comparison with the SPHERE detection limits
(black line) for the eccentric two-planet model for HD 106906.

However, excesses in the near-IR typical of the warm component
were never observed and the small deviation from the SED of the
star could be attributed to the presence of the brown dwarf. Re-
garding the cold component, Chen et al. (2014) obtained a tem-
perature of 39 K that, together with the Γ correction, places the
belt at 317.5 AU. In spite of this, Riviere-Marichalar et al. (2014)

Fig. 10. Analytical results for three planets on circular orbits (green cir-
cles) and the actual four detected planets (pink circles) around HR 8799.

rejected the hypothesis of the presence of a debris disk because
they did not find infrared excesses with Herschel/PACS at 70,
100, and 160 µm.

Since the literature on this disk is relatively scarce and dis-
cordant, we want to apply our method to the known companion
in order to check if it can add constraints on the existence of
the disk. The orbit of the brown dwarf is still a matter of debate
but we know that it has to be very eccentric. Thus, we can use
30 MJ as a mean value for the mass and the three best orbits
presented in Table 13 of Maire et al. (2016) together with the
formulation for one single planet on an eccentric orbit. We ob-
tained as a result that, for the first two orbits, the planet does not
cross the external disk, placing the edge at ∼250 AU for the first
one (very near to our estimated inner edge) and at ∼150 AU in
the second (leaving some free dynamical space). The third orbit,
instead, would cross the disk and destroy its configuration. Thus,
we cannot completely exclude the presence of a cold debris disk
component.

7.3. HR 8799

HR 8799 is a γ Dor-type variable star (Gray & Kaye 1999). The
most incredible characteristic of HR 8799 is that it hosts four gi-
ant planets in the gap between the two components of the disk,
with masses in the range [5, 7] MJ and distances in the range
[15, 70] AU (Marois et al. 2010b). Moreover, the disk around
this star is spatially resolved in its outer component in far IR and
millimeter wavelengths (Su et al. 2009; Booth et al. 2016) and,
besides the warm and cold belts placed at ∼9 AU and ∼200 AU,
respectively, it shows an extended halo up to 2000 AU. Our dy-
namical analysis takes into account three planets, meaning that
we are not able to determine the precise dynamical behavior of
HR 8799- b, c, d, and e. However, we can make some estimates
based on our results. We show the results for three planets on cir-
cular orbits in Fig. 10, which are the ones that come closer to the
real architecture of HR 8799 represented by the pink circles in
the same figure (Konopacky et al. 2016, indeed, orbits with large
eccentricities are not favored by current analyses). We find three
equal-mass planets of 6.6 MJ that are similar to the estimated
masses of HR 8799 bcde. Thus it seems that this system, in order
to be stable, must be dynamically full and even more packed to
host four giant planets, and mean motion resonances, that are not
included in our analysis, may be at work (Esposito et al. 2016;
Goździewski & Migaszewski 2014).
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Fig. 11. One planet on an eccentric orbit around HR 4796.

7.4. HR 4796

HR 4796A is a A0 star and it is part of the TW Hydra kine-
matic group. It is part of a binary system with the M2 com-
panion HR 4796B orbiting at a projected separation of 560 AU.
The debris disk around this star is resolved in scattered light and
near IR. The images show a thin, highly inclined ring with an
eccentricity of ∼0.06 at ∼75 AU from the star (Kastner et al.
2008). The eccentricity of the disk and the sharpness of its inner
edge seems to point to the presence of a planet orbiting right in-
side the gap. However, no companion has been detected so far
(Milli et al. 2017b). Thus we would expect a planet with small
mass under the detection limits curve or with high eccentric-
ity such that it passes, at some point during its orbit, into ar-
eas sufficiently near to the star, even if the second hypothesis
should imply a higher forced eccentricity of the disk. Compar-
ing Figs. 11 and 12 we obtain that objects with masses ≤2 MJ are
undetectable, but, at the same time, they need high eccentricities
(≥0.6). Moreover, if we consider Eq. (8) for the forced eccen-
tricity exerted by the planet on the belt, we should expect an
eccentricity of the latter of ∼0.1, requiring masses ≥50 MJ, well
above the detection limit curve. Thus, we consider a more com-
plex configuration with two and three planets (Figs. 12 and 13).
No result was found for two planets on circular orbits, whereas,
for three companions, we find masses of 8.7 MJ each. In this last
scenario, two of the three planets would be detected (even tak-
ing into account the inclination of the disk, i = 75◦, the farthest
putative planet would be always detectable) so we move to con-
sider the case of two planets on eccentric orbits. Since for this
kind of analysis, as explained in Sect. 6, the eccentricities of the
two planets have a greater importance than the masses, we fi-
nally find possible solutions to explain the gap with the presence
of undetectable objects (see Fig. 13).

