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Abstract

With the rise of the cyber insurance market, there is a need of a better quantifi-
cation of the economic impact of this new risk. Due to the relatively poor quality
and consistency of databases on cyber events, and because of the heterogeneity of
cyber claims, evaluating the appropriate premium and/or the required amount of
reserves is a difficult task. In this paper, we propose a method based on regression
trees to analyze cyber claims to identify criteria for claim classification and evalua-
tion. We particularly focus on severe/extreme claims, by combining a Generalized
Pareto modeling - legitimate from Extreme Value Theory - and the regression tree
approach. Combined to an evaluation of the frequency, our procedure allows compu-
tations of central scenarios and extreme loss quantiles for a cyber portfolio. Finally,
we illustrate on a public database.
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1 Introduction

Cyber risk is a natural consequence of the digital transformation. Digital technologies
induce new vulnerabilities for economic actors, with a fast evolution of practices, threats,
and behaviors. With the increase of cyber threats, insurance contracts appear as fun-
damental tools to improve the resilience of society. However while the cyber insurance
market is spectacularly growing, risk analysis faces a lack of consistent and reliable data
in a context where the amount of claims is particularly volatile. Therefore, quantifying
this emerging and evolving risk is a difficult task. In this paper, we propose to analyze
cyber claims via regression trees in order to constitute clusters of cyber incidents. These
clusters achieve a compromise between homogeneity and a sufficient size to allow a reli-
able statistical estimation of the risk. A particular attention is devoted to large claims,
for which heavy tail distributions are fitted. The study of large claims raises the question
of insurability of the risk, and the clustering technique we propose may help to sepa-
rate between type of incidents or circumstances that can or can not be covered without
endangering risk pooling.

Topics recently addressed in cyber-insurance are reviewed in Biener et al. [2015], Eling
and Schnell [2016] and [Marotta et al., 2017]. Although most of them approach this
challenge from the point of view of a cyber analyst. For instance, Fahrenwaldt et al.
[2018] study the topology of infected networks, and Insua et al. [2019] gather expert
judgments using an Adversarial Risk Analysis. Eling and Loperfido [2017] and Forrest
et al. [2016] developed more established insurance modeling methods illustrated on the
Privacy Rights Clearinghouse (PRC) database (available for public download at https://
www.privacyrights.org/copyright). PRC database has also been studied by Maillart
and Sornette [2010]. It gathers data breaches events for which a severity indication is given
(through the volume of data breached), making it valuable for insurance applications. On
the other hand, this database is not fed by an insurance portfolio but by various sources
of information, each reporting heterogeneous types of claims. In particular, the exposure
(that is the number of entities exposed to risk in the scope of PRC organization) is blur.

In the present paper, we consider the same PRC database to illustrate our methodol-
ogy, that can be easily extended to other types of data. The method we develop is adapted
to detect such instabilities in this context of a database fed by sources of information which
variety may disturb the evaluation of the risk. We especially focus on “extreme” events,
that is events for which the severity of the claim is larger than a fixed (high) threshold,
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seeking to gain further insight on the impact of the characteristics of companies and of
the circumstances on a cyber event. Therefore, relying on regression trees inference and
extreme value theory, we introduce a statistical methodology that takes into account both
the heterogeneity and the extreme features. In addition, we propose an insurance pricing
and reserving framework based on assumptions on the exposure and on the costs of data
breaches in order to take advantage of the PRC database within the realms of possibility.

Regression trees are good candidates to understand the origin of the heterogeneity,
since they allow to perform regression and classification simultaneously. Since the pioneer
works of Breiman et al. [1984] who introduced CART algorithm (Clustering And Regres-
sion Tree), regression trees have been used in many fields, including industry [see e.g.
Juárez, 2015], geology [see e.g. Rodriguez-Galiano et al., 2015], ecology (see e.g. [De’ath
and Fabricius, 2000]), claim reserving [see e.g. Lopez et al., 2016]. A nice feature of
this approach is to introduce nonlinearities in the way the distribution is modeled, while
furnishing an intelligible interpretation of the final classification of response variables. Ad-
vocating for the use of regression trees is also the simplicity of the algorithm: such models
are fitted to the data via an iterative decomposition. The splitting criterion depends
on the type of problems one wishes to investigate: the standard CART algorithm uses a
quadratic loss since it aims at performing mean-regression. Alternative loss functions may
be considered as in [Chaudhuri and Loh, 2002] in order to perform quantile regression or
in [Su et al., 2004] for log-likelihood loss for example. [Loh, 2011, 2014] provide detailed
descriptions of regression trees procedures and a review of their variants. In the present
paper, we use different types of splitting criteria, with a particular attention devoted to
the tail of the distribution of the claim size, which described the behavior of extreme
events. We therefore use a Generalized Pareto distribution to approximate the tail of the
distribution—which is at the core of the “Peaks Over Threshold” procedure in extreme
value theory [see e.g. Pickands, 1975, Beirlant et al., 2004]—with parameters depending
on the classes defined by the regression tree.

The rest of the paper is organized as follows. In Section 2, we give a short presentation
of the PRC database, its advantage and its inconsistencies. The general description of
regression trees and their adaptation to extreme value analysis is done in Section 3. These
methodologies are applied to the PRC database in Section 4, leading to a model for the
severity of claims. This model is combined with a frequency model in Section 5.2, in order
to quantify the impact of this analysis on (virtual) insurance portfolios.
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2 A public data breaches database

The Privacy Rights Clearinghouse (PRC) database is one of the few publicly available
databases on cyber events which associates a quantification of the severity to a claim.
This piece of information is crucial from an insurance perspective: evaluation the risk
associated with a policyholder requires to estimate the probability of being victim of a
cyber event (or the frequency of occurrence of such events), and to quantify the potential
random loss. Regarding the severity, PRC database does not directly provide the loss
associated with an event, but reports the number of records affected by the breach. This
number is correlated to the financial impact of the claim, which can be approximatively
retrieved by a formula given in Jacobs [2014] which will described later on in Section 5.1.
We describe the database in Section 2.1. A focus on the sources feeding the database
is done in Section 2.2. This short overview helps us to identify some characteristics and
inconsistencies of cyber data that are summarized in Section 2.3, and will motivate the
use of the methodology we develop in the rest of the paper.

2.1 Description of the database

Privacy Rights Clearinghouse is a nonprofit organization founded in 1992 which aims at
protecting privacy for US citizens. Especially, PRC has been maintaining a chronology
since 2005, listing companies that have been involved in data breaches affecting US cit-
izens. This article is based on a download of this database made on January 23 2019,
corresponding to 8860 cyber events on companies, mainly Americans. Among them, only
8298 are kept for our analysis, since we eliminated duplicated and/or inconsistent events
(e.g. information on the targeted company is sometimes not consistent).

The PRC database gathers information regarding each cyber event (its type, the num-
ber of records affected by the breach, a description of the event) and its victim (targeted
company name, its activities, its localization). These variables and their modalities are
summarized in Tables 1 to 3. Additional statistics are shown in Section 7.3.

As already mentioned, the financial loss resulting from an event is absent from the
database. However, the number of records is a key element to measure the severity of the
event, at least for a significant number of cases (6160 observations out of 8802, on which
we will perform our severity analysis). Section 5.1 below shows how a projected financial
loss can be estimated from the number of records, accordingly to an approach that has
been developed by previous authors (see e.g. Eling and Loperfido [2017]). Note that the
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Table 1: List of the available variables of the PRC database.

PRC database Variable

Victim data
Name of organization
Sector of organization

Geographic position of organization

Event data

Source of release
Date of release
Type of breach

Number of affected records
Description of the event

Table 2: Labels for activity sectors of victims in the PRC database.

BSF Businesses - Financial and Insurance Services

BSO Businesses - Other

BSR Businesses - Retail/Merchant - Including Online Retail

EDU Educational Institutions

GOV Government & Military

MED Healthcare, Medical Providers & Medical Insurance Services

NGO Nonprofits

Table 3: List of the types of data breaches as labelled in the PRC database.

CARD
Fraud involving debit and credit cards that

is not accomplished via hacking

HACK Hacked by outside party or infected by malware

INSD
Insider (someone with legitimate access intentionally

breaches information)

PHYS
Includes paper documents that are lost,
discarded or stolen (non electronic)

PORT
Lost, discarded or stolen laptop, PDA, smartphone,

memory stick, CDs, hard drive, data tape, etc.

STAT
Stationary computer loss

(lost, inappropriately accessed, discarded or
stolen computer or server not designed for mobility)

DISC
Unintended disclosure (not involving hacking,

intentional breach or physical loss)

UNKN Unknown

5



number of records should not be interpreted as the number of individuals affected by the
breach, for example in the situation where a web-user possesses multiple accounts.

