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ABSTRACT

Context. Angular differential imaging (ADI) takes advantage of the field rotation naturally induced by altitude-azimuth mounts to
reduce static speckle noise. Used with facilities like SPHERE at the VLT, this technique allows one to achieve contrast ratios of 10−6.
The ADI method, however, intrinsically limits the useful exposure time on a given target (to about 1–2 h per night). Detecting fainter
exoplanets requires the combination of multiple observations acquired on different nights, potentially spread over several weeks or
months, but the unknown orbital motion of the planet makes it particularly dififcult to properly combine all observations. In the near
future, with the upcoming generation of Extremely Large Telescopes (ELTs) with increased resolution, the orbital motion may even
become a problem on a single night.
Aims. We present a proof of concept for a new algorithm which can be used to detect exoplanets in high-contrast images. The algorithm
properly combines multiple observations acquired during different nights, taking into account the orbital motion of the planet.
Methods. We simulate SPHERE/IRDIS time series of observations in which we blindly inject planets on random orbits, at random
levels of signal-to-noise ratio (S/N), below the detection limit (down to S/N ' 1.5). We then use an optimization algorithm to “guess”
the orbital parameters, and take into account the orbital motion to properly recombine the different images and eventually detect the
planets.
Results. We show that an optimization algorithm can indeed be used to find undetected planets in temporal sequences of images, even
if they are spread over orbital time scales. As expected, the typical gain in S/N is

√
n, n being the number of observations combined.

We find that the K-Stacker algorithm is able de-orbit and combine the images to reach a level of performance similar to what could be
expected if the planet was not moving. We find recovery rates of '50% at S/N = 5. We also find that the algorithm is able to determine
the position of the planet in individual frames at one pixel precision, even despite the fact that the planet itself is below the detection
limit in each frame.
Conclusions. Our simulations show that K-Stacker can be used to detect planets at very low S/N level, down to '2 in individual
frames, for series of ten images. This could be used to increase the contrast limit of current exoplanet imaging instruments and to
discover fainter bodies. We also suggest that the ability of K-Stacker to determine the position of the planet in every image of the time
series could be used as part of a new observing strategy in which long exposures would be broken into shorter ones spread over months.
This could make it possible to determine the orbital parameters of a planet without multiple high-S/N (>5) detections.

Key words. techniques: image processing – planets and satellites: detection

1. Introduction

The direct detection of exoplanetary bodies is an extremely chal-
lenging task: for a planet orbiting at 10 AU around a star at a
few tens of parsec, the typical angular separation is about 0.1 to
1 arcsec, and typical contrast ratios in the near-infrared (NIR)
are expected to be of the order of ≈10−5 for a young Jupiter-like
planet (Marley et al. 2007) to 10−10 for an Earth-like planet. The
recent development of eXtreme Adaptive Optics (XAO) systems,
which are now able to deliver high Strehl ratios by correcting
high-order wavefront errors, as well as of coronagraphic imag-
ing systems has led to a new generation of high-contrast imagers
(GPI, Macintosh et al., 2014; SPHERE, Beuzit et al., 2008).

However, even with these state-of-the-art facilities, observations
are still crippled by speckle noise, originating in atmospheric tur-
bulence and instrumental defects. Since atmospheric speckles
have very short decorrelation times, they can be averaged by
increasing the exposure time. The situation is a little differ-
ent when dealing with the so-called pseudo-static (instrumental)
speckles, which have much longer correlation times. Even in the
most favorable cases, without any specific strategy, static speck-
les typically limit the useful exposure time to a mere handful of
seconds (Macintosh et al. 2005; Soummer et al. 2007; Hinkley
et al. 2007).

Numerous image-processing techniques have been proposed
to mitigate this static speckle noise, and some are currently
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being applied, for example, to SPHERE and GPI data with great
success. But subtracting static speckles without affecting any
potential exoplanet light is not easy. Some methods (Racine et al.
1999; Sparks & Ford 2002; Thatte et al. 2007) use the fact that,
contrary to a planet, the distance of any given speckle from the
center of the star scales as λ/D, where λ is the wavelength of
observation. This allows one to disentangle the speckles from the
planet, and subtract them. On a similar line of thought, one can
also use the difference of polarization between the unpolarized
starlight and the polarized planet signal to distinguish them, as
is done with the Differential Polarimetry method (Canovas et al.
2011). Finally, requiring absolutely no spectral or polarimetric
capability whatsoever, the angular differential imaging (ADI;
Marois et al. 2006) uses the rotation of the field of view (FoV)
naturally induced by alt-az mounts to disentangle pseudo-static
speckles from any moving planet.

The ADI and SDI methods are currently implemented in
the SPHERE data-reduction pipeline, allowing one to routinely
achieve contrast ratios of 10−5 and up to 10−6 in excellent condi-
tions (Zurlo et al. 2014, 2016; Vigan et al. 2015). However, when
using this ADI method, the total time for an observation is lim-
ited by the FoV rotation to '1 h, a limitation which was already
pointed out by Marois et al. (2006).