8. Conclusions and perspectives

In this work we studied systems that harbor two debris belts and
a gap between them. The main assumption was that one or more
planets are responsible for the gap. In a sample of 35 systems
with double belts also observed as part of the SPHERE GTO
survey we found no planet or brown dwarf within the gap, with
the exception of HD 218396 (HR 8799), HD 174429 (PZ Tel),
HD 206893, and HD 95086. We note that some systems in our
sample have detected and/or candidate companions that however
orbit outside the gap (Langlois et al., in prep.). The lack of planet
detections within the belt may be due either to the dynamical and

Fig. 12. Three different values of mass (1, 5, and 10 MJ) with their
respective semi-major axis and eccentricities and the detection limits
curve for the system (pink lines) and three planets on circular coplanar
orbits around HR 4796 (red circles).

Fig. 13. Two planets on eccentric orbits around HR 4796 and compari-
son with detection limits (black line).

physical properties of the planets placing them below the detec-
tion limits of actual instruments, or to some complex mechanism
by which such systems were born with two separate disk com-
ponents (Kral et al. 2017a).

We focused on the first hypothesis and tested the detectabil-
ity of different packed planetary systems which may carve the
observed gap. We first investigated the presence of one single
planet on a circular orbit and we found that for the systems in
our sample most planets should have been detected or are too
massive to be classified as planets.

Our next step was to consider a single planet in an eccen-
tric orbit using the equations of Wisdom or Mustill & Wyatt for
the chaotic zone of a planet on a circular orbit but replacing in
the equations the semi-major axis of the planet with its perias-
tron or apoastron to compute the border of the inner or outer
belt, respectively. For larger eccentricities, the mass of the planet
decreases slightly but extreme parameters are still required to
model the double-belt structure. To have undetectable planets
with masses beneath detection limits we predict values of ep
greater than 0.7 in most systems. Thus, even if the hypothesis
of one planet could be suitable in some cases, we tried a differ-
ent approach assuming that the gap is created by a packed sys-
tem of lower-mass planets. We have explored the case of two or
three planets in the gap to see if we can explain the gap and the
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non-detection of planets by SPHERE. The first model considers
two equal-mass planets on circular orbits, but even in this case,
most of the planets should have been detected by SPHERE. The
most promising scenario models the presence of the gap as due
to the perturbations of either a system of three planets on circular
orbits or two planets on eccentric orbits. In both these scenarios
the planets would be undetected by SPHERE. In particular, the
case with eccentric orbits shows that even a small variation in
the eccentricity of one of the two planets leads to a drop in their
masses, hiding them from possible detections.

We summarize our results in Table C.4. We show values of
masses for the case of one, two, and three planets on circular
orbits as found by our dynamical analysis. For the case of three
planets, we indicate with an asterisk the undetectable objects.
We show also results for masses and eccentricities for one and
two planets on eccentric orbits: in eccentric cases, the orbital
parameters are not univocally determined, because of the degen-
eracy between the mass and the eccentricity of the planet. Thus,
for one single planet on an eccentric orbit, we show only the
(MP, eP) values at the boundary between detectability and un-
detectability. The same criterion is applied in discerning values
of (MP, e1, e2) for two planets on eccentric orbits. However, we
have to apply a further selection in this case since, given a fixed
value of the mass, different possible combinations of the eccen-
tricities of the two planets are possible. Therefore, for each sys-
tem, we choose to show only the combination for which values
of e1 and e2 are similar.

We conclude our work noticing that, even if very few planets
have been detected so far in the gap of double belts, we can-
not rule out the hypothesis that the gap is indeed due to massive
objects orbiting within it; one or two planets on circular orbits
would have been revealed for each system, in contrast with our
observations, and more complex architectures should be taken
into account. Multiple planets systems with eccentric orbits may
be responsible for these belts’ architectures as in the case of
HR 8799 or the solar system.

This paper presents a quick method to estimate the masses
and eccentricities of the planets in this packed configuration in
order to gain a first glimpse at the possible architecture of the
planetary system in the gap. Thanks to the analytical formula-
tions we can easily obtain masses, semi-major axes, and eccen-
tricities of planets responsible for the gap. When the SPHERE
GTO program will be completed, the number of observed two-
component disks will have more than doubled. All these sys-
tems will be suitable for this kind of analysis and a statistical
study on the presence of planets between belts will be possi-
ble. Moreover, spatially resolved images such as those that are
and will be provided by instruments like SPHERE, GPI, ALMA,
and JWT will be of extreme importance in order to come to more
complete and robust conclusions on debris disks, exoplanets, and
their interactions.
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Appendix A: Γ correction

From images of resolved disks we know that outer components
are placed farther away compared to the predicted blackbody po-
sitions (Pawellek et al. 2014). In Pawellek & Krivov (2015) they
analyzed a sample of 32 systems resolved by Herschel/PACS
and found a relation between the real radius of the disks and the
blackbody radius.