2.2 Multiple sources feeding the database

In this section, we focus on the variable “ Source of release”. The PRC organization
gathers cyber events from different sources, which can be clustered in four groups:

• US Government Agencies on the federal level: in the healthcare domain, the Health
Insurance Portability and Accountability Act (HIPAA) imposes a notification to the
Secretary of the U.S. Department of Health and Human Services for each breach that
affects 500 or more individuals, see [U.S. HHS department, b]. Those notifications
are reported online with free access on the breach portal [U.S. HHS department, a].

• US Government Agencies on the state level: since 2018, every state has had a specific
legislation related to data breaches. Differences have been studied by Maddie Ladner
[2018]. Particularly, there is no uniformity on the threshold (in terms of number
of victims) above which a notification becomes mandatory. Some states publicly
release notifications, which is the case of California through the online portal State
of California, but this is not systematic.

• Media: PRC organization monitors media to list data breaches that leads to exten-
sive press coverage.

• Non profit organizations: the PRC database includes the data breaches reported by
other non profit organizations than PRC, for instance [Databreaches.net].

While merging different sources of notifications increases the scope of the PRC chronol-
ogy, it also introduces heterogeneity among the reported events, since each source reports
a particular kind of claims. Additionally, the proportion of reported events from a given
source fluctuates through time, as shown in Figures 1 and 2.

This makes the estimation from this database of a frequency of occurrence particularly
difficult (fundamental for insurance pricing). Indeed, there is no way to determine which
part of the increase of the number of claims is caused by the evolution of the threat,
and which is caused by the data collecting process. This could also have an effect on the
analysis of the severity of the events, which is our main concern in this paper.
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Figure 1: Data breaches listed in the PRC database through time and depending on the
source of information.

Figure 2: Evolution of the number of listed events by month depending on the source of
information (smoothed curves).

7



2.3 Heterogeneity and inconsistencies in PRC database

As we already mentioned, the evolutions in the way different sources feed the database
through time is of some concern in order to get a clear view on the frequency of cyber
events. This evolution may also have impact on our main objective, which is analyzing
the severity of these events. Indeed one may for example guess that cyber claims that
were exposed by medias are more likely to be more “spectacular” (and hence more severe).
In the same spirit, the fact that a legal source introduces a threshold under which the
event is not necessarily reported creates a potential imbalance in the distribution. This
intuition will be confirmed by our statistical modeling in Section 3.

Moreover, a short descriptive analysis of the severity variable (“number of records”,
see Table 4) shows that this variable is highly volatile: the severity of the worst data
breach represents 27% of the total number of records affected by the totality of the data
breaches. The severity of the top ten data breaches corresponds to 68% of the total
severity and the severity of the top hundred data breaches to 97%. Furthermore, there
is an important difference between the median of the number of records (2000) and the
empirical mean (1.821 millions) because the latter is mainly driven by extreme events (the
largest having 3 billions of records). This important dispersion is expected, due to the
extreme variety of situations considered in the database. This pleads for reducing this
heterogeneity by introducing risk classes which would be more homogeneous, and in which
we could separate between the sources of information if they appear to be correlated with
the severity of the claim. A few complementary statistics are reported in Table 20 in the
Appendix section.

Table 4: Descriptive statistics for the variable “Number of records” depending on the
source of information (first column). qα denotes the empirical α−quantile, that is such
that α% of observations are smaller than qα.

Number Mean q0.25 Median q0.75 q0.9 q0.95 Max

Total 6160 1 821 682 597 2 000 10 891 70 000 300 000 3 000 000 000

US GA: Federal - HIPAA 1 949 84 358 981 2 300 8 009 28 440 75 015 78 800 000

US GA: State 888 89 377 20 4 010 2 403 18 000 63 826 40 000 000

Media 595 16 208 785 1 400 11 266 137 193 4 420 000 41 029 089 3 000 000 000

Nonprofit organization 2 309 422 623 380 2 000 14 000 86 333 247 200 250 000 000

Unknown 419 853 736 959 2 300 9 153 30 194 61 863 191 000 000

In view of performing this task, our idea is to rely on regression trees which are
described in Section 3 below. They present the advantage to offer an automatic clustering,
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without any a priori on the covariates present in the database and to confirm or infirm any
intuition one may have on these characteristics (for example on the “Source” variable).

3 Regression Trees and extreme value analysis

Regression trees are a convenient tool when one wants to simultaneously predict a response
and filter heterogeneity by determining clusters in data. In the sequel, Y denotes a
response variable (a “cost” variable representing the severity of the claim), and X ∈ Rd

some covariates (the circumstances of the claim, the victim(s), the source which detected
the event...). Our observation set is composed of i.i.d. replications (Yi,Xi)1≤i≤n of (Y,X).

Regression trees aim at determining “rules” to gather observations in risk classes depending
on the values of their characteristics Xi. Therefore they are particularly adapted to the
situations where the variety of profiles of Xi induces some heterogeneity. The CART
algorithm, used to compute the trees, is presented in Section 3.1. Depending on the
purpose of regression trees (typically, in our situation, depending on whether we wish to
investigate the center or the tail of the distribution), an appropriate loss function has to
be defined in order to evaluate the quality of the tree and define splitting rules for the
clustering part of the algorithm. Generalized Pareto regression trees, which are introduced
in Section 3.2, are more promising tools to study the tail of the distribution due to key
results in Extreme Value Theory.

3.1 Regression Trees

Regression Trees are modeling tools that allow one to introduce modeling of (nonlinear)
heterogeneity between the observations, by splitting them into classes on which differ-
ent regression models are fitted. The aim is to retrieve a regression function m∗ =

arg minm∈ME[φ(Y,m(X))], where, again, Y is our response variable (the severity of a
cyber claim in our case), X ∈ X ⊂ Rd is a set of covariates, M is a class of target
functions on Rd and φ is a loss function that depends on the quantity we wish to estimate
(see Section 3.1.2).

In the following, we will use three different functions φ :

• the quadratic loss φ(y,m(x)) = (y − m(x))2 corresponds to the situation where
the objective is the conditional mean m∗(x) = E[Y |X = x] and M is the set of
functions of x with finite second order moment;
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• the absolute loss φ(y,m(x)) = |y −m(x)|, where m∗ is the conditional median;

• a log-likelihood loss φ(y,m(x)) = − log fm(x)(y), where F = {fθ : θ ∈ Θ ⊂ Rk} is
a parametric family of densities. This corresponds to the case where one assumes
that the conditional distribution of Y |X = x belongs to the parametric family F
for all x, with parameter m(x) depending on x.

This split of the data is performed in an iterative way, by finding at each step an
appropriate simple rule (that is a condition on the value of some covariate) to separate
data into two more homogeneous classes. The procedure includes two phases: a “growing”
phase through the CART algorithm, and a “pruning” step which consists in the extraction
of a subtree from the decomposition obtained in the initial phase. Pruning can therefore
be understood as a model selection procedure. In Section 3.1.1, we describe a general
version of the CART algorithm, and explain in Section 3.1.2 how an estimation of a
regression model can be deduced from a tree obtained in this first phase. The pruning
step is then described in Section 3.1.3.

3.1.1 Growing step: construction of the maximal tree

The CART algorithm consists in determining iteratively a set of “rules” x = (x(1), . . . , x(d))→
Rj(x) to split the data, aiming at optimizing some objective function (also referred to as
splitting criterion). More precisely, for each possible value of the covariates x, Rj(x) = 1

or 0 depending on whether some conditions are satisfied by x, with Rj(x)Rj′(x) = 0 for
j 6= j′ and

∑
j Rj(x) = 1. The determination of these rules from one step to another

can be represented as a binary tree, since each rule Rj at step k generates two rules Rj1

and Rj2 (with Rj1(x) + Rj2(x) = 0 if Rj(x) = 0) at step k + 1. The algorithm can be
summarized as follows:
Step 1: R1(x) = 1 for all x, and n1 = 1 (corresponds to the root of the tree).
Step k+1: Let (R1, ...Rnk) denote the rules obtained at step k. For j = 1, . . . , nk,

• if all observations such that Rj(Xi) = 1 have the same characteristics, then keep
rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two new rules Rj1 and Rj2 determined in the following
way: for each component X(l) of X = (X(1), . . . , X(d)), define the best threshold x(l)

j?
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to split the data, such that x(l)
j? = arg maxx(l) Φ(Rj, x

(l)), with

Φ(Rj, x
(l)) =

n∑
i=1

φ(Yi, m̂(Rj)(Xi, Rj))Rj(x)

−
n∑
i=1

φ(Yi,ml−(Xi, Rj))1X(l)
i ≤x(l)

Rj(x)

−
n∑
i=1

φ(Yi,ml+(Xi, Rj))1X(l)
i >x(l)

Rj(x),

where

m̂(Rj) = arg min
m∈M

n∑
i=1

φ(Yi,m(Xi))Rj(Xi),

ml−(x,Rj) = arg min
m∈M

n∑
i=1

φ(Yi,m(Xi))1X(l)
i ≤x

Rj(Xi),

ml+(x,Rj) = arg min
m∈M

n∑
i=1

φ(Yi,m(Xi))1X(l)
i >x

Rj(Xi).