An easy way to improve the detection limit of any astro-
nomical instrument is usually to use longer exposure times.
But when using a technique like ADI, this can rapidly turn
to a very intricate problem: if exposures are limited to about
an hour per night, gathering, for example, 10–20 h of exposure
requires observing on 10–20 different nights. Due to weather
and observatory constraints, this can rapidly lead to extended
time sequences, where the different images are possibly taken
over different observing runs, with intervals of up to several
months. In such cases, the orbital motion of the planet, which
up until now has almost always be ignored when combining
images, must be taken into account. This is especially true when
using a large telescope, probing the innermost part of close-by
stellar systems. Furthermore, even data acquired during succeed-
ing nights can be affected by the orbital motion of the planet
(see Males et al. 2013 for a detailed discussion of this particular
problem).

Males et al. (2015) also worked on the problem of recombin-
ing images acquired on longer timescales, in which the planet
was moving on a significant part of its orbit. However, they use
the assumption that the planet, albeit very faint, could be seen
in each individual frame. In this regime, deorbiting can help
improve the signal-to-noise ratio (S/N) of the planet, but can-
not help with detecting new planets, which could not be seen in
a single frame. Males et al. themselves stated that “an impor-
tant area of investigation will be the performance of [ODI] when
there is no prior information with which to determine the orbits.”

This is precisely the problem we intend to tackle with the
K-Stacker algorithm.

In a previous paper (Le Coroller et al. 2015), we proposed
a new technique to detect exoplanets, called K-Stacker, which
allows one to combine multiple observations made over different
nights to increase the contrast limit of direct imaging instru-
ments. In the present work we describe in detail the K-Stacker
algorithm and we provide a statistical analysis intended as a
“proof of concept” of this method.

In Sect. 2, we describe the simulated images on which we
tested our K-Stacker algorithm. Section 3 focuses on the prob-
lem of recombining multiple observations in which the planet
remains undetected, and gives a description of our algorithm,
based on the combination of a brute-force and a gradient-descent

method to determine the orbital parameters. In Sect. 4, we
present the results of a blind test of this algorithm performed on
50 independent and random simulated observations. We discuss
the performances of the algorithm and the required computer
resources in Sect. 5. Our conclusions are given in Sect. 6.

2. Simulated data

In order to develop and test the K-Stacker algorithm, we devel-
oped a simple simulator to generate images similar to the one
produced by the SPHERE/IRDIS instrument (Dohlen et al.
2008) in its dual-band imaging mode (Vigan et al. 2010), in
terms of general characteristics (size of the FoV, width of the
PSF, etc.). Whereas we believe that K-Stacker could benefit from
an ADI/SDI pre-processing step, which removes most of the
pseudo-static speckles, we do not simulate ADI or SDI reduced
data.

Even if a number of studies (Hinkley et al. 2007; Soummer
et al. 2007; Martinez et al. 2012, 2013) have been done on the
temporal evolution of instrumental speckles, the behavior of
these quasi-static speckles is hard to simulate because they are
related to many different factors (thermal conditions, mechanical
stress, instrumental configuration, etc.).

In the present work, we focus on the case of pure atmospheric
speckles behind an XAO, which are completely uncorrelated
from one image to the other. We also assume that the corona-
graph is perfect, and that the coherent part of the light is fully
removed. If we do not take into account variations in amplitude
of the incoming wavefront, a perfect coherent light suppression
can be defined analytically using the following equation (Fusco
et al. 2006):

I(x, y) =
∣∣∣∣F [(

ei∆φ(a,b) − e
1
2σ∆φ

2)
P(a, b)

]
(x, y)

∣∣∣∣2 , (1)

where I(x, y) represents the intensity in the focal plane, P(a, b)
the aperture function, ∆φ(a, b) the phase error of the wavefront,
F the Fourier transform, and σ∆φ the standard deviation of the
phase error in the incoming wavefront.

In the above equation, the term ∆Φ is what is ultimately
responsible for the speckle noise in the final images, which is
known to originate from atmospheric phase variations and/or
instrumental defects.

The atmospheric phase masks were simulated using an IDL
(Interactive Data Language) code developed by Fusco et al.
(2006), which generates phase errors downstream of the adaptive
optics system.

The images generated are 512 × 512 pixels, and only repre-
sent a part of the bigger SPHERE detector. Our code generates
monochromatic images, with a 12.25 mas/pixel spatial sampling
corresponding to SPHERE/IRDIS.

In Fig. 1, we show one of our typical exposures, made
with our simulated SPHERE/IRDIS instrument, under a sky
with 0.8′′ seeing. This image was obtained by averaging 100
exposures made with 100 uncorrelated atmospheric masks. The
image is normalized to the central peak intensity of the non-
coronagraphic PSF. As it was unnecessary for our work, we
did not try to calibrate our simulations to match the correct
SPHERE/IRDIS photometry, and thus did not include photon
noise.