Defining the ratio between the two radii as Γ, they found that
it depends on a certain power law of the luminosity of the star,

Γ = A(L/L�)B. (A.1)

They explored five different compositions of dust grains: 50%
astrosilicates and 50% vacuum, 50% astrosilicates and 50% ice,
100% astrosilcates, 50% astrosilicates, and 50% carbon, and
100% carbon. With the exception of 100% astrosilicates, par-
ticles for which A = 8.26 and B = −0.55, they obtained similar
values of A and B for each combination. We thus exclude pure
astrosilicates and take mean values of the two parameters be-
tween the remaining compositions, A = 6 and B = −0.4.

The use of the Γ factor would be misleading for disks with
high asymmetries or particular features such as extended halos
that were, indeed, not considered by Pawellek & Krivov (2015)
in their analysis. Moreover, the Γ correction is suitable only for
systems with luminosity L∗ ≥ L�.

Morales et al. (2016) reach similar conclusions, showing, for
a sample of resolved systems with Herschel, that the position of
the disk is better reproduced modeling the SED with dust grains
composed of astrosilicates made of a mixture of dirty ice and
pure water.

We show in Fig. A.1 how much the results of SED analysis
with blackbody hypothesis (upper panel) and with correction Γ
(lower panel) differ from data available in 17 (out of 19; we have
to discard HD 61005 and HD 202917 because their luminosities
are <L�) resolved systems for the outer belt. The error bars rep-
resent the extension of the disks from the inner edge Rin at the
lower extremity to the outer edge Rout at the upper one. Some
systems have disks with small error bars because they are best
modeled by thin rings centered on the mid-radii of the belts.

In the upper panel, we can see a consistent difference and a
systematic upward shift between SED modeling and direct imag-
ing data, with the blackbody fitting placing the belt indeed nearer
to the star. This should not be a surprise since, as mentioned be-
fore, we expect that the disk is placed farther out when the parti-
cles do not behave like perfect absorbers/emitters. For these sys-
tems the situation improves applying the Γ correction, as shown
in the lower panel.

We note that some error in the SED fitting could also ex-
ist. Indeed, dust grains placed so far from the star have low
temperatures (thus longer wavelengths) that are less constrained
and more difficult to determine and only few photometric points
are available. Moreover, discordances between SED and direct
imaging analysis could be caused by other factors. For exam-
ple, the resolved systems are analyzed at certain wavelengths
depending on the instrumentation used and the disk will ap-
pear quite different for each value of λ whereas SED fitting
identifies only the dust component. However, the fact that the
Pawellek & Krivov (2015) correction, developed for a sample of
targets observed with Herschel, holds reasonably well for a sam-
ple of objects resolved with different instruments/wavelengths
indicates that such effects are not dominant in our sample.

Fig. A.1. Position of the outer belts as obtained from SED analysis with
hypothesis of blackbody (above) and with correction factor Γ (beneath)
vs. positions obtained from resolved images. The black line represents
the bisector, that is, when the two positions coincide. The vertical error
bars represent instead the extension of the disk from its inner edge to its
outer one.

Appendix B: Spatially resolved systems

We list in Table B.1 the systems among the ones of our sam-
ple that were previously resolved in their farthest component by
means of direct imaging. For each of such objects we show the
instrument and the wavelengths at which the disk was resolved,
the position a of the mean radius of the disk and its inner and
outer edges Rin and Rout, the inclination i (measured from face
on, in which case i = 0◦) and the position angle PA. We note
that the distances of the stars used in different papers may vary
relative to each other and to distances used in this paper. For this
reason we normalized the dimensions of the disks with distances
listed in Table C.1. The only caveat is that this procedure should
be entirely correct only when disk parameters are obtained di-
rectly from images and not from further modeling (such as SED
modeling).
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Table B.1. Spatially resolved systems.