Then, select the best component index to consider: l̂ = arg maxl Φ(Rj, x
(l)
j? ).

Define the two new rules Rj1(x) = Rj(x)1
x(l̂)≤x(l̂)j?

, and Rj2(x) = Rj(x)1
x(l̂)>x

(l̂)
j?

.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.

As it has already been mentioned, this algorithm has a binary tree structure. The list
of rules (Rj)1≤j≤nk are identified with the leaves of the tree at step k, and the number of
leaves of the tree is increasing from step k to step k + 1.

In this version of the CART algorithm, all covariates are continuous or {0, 1}−valued.
For qualitative variables with more than two modalities, they must be transformed into
binary variables, or the algorithm must be slightly modified so that the splitting step of
each Rj should be done by finding the best partition into two groups on the values of the
modalities that minimizes the loss function. This can be done by ordering the modalities
with respect to the average value—or the median value—of the response for observations
associated with this modality.

The stopping rule can also be slightly modified to ensure that there is a minimal
number of points of the original data in each leaf of the tree at each step.
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3.1.2 From the tree to the regression function

From a set of rules R = (Rj)j=1,...,s, an estimator m̂R of the function m is given by

m̂R(x) =
s∑
j=1

m̂(Rj)Rj(x).

The final set of rules RM obtained from the CART algorithm is called the maximal tree.
This leads to a trivial estimator of m, since either the number of observations in a leaf
is one, or all observations in this leaf have the same characteristics x. The pruning step
consists in extracting from the maximal tree a subtree that achieves a compromise between
simplicity and good fit.

3.1.3 Selection of a subtree: pruning algorithm

For the pruning step, a standard way to proceed is to use a penalized approach to select
the appropriate subtree [see Breiman et al., 1984, Gey and Nédélec, 2005]. A subtree S
of the maximal tree is associated with a set of rules RS = (RS1 , . . . , R

S
nS

) of cardinality
nS . One then selects the subtree Ŝ(α) that minimizes the criterion

CA(S) =
n∑
i=1

φ(Yi,m
RS (Xi)) + αnS , (3.1)

among all subtrees of the maximal tree, where A is a positive constant. Hence, the trees
with large numbers of leaves (i.e. of rules) are disadvantaged compared to smaller ones.
To determine this tree Ŝ(α), it is not necessary to compute all the subtrees from the
maximal tree. It suffices to determine, for all K ≥ 0, the subtree SK which minimizes the
criterion (3.1) among all subtrees S with nS = K, and then to choose the tree SK which
minimizes the criterion with respect to K. From [Breiman et al., 1984, p.284–290], these
SK are easy to determine, since SK is obtained by removing one leaf to SK+1.

The penalization constant α is chosen using a test sample or k−fold cross-validation.
In the first case, data are split into two parts before growing the tree (a training data of
size n and a test sample which is not used in computing the tree). In the second case,
the dataset is randomly split into k parts which successively act as a training or a test
sample.

Let α̂ denote the penalization constant calibrated using the test sample or the k−fold
cross-validation approach, our final estimator is then m̂(x) = mŜ(α̂)(x).
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3.2 Generalized Pareto Regression trees for analyzing the tail of

the distribution

Since the severity of cyber events is highly volatile, it seems necessary to develop a specific
approach for the tail of distribution. In Section 3.2.1, we recall why Generalized Pareto
Distributions (GPD) naturally appear in the analysis of heavy-tailed variables. This
motivates our GPD trees described in Section 3.2.2.

3.2.1 Peaks over threshold method for extreme value analysis

Extreme value analysis is the branch of statistics which has been developed and broadly
used to handle extreme events, such as extreme floods, heat waves episodes or extreme
financial losses [Katz et al., 2002, Embrechts et al., 2013]. Given a series of independent
and identically distributed observations Y1, Y2, . . . with an unknown survival function F̄
(that is F̄ (y) = P (Y1 > y)). A natural way to define extreme events is to consider the
values of Yi which have exceeded some high threshold u. The excesses above u are then
defined as the variables Yi − u given that Yi > u. The asymptotic behavior of extreme
events is characterized by the distribution of the excesses which is given by

F u(y) = P [Y1 − u > y | Y1 > u] =
F (u+ y)

F (u)
, y > 0 .

If F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ, ∀y > 0, (3.2)

with γ > 0, then
lim
u→∞

sup
y>0
|F u(y)−Hσu,γ(y)| = 0 (3.3)

for some σu > 0 and Hσu,γ necessarily of the form

Hσu,γ(y) =

(
1 + γ

y

σu

)−1/γ

, y > 0. (3.4)

Here, σu > 0 is a scale parameter and γ > 0 is a shape parameter, which reflects
the heaviness of the tail distribution. Especially, if γ ∈]0; 1[, the expectation of Y is
finite whereas if γ ≥ 1 the expectation of Y is infinite. The result from [Balkema and
De Haan, 1974] states that, if the survival function of the normalized excesses above a
high threshold u weakly converges toward a non-degenerate distribution, then the limit
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distribution belongs to a parametric family called the Generalized Pareto distributions
[see also Pickands, 1975].

In practice, the so-called Peaks over threshold method has been widely used since 1990
[see Davison and Smith, 1990]. It consists in choosing a high threshold u and fitting a
Generalized Pareto distribution on the excesses above that threshold u. The estimation
of the parameters σ and γ may be done by maximizing the Generalized Pareto likelihood.
The choice of the threshold u implies a balance between bias and variance. Too low a
threshold is likely to violate the asymptotic basis of the model, leading to bias; too high
a threshold will generate few excesses with which the model can be estimated, leading to
high variance. The standard practice is to choose as low a threshold as possible, subject
to the limit model providing a reasonable approximation.

In our situation of highly volatile severity variables, the assumption γ > 0 is reasonable
and supported by the empirical results of [Maillart and Sornette, 2010].

Remark 3.1 Property (3.2) is called regular variation. When γ > 0, we say that F is
heavy-tailed, meaning that its tail decreases exponentially fast to 0. Usual distributions
as Pareto, Cauchy and Student distributions satisfy this property. For more details, see
[De Haan and Ferreira, 2007, Appendix B].

3.2.2 Generalized Pareto Regression Trees

When it comes to studying the severity of cyber claims, we expect to see a potential
heterogeneity in the tail of the distribution. In order to improve the precision of our
analysis, a natural idea is to study the impact of the circumstances of the claim and
of the characteristics of the victim on the response variable. In a regression framework,
for each value of the covariate x, the conditional distribution of Y |X = x is assumed
to be heavy-tailed, but the parameters γ, σ (and the threshold u above which the GPD
approximation seems satisfactory) depend on x. More precisely, this means that equation
(3.3) becomes

lim
u→∞

sup
y>0
|F u(y)−Hσu(x),γ(x)(y)| = 0 (3.5)

To estimate the function m(x) = (σ(x), γ(x)), we use a regression tree approach. The
procedure of Section 3 is applied to the observations (Yi − u,Xi) for which Yi ≥ u, using
the Generalized Pareto log-likelihood as split function, that is

φ(y,m(x)) = − log(σ(x))−
(

1

γ(x)
+ 1

)
log

(
1 +

yγ(x)

σ(x)

)
.
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The threshold u is chosen large enough so that the Generalized Pareto approximation is
correctly fitted to data (practical choice of this parameter will be discussed in Section
4.2, see also Remark 3.2 below). In the end, the leaves of the tree identify classes,
each corresponding to different tail behaviors (that is with different values of m(x) =

(σ(x), γ(x)), the function m being constant on each leaf.
Compared to competing approaches in extreme value regression, the advantage of the

procedure is to introduce discontinuities in the regression function while parametric ap-
proaches, like in [Beirlant et al., 1999] suppose a form of linearity. The more flexible
nonparametric approaches, as in [Beirlant and Goegebeur, 2004] rely on smoothing tech-
niques that require the covariate to be continuous. In [Chavez-Demoulin et al., 2015],
the authors propose a semiparametric framework to separate the continuous covariates
from the discrete ones. Smoothing splines are used to estimate nonparametrically the
continuous part, while the influence of discrete covariates is captured by a parametric
function. Due to the nice properties of this technique applied on operational risk data
in [Chavez-Demoulin et al., 2015], we compare the results of our GPD regression tree
approach to their procedure in Section 4.4.