Finally, false planets are injected by directly adding a non-
coronagraphic PSF in the images. This means that neither the
coronagraph nor the atmospheric and/or instrumental phase
errors have any impact on the exoplanet signal.
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Fig. 1. Simulation of an AO-corrected image at 1.6 µm for
SPHERE/IRDIS, under a 0.8′′ seeing sky. The AO corrected area is
clearly visible, and extends to about 20λ/D (1.6′′). The image is scaled
to the peak value of the non-coronographic star PSF.

3. Recombining the images: the K-Stacker
algorithm

3.1. K-Stacker principle: the recombination as an optimization
problem

We consider a set of n images I1, . . . , In of a given star, acquired
at times t1, . . . , tn, and suppose that an exoplanet is orbiting
around this star. In the kth image, the planet is at position (xk, yk),
but remains undetected. Thanks to the law of orbital mechanics,
these positions xk, yk can be related to seven parameters: the six
orbital elements, that is, eccentricity e, semi major-axis a, epoch
at perihelion t0, longitude of the ascending node Ω, inclination
i, argument at periapsis θ0, and the mass of the central star M∗.
The distance of the star d∗ is also required to project the orbit on
the charge coupled device (CCD).

K-Stacker is based on the idea that when trying to recombine
the images to detect a hidden orbiting planet, a strong spot should
emerge only when the images are recombined along the correct
orbit. Otherwise, the speckles should simply average to a certain
value, within statistical fluctuations.

To recombine the images along a given orbit, we first com-
pute the position of the planet predicted by the laws of orbital
mechanics at times t1 in image I1, at time t2 in image I2, and so
on. Then, we rotate/translate each image Ik for k > 0 to align all
these positions, and add all the images. This means that when
we recombine the images, we actually know where we expect to
see a strong feature if the orbital parameters are correct, which
suggests the use of a S/N at this particular position as a measure
of the “quality of the recombination”.

For a given orbit, the position of a planet at a time t is defined
by x = (t, a, e, t0,Ω, i, θ0,M∗) and assuming that the noise in the
different images is fully uncorrelated, the S/N can be computed
in the following way:

– First, for each image Ik, we compute the position (xk, yk) by
solving the Kepler equation with a Newton algorithm, pro-
jecting the orbital position on the detector plane. This gives
a set of one position per image, which can be expressed in
polar coordinates: (r1, θ1), . . . , (rn, θn).

– Then, for each k in {1, . . . , n}, we compute the flux at position
(rk, θk) in the image Ik, using a circular integration box of
radius equal to the full width at half-maximum (FWHM) of

Table 1. Main characteristics of the grid used by our brute-force
algorithm, computed for a star of mass M� at 10 pc.

Param. Unit Min val. Max val. Step size Points

a AU 0.9 7.5 0.7 10
e – 0 0.8 0.08 10
t0 yr 0 20 0.2 100
Ω rad −π +π 0.18 35
i rad −π 0 0.5 7
θ0 rad −π +π 0.18 35

the non-coronagraphic PSF of the instrument. To this value,
we subtract the estimate of the background flux in image Ik
at radius rk. This gives the signal in image k, sk(x) at the
position (rk, θk). The total signal is the sum of all of these
values in each image S (x) =

∑
k sk(x).

– Finally, for each k in {1, . . . , n}, we compute the noise level
σk at radius rk in image Ik, and add these values quadratically
to obtain the global noise value: N(x) =

√∑
k σk

2. In this
case S/N(x) = S (x)/N(x).

This S/N, seen as a function of the six orbital parameters (and of
the star mass M and distance d, if unknown), can be optimized
using a modified brute-force algorithm to detect planets hidden
in the individual frames Ik.

3.2. Modified brute-force optimization

3.2.1. Brute force stage

We use a brute-force algorithm to search for the maximum S/N.
We keep a simple shape for the search grid (six-dimensional
rectangle, with linear sampling). The algorithm may therefore
lose some time exploring unrealistic possibilities. We explore
the entire range of possible values, from −π to +π for Ω and
θ0, and from 0 to π for i. For e, we explore values ranging from
0 to 0.8. For t0, we also explore the entire possible range, that is,
from 0 to T , T being the orbital period. Since the value of the
orbital period depends on a, we take the largest interval: from 0

to 2π ×
√

amax
3

GM . For a, we chose to explore values ranging from
0.09 × d to 0.75×d, which correspond to the A.O. corrected area
of SPHERE/IRDIS, d being the distance of the star in parsecs.

The smaller the step size of the grid, the higher the chances
are of finding the true maximum, but the longer the computation
time is. We estimated the best sampling for each parame-
ter empirically, by looking at the typical width of the global
maximum in different configurations.

In Table 1, we summarize the different characteristics of our
grid, buil t for analyzing observations of a star of mass 1 M�,
located at 10 pc. Whereas the step sizes and number of points
to use are only rough estimates, this table shows that the total
number of points to be explored is of the order of 108. The sim-
ulations have shown that such a grid allows to find a solution in
a reasonable computation time (see Sect. 5).