Name Instrument λ (µm) a (AU) Rin (AU) Rout (AU) i (◦) PA (◦) Reference
HD 15115 LBT/PISCES 3.8 (...) 48 96E/120W 87 275 Rodigas et al. (2012)
HD 15115 HST/STIS Visible (...) ≤19 336E/586W nearly edge-on 30 Schneider et al. (2014)
HD 15115 Gemini/NICI Near IR 96 (...) (...) 86.2 98.5 Mazoyer et al. (2014)
HD 15115 Subaru/IRCS 1.63 (...) 92 337E/589W 86.3 278.63 Sai et al. (2015)
HD 15115 SMA 1300 (...) 46 118 87 278.5 MacGregor et al. (2015)
HD 30447 HST/NICMOS Visible (...) 60 200 nearly edge-on 35 Soummer et al. (2014)
HD 61005 HST/STIS Visible 147 38 256 85.1 70.3 Schneider et al. (2014)
HD 61005 HST/ACS 0.6 (...) ≤33 110 80.3 71.7 Maness et al. (2009)
HD 61005 HST/NICMOS 1.1 (...) ≤11 223 (...) 160 Hines et al. (2007)
HD 61005 SMA 1300 73 (...) (...) 70.3 84.3 Steele et al. (2016)
HD 61005 Herschel 70, 100, 160 96 90 101 67 65 Morales et al. (2016)
HD 61005 VLT/NACO 1.65 65 65 149 84.3 70.3 Buenzli et al. (2010)
HD 61005 VLT/SPHERE, ALMA Near IR, 1300 71 (...) (...) 84.5 70.7 Olofsson et al. (2016)
HD 61005 Gemini/GPI, Keck/NIRC2 Near IR 48 42 121 80 70.7 Esposito et al. (2016)
HD 71155 Herschel/PACS 70, 100 69 (...) (...) 56.7 167.7 Booth et al. (2013)
HD 95086 Herschel/PACS 70, 100, 160 202 61 338 25.9 98.3 Moór et al. (2015)
β Leo Herschel/PACS 100,160 39 15 69 35 125 Churcher et al. (2011)

HD 106906 VLT/SPHERE Near IR 72 72 123 85 104 Lagrange et al. (2016)
HD 106906 Gemini/GPI Visible (...) 56 >559 85 284 Kalas et al. (2015)

HR 4796 HST/STIS Visible 79 73 86 76 27 Schneider et al. (2009)
HR 4796 Gemini/NICI Near IR (...) 71 87 26 26.47 Wahhaj et al. (2014)
HR 4796 VLT/SPHERE Near IR 77 73 92 76.4 27 Milli et al. (2017b)
HR 4796 VLT/NACO Near IR 78 71 84 75 26.7 Lagrange et al. (2012)
HR 4796 Keck/MIRLIN 12.5, 24.5 76 72 87 (...) (...) Wahhaj et al. (2005)
HR 4796 Keck II/OSCIR 10.8, 18.2 76 49 85 77 26.8 Telesco et al. (2000)
HR 4796 HST/NICMOS Visible 76 65 85 73.1 26.8 Schneider et al. (1999)
HR 4796 Magellan/MagAO Near IR 79 74 85 76.47 26.56 Rodigas et al. (2015)
ρ Vir Herschel/PACS 70, 100, 160 106 98 114 70 94 Morales et al. (2016)

HD 131835 Gemini/TReCS 11.7, 18.3 125 41 368 75 61 Hung et al. (2015b)
HD 131835 Gemini/GPI Visible (...) 89 249 75.1 61.4 Hung et al. (2015a)
HD 131835 ALMA 1240 120 25 191 73 58 Lieman-Sifry et al. (2016)
HD 131835a VLT/SPHERE Near IR 114 89 166 72.6 −120 Feldt et al. (2017)
HD 141378 Herschel/PACS 100, 160 202 133 279 62 113 Morales et al. (2016)
π Ara Herschel/PACS 100, 160 122 (...) (...) 40 3 Morales et al. (2016)
η Tel Gemini/TReCS 11.7, 18.3 24 (...) (...) 83 8 Smith et al. (2009)

HD 181327 HST/STIS Visible 83 (...) (...) 30.1 102 Schneider et al. (2014)
HD 181327 HST/NICMOS Visible 83 66 100 31.7 107 Schneider et al. (2006)
HD 181327 Herschel/PACS 70, 100, 160 84 73 94 31.7 107 Lebreton et al. (2012)
HD 181327 ALMA 1300 81 70 91 30 98.9 Marino et al. (2016)
HD 188228 Herschel/PACS 70, 100 107 (...) (...) 34.3 11.4 Booth et al. (2013)
ρ Aql Herschel/PACS 100, 160 244 223 265 68 93 Morales et al. (2016)

