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Abstract

In this paper we propose a methodology to analyze the heterogeneity of cyber
claim databases. This heterogeneity is caused by the evolution of the risk but also
by the evolution in the quality of data and of sources of information through time.
We consider a public database, already studied by Eling and Loperfido [2017], which
is considered as a benchmark for cyber event analysis. Using regression trees, we
investigate the heterogeneity of the reported cyber claims. A particular attention
is devoted to the tail of the distribution, using a Generalized Pareto likelihood as
splitting criterion in the regression trees. Combining this analysis with a model for
the frequency of the claims, we develop a simple model for pricing and reserving in
cyber insurance.
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1 Introduction

Evaluating the potential cost of cyber-risk is a challenging task due to the lack of con-
sistent and reliable data on this topic. While the cyber-insurance market is constantly
growing, the determination of an appropriate premium and the design of appropriate
risk management strategies are particularly difficult due to the immaturity of the market
and the poor historical information on a relatively new risk, as pointed by Biener et al.
[2015] and Eling and Schnell [2016]. See also [Marotta et al., 2017] for a review of topics
recently addressed in cyber-insurance. In Fahrenwaldt et al. [2018], the authors pro-
pose a pricing model of cyber contracts based on the topology on the infected networks.
On the other hand, Eling and Loperfido [2017] recently proposed a pricing model based
on the Privacy Rights Clearinghouse (PRC) database (available for public download at
https://www.privacyrights.org/copyright) without requiring network data. Let us
also mention Insua et al. [2019] who used Adversarial Risk Analysis to aggregate expert
judgments. The statistical evaluation of the risk has also been studied by Maillart and
Sornette [2010] and Forrest et al. [2016a], the authors focused mostly on the severity of
the claim—that is on the amount of a claim once it occurred. On the other hand, few at-
tention has been brought to the heterogeneity of the data used to calibrate these models.
This heterogeneity—in terms of type of events and of reporting sources—undermines the
reliability of the evaluation of the frequency of cyber events. It can also have impacts on
the analysis of the distribution of the severity.

In the present paper, we propose to gain further insight on this heterogeneity by relying
on regression trees inference for the severity of cyber claims. We also take a closer look at
the analysis of the frequency with less deepness since the lack of public data on this issue
is patent. This is typically due to the poor information one may have on the exposure -
that is the number of entities exposed to the risk. The general objective is to analyze the
impact of characteristics (victim information, source of the reporting,...) on cyber events.
We especially focus on “extreme” events, that is events for which the severity of the claim
is larger than a fixed (high) threshold. Based on this modeling, a pricing methodology
is proposed, along with elements to perform reserving through the understanding of the
potential impact of the most severe events.

Regression trees are good candidates to understand the origin of the heterogeneity,
since they allow to perform regression and classification simultaneously. Since the pioneer
works of Breiman et al. [1984] who introduced CART algorithm (Clustering And Regres-
sion Tree), regression trees have been used in many fields, including industry [see e.g.
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Juárez, 2015], geology [see e.g. Rodriguez-Galiano et al., 2015], ecology (see e.g. [De’ath
and Fabricius, 2000]), claim reserving [see e.g. Lopez et al., 2016]. A nice feature of this
approach is to introduce nonlinearities in the way the distribution is modeled, while fur-
nishing an intelligible interpretation of the final classification of responses. Advocating for
the use of regression trees is also the simplicity of the algorithm: such models are fitted
to the data via an iterative decomposition. The splitting criterion depends on the type
of problems one wishes to investigate: the standard CART algorithm uses a quadratic
loss since it aims at performing mean-regression. Alternative loss functions may be con-
sidered as in [Chaudhuri and Loh, 2002] in order to perform quantile regression or in
[Su et al., 2004] for log-likelihood loss for example. [Loh, 2011, 2014] provide detailed
descriptions of regression trees procedures and a review of their variants. In the present
paper, we use different types of splitting criteria, with a particular attention devoted to
the tail of the distribution of the claim size, which described the behavior of extreme
events. We therefore use a Generalized Pareto distribution to approximate the tail of the
distribution—which is at the core of the “Peaks Over Threshold” procedure in extreme
value theory [see e.g. Pickands, 1975, Beirlant et al., 2004]—with parameters depending
on the classes defined by the regression tree.