3.2.2. Gradient-descent re-optimization stage

The weak point of the brute-force algorithm is that it may miss
the global maximum, likely to be between the points of the
finite grid sampling. To circumvent this particular issue, we add
a gradient-descent optimization stage to the process, and re-
optimize some of the best solutions found by the brute-force
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algorithm. To decide how many of the best grid values should
be re-optimized, we ran the brute-force algorithm on a set of
25 images generated using our SPHERE/IRDIS simulator (see
Sect. 2), in typical sky conditions (seeing of 0.8′′), in which no
planet was introduced. This gave us a typical distribution of the
noise values sampled by the grid, in which we found that the
highest S/N value was 5.2, and that only 100 S/N values
are higher than 4.5 and 1000 higher than 4.2. This means that if
we re-optimize the best value found on the grid, a planet will be
detected only if the corresponding S/N grid-maximum reaches a
value higher than 5.4. However, if we re-optimize the 100 (resp.
1000) best values, then the planet will be detected if the corre-
sponding grid value is greater than 5.1 (resp. 4.7). Compared to
the total 108 points of the grid, re-optimizing 100 or 1000 values
takes little time, and allows us to recover low-S/N planets.

In conclusion of this section, we have built an algorithm that
works in three steps:

– First, a brute-force algorithm is used to determine the value
of the S/N function in each point of the grid.

– Then the p = 100 highest values found are re-optimized by a
gradient-descent algorithm or similar. We use the Broyden-
Fletcher-Goldfarb-Shanno method (Fletcher 1987).

– Finally, we search for planets in all images corresponding to
the re-optimized S/N values above 4.7.

4. Results

4.1. Blind test

To test the K-Stacker algorithm, we performed a blind exper-
iment. We used the SPHERE/IRDIS simulator presented in
Sect. 2 to build 50 sets of ten independent simulated observa-
tions, with a seeing value of 0.8′′. In each set, a planet was then
injected on a random orbit, at a random S/N level. The orbit was
selected by drawing the six parameters randomly using the distri-
butions given in Table 2 allowing the algorithm to redraw a new
set of parameters when the first one resulted in an orbit going
outside of the AO-corrected area in at least one image. The mass
and the distance of the star are expected to be known with a good
accuracy, as is usually the case for the bright stars observed in
coronagraphy. For each simulation, the planet was not injected
at “constant S/N”, but rather at “constant flux”, to simulate what
is expected from a constant exposure time series of observations.
For each series of ten observations, the noise level σ1 at the posi-
tion of the planet in the first image is computed, and the planet
is injected at a flux value of F = snr1 × σ1 on top of the back-
ground in each image, where snr1 is randomly selected among
four possible values: 0, 5/

√
10, 7.5/

√
10, or 10/

√
10.

Because the local value of the background behind the
planet varies in each observation, as does the noise level if
the planet is moving with respect to the central star, the exact
S/N differs from one image to the other, and the total expected
S/N level of the simulation can only loosely be expected to be
S/N '

√
10 × snr1.

In all these simulations, the star has a mass of 1 M�, is
located at a distance of 10 pc, and has a magnitude of 8 in the R
band (AO sensing band). The ten images of each set correspond
to observations made at different times, selected arbitrarily to
represent a plausible sequence of K-Stacker observations. The
times are given in Table 3.

The 50 sets of observations have been prepared using a dedi-
cated computer program, which drew all the random parameters
and S/N values, and stored them in a file. All the simulations

Table 2. Parameters used to inject the planet in the 50 simulations of
our blind experiment.

Parameter Range Distribution

M∗ 1 M� fixed value
d∗ 10 pc fixed value
a [0.2 AU, 7.5 AU] uniform
e [0, 0.5] uniform
t0 [−20 yr, 0 yr] uniform
Ω [−180 deg, 180 deg] uniform
i [0, 180 deg] uniform
θ0 [−180 deg, 180 deg] uniform
√

10 × S/N {0, 5.0, 7.5, 10.0} uniform

Table 3. Dates used for each of the ten observations constituting every
set of the blind test.

Observation number Date

1 January 1, 2017
2 February 6, 2017
3 March 15, 2017
4 April 20, 2017
5 Februray 6, 2018
6 March 15, 2018
7 February 6, 2019
8 March 15, 2019
9 Februray 6, 2020
10 March 14, 2020

were then processed by the K-Stacker algorithm. For each simu-
lation, K-Stacker produced a set of 100 best optimized recom-
binations, with their associated S/N values (before and after
the re-optimization step) and orbital parameters. The observer
has absolutely no idea of the S/N and orbital parameters of the
planets injected in the data.

The final images produced by K-Stacker can be checked by
the observer, as usually done with high-contrast images. The
observer can look at the final recombined images and, based on
the total recombined S/N and the shape of the detection found by
K-Stacker, assign a flag to each set of observations, validating or
not the potential planet candidate.

The file containing the parameters and S/N levels was only
retrieved at the very end of the whole process in an effort to
ensure that the observer never knew in advance what to expect
from each simulation, and reduce overall bias.