HD 202917 HST/STIS Visible 69 61 76 68.6 108 Schneider et al. (2016)
HD 202917 HST/NICMOS Visible (...) (...) 118 70 300 Soummer et al. (2014)
HD 206893 Herschel/PACS 70 (...) 53 212 40 60 Milli et al. (2017a)

HR 8799 Herschel/PACS 70, 100, 160, 250 218 101 2000 26 (...) Matthews et al. (2014a)
HR 8799 ALMA 1340 (...) 149 440 40 51 Booth et al. (2016)
HR 8799 SMA 880 172 152 304 20 (...) Hughes et al. (2011)
HR 8799 Spitzer 40, 70 (...) 92 308 ≤25 (...) Su et al. (2009)
HR 8799 CSO 350 (...) 102 304 (...) (...) Patience et al. (2011)

Notes. (a) HD 131835 shows a multiple-rings structure between the belts at ∼115 AU and ∼6 AU and this could be an indication of the presence
of (still forming) planets. Such internal structures, however, are not well constrained and they may be short-living. Therefore, we will treat this
system as all the others in the sample noticing that further and more precise analysis could be done, something beyond the aims of this paper.
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Appendix C: Additional tables

Table C.1. Stellar parameters for directly imaged systems with SPHERE.

Name Spec type M∗/M� L∗/L� Age Dist
(Myr) (pc)

HD 1466 F8 1.1 1.6 45+5
−10 42.9 ± 0.4a

HD 3003 A0 2.1 18.2 45+5
−10 45.5 ± 0.4b

HD 15115 F2 1.3 3.9 45+5
−10 48.2 ± 1a

HD 30447 F3 1.3 3.9 42+8
−7 80.3 ± 1.6a

HD 35114 F6 1.2 2.3 42+8
−7 47.4 ± 0.5a

ζ Lep A2 1.9 21.6 300± 180 21.6 ± 0.1b

HD 43989 F9 1.1 1.6 45+5
−10 51.2 ± 0.8a

HD 61005 G8 0.9 0.7 50+20
−10 36.7 ± 0.4a

HD 71155 A0 2.4 40.5 260± 75 37.5 ± 0.3b

HD 75416 B8 3 106.5 11± 3 95 ± 1.4b

HD 84075 G2 1.1 1.4 50+20
−10 62.9 ± 0.9a

HD 95086 A8 1.6 8 16± 5 83.8 ± 1.9a

β Leo A3 1.9 14.5 50+20
−10 11 ± 0.1b

HD 106906 F5 2.7c 6.8 16±5 102.8 ± 2.5a

HD 107301 B9 2.4 42.6 16± 5 93.9 ± 3b

HR 4796 A0 2.3 26.8 10± 3 72.8 ± 1.7b

ρ Vir A0 1.9 15.9 100± 80 36.3 ± 0.3b

HD 122705 A2 1.8 12.3 17± 5 112.7 ± 9.3b

HD 131835 A2 1.9 15.8 17± 5 145.6 ± 8.5a

HD 133803 A9 1.6 6.2 17± 5 111.8 ± 3.3a

β Cir A3 2 18.5 400± 140 30.6 ± 0.2b

HD 140840 B9 2.3 37.4 17± 5 165 ± 10.4a

HD 141378 A5 1.9 17 380± 190 55.6 ± 2.1a

π Ara A5 1 13.7 600± 220 44.6 ± 0.5b

HD 174429 G9 1 1.6 24± 5 51.5 ± 2.6b

HD 178253 A2 2.2 31 380± 90 38.4 ± 0.4b

η Tel A0 2.2 21.3 24± 5 48.2 ± 0.5b

HD 181327 F6 1.3 3 24± 5 48.6 ± 1.1a

HD 188228 A0 2.3 26.6 50+20
−10 32.2 ± 0.2b

ρ Aql A2 2.1 21.6 350± 150 46 ± 0.5b

HD 202917 G7 0.9 0.8 45+5
−10 47.6 ± 0.5a

HD 206893 F5 1.3 3 250+450
−200 40.7 ± 0.4a

HR 8799 A5 1.5 8 42+8
−7 40.4 ± 1a

HD 219482 F6 1 2.3 400+200
−150 20.5 ± 0.1b

HD 220825 A0 2.1 22.9 149+31
−49 47.1 ± 0.6b

Notes. For each star we show spectral type, mass (in solar mass units), luminosity (in solar luminosity units), age and distance. (a) Gaia parallaxes
(Lindegren et al. 2016); (b) Hipparcos parallaxes (van Leeuwen 2007); (c) Mass of the star from Bonavita et al. (2016).
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Table C.2. Debris disk parameters for direct imaged systems with SPHERE.