Remark 3.2 In extreme value regression, the conditional version of (3.4) leads to the
introduction of a threshold u that potentially depends on x on the event X = x. A
possibility would be to adapt the CART algorithm to select, at each step, a choice of
threshold that could be different in each leaf. However, this complexifies considerably the
technique, and we did not consider it.

4 PRC database analysis with regression trees

In this section, we apply the different variations of the regression tree approach of Section
3 to the response variable Y = “Number of Records” in the PRC database. Section 4.1
describes regression tree analysis of the central part of the distribution, while the tail
part is considered in Section 4.2, applying GPD trees. Section 4.3 shows how these two
approaches can be combined to provide a global analysis of the distribution. Comparison
with the fit of a GAM model as in Chavez-Demoulin et al. [2015] is shown in Section 4.4.
A discussion on the insurability of cyber-risk—which, from a probabilist point of view, is
closely related to the value of the tail parameter γ—is done in Section 4.5.
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4.1 Central part of the severity distribution

In order to estimate the conditional mean E[Y |X = x], with a regression tree, the loss
function φ has to be chosen as the quadratic loss φ(y,m(x)) = (y−m(x))2. The conditional
mean is particularly important in view of computing a pure premium in insurance (pure
premium corresponds to estimating the expectation of the cost, which requires to estimate
the frequency of occurrence and the mean value of a claim), but this indicator is not
robust, due to its sensitivity to large observations. Since the variable Y we study is
highly volatile, investigating the conditional median of the distribution of Y |X = x (that
is med(Y |X = x) = inf{y : F (y|x) ≥ 1/2}, where F (y|x) = P (Y ≤ y|X = x)) may be
more stable. Estimating the conditional median corresponds to the choice of the absolute
loss as the loss function, that is φ(y,m(x)) = |y −m(x)|.

We fit regression trees using these two loss functions. These trees are computed using
the R package rpart [see Therneau and Clinic, 2018], by using a user defined split
function. The pruning step has been done thanks to a 10–fold cross validation used for
error measurement and the selection of a proper subtree. The obtained trees are shown
in Figure 3.

Figure 3: Trees obtained by the CART algorithm based on the quadratic (left-hand side)
and the absolute (right-hand side) losses. For each leaf, the value of the empirical median
(first line) and mean (second line) are given.

The structure of the trees is different for the conditional median compared to the
conditional expectation, although some similarities exist. For example, the category of
victims “Business (Other)” seems generally associated with higher severity: for the mean
tree, all events are gathered in a same leaf, except for those affecting this category of
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targets, which are associated with the largest predicted values. The picture is slightly
different for the median tree: the highest predicted values are still linked with the “Business
(Other)” category, but only under particular circumstances. In both cases, the Media
source is generally associated with larger events.

Table 5 shows the estimation of the variable importance for quadratic and absolute
trees. Variable importance is a common way to perform a ranking of the covariates in
terms of their impact on the response, see Section 7.2.1. The picture is significantly
different depending on the loss. The most important variable for the quadratic loss is the
source, while it is only the fourth for the absolute loss.

Table 5: Variable importance of the regression trees obtained using the quadratic and
absolute losses (in %).

Source Type of breach Type of organization Year

Quadratic loss 35 2 16 47
Absolute loss 6 56 27 11

The leaves of the trees determine clusters. If we want to get a distribution for the
claim severity, one may fit a distribution on each leaf. In Table 6, we report the fitted
parameters of a log-normal distribution on each leaf.

4.2 Tail part of the severity distribution

In view of applying the GPD regression tree approach of Section 3.2.2, our first task is to
determine the threshold u above which the GPD approximation seems reasonable. This
choice is made from the Hill plot [see Resnick, 2007, pp 85–89] for more details on Hill
plots) in Figure 4. From the shape of the curve, we chose u = 27 999, which leads to
keep the 1000 highest observations (around 16% of the total number of breaches). Let us
note that Hill plots are not designed for regression methods. In our context, as already
pointed in Remark 3.2, one could look at thresholds depending on the covariates.

Figure 5 shows the obtained GPD tree, and variable importance is evaluated in 8. The
confidence intervals for the parameters estimates in each leaf are reported in Table 19 (see
Section 7.3). Let us first note that the structure of the GPD tree is quite different from the
ones obtained from the central part of the distribution. The values of the shape and scale
parameters on each leaf have first to be compared to the values obtained if we fit a GPD to
the whole set of observations greater than u. In this case, maximum likelihood estimation
leads to σ̂ = 48 243 (the 95% confidence interval is [40 685; 55 802]) and γ̂ = 2.16 (the
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Table 6: Log normal estimated parameters on the leafs of the tree based on absolute loss.
The parameter µ is the location parameter (expectation of the logarithm of the variable)
and σ the scale parameter (standard deviation of the logarithm of the variable). Leaves
are numerated from left to right according to the representation of the trees from Figure
3.

Absolute µ σ

Leaf 1 7.56 [7.49;7.63] (0.14) 2.66 [2.61;2.71] (0.10)
Leaf 2 8.88 [8.58;9.18] (0.60) 3.11 [2.90;3.32] (0.42)
Leaf 3 8.19 [7.03;9.36] (2.33) 3.25 [2.43;4.08] (1.65)
Leaf 4 12.67 [11.86;13.48] (1.62) 4.19 [3.62;4.76] (1.14)
Leaf 5 13.47 [12.06;14.86] (2.8) 4.42 [3.44;5.40] (0.96)

Quadratic µ σ

Leaf 1 7.68 [7.61;7.75] (0.14) 2.75 [2.70;2.80] (0.10)
Leaf 2 7.88 [7.53;8.23] (0.70) 2.98 [2.73;3.22] (0.49)
Leaf 3 10.88 [9.99;11.77] (1.78) 3.84 [3.21;4.47] (1.26)
Leaf 4 13.68 [12.42;14.94] (2.52) 4.71 [3.82;5.60] (1.78)

Figure 4: Hill plot for the number of records.
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95% confidence interval is [1.96; 2.36]). The worst case scenario, corresponding to the leaf
with shape estimate 3.26, is even worse than this benchmark. Yet,n the two other leaves,
representing 82% of the extreme events, are “lighter” (although still associated with a
shape parameters greater than 1, that is such that the expectation is not finite).

Moreover, let us observe that the major part of these events corresponds to a shape
parameter 1.43, which is close to the estimate of the tail distribution provided by Maillart
and Sornette [2010].

Figure 5: Tree obtained by the CART algorithm based on the Generalized Pareto log-
likelihood splitting rule (fitted on the observations exceeding the threshold u). For each
leaf, the estimates of γ and their 95% confidence intervals are given.

4.3 Global distribution analysis

The GPD tree of Figure 5 only provides an analysis of the distribution above a threshold
u. If one wishes a global distribution, one must combine this approach to an analysis
of the central part of the distribution. On the other hand, the analysis of Section 4.1
provides such a global analysis, but without taking the tail into account. Moreover, going
back to the trees of Figure 3, one can notice that, in each leaf, there is a significant
difference between the value of the mean and the value of the median, as it is the case in
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the global set of observations (see Section 2.3). The mean is indeed driven by the presence
of “extreme” claims in each leaf. This invites to look at regression trees computed using
the same method as in Section 4.1 (using quadratic loss or absolute loss) but only on
observations smaller than the threshold u.

This leads to the regression trees of Figure 6. For both loss functions, we see that the
gap between the median and the mean in each leaf has been drastically reduced. On the
other hand, the trees have a different structure than the one obtained from the global set
of observations in Figure 3, which shows that the presence of extreme values influences
the obtained clusters. The structure of the absolute tree seems more stable than the
quadratic one (in Figure 3, a leaf contains 93% of the observations while the repartition
is more equilibrate in the tree of Figure 6, moreover the role of the variables Source and
Type of organization are switched). This was expected, since the median (which is the
target of the absolute tree, using the conditional median to determine its clusters) is a
more robust indicator as the mean. This is why we prefer to use clusters based on the
absolute tree in the application of Section 7.

A log-normal distribution (truncated by u) is fitted on the leaves of the absolute tree.
The corresponding parameters are listed in Table 7.

Figure 6: Trees obtained by the CART algorithm based on the quadratic (left-hand side)
and the absolute (right-hand side) losses fitted on the observations such that the variable
"Number of Records" is less than u.

To obtain the global distribution of the variable Y = “Number of records”, the combi-
nation of the results of the trees from Figures 6 and 5 and Table 7 is done in the following
way. We consider that the conditional distribution of Y is a mixture variable with same
distribution as δZ1 + (1− δ)Z2, where :
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Table 7: Truncated log normal parameters estimated by the absolute loss tree based on
central data. Signification of the parameters is similar to Table 6. Leaves are numerated
from left to right according to the representation of the tree from Figure 6.