4.2. Results obtained

Among the 50 simulations prepared and analyzed in our blind
experiment, 15 were assigned by our algorithm to a group of
S/N ' 0, 12 to S/N ' 5, 10 to S/N ' 7.5, and 13 to S/N ' 10.
All of the 15 simulations in which no planet was actually injected
were correctly identified as containing no planet candidate by
the observer. In the remaining 35 simulations, 25 planets were
correctly identified as planet candidates by the observer, 9 plan-
ets were missed, and one false positive was found. In Fig. 2, we
show the distribution of the planets missed/found as a function
of the total real S/N of the simulation computed afterwards by
combining the images using the true set of orbital parameters.
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Fig. 2. Distribution of the planet candidates found and missed among
the 49 simulations as a function of the S/N given a perfect recombina-
tion of the images. The true negatives, all grouped at S/N = 0 are not
shown.

5. Discussion

5.1. Success rate and required computer resources

Figure 2 indicates that very high success rates (100%) can be
expected of K-Stacker when the number of images acquired,
and/or the planet signal strength, is high enough so that the total
recombined S/N can reach at least a value of 9. When the S/N
is lower (down to 6), the algorithm can still detect the planet in
most cases ('80% in total). When the S/N lies around 5, a 50%
recovery rate seems to be achievable using the K-Stacker algo-
rithm. This is very encouraging, as it is comparable to what can
be expected using more conventional techniques.

These success rates have been obtained using the computer
cluster at Laboratoire d’Astrophysique de Marseille (LAM). We
used a total of 50 cores of the cluster for an estimated total com-
puting power of about 150 GFlops, and each of the simulations
(10 images) took about 10–15 h for the grid search, plus about
1–2 h for the gradient-descent reoptimization. These numbers
scale linearly with the number of frames processed in an obser-
vation.

5.2. The problem of false positives

The success rate of a planet search algorithm, which defines its
ability to effectively find planets and avoid “false negatives”, is
an important characteristic, but its ability to avoid “false posi-
tives” (FP), where a speckle is falsely flagged as a planet, is also
fundamental.

In a standard single-frame high-contrast observation, the
probability of getting a false detection can be written as the
product of the typical number of speckles in the images and
the probability of any one speckle to be luminous enough to be
mistaken for a planet:

PFP = Nspeckles × P
(
S/Nspeckle > S/N t

)
, (2)

where S/Nt is the threshold S/N, corresponding to the minimum
value of S/N a feature in the image has to reach in order to be
considered as a potential planet.

Considering only the AO-corrected area, an instrument like
SPHERE/IRDIS typically has a number of speckles Nspeckles ≈

1000. Assuming that speckle noise due to atmospheric turbu-
lence follows a normal distribution of variance 1 (in unit of S/N),
the broadly used value of S/N t = 5 leads to a probability of false

Fig. 3. One of the individual frames of simulation 48, which lead to the
only false positive of the series. The planet that has not been detected is
on the edge of the AO-corrected area (indicated by the blue arrow).

detection of '3 × 10−4, or about one false detection every 3500
observations.

At first glance, in the case of K-Stacker, the situation seems
much more problematic since each of the 108 orbits tried by the
algorithm can potentially lead to a false detection. This particular
problem was already pointed out by Males et al. (2013). A first
estimate of the false positive probability can be done assuming
that the S/N value of each orbit tried by K-Stacker is independent
of all the other values. In this case, the probability of getting a
false detection on any K-Stacker run can be written as:

PFP = 1 − [1 − P (S/Norbit > S/N t)]
Norbits . (3)

If we also assume that each orbit leads to an S/N value dis-
tributed according to a normal law of mean 0 (counting the
background subtraction) and variance 1 (see Sect. 3), then the
threshold S/N t = 5 leads to P(S/Norbit > S/Nt) = 2.9 × 10−7,
and the probability of getting a false positive is almost exactly 1.

However, in all the 50 simulations of our blind test, only
one gave a false positive result. In this simulation, a planet
was injected at a high S/N value (about 2–3 in each individual
frame), but very close to the edge of the AO-corrected area (see
Fig. 3).

The planet itself was not detected, but another feature was
falsely flagged as a planet candidate. However, the observer also
noted that the S/N value found by K-Stacker was low (4.80
before the reoptimization, 4.98 after), and that the shape of
the recombined spot had an apparent lack of central symmetry
(Fig 4). The result was flagged as a planet candidate, but with
a comment saying that it should be taken with caution. There is
no doubt that if this case was a real one, the observer would
have requested further observations before claiming a planet
detection.

At this point, it must also be pointed out that with recent
instruments like SPHERE, which provide images at several
wavelengths (IFS), color-magnitude diagrams are usually used to
help discriminate between potential planet candidates and brown
dwarves, background features, or speckles. In our monochro-
matic blind test, this check cannot be done, and the rate of false
detections is necessarily higher than in classical coronagraphy,
which makes our result pessimistic.

Overall, the K-Stacker algorithm seems to be much more
resilient to false positives than what could be expected from
Eq. (3). We believe that two reasons can explain this.

A144, page 5 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629531&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629531&pdf_id=0


A&A 615, A144 (2018)

Fig. 4. Recombined K-Stacker image where the false planet candidate
can be seen (indicated by the arrow). The observer noted the asymmetry
of the planet spot.