Name T1,BB R1,BB T2,BB R2,BB R2 d2 d2,sol
(K) (AU) (K) (AU) (AU) (AU) (AU)

HD 1466b 374+7
−5 0.70 ± 0.01 97+5

−7 10.5+0.5
−0.8 51.8+2.7

−3.7 41.4+2.1
−3.0 (...)

HD 3003b 472+7
−5 1.50 ± 0.02 173+5

−5 11.0 ± 0.3 20.7 ± 0.6 16.6 ± 0.5 (...)

HD 15115a 182+4
−7 4.6+0.1

−0.2 54 ± 5 52.6 ± 4.9 182.4 ± 16.9 145.9 ± 13.5 48

HD 30447a 106+6
−5 13.6+0.8

−0.6 57+4
−6 47.0+3.3

−5.0 163.6+11.5
−17.2 130.9+9.2

−13.8 60

HD 35114b 139+12
−7 6.0+0.5

−0.3 66+10
−15 26.7+4.0

−6.1 115.5+17.5
−26.3 92.4+14.0

−21.0 (...)
ζ Lepb 368 ± 5 2.70 ± 0.04 133 ± 5 20.3 ± 0.8 35.6 ± 1.3 28.5 ± 1.1 (...)

HD 43989b 319+30
−26 1.0 ± 0.1 66+9

−10 22.3+3.0
−3.4 111.5+15.2

−16.9 89.2+12.2
−13.5 (...)

HD 61005a 78+6
−4 10.5+0.8

−0.5 48 ± 5 27.6 ± 2.9 (...) (...) 71
HD 71155a 499+0

−7 2+0.00
−0.03 109 ± 5 41.4 ± 1.9 56.5 ± 2.6 45.2 ± 2.1 69

HD 75416b 393+4
−6 5.2 ± 0.1 124+7

−5 51.9+2.9
−2.1 48.1+2.7

−1.9 38.5+2.2
−1.6 (...)

HD 84075b 149 +23
−18 4.1+0.6

−0.5 54+7
−10 31.3+4.1

−5.8 164.4+21.3
−30.4 131.5+17.0

−24.4 (...)
HD 95086a 225+10

−7 4.3+0.2
−0.1 57 ± 5 67.1 ± 5.9 175.6 ± 15.4 140.5 ± 12.3 61

β Leoa 499+0
−9 1.2+0.00

−0.02 106 ± 5 26.2 ± 1.2 53.9 ± 2.5 43.1 ± 2.0 15

HD 106906a 124+11
−8 13.1+1.2

−0.8 81+7
−12 30.7+2.6

−4.5 85.6+7.4
−12.7 68.5+5.9

−10.1 56
HD 107301b 246 ± 5 8.3 ± 0.2 127 ± 5 31.3 ± 1.2 41.8 ± 1.6 33.5 ± 1.3 (...)

HR 4796a 231+5
−6 7.5 ± 0.2 97 ± 5 42.6 ± 2.2 68.5 ± 3.5 54.8 ± 2.8 73

ρ Vira 445+6
−7 1.60 ± 0.02 78 ± 5 50.6 ± 3.2 100.5 ± 6.4 80.4 ± 5.2 98

HD 122705b 387+5
−6 1.80+0.02

−0.03 127+6
−8 16.8+0.8

−1.1 36.9+1.7
−2.3 29.6+1.4

−1.9 (...)
HD 131835a 216 ± 5 6.6 ± 0.2 78 ± 5 50.5 ± 3.2 100.4 ± 6.4 80.4 ± 5.2 89
HD 133803b 368 ± 5 1.40 ± 0.02 142 ± 5 9.6 ± 0.3 27.6 ± 1.0 22.1 ± 0.8 (...)

β Cirb 387+6
−7 2.20+0.03

−0.04 155+5
−7 13.8+0.4

−0.6 25.8 +0.8
−1.2 20.7+0.7

−0.9 (...)
HD 140840b 341+4

−7 4.1 ± 0.1 88 ± 5 61.0 ± 3.5 86 ± 4.9 68.8 ± 3.9 (...)

HD 141378a 347+7
−5 2.60+0.05

−0.04 69 ± 5 66.9 ± 4.8 129.3 ± 9.4 103.4 ± 7.5 133

π Araa 173 ± 5 9.6 ± 0.3 54+6
−4 98.2+10.9

−7.3 206.7+23.0
−15.3 165.3+18.4

−12.2 122
HD 174429b 460+39

−67 0.50+0.04
−0.07 39 ± 7 64.5 ± 11.6 319.8 ± 57.4 255.8 ± 45.9 (...)