Leaf 1 Leaf 2 Leaf 3

µ 5.62 [5.30;5.94] (0.64) 6.79 [6.53;7.04] (0.51) 6.95 [6.73;7.16] (0.43)
σ 3.37 [3.13;3.61] (0.49) 2.46 [2.26;2.65] (0.39) 2.19 [2.02;2.35] (0.33)

Leaf 4 Leaf 5 Leaf 6

µ 7.64 [7.57 ;7.70] ( 0.13) 8.18 [7.84 ;8.53] (0.69) 8.70[8.36 ;9.05 ] (0.70)
σ 1.31 [1.26;1.36 ] (0.10) 2.26 [2.03;2.49] (0.45) 1.90 [1.68 ;2.12] (0.44)

• δ is a Bernoulli random variable independent from X, and p = P (δ = 1) is the
probability for an observation Yi to be smaller than the threshold u;

• Z1|X = x has a distribution given by the absolute tree of Figure 6 (where each leaf is
associated with a truncated log-normal distribution determined by the parameters
of Table 7);

• Z2|X = x has a distribution given by the GPD tree of Figure 5;

• δ is independent from (Z1, Z2) and Z1 and Z2 are independent conditionally to X.

Let us recall that our estimate for p, in the PRC case, is the proportion of observations
whose number of records is smaller than u, that is 0.84.

To complete this section, let us mention that the variable importance for both trees
involved in this scheme, which is reported in Table 8. Once again this Table shows the
interest of separating the tail from the center of the distribution, since the variables which
drive the tail are different (at least in term of hierarchy) from the ones driving the center.

Table 8: Variable importance for the absolute tree of Figure 6 and for the Generalized
Pareto tree of Figure 5 (in %).

Source Type of breach Type of organization Year

Central part tree 47 17 18 17

Tail part tree 35 - 48 17

4.4 Comparison with General Additive Models

To compare the GPD regression tree with competing extreme value regression approaches,
we implemented the methodology developed by Chavez-Demoulin et al. [2015], that is
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using a Generalized Additive Model based on GP distributions for studying the tail (that
is for Y ≥ u). We will use the notation GAM GPD to refer to this technique. A short
description of this technique is provided in Section 7.1, along with estimates for the values
of the model parameters.

Table 9 compares the fits of the GPD tree with GAM GPD. Classical GPD fit (that
is, using the POT approach and without taking attention to the impact of the covariates)
is also considered as a benchmark. We see that, in terms of log-likelihood and Akaike
criterion (AIC), both regression techniques significantly improve this benchmark model,
with a slightly better fit for the GPD tree.

Table 9: Comparison of extreme value theory methodologies

Covariates used for σ Covariates used for γ LL AIC

GPD - - -2122 4249

GPD GAM Organization and Source Date and Organization -2031 4098

GPRT Type of organization and Source Type of organization and Source -2014 4061

4.5 Insurability of cyber-risk

The model fitted by the GPD regression tree can be understood as a mixture of three
GPD. The advantage, compared to fitting a single GPD distribution to all data, is that
the tail index that the resulting shape index tends to be too pessimistic. Theoretically
speaking, the tail index estimation of the global distribution should converge towards the
worst tail index of the elements of the GPD mixture. The GPD tree technique presents
the advantage to allow identification of some groups of claims that are still associated with
an heavy tail behavior, but with more moderate consequences (in our example, all three
leaves of the tree of Figure 5 corresponds to an infinite expectation, but let us recall that
we are working with a proxy variable for the real amount of a claim). Hence we argue that
using such techniques on more elaborate insurance databases can be a valuable tool to
identify which types of cyber risks should be excluded from the policies (if the insurance
company is unable to manage it), and potentially be used to reduce the premium if the
insured population is associated with a lower risk.
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5 An illustration on virtual cyber portfolios

In this section, we illustrate how the GPD regression trees can be used to project the
result of a cyber insurance portfolio. We perform simulations on four portfolios of 1000
policies, where each portfolio is composed of policyholders coming from only of one of the
following sectors of activities: BSF, BSO, BSR, or MED. The simulations use the different
model we fitted on data. Nevertheless, the severity analysis we performed in Section 4
must be completed by three additional assumptions to produce an evaluation of the cost:

1. a transformation f that maps a number of records Y to a financial loss f(Y );

2. a frequency analysis to model the occurrence of cyber claims, that is a distribution
for Ni= number of incidents for the ith policyholder ;

3. once a claim has occurred, a probability distribution to determine the type of in-
cident: indeed, since the type of breach has been seen to have a significant impact
on the distribution of the claim size, we need to distinguish between these different
categories of claims.

The total loss of the portfolio is then

S =
1000∑
j=1

Ni∑
j=1

f(Yi,j),

where (Yi,j)1≤i≤n,1≤j≤Ni are the number of records for the claims of policyholder i (the
number of records are supposed independent from Ni in this simple model). The distribu-
tion of S is then deduced from the points 1 to 3 above. In Sections 5.1 to 5.3, we address
successively each of these points. We then explain the simulation procedures we use to
evaluate the total loss of each portfolio in Section 5.4.

5.1 Loss quantification of a data breach

Jacobs [2014] provided a model to transform a volume of data breach Y into a financial
loss L = f(Y ). This model, which has also been used in Eling and Loperfido [2017], is
based on data from [Ponemon Institute LLC & IBM Security] used Cost of Data Breach
(CODB) report of 2013 and 2014. The formula is

log(L) = 7.68 + 0.76 log(Y ). (5.1)
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A limit for this formula and analysis is that, in 2014, data gathered by the Ponemon
Institute LLC was restricted. Indeed, the highest observed data breach had a size of 100
000 records, far from the highest one of the actual PRC database (which is 3 billions).
Hence we propose to use a modified version of (5.1), using additional information contained
in the 2018 CODB report, in which, “for the first time, [one] attempt[s] to measure the
cost of a data breach involving more than one million compromised records, or what [one]
refer[s] to as a mega breach”.

Since only two costs of mega breaches are publicly available in the 2018 CODB report,
we performed a rough fit of a linear relationship between logL and log Y, based on four
points detailed in Table 10. These four points are the two mega-breaches, and two artificial
points obtained, for moderate breaches, by the application of Formula (5.1). This presents
the advantage to take Formula (5.1) into account and benefit from the fact that it has
been calibrated on a large (non public) database, while using the additional information
on mega-breaches.

This leads to the following formula that will be used in our loss quantification,

log(L) = 9.59 + 0.57 log(Y ). (5.2)

Table 10: Data breaches used to calibrate Formula (5.2): the costs of moderate breaches
have been computed using Formula (5.1); the mega breaches are the only two communi-
cated in CODB 2018.

Moderate breaches Mega breaches

Number of records 10 000 100 000 1 000 000 50 000 000

Costs (in $) 2 373 458 13 657 827 39 490 000 350 000 000

Costs per record (in $) 237 137 39 7

The difference between the result of Formulas (5.1) and (5.2) is shown in Table 11.
The results are relatively close for the most part of the events contained in the PRC
database, but less pessimistic for the largest ones.

Clearly, we do not claim Formula (5.2) to be accurate to link the number of records
to a financial loss. Our purpose is only to have a rough approximation of it. From the
(public) data we have at our disposal, there is no way to pretend one is able to perform
this evaluation with a good statistical precision. In practice, based on real loss data,
the analysis that we provide can be seen as a rough benchmark that clearly needs to be
improved by the use of more precise information.
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Let us also note that Romanosky [2016] also studied the cost of data breaches using
a private database gathering cyber events and associated losses. However, the obtained
calibration requires information which is unavailable in the database used in this paper
(but should be known from an insurance company when dealing with a real portfolio).

Table 11: Comparison of Formulas (5.1) and (5.2) depending on the severity of the event
(i.e. number of records).

Number
of records

Costs inferred from
Formula 5.1

Costs inferred from
Formula (5.2)

Costs per record
Formula (5.1)

Costs per record
Formula (5.2)

10 000 2 373 458 2 842 476 237 284

50 000 8 064 897 7 144 968 161 143

100 000 13 657 827 10 626 779 137 106

1 000 000 78 592 594 39 728 891 79 40

50 000 000 1 536 734 440 373 348 764 31 7

100 000 000 2 602 445 366 555 285 127 26 6

1 000 000 000 14 975 509 984 2 075 968 890 15 2

Remark 5.1 The GPD regression tree of Figure 5 has been done on the variable Y and
not on the loss variable f(Y ). This choice has been done because we wanted to focus on
the most reliable data, while Formula (5.2) is an approximation. However, the shape
parameter of the GP distribution of f(Y ) can be easily deduced. Let us recall that this
parameter is the most important, since it gives us the decay of the survival function of
f(Y ) (if this parameter is larger or equal to 1, f(Y ) has no expectation, and hence can
be considered as “non-insurable” in a simplified vision of the problem). If P (Y ≥ y) ∼
Cy−1/γ, where γ > 0 is the shape parameter of Y and C is a constant, considering f(y) =

exp(α + β log y) leads to

P (f(Y ) ≥ z) = P (Y ≥ exp(β−1 log z − α)) ∼ C exp(−α)z−
1
βγ .