Firstly, the previous reasoning assumes that all the orbits
tested by K-Stacker are independent. This leads to a very high
“number of trials”, and thus to a high false positive probability.
It is unlikely, though, that all the 108 orbits tested could really be
independent. Different sets of orbital parameters can correspond
to very similar orbits, especially when the total time spanned
by the observations is small compared to the orbital period.
This effectively reduces the number of independent orbits that
should be taken into account in Eq. (3). We did not try to thor-
oughly test this hypothesis, but interestingly enough, this idea,
based only on the empirical results of our K-Stacker runs and
on our experience using it, agrees with the conclusion reached
by Males et al. (2013), using a more sophisticated theoretical
reasoning.

Secondly, we also noticed that when the optimization algo-
rithm ends on a “noise maximum” which could lead to a false
positive, the resulting image does not show a clear PSF-shaped
spot, as is the case when the algorithm finds the planet maxi-
mum (see Appendix A for some examples). In Table 4, we give,
for each of the 15 simulations in which no planet was injected,
the highest S/N value of the 100 best solutions found during the
grid search as well as the minimum and maximum S/N values
found by the gradient-descent algorithm. This table shows that if
a simple S/N threshold were to be used to flag planet candidates,
the number of false positives would be much higher. This result
emphasizes the possibility of using a “recombined spot shape”
criterion to disentangle false positives from true planets, and the
importance of the observer’s judgement for the reliability of this
technique in its current implementation.

5.3. Can we get rid of the astronomer?

In its current implementation, the K-Stacker algorithm produces
100 images for each time series analyzed, and requires the
intervention of a skillful observer to check these recombined
images for the presence of a planet. This step, while also used
in classical high-contrast imaging, is tedious, and may introduce
uncontrolled bias in the data-reduction process. For the time
being, however, and as already discussed in Sect. 5.2, this
step is absolutely necessary to avoid large numbers of false
positives.

In Fig. 5 (resp. Fig. 6), we show what the results of our blind
test would have been if we had used only a S/N threshold to flag
planet candidates. For each simulation, the best solution found

Table 4. Values of the 100th best S/N found by the grid search, and
minimum/maximum values found by the reoptimization algorithm for
each of the 15 simulations where no planet was injected.

Simulation Grid search Gradient descent
S/N 100th value Minimum S/N Maximum S/N

1 4.27 4.62 5.64
6 4.45 4.60 4.95
8 4.58 4.93 5.74
11 4.76 4.82 5.78
13 4.50 4.61 5.26
15 5.50 5.60 5.96
21 4.80 4.86 5.59
26 4.57 4.59 5.24
27 4.55 4.67 5.67
29 4.45 4.60 5.80
37 4.82 4.89 5.68
38 4.75 4.82 5.69
41 4.86 4.92 5.55
45 4.57 4.66 6.55
49 4.46 4.52 5.70

Fig. 5. Resulting distribution of the planet candidates found and missed
among the 33 simulations where a planet was effectively injected, when
using only a S/N threshold >5 to flag planet candidates.

Fig. 6. As in Fig. 5, but for a S/N threshold of 7.
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by K-Stacker is simply flagged as a planet candidate if the S/N
is above 5 (resp. 7), without any intervention of an observer. As
expected, the number of false positives (10, resp. 5 in total) is
much higher, especially at low S/N. In our blind test, the observer
was able to detect that these “best solutions” found by K-Stacker
were actually “super-speckles”, and he eliminated them (see also
Fig. A.1). For most of them, he was also able to find the planet
candidates.

As discussed in Sect. 5.5, the shape of the recombined spot is
important. To try to take that into account, we switched from our
simple circular photometric aperture to a slightly more sophisti-
cated Gaussian-weighted aperture. We found no real difference
with our simple circular aperture, and this new method did not
alleviate the need for the observer to carefully look at each image
to assess the presence of the planet. A more complex algorithm,
maybe one based on machine-learning trained to disentangle a
planet PSF from recombined speckles, will be required in order
to get rid of the observer’s judgement. This would be a major
improvement for K-Stacker, but is left for future work. Further
astrophysical information (spectral, polarimetry) will also be
used to remove the false positives.

5.4. Orbital parameters determination

K-Stacker can also provide an estimate of the orbital parame-
ters, as a by-product of the optimization algorithm. The precision
with which these parameters are estimated depends on many dif-
ferent factors, such as the actual orbit on which the planet is
moving, the total time spanned by the observing sequence, and
so on. It is clear, for example, that if the planet does not move
significantly during the sequence, one should not expect to have
reliable information about the orbital parameters. In such cases,
K-Stacker is able to recenter the images and detect planets not
reachable with other methods, but several very different sets of
orbital parameters can lead to a good recombination.

In Fig. 7, we give, for each of the 25 simulations in which the
planet was found, the mean distance between the true position
of the planet in each image and the one predicted according to
the set of parameters optimized by the K-Stacker algorithm, as
a function of the total path travelled, and of the S/N. The two
points with a mean error of more than 3 pixels correspond to two
simulations in which the planet is very close to the edge of the
AO-corrected area in certain images of the sequence, reducing
the ability of the algorithm to properly constrain the orbit.