HD 178253b 307 ± 6 4.6 ± 0.1 100+5
−7 43.0+2.2

−3.0 65.4+3.3
−4.6 52.3+2.6

−3.7 (...)

η Tela 277+5
−9 4.7+0.1

−0.2 115+4
−7 27.0+0.9

−1.6 47.6+1.7
−2.9 38.1+1.3

−2.3 24
HD 181327a 94 ± 5 15.3 ± 0.8 60 ± 5 37.5 ± 3.1 144 ± 12 115.2 ± 9.6 70
HD 188228a 185+37

−56 11.6+2.3
−3.5 72 ± 6 76.9 ± 6.4 124.2 ± 10.3 99.3 ± 8.3 107

ρ Aqla 268+6
−5 5.0 ± 0.1 66 ± 5 82.4 ± 6.2 144.7 ± 11.0 115.8 ± 8.8 223

HD 202917a 289+47
−33 0.8 ± 0.1 75+5

−6 11.9+0.8
−1.0 (...) (...) 61

HD 206893a 499+0
−10 0.50+0.00

−0.01 48 ± 5 57.7 ± 6.0 224.3 ± 23.4 179.4 ± 18.7 53

HR 8799a 155+6
−8 9.1+0.4

−0.5 33+5
−3 200.7+30.4

−18.2 524.2+79.4
−47.7 419.4+63.5

−38.1 101
HD 219482b 423+11

−8 0.70+0.02
−0.01 78 ± 5 19.2 ± 1.2 82.8 ± 5.3 66.2 ± 4.2 (...)

HD 220825b 338+8
−9 3.2 ± 0.1 170 ± 7 12.8 ± 0.5 21.9 ± 0.9 17.6 ± 0.7 (...)

Notes. Tgr,1 and Tgr,2 are the blackbody temperatures, R1,BB and R2,BB the blackbody radii; R2 and d2 are the “real” radius and inner edge obtained
with the Γ correction; d2,sol is the position of the inner edge for the spatially resolved systems. (a) spatially resolved system, used position of the
farther edge d2,sol; (b) spatially unresolved system, used position of the farther edge d2.
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Table C.3. Observations of the sample.

Name Date IFS IRDIS Angle (◦) Seeing (′′)
NDIT DIT NDIT DIT

HD 1466 2016-09-17 80 64 80 64 31.7 0.93
HD 3003 2016-09-15 80 64 80 64 32.2 0.52

HD 15115 2015-10-25 64 64 64 64 23.7 1.10
HD 30447 2015-12-28 96 64 96 64 19.5 1.36
HD 35114 2017-02-11 80 64 80 64 72.3 0.81
ζ Lep 2017-02-10 288 16 288 16 80.8 0.74

HD 43989 2015-10-27 80 64 80 64 49.0 1.00
HD 61005 2015-02-03 64 64 64 64 89.3 0.50
HD 71155 2016-01-18 256 16 512 8 36.3 1.49
HD 75416 2016-01-01 80 64 80 64 22.3 0.89
HD 84075 2017-02-10 80 64 80 64 24.6 0.43
HD 95086 2015-05-11 64 64 256 16 23.0 1.15
β Leo 2015-05-30 750 4 750 4 34.0 0.91

HD 106906 2015-05-08 64 64 256 16 42.8 1.14
HD 107301 2015-06-05 64 64 64 64 23.8 1.36

HR 4796 2015-02-03 56 64 112 32 48.9 0.57
ρ Vir 2016-06-10 72 64 72 64 26.8 0.66

HD 122705 2015-03-31 64 64 64 64 35.9 0.87
HD 131835 2015-05-14 64 64 64 64 70.3 0.60
HD 133803 2016-06-27 80 64 80 64 125.8 1.11

β Cir 2015-03-30 112 32 224 16 26.0 1.93
HD 140840 2016-04-20 64 64 64 64 32.7 3.02
HD 141378 2015-06-05 64 64 64 64 39.1 1.75
π Ara 2016-06-10 80 64 80 64 24.9 0.50

HD 174429 2014-07-15 2 60 6 20 7.6 0.88
HD 178253 2015-06-06 128 32 256 16 48.8 1.44

η Tel 2015-05-05 84 64 168 32 47.1 1.10
HD 181327 2015-05-10 56 64 56 64 31.7 1.41
HD 188228 2015-05-12 256 16 256 16 23.7 0.67
ρ Aql 2015-09-27 128 32 256 16 25.0 1.50

HD 202917 2015-05-31 64 64 64 64 49.5 1.35
HD 206893 2016-09-15 80 64 80 64 76.2 0.63

HR 8799 2014-07-13 20 8 40 4 18.1 0.8
HD 219482 2015-09-30 120 32 240 16 27.1 0.84
HD 220825 2015-09-24 150 32 300 16 41.5 1.05

Notes. DIT (detector integration time) refers to the single exposure time, NDIT (Number of Detector InTegrations) to the number of frames in a
single data cube.
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Table C.4. Values of masses and eccentricities needed to carve the gaps for the systems in the sample assuming one, two, or three planets.