Hence, the shape parameter of f(Y ) is βγ. In (5.2), β = 0.57. Hence, the three leaves
of the tree of Figure 5 have respective shape parameters 0.82, 0.98, 1.86. If we do not
separate our claims into these three classes of risk, the shape parameters would have been
0.57×2.16 = 1.23. All of these numerical results should be taken carefully: the question of
insurability is not so simple as determining if a Pareto shape parameter is smaller than
one or not (and let us observe that, with Formula (5.1), all shapes parameters would have
been greater than 1), but it still advocates for distinguishing tail behaviors depending on
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the covariates in order to identify more clearly which type of risks can be managed and
which can not.

5.2 Frequency analysis

To provide an insurance pricing methodology, estimation of the frequency of claims is
mandatory. The PRC database is not adequate to estimate this quantity rigorously.
Nevertheless, we present here a possible way to roughly evaluate this frequency. This
seems important for, at least, two reasons: 1) we want to provide an order of magnitude
for the cost of cyber contracts ; 2) even for an insurance company with a cyber portfolio,
it is likely that frequency would be poorly estimated only based on internal historical
data: since the risk is new, the number of reported claims would be too small to perform
an accurate estimation. Hence, we believe that the combination of these informations
with external information—including public databases like PRC—is essential to improve
the evaluation of the risk.

An important issue with the PRC database is the lack of knowledge of the exposure to
the risk. Typically, it is impossible to know from such data which part of the increase of
reported claims along time is caused by an evolution of the risk, and which is caused by
an instability in the way the database is fed. This can be seen, for example, from Figure
2. For example, the choice of PRC to stop gathering data breaches revealed by nonprofit
organizations as from 2013 and a peak of data released by Media between 2015 and 2016
may be observed. Moreover, Bisogni et al. [2017] claim that the majority of data breaches
proves to be unreported.

Hence, we propose two heuristics to derive a frequency analysis from the PRC database:

(H1) we restrain ourselves to companies listed in the PRC database that have been
breached at least twice according to the PRC database. Since almost 90% of com-
panies listed in PRC are reported only once as victim of breaches, one may fear
that the information about them is not completely reliable. On the other hand, a
repeatedly reported company has more chances to have its major breaches exhaus-
tively reported in the database. The frequency is estimated from these multiple
times breached companies considering that we are dealing with 1–truncated data.

(H2) we restrain ourselves to companies quoted on the New York Stock Exchange (NYSE)
that have been breached at least once according to the PRC database. This idea has
first been suggested by Wheatley et al. [2016]. Here, 94% of companies of NYSE are
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absent from the PRC database. Assuming that no breach occurred for all of them
seems unrealistic and would considerably lower the frequency: their absence is more
likely due to the fact that these breaches have not been reported by the processes
of PRC. If a company is associated with 0 claim, it is therefore not certain that this
absence from PRC is really caused by the absence of a breach, or by the fact that
this entity was not in the scope of PRC. Hence, we consider that data from these
companies is 0–truncated.

In the following, we consider two portfolios corresponding either to case (H1) (PRC
portfolio) or case (H2) (NYSE portfolio). Table 12 summarizes descriptive count statistics
for both portfolios.

Table 12: Number and percentage of companies having k breach events for k = 1, . . . , 12

according to the PRC database and a matching with the NYSE quoted companies.

Number of events k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

PRC Count - 6782 362 103 55 14 12 5 2 4 1 1 0 1
PRC Percentage (in %) - 92.4 4.9 1.4 0.7 0.2 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0

NYSE Count 2615 120 24 10 6 3 1 1 0 2 0 0 0 0
NYSE Percentage (in %) 94.0 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

To model the number of claims striking a portfolio, we fit a Generalized Linear Model
(GLM), considering the sector of activity as a covariate. For the PRC portfolio, we
consider the sectors BSF, BSO, BSR, EDU, GOV and MED only, deliberately excluding
the NGO sector because of lack of data on this category. The NYSE portfolio does not
contain companies from sectors EDU, GOV and NGO. We consider two cases: a GLM
based on a Poisson distribution, and one on a geometric distribution (for all k ≥ 0, the
probability that a geometric distribution is k is p(1− p)k, where p is a parameter taking
values in (0, 1)). More precisely, these two models can be written as

g(E[N |X]) = Xβ , with


N ∼ P(λ) and g(x) = log(x).

or
N ∼ G(p) and g(x) = log

(
x

1−x

)
.

(5.3)

As shown in Table 13, the geometric GLM has a better fit than the Poisson one. The
fitted parameters are shown in Table 14.
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Table 13: Goodness of fit of GLM based on either truncated Poisson or truncated geo-
metric distribution.

Models Poisson Geometric

PRC 1–truncated LL -1361 -1278
PRC 1–truncated AIC 1375 1292

NYSE 0–truncated LL -361 -319
NYSE 0–truncated AIC 369 327

Table 14: Fitted parameters for the Generalized Linear Model based on geometric distri-
bution for the annual number of claims. The last two columns show an annual rate of
occurrence (the rate has been computed considering that each entity has been exposed
during 8 years: although the total time span of PRC is 14 years, no source of information
is stably reported more than 8 years).

p
(1)
PRC p

(0)
NY SE E[N

(1)
PRC ] E[N

(0)
NY SE ]

BSF 0.92 [0.87;0.95] (0.08) 0.91 [0.86;0.94] (0.08) 9% 10%
BSO 0.90 [0.84;0.94] (0.10) 0.94 [0.90;0.97] (0.07) 11% 6%
BSR 0.93 [0.89;0.96] (0.07) 0.93 [0.87;0.96] (0.09) 7% 7%
EDU 0.89 [0.86;0.91] (0.05) - 13% -
GOV 0.96 [0.93;0.98] (0.05) - 4% -
MED 0.92 [0.90;0.93] (0.03) 0.94 [0.90;0.96] (0.06) 9% 7%
NGO - - - -

Unknown 0.95 [0.92;0.97] (0.05) - 5% -

5.3 Type of incident

The frequency of claims determined in Section 5.2 does not include the variety of cyber
incidents: it is a global frequency, regardless the type of claims. In our model, we consider
that, once an event has occurred, the type of event is determined by a multinomial random
variable, which parameters only depend on the type of activity of the victim. Let S denote
an indicator of the sector of activity, and M denote the type of breach. We can write

P (M = m|S = s) =
eβs,0+βs,m∑
m′ e

βs,0+βs,m′
,

where βs,0 corresponds to a reference category (here we took as reference category the
incidents for which the type of organization is not known).

In full generality, this would lead to the estimation of a large number of coefficients,
with to few data to calibrate them. To reduce the number of parameters, we used a LASSO
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dimension reduction technique (the log-likelihood is penalized using a L1−penalty on the
fitted coefficients βs,m, see e.g. Tibshirani [1996]). This leads to the sparse matrix of
coefficient of Table 15.

Table 15: Estimates of multinomial parameters β̂s,m depending on the sector and the type
of breach.

β̂s,m CARD DISC HACK INSD PHYS PORT STAT

(Intercept) -2.12 0.94 1.29 0.03 0.21 0.61 -0.96

BSO - - 0.90 - - - -

MED - 0.31 - - 1.36 - -

BSF - - - - - - -

NGO - - - - - 0.11 -

BSR - -0.23 0.33 - - - -

EDU - 0.04 - -0.08 - - -

GOV - - -0,40 - - - -

5.4 Results

We now show the impact of these models on our virtual portfolios. We recall that we
consider four portfolios with 1000 policyholders, each composed of entities of a single
category among BSF, BSR, EDU and MED. The losses of each portfolio are simulated
according to the following procedure:

1. For each policyholder, we simulate a number of claims under the geometric model
of Section 5.2.

2. For each claim, we determine which type of incident has caused the claim from the
multinomial distribution of Section 5.3.

3. We simulate the number of records accordingly to four methodologies, assuming, in
each case, that the distribution is the same as the one given by one single source of
information (US GA State or Media):

• Quadratic tree: we use the tree obtained with the quadratic loss from Figure
3 to determine risk classes. The distribution of the claims in each leaf of the
tree is considered as log-normal with the parameters of Table 6.