The rest of the paper is organized as follows. In Section 2, we propose a basic frame-
work to model the loss of an insurance company, and the methodology we use to estimate
the amount of a claim from public data. Section 3 is devoted to the general theoretical
background of the statistical tools we use to consider the data (namely regression trees
and extreme value analysis). Section 4 takes a closer look at the PRC data and shows the
results of the models we consider. These models are then applied to virtual portfolios in
Section 5.

2 Application to pricing of insurance contracts

2.1 Pricing model

From an insurance point of view, the finality of the quantification of cyber-risk essentially
aims at determining a price for cyber-insurance contracts, and a reserve to face the poten-
tial future claims. A basic pricing approach consists in equalizing the expectation pay-off
of both sides: the (potential) policyholder with characteristics X who pays a deterministic
premium π(X), and the insurer who will provide a random amount A as a compensation
to the losses during some period of time. Computing the pure premium hence consists in
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determining the function
π(x) = E[A|X = x].

On the other hand, reserving consists in evaluating how to protect the insurer from
deviations from this central scenario. Considering a portfolio with n policyholders with
characteristics (Xi)1≤i≤n and losses (Ai)1≤i≤n, the total loss is S =

∑n
i=1Ai, and the

question is to determine an amount r such that P(S > r|X1 = x1, . . . ,Xn = xn) is
sufficiently small.

In both cases, the goal is to have the clearest possible vision of the distribution of
A|X = x, considering that the components of the random vector (Ai,Xi)1≤i≤n are inde-
pendent and identically distributed (i.i.d.) in the second case. The difference between the
two cases is that the pure premium computation only requires to focus on the center of
this conditional distribution, while reserving requires to model the tail of the distribution.

Following a classical risk theory approach, the analysis of the distribution of A|X = x

can be decomposed into a “frequency” analysis and a “severity” analysis. Indeed, A =∑N
j=1 Lj, where N is the number of claims registered by the policyholder—representing

the frequency of the claims, and (Lj)1≤j≤N the list of successive amounts—representing
the severity. In the following, we assume that N is independent of the claim amounts
Lj, j = 1, . . . , N . We further assume that, conditionally on X, the claim amounts Lj are
independent of N , and are i.i.d. with the same distribution as a random variable L. This
simplification allows us to study separately the frequency variable N in Section 4.3, and
the severity variable L in Section 4.4.1.

Since the database we consider contains different types of cyber events (hacking, mal-
ware...) as described further in Section 4.3.2, we will distinguish between types of claims
by considering several counting processes N1, ...NM corresponding to theM different types
of events.

2.2 Loss quantification of a data breach

Obviously, a key element of cyber insurance evaluation is to obtain an estimation of the
loss associated to an event. Public databases like the PRC one (described in details
in Section 4) does not contain such an information. Nevertheless, the PRC database
provides the number of records affected by a breach, which can be used to measure the
severity of an event. In the sequel, the random variable Y denote the number of records
breached during an event. This variable is expected to be strongly correlated with the loss
variable L. Linking Y to L has been proposed by Romanosky [2016] who studied the cost
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Moderate breaches Mega breaches

Number of records 10 000 100 000 1 000 000 50 000 000

Costs (in $) 2 373 458 13 657 827 39 490 000 350 000 000

Costs per record (in $) 237 137 39 7

Table 1: Data used to calibrate Formula (2.2): the costs of moderate breaches have been
computed using Formula (2.1); the mega breaches are the only two communicated from
CODB 2018.

of data breaches using a private database gathering cyber events and associated losses.
However, the calibration they obtain requires to use information about the revenues of
victim organizations: an information which is unavailable in the PRC database.