A linear fit on the other points reveals that the mean distance
error is slightly increasing with the total path length travelled by
the planet (3 × 10−3 pixel per pixel travelled by the planet).

When the planet travels along a large portion of its orbit in
the sequence, we expect the orbit to be better constrained, and the
algorithm to find a better fit to it. But at the same time, a fixed
error on the orbital elements has a much greater impact on the
estimated positions if the planet moves along a large portion of
its orbit. The result of Fig. 7 shows that we are still dominated by
the second effect, suggesting that the reoptimization stage could
still be improved.

In Fig. 8, we show the error on each of the six parameters
individually, as a function of the total path length travelled by
the planet. On some parameters (e.g., a, i, t0), there seems to be
a clear advantage of having longer displacements of the planet to
get better estimates. On some others (e.g., e, Ω, θ0), it is not as
clear. These parameters, which are not better fitted for a longer
travelled path, may be responsible for the overall increasing slope
of Fig. 7.

Fig. 7. Mean distance between the true position of the planet and the
position found by K-Stacker as a function of the total path length trav-
elled by the planet, for the 25 simulations in which the planet was
detected.

5.5. Possible improvements of the algorithm

We find that the current version of the K-Stacker algorithm can
achieve a 50% detection rate on targets with a total S/N ' 5.
Whereas this result already shows that it is possible to use
K-Stacker to find very faint planets (S/N below 2 in individual
frames for a series of ten observations), we strongly believe that
there is still room for improvement in the algorithm.

One sure way to improve the results of the K-Stacker algo-
rithm would be to optimize the search grid. For example, a larger
step in θ0 could be used for smaller values of a. In our version of
the algorithm, we are exploring the same range of values for t0
no matter what the actual value of a is. But it is well known that
the semi major-axis and the orbital period are directly related,
and this could be used to reduce the range explored for smaller
values of a.

In fact, an optimal grid may be constructed for the K-Stacker
algorithm by looking for a set of orbits which diverge by at least
one FWHM of the instrument PSF in at least one image of the
sequence. This could be done numerically, or maybe even ana-
lytically. This would ensure that the minimum possible number
of orbits are used, and hence would help in reducing the total
computing time, and the rate of false positives.

Also, one area which has yet to be studied in detail is the
definition of the function to be optimized usually referred to as
the “gain function” in optimization problems. As pointed out
in Sect. 5.2, when the algorithm is trying to recombine speck-
les to create a “super-speckle”, the resulting pattern is “blurred”
and does not resemble a real PSF. The most efficient gain func-
tion might be one that takes into account the S/N but also the
shape of the recombined spot. When searching for planets close
to the star, small sample statistics should be taken into account
to compute the S/N (Mawet et al. 2014).

Along this line of thought, we also tried to use a noise-
weighted averaging of the different images (close to what is
suggested in Bottom et al., 2017), to take into account the fact
that in our series, because of the motion of the planet with
respect to the central star, some exposures might be better than
others (e.g., when the planet is far away from the star). This mod-
ification did not drastically change our results. The same blind
test lead to 25 planets recovered out of 34 (instead of the 24 in
the version presented here), with no false negative (instead of one
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Fig. 8. Upper six panels: errors made on the orbital parameters as a function of the total path travelled by the planet, for each of the simulations in
which a planet was correctly identified. In these panels, two cases, corresponding to a good fit (green dots) and a bad fit (red dots) of the orbit are
highlighted. Two lower panels: corresponding orbits with the real orbit of the planet in black, and the orbit found by K-Stacker in green (good fit
case), and red (bad fit case). For each orbit, the position of the planet in all ten images is also represented.

found here). A more sophisticated algorithm will be necessary to
drastically improve the results.

We also noted an unexpected behavior of the algorithm when
using the noise-weighted average. This behavior is exemplified
in one particular simulation, in which the planet was found by
the algorithm, but the orbit was not properly recovered (see
Fig. 9). An in-depth investigation revealed that this was due to
some sort of interaction between the way the planets are injected
in our images, and the noise-weighted averaging. We recall
that in our images, the planet is injected at constant flux, rather
than constant S/N, to reflect the reality of a constant exposure
time. This means that from one image to another, the actual S/N
may vary. In this particular case, the planet was injected at a
higher S/N in the first few images of the sequence than in the
others (S/N ' 1.9 vs. 1.2). Because of the noise structure in
high-contrast images, the noise-averaged combination also has a
natural tendency to favor images in which the computed position
is far from the central star. The combination of these two factors
made for a situation in which a highly eccentric orbit correctly
fitting the first part of the real orbit and moving rapidly towards
the central star in the last part (as in Fig. 9, bottom panel) yields

a good total S/N. The classical combination algorithm, which
gives the same importance to each image of the sequence, is less
subject to this effect.