• Absolute tree: same principle, using the second tree of Figure 3 and the log-
normal parameters of Table 6.
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• Generalized Pareto Regression Tree: we use the combination of the trees of
Figure 5 and 6, as described in Section 4.3. For the central part, log-normal
distributions have been fitted using the parameters of Table 7.

• GAM GPD: for comparison, we considered the approach developed by Chavez-
Demoulin et al. [2015], which is exposed in Section 7.1.

4. We use (5.2) to convert this number of records into a financial loss.

Results of these simulation procedures are summarized in Table 16. Let us first remark
that, regarding the two approaches based on a single tree (quadratic or absolute), the
difference between the median quantile q0.5 and q0.9 is much smaller than for the two
other approaches. This was expected, due to the use of a Generalized Pareto distribution
to model the tail for the last two models. On the other hand, the order of magnitude of
all tree-based methods is much smaller than for the GAM GPD approach, although all
sectors generally keep the same ranking in terms of severity from one model to another.

It is also interesting to notice that, in our tree-based methods, separating the tail from
the central part of the distribution pushes up the value of the median quantile of the loss
(of course the push on the q0.9 quantile was expected, because a specific model has been
done on the tail of the distribution). Through this phenomenon, one can observe once
again the benefit of separating “extreme” observations from the others: their presence in
the sample distorts the fitting of the tree and of the log-normal distributions in the leaves,
even though we chose a relatively stable procedure through the use of the absolute loss.

Finally, we provide in Table 17 a short comparison between the use of Formula 5.2 and
Jacobs Formula (5.1). Let us emphasize that this last formula (who differs from Formula
(5.2) only through a slope coefficient) leads to much more pessimistic losses projections.
This was expected, since we already identified in Section 5.1 that this formula probably
was not adapted to mega breaches, but the sensitivity of the result to the choice of the
model linking the number of records to the loss shows that there is still an important
uncertainty around this projection. Hence a precise evaluation of the costs of cyber
events—unavailable up to now due to lack of data—is essential to fill this gap.

6 Conclusion

In this paper, we applied regression trees as a valuable tool for analyzing cyber claims.
For reproducibility purpose, all models have been fitted on a public database, the PRC
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Table 16: Comparison of median and 0.9–quantile depending on the methodology used
(through columns) and the additional hypothesis regarding the source of information and
the frequency portfolio (through lines). Quantities are given in million of dollars and have
been obtained after 100 simulations.

Modeling methodology Clustering GAM GPD GPRT

Source Frequency Organization q0.5 q0.9 q0.5 q0.9 q0.5 q0.9

US GA State

NYSE

BSF 355 510 3 702 46 745 568 1 572
BSO 206 315 1 084 27 543 295 1 219
BSR 271 369 1 666 17 246 376 837
MED 210 323 273 1 888 212 510

PRC

BSF 297 416 3 032 56 506 434 1 355
BSO 359 563 4 738 43 269 612 1 547
BSR 233 383 1 625 15 898 310 809
MED 300 444 445 2 669 313 624

Media

NYSE

BSF 1 111 1 722 3 182 81 847 5 275 77 200
BSO 13 507 33 662 2 996 151 794 3 024 100 418
BSR 13 710 51 561 2 604 40 015 2 438 35 792
MED 628 1 128 556 2 361 240 626

PRC

BSF 922 1 406 2 843 62 691 4 023 90 333
BSO 24 010 73 423 9 407 161 508 7 016 104 425
BSR 11 476 42 730 2 113 25 026 2 227 26 412
MED 918 1 495 805 4 905 365 737

Table 17: Comparison of median and 0.9–quantile resulting of the GPRT methodology
and depending on the data breaches cost formula (through columns) and the additional
hypothesis regarding the source of information and the frequency portfolio (through lines).
Quantities are given in million of dollars and have been obtained after 100 simulations.

Cost formula Formula (5.2) Formula (5.1)

Source Organization q0.5 q0.9 q0.5 q0.9

US GA State

BSF 569 1 572 1 202 6 818
BSO 295 1 219 562 6 344
BSR 376 837 667 2 652
MED 212 510 299 1 454

Media

BSF 5 275 77 200 34 135 1 723 780
BSO 3 024 100 418 17 994 2 416 482
BSR 2 438 35 792 13 169 593 715
MED 240 626 315 1 809
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database. Although this database, widely used in the literature, presents serious draw-
backs and inconsistencies as we discussed it intensively throughout the paper, the method-
ology can be easily extended to other private databases, and several conclusions we draw
can be generalized. The first observation is the heterogeneity of cyber events in terms of
severity. This is, of course, a well known fact. However the regression tree approaches
allow a clarification and a quantification of some characteristics that create this hetero-
geneity. Moreover, it appears that the central part of the distribution does not behave
like the tail—in the sense that the impact of the covariates on this right tail does not seem
to be identical to what we can observe on the core of the distribution. Finally, the results
on our analysis based on GPD trees reveals that they may be a significant operational
impact if we pay attention to clustering types of “extreme” claims.

We want to emphasize this last point: our analysis tends to acknowledge that a classical
peaks over threshold approach (that is ignoring the influence of covariates on the shape
parameter) leads to considering the whole tail of the distribution as too heavy. On the
other hand, identifying some clusters for extreme events, could be interesting for designing
appropriate risk management strategies for some type of claims at least. Our purpose is
not to draw a clear line between which criterion should be used to exclude or not some
type of claims from the perimeter of insurance contracts, our data are not accurate enough
to elaborate precise recommendations. Nevertheless we strongly advocate for developing
such regression approaches to better understand and manage extreme claims.

Regarding estimation of the frequency, the approach we took is very approximative
due to the lack of consistency of data. Nevertheless, this analysis seemed to us essential
in order to show a whole insurance pricing and reserving methodology can be developed.
Moreover, due to the relative novelty of the risk, the information gathered by insurance
companies are sufficiently recent to take advantage on additional sources of (public) data.
Hence we believe that a promising field of research is to find a proper way for companies
to combine internal data and these external sources, provided that a rigorous statistical
analysis has first identified and corrected their biases.
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7 Appendix

7.1 Some elements on Generalized Additive Models and their

combination with Generalized Pareto distributions

The core assumption of Generalized Additive Models (GAM) is to assume that a target
regression function of l parameters θ(x) =

(
θk(x)

)
k∈{1,...,l} is of the following form,

gk(θk(x)) =

p∑
i=1

hki (Xi)

where hki is either a factor mapping function if Xi is a factor covariate (which is our
case with PRC data), or a smooth function if Xi is continuous, and where gk is a link
function. hki may be the null function invloving the non relevance of the covariates Xi

while predicting θk according to the estimated Generalized Additive Model.
We first discuss the tail part analysis of the distribution using the approach introduced

in Chavez-Demoulin et al. [2015], where the authors adapted GAM to extreme value
regression. In details, we study θGAM GPD(x) = (ν(x), γ(x)), which is a reparametrization
of a GPD, with γ the shape parameter and ν = log ((1 + γ)σ). The link function used is
the identity for both ν and γ. The form of the obtained model is

ν(x) = a0 + a1.t+
16∑
j=2

ajSj, and γ(x) =
16∑
j=2

bjSj,

where t is the difference between the year of the breach and the origin year 2005, and
(Sj)2≤j≤16 are either 0 or 1 variables corresponding to the different modalities of the
variables "Type of organtization," "Type of breach", and "Source of information." The
coefficient a0 corresponds to the remaining ordonal term when t = 0. The estimated
coefficients are listed in Table 18.

Then, to complete the analysis of the excesses by the core of the distribution, we
fitted GAM model combined with a truncated log-normal distribution. The density of
a truncated log-normal distribution of parameters (µ, s) is defined for x ∈]0; 27999[ by
gµ,s(x) = fµ,s(x)∫ 27999

u=0 fµ,s(u)du
, where f is the density of the log-normal distribution that is

given for x ∈]0; +∞[ by fµ,s(x) = 1
xs
√

2π
exp

(
− (lnx−µ)2

2s2

)
. We consider θGAM LN(x) =

(µ(x), s(x)). For the parameter µ, the link function is identity whereas for s the log-link
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function is used. The form of the resulting model is

µ(x) = c0 + c1.t+
16∑
j=2

cjSj, and s(x) = exp

(
d0 + d1.t+

16∑
j=2

djSj

)
.

The coefficients c0 and d0 correspond to the remaining ordonal term when t = 0. The
estimated coefficients are listed in Table 18.

Table 18: Fitted coefficients for the GAM LN and GAM GPD models for the variable
"Number of records" (expressed in hundreds of thousands of lines for the GAM GPD).
Model selection has been performed using the AIC criterion.