On the other hand, Jacobs [2014] analyzed data gathered by [Ponemon Institute LLC
& IBM Security] for the publication of the 2013 and 2014 Cost of Data Breach (CODB)
report. He proposed Formula (2.1) to deduce a cost L from a number of records Y ,

log(L) = 7.68 + 0.76 log(Y ). (2.1)

A limit of this calibration is that, in 2014, the Ponemon Institute LLC had not yet
observed the cost of “mega data breaches”. This leads to a pessimistic evaluation of
the cost of very larges breaches, compared to what has been observed in the next years
following the study. However, as written in their 2018 CODB report, “for the first time
in 2018, [they] attempt to measure the cost of a data breach involving more than one
million compromised records, or what [they] refer to as a mega breach”. Those recent
observations can enrich the formula proposed by [Jacobs, 2014] based on data available
in 2014 which only concerned data breaches with a number of records under 100 000,
especially by taking into account the finding that the cost per record of a data breach
seems to decrease significantly with the number of records. As an alternative to Formula
(2.1), we propose to calibrate a second equation of the type

log(L) = α + β log(log(Y )), (2.2)

where our estimation of α and β is based on two costs of moderate data breaches inferred
from Formula (2.1) and the two costs of mega breaches contained in the 2018 Cost of
Data Breach report summarized in Table 1. This leads to an estimation α = −1.998 and
β = 7.503.

This formula, based directly on 2018 CODB data and indirectly on 2014 CODB, seems
to be a good trade off for the quantification of both moderate and mega breaches. We
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Number
of records

Costs inferred from
Jacobs formula

Costs inferred from
Formula (2.2)

Costs per records
(Jacobs formula)

Costs per records
(Formula (2.2))

10 000 2 373 458 2 329 378 237 233

50 000 8 064 897 7 798 660 161 156

100 000 13 657 827 12 426 702 137 124

1 000 000 78 592 594 48 803 702 79 49

50 000 000 1 536 734 440 316 874 975 31 6

100 000 000 2 602 445 366 422 540 274 26 4

1 000 000 000 14 975 509 984 1 022 505 107 15 1

Table 2: Comparison of Formula (2.1) and Formula (2.2) depending on the severity of the
event (i.e. number of records).

compare the costs inferred from the Jacob formula (2.1) and the proposed formula (2.2)
in Table 2. The practical comparison between the use of the formulas (2.1) and (2.2) is
done in Section 5.

3 Regression Trees and extreme value analysis

In this section, we propose a general presentation of regression trees, and explain how they
will be applied to the PRC database. The algorithm is presented in Section 3.1. Depending
on the purpose of regression trees (typically, in our situation, depending on whether we
wish to investigate the center or the tail of the distribution), an appropriate loss function
has to be defined in order to evaluate the quality of the tree and define splitting rules for
the clustering part of the algorithm. Therefore, in Section 3.2, we introduce Generalized
Pareto regression trees, motivated by theoretical results on extreme value theory.

3.1 Regression Trees

Regression Trees methods are designed to perform regression analysis and clustering si-
multaneously. They allow one to introduce modeling of (nonlinear) heterogeneity between
the observations, by splitting them into classes on which different regression models are
fitted. The aim is to retrieve a regression function m∗ = arg minm∈ME[φ(Y,m(X))],

where Y is a response variable (the cost of a cyber claim in our case), X ∈ X ⊂ Rd is
a set of covariates, M is a class of target functions on Rd and φ is a loss function that
depends on the quantity we wish to estimate (see Section 3.1.2).

In the following, we will use three different functions φ :

• the quadratic loss φ(y,m(x)) = (y − m(x))2 corresponds to the situation where
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the objective is the conditional mean m∗(x) = E[Y |X = x] and M is the set of
functions of x with finite second order moment;

• the absolute loss φ(y,m(x)) = |y −m(x)|, where m∗ is the conditional median;

• a log-likelihood loss φ(y,m(x)) = − log fm(x)(y), where F = {fθ : θ ∈ Θ ⊂ Rk} is
a parametric family of densities. This corresponds to the case where one assumes
that the conditional distribution of Y |X = x belongs to the parametric family F
for all x, with parameter m(x) depending on x.

This split of the data is performed in an iterative way, by finding at each step an
appropriate simple rule (that is a condition on the value of some covariate) to separate
data into two more homogeneous classes. The procedure has two phases: a “growing”
phase through the CART algorithm, and a “pruning” step which consists in the extraction
of a subtree from the decomposition obtained in the initial phase. Pruning can therefore
be understood as a model selection procedure. In Section 3.1.1, we describe a general
version of the CART algorithm, and explain in Section 3.1.2 how an estimation of a
regression model can be deduced from a tree obtained in this first phase. The pruning
step is then described in Section 3.1.3.