Finally, it must be noted that the K-Stacking method does
not necessarily imply the use of a brute-force optimization algo-
rithm. Any type of optimization algorithm could be used to opti-
mize the S/N function: simulated annealing, genetic algorithms,
amoeba, and so on. However, we believe that the brute-force
method is one of the most appropriate for K-Stacker. Despite not
being known for its efficiency, this method has a very interesting
property: the sets of orbital parameters on which the S/N has
to be calculated are known in advance and never change (these
are the points of the search grid). This means that adding a new
image to a set of n observations already processed by K-Stacker
does not take much more computation time if the “signal” and
“noise” terms computed in each image and for each point of the
search grid are systematically stored. In this case, these terms
can be combined to generate the S/N values using the equation

S/N =
∑

k S k/
√∑

k σ
2
k . Then to add a n + 1th image to a set of n

images, one can simply compute the values of S n+1 andσn+1, and
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Fig. 9. Illustration of an unexpected behavior of the K-Stacker algo-
rithm when using a noise-weighted averaged combination of images.
Top panel: best orbit found by the classical combination algorithm, and
bottom panel: best orbit found when using the noise-weighted aver-
aged combination for the same simulation. In this case, the planet has
a S/N ' 1.9 in the first four images, and '1.2 in the last six. The real
orbit of the planet is in black.

recompute the S/N. The new image can be processed separately
and it is not necessary to reprocess the entire set of n + 1 images.
Inversely, when using Monte-Carlo methods, in which the opti-
mization path is generated dynamically by the algorithm based
on previous values found, adding a new image to a set of already
processed observations requires a complete re-processing of the
whole set, which can prove extremely time-consuming.

On the other hand, a Monte-Carlo-type algorithm would
more thoroughly explore the local search space around the best
orbits, helping to determine error bars on the orbital parameters.
The best way to proceed might be a combination of both a grid
search to reduce the search space, and an MCMC (Monte-Carlo
Markov Chain)-based algorithm.

6. Conclusion: what can we use K-Stacker for?

In this study, we have shown how the K-Stacking method
could be used to combine multiple high-contrast images
obtained during different nights to detect exoplanets. We

simulated SPHERE/IRDIS coronagraphic images taken over
several months with planets at low S/N (below the detection
limit) in individual frames, and used the K-Stacker algorithm
to combine these images and detect the planets. We find that
when the total number n of available images is large enough
to get

√
n × S/N ind ≥ 7 (where S/N ind is the S/N level in

individual frames), the K-Stacker algorithm is able to detect
the planet with a very high level of reliability (>90%). For
cases where 5 ≤

√
n × S/N ind ≤ 6, we find a recovery rate of

about 50%.
The detection rate can probably be improved by refining and

optimizing the search grid. This will be done in a future work,
using real data. This first study was limited to simulated images
in order to have complete control over all the important parame-
ters (star magnitude, turbulence conditions, XAO performances,
etc.). It has shown that K-Stacker could achieve good recovery
rates (i.e., similar to what usual high-contrast imaging techniques
are expected to provide) on simulated data, in an acceptable
amount of time. Future studies on this subject should be done
using real data, possibly with false planets injected.

In its current implementation, K-Stacker still heavily relies
on the ability of the observer to identifiy false positives in the
recombined images. Whereas our blind test has shown that
this could be done reliably (only one false positive, which was
identified as an uncertain planet candidate by the observer,
among our 49 simulations), it is clear that this has to be tested
using real data.

In its current state, though, the K-Stacker technique could
already prove useful to detect very faint planets. The ADI tech-
nique intrinsically limits the useful observing time that can be
spent each night on any single star (up to about 1–2 h). Adding
to this that high-contrast imaging instruments require the best
observing conditions, that these instruments are sharing tele-
scope time with others, and that stars are not visible year-round
in the night sky, accumulating about 10 h of ADI observation on
a single target in a few months (to limit orbital motion) can prove
excessively complicated. Using the K-Stacker would drastically
improve the chances of doing so, and reduce the complexity of
observing schedules.

Finally, we also want to point out that this method could also
be used as part of a new scheme of observation, in which expo-
sures would not be made sequentially on one night, but would be
spread over multiple nights, to better constrain the orbit. For the
same contrast in the final image, the K-Stacker technique would
also yield an estimate of the orbital parameters, which cannot be
obtained with a single night’s observation.
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Appendix A: Example of solutions found by K-Stacker

Fig. A.1. A set of best recombined images as found by K-Stacker, for different reoptimized S/N values, and for cases where the algorithm found
a true/false planet candidate. In each panel, the blue arrow shows the position of the planet candidate found by K-Stacker. Panel a (resp. panel b):
S/N = 5.7 with a correct (resp. false) planet candidate. Panel c (resp. panel d): S/N = 6.0 with a correct (resp. false) planet candidate. Panel e
(resp. panel f ): S/N = 6.5 with a correct (resp. false) planet candidate. Panel g: S/N = 8.3, with a true planet candidate. We note that the observer
has been able to correctly identify a false positive (S/N > 6) without planets injected in simulations: panel b, d, and e using the shape of the spot,
without any a priori information on the planet injection.
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Fig. A.1. continued.
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