Name One planet Two planets Three planets
Circular Eccentric Circular Eccentric Circular
MP/MJ MP/MJ eP MP/MJ MP/MJ e1 e2 MP/MJ

HD 1466 ≥50 2.7 0.89 ≥50 2.7 0.59 0.61 ≥15
HD 3003 ≥50 1.7 0.66 ≥50 1.7 0.36 0.36 9.3

HD 15115 ≥50 3.5 0.55 49.8 3.5 0.33 0.29 5.1
HD 30447 ≥50 5.9 0.24 15.4 5.9 0.15 0.16 1.5∗
HD 35114 ≥50 2.2 0.69 ≥50 2.2 0.39 0.39 7.7
ζ Lep ≥50 6.5 0.56 ≥50 6.5 0.34 0.29 8.3

HD 43989 ≥50 2.8 0.93 ≥50 2.8 0.65 0.65 ≥15
HD 61005 ≥50 2.7 0.42 21.3 2.7 0.29 0.29 2.1∗
HD 71155 ≥50 11.2 0.80 ≥50 11.2 0.48 0.48 ≥15
HD 75416 ≥50 4.3 0.50 ≥50 4.3 0.30 0.27 7.8
HD 84075 ≥50 2.3 0.83 ≥50 2.3 0.51 0.51 12.7
HD 95086 ≥50 2.0 0.70 ≥50 2.0 0.39 0.39 9.3
β Leo ≥50 1.6 0.68 ≥50 1.6 0.38 0.39 9.6

HD 106906 ≥50 1.9 0.36 28.0 1.9 0.24 0.25 2.8
HD 107301 ≥50 5.0 0.27 18.7 5.0 0.18 0.20 2.0∗

HR 4796 ≥50 1.2 0.64 ≥50 1.2 0.35 0.35 9.6
ρ Vir ≥50 6.0 0.89 ≥50 6.0 0.59 0.59 ≥15

HD 122705 ≥50 7.0 0.66 ≥50 7.0 0.36 0.36 12.6
HD 131835 ≥50 4.0 0.65 ≥50 4.0 0.36 0.35 10.5∗
HD 133803 ≥50 10.0 0.61 ≥50 10.0 0.32 0.33 11.6

β Cir ≥50 13.4 0.45 ≥50 13.4 0.26 0.30 7.7∗
HD 140840 ≥50 5.4 0.70 ≥50 5.4 0.39 0.40 15
HD 141378 ≥50 9.0 0.86 ≥50 9.0 0.54 0.55 ≥15
π Ara ≥50 11.8 0.48 50 11.8 0.29 0.33 5.1∗

HD 174429 ≥50 2.4 0.99 ≥50 2.4 0.83 0.82 ≥15
HD 178253 ≥50 9.9 0.55 ≥50 9.9 0.32 0.29 10∗

η Tel ≥50 3.8 0.36 30.2 3.8 0.25 0.25 3.4∗
HD 181327 ≥50 4.3 0.28 16.6 4.3 0.04 0.29 1.6∗
HD 188228 ≥50 3.3 0.57 ≥50 3.3 0.30 0.31 8.0
ρ Aql ≥50 10.1 0.84 ≥50 10.1 0.52 0.52 ≥15

HD 202917 ≥50 8.7 0.87 ≥50 8.7 0.56 0.56 ≥15
HD 206893 ≥50 4.2 0.93 ≥50 4.2 0.66 0.67 ≥15

HR 8799 ≥50 2.7 0.61 ≥50 2.7 0.33 0.33 6.7
HD 219482 ≥50 7.5 0.90 ≥50 7.5 0.60 0.61 ≥15
HD 220825 ≥50 12.0 0.30 26.9 12.0 0.2 0.2 3.2∗

Notes. We indicate with an asterisk undetectable objects. Since for the eccentric case of one single planet solutions are not univocally determined,
in Col. 3 we show only (MP, eP) at the boundary between detectability and undetectability. We adopt the same criterion in Col. 5 for two equal-
mass planets on eccentric orbits. However, for this last case we obtained, given a fixed value of the mass, different possible combinations of the
eccentricities of the two planets. Thus, for each system, we show only the combination for which values for e1 and e2 are similar.
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