GAM GPD GAM

Covariates aj (for ν) bj (for γ) cj (for µ) dj (for s)

Intercept 9.42 - 5 -0.02

Year 0.11 - -0.02 -0.04

BSO 0.26 1.76 -0.17 0.19

BSR 0.03 2.10 -0.25 -0.88

EDU -1.54 0.37 -0.07 0.60

GOV -0.59 1.55 0.01 0.54

MED -1.05 0.71 -0.09 0.69

NGO -0.39 0.72 -0.09 0.17

DISC - - -0.18 0.29

HACK - - 0.05 1.04

INSD - - -0.13 -0.68

PHYS - - -0.18 0.25

PORT - - -0.20 1.39

STAT - - -0.21 1.11

Source NGO - -0.97 -0.36 -1.92

Source US GA HIPAA - -0.8 -0.82 -1.21

Source US GA State - -0.63 0.25 -3.16

7.2 Missing values handling: surrogate rules

The growing process of a tree detailed in Section 3.1.1 need to be slightly adapted to
handle missing values. Indeed, at the step k + 1, the completeness of the data is required
at two stages:

• for l = 1, . . . , d, when finding the best split x(l)
j? for the component X(l) of X =

(X(1), . . . , X(d)), it is necessary to know all the observations of the component l.
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• then, once the best component index l̂ is determined, the definition of the two new
rules Rj1(x) and Rj2(x) are only relevant for observations where x(l̂) is not missing.

The process is therefore customized as follows:

• for l = 1, . . . , d, the best split x(l)
? for the component X(l) of X = (X(1), . . . , X(d)) is

computed regarding only available observations of the component l.

• then, once the best component index l̂ is determined, the definition of the rules
(Rj1, Rj2) is extending by rules (R̃j1, R̃j2) to be able to assign observations where
x(l̂) is missing.

The add-on rules aim at mimicking the established rules by minimizing the classifica-
tion error function ∆ defining as follows:

∆ :
(

(Rj1, Rj2), (R̃j1, R̃j2)
)
7−→

∑n
i=1 1X

(l̂)
i 6=NA

(
Rj1(Xi)R̃j2(Xi) +Rj2(Xi)R̃j1(Xi)

)
∑n

i=1 1X
(l̂)
i 6=NA

(Rj1(Xi) +Rj2(Xi))
.

One possible continuation of the rules is to point all the missing observations toward
the more abundant rule, by introducing (R̃maj

j1 , R̃maj
j2 ) as follows:


(R̃maj

j1 , R̃maj
j2 ) = (Rj(x), 0) if

∑n
i=1 1X

(l̂)
i 6=NA

Rj1(Xi) ≥
∑n

i=1 1X
(l̂)
i 6=NA

Rj2(Xi),

or
(R̃maj

j1 , R̃maj
j2 ) = (0, Rj(x)) if

∑n
i=1 1X

(l̂)
i 6=NA

Rj1(Xi) <
∑n

i=1 1X
(l̂)
i 6=NA

Rj2(Xi),

leading to the error ∆maj
j = ∆

(
(Rj1, Rj2), (R̃maj

j1 , R̃maj
j2 )

)
.

The surrogate rules are then defined for s ∈ {1, . . . , d} \ l̂, as all the couple of rules
(R̃s

j1, R̃
s
j2) given by R̃s

j1 = Rj(x)1
x(s)≤x(s)j�

, and by R̃s
j2 = Rj(x)1

x(s)>x
(s)
j�
, that meet the

criterion ∆
(

(Rj1, Rj2), (R̃s
j1, R̃

s
j2)
)
< ∆maj

j , with x(s)
j� defined as:

x
(s)
j� = arg min

x(s)
∆
(
(Rj1, Rj2), (Rj(x)1x(s)≤x(s) , Rj(x)1x(s)>x(s))

)
.

Letting Λj be the set of s ∈ {1, . . . , d} \ l̂ that lead to a surrogate rule and writing ∆s
j

the resulting error for all s ∈ Λj, surrogate rules are used in descending order of ∆s
j to

allocate observations that may have missing values on possible few components. Then, if
necessary and by default, rules (R̃maj

j1 , R̃maj
j2 ) are used.
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7.2.1 Analysis of a tree: variable importance

An attractive output of a tree is the variable importance. It aims to quantifying the
involvement of each covariate in the decrease of the loss resulting from the tree. It is based
on the improvement made at each step of the growing process, which is given by Φ(Rj, x

(l̂)
j? )

if Rj is replaced by two new rules thanks to the covariate l̂ and 0 otherwise. It also
takes into account the potential components used in the surrogates rules. To be precise,
the importance of each component s implicated in a surrogate rules is defined as the
improvement of the principal rules Φ(Rj, x

(l̂)
j? ) weighted by wsj = (∆s

j −∆maj
j )/(1−∆maj

j ).
Thus, the variable importance vector is obtained by normalizing the vector I = (il)l∈1,...,d

defined by:

il =

nk−1∑
j=1

(
Φ(Rj, x

(l̂)
j? )1l=l̂ + Φ(Rj, x

(l̂)
j? )wsj1l∈Λj

)
.

Remark 7.1 To compute the variable importance, the search of all the surrogates rules
have to be done regardless of the presence of missing values.

7.3 Additional statistics

In this section, we give a few more descriptive statistics on the PRC database (Table 20).
The confidence intervals for the parameters estimated on the leaves of the GPD tree of
Figure 5 are shown in Table 19.

Table 19: Generalized Pareto parameters estimated by the Generalized Pareto Regression
Tree based on excesses and the 95% confidence intervals.

Leaf 1 Leaf 2 Leaf 3

γ 1.43 [1.21;1.64] (0.42) 1.72 [1.41;2.04] (0.63) 3.26 [2.62;3.91] (1.29)
σ.10−5 0.36 [0.29;0.43] (0.14) 0.76 [0.55;0.97] (0.41) 1.82 [0.98;2.67] (1.68)

Acknowledgement: The authors acknowledge funding from the project Cyber Risk
Insurance: actuarial modeling, Joint Research Initiative under the aegis of Risk Fundation,
with partnership of AXA, AXA GRM, ENSAE and Sorbonne Université.
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Table 20: Descriptive statistics for the PRC database. Shape estimates denote the esti-
mation of parameter γ on this sub-population.

Covariate Modality Number Median Share of extremes Shape estimates

Total - 6160 2000 16 % 2,16 [1,96;2,36]

Source

Media 595 11266 40 % 3,14 [2,60;3,68]
Nonprofit organization 2309 2000 19 % 1,52 [1,29;1,76]

US GA: Federal - HIPAA 1949 2300 10 % 1,53 [1,17;1,89]
US GA: State 888 409,5 8 % 1,81 [1,13;2,50]

NA 419 2300 11 % 2,28 [1,36;3,21]

Breach

CARD 32 300 12 % 2,75 [-0,97;6,46]
DISC 1353 1600 12 % 2,48 [1,95;3,02]
HACK 1467 4700 28 % 2,50 [2,16;2,84]
INSD 359 566 12 % 1,98 [1,08;2,87]
PHYS 1248 1700 7 % 1,38 [0,87;1,90]
PORT 769 4000 23 % 1,39 [1,03;1,75]
STAT 152 3561,5 22 % 1,11 [0,42;1,80]
NA 780 949,5 9 % 2,28 [1,52;3,04]

Sector

BSF 404 1936 24 % 2,21 [1,56;2,87]
BSO 404 5750 37 % 3,17 [2,49;3,84]
BSR 284 870 25 % 2,80 [1,94;3,67]
EDU 680 2400 17 % 0,99 [0,64;1,34]
GOV 540 2773 23 % 1,61 [1,14;2,08]
MED 3331 2078 11 % 1,42 [1,17;1,67]
NGO 70 2200 19 % 2,04 [0,3;3,72]
NA 447 500 11 % 2,79 [1,66;3,92]

Year

2005 117 16500 43 % 1,30 [0,66;1,94 ]
2006 381 2089 22 % 1,49 [0,91;2,06]
2007 334 3000 22 % 1,52 [0,95;2,09]
2008 269 4000 24 % 1,63 [1,02; 2,24]
2009 192 2000 25 % 2,00 [1,15;2,86]
2010 540 2000 14 % 1,51 [0,93;2,08]
2011 548 1807 13 % 1,89 [1,23;2,55]
2012 584 1595 12 % 1,86 [1,17;2,54]
2013 536 2711,5 12 % 1,95 [1,22;2,67]
2014 581 1251 14 % 2,17 [1,51;2,84]
2015 333 2208 16 % 2,84 [1,77;3,91]
2016 456 2554 19 % 3,21 [2,27;4,15]
2017 411 3000 16 % 2,66 [1,76;3,57]
2018 878 991,5 12 % 2,75 [2,07;3,44]
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R codes: The code is made publicly available at https://bitbucket.org/sebastien_
farkas/cyber_claim_analysis_gpd_regression_trees/
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