3.1.1 Growing step: obtention of the maximal tree

The CART algorithm consists in determining iteratively “rules” x = (x(1), . . . , x(d)) →
Rj(x) to split the data, aiming at optimizing some objective function (also referred to as
splitting criterion). More precisely, for each possible value of the covariates x, Rj(x) = 1

or 0 depending on whether some conditions are satisfied by x, with Rj(x)Rj′(x) = 0 for
j 6= j′ and

∑
j Rj(x) = 1. The determination of these rules from one step to another

can be represented as a binary tree, since each rule Rj at step k generates two rules Rj1

and Rj2 (with Rj1(x) + Rj2(x) = 0 if Rj(x) = 0) at step k + 1. The algorithm can be
summarized as follows:
Step 1: R1(x) = 1 for all x, and n1 = 1 (corresponds to the root of the tree).
Step k+1: Let (R1, ...Rnk

) denote the rules obtained at step k. For j = 1, ..., nk,

• if all observations such that Rj(Xi) = 1 have the same characteristics, then keep
rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two new rules Rj1 and Rj2 determined in the following
way: for each component X(l) of X = (X(1), ..., X(d)), define the best threshold x(l)?
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to split the data, such that x(l)? = arg minx(l) Φ(Rj, x
(l)), with

Φ(Rj, x
(l))

=
n∑
i=1

φ(Yi,ml−(Xi, Rj))1X(l)
i ≤x(l)

Rj(x) +
n∑
i=1

φ(Yi,ml+(Xi, Rj))1X(l)
i >x(l)

Rj(x),

where

ml−(x,Rj) = arg max
m∈M

n∑
i=1

φ(Yi,m(Xi))1X(l)
i ≤x

Rj(Xi),

ml+(x,Rj) = arg max
m∈M

n∑
i=1

φ(Yi,m(Xi))1X(l)
i >x

Rj(Xi).

Then, select the best component index to consider: l̂ = arg minl Φ(Rj, x
(l)
? ).

Define the two new rules Rj1(x) = Rj(x)1
x(l̂)≤x(l̂)?

, and Rj2(x) = Rj(x)1
x(l̂)>x

(l̂)
?
.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.

As it has already been mentioned, this algorithm has a binary tree structure. The list
of rules (Rj)1≤j≤nk

are identified with the leaves of the tree at step k, and the number of
leaves of the tree is increasing from step k to step k + 1.

In this version of the CART algorithm, all covariates are continuous or {0, 1}−valued.
For qualitative variables with more than two modalities, they must be transformed into
binary variables, or the algorithm must be slightly modified so that the splitting step of
each Rj should be done by finding the best partition into two groups on the values of the
modalities that minimizes the loss function. This can be done by ordering the modalities
with respect to the average value - or the median value - of the response for observations
associated with this modality.

The stopping rule can also be slightly modified to ensure that there is a minimal
number of points of the original data in each leaf of the tree at each step.

3.1.2 From the tree to the regression function

From a set of rules R = (Rj)j=1,...,s, an estimator m̂R of the function m can be deduced,
that is

m̂R(x) =
s∑
j=1

m̂(Rj)Rj(x),
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where

m̂(Rj) = arg max
m∈M

n∑
i=1

φ(Yi,Xi)Rj(Xi).

The final set of rules RM obtained from the CART algorithm is called the maximal tree.
This leads to a trivial estimator of m, since either the number of observations in a leaf
is one, or all observations in this leaf have the same characteristics x. The pruning step
consists in extracting from the maximal tree a subtree that achieves a compromise between
simplicity and good fit.

3.1.3 Selection of a subtree: pruning algorithm

For the pruning step, a standard way to proceed is to use a penalized approach to select
the appropriate subtree [see Breiman et al., 1984, Gey and Nédélec, 2005]. A subtree S
of the maximal tree is associated with a set of rules RS = (RS1 , ...R

S
nS

) of cardinality nS .
One then selects the subtree Ŝ(A) who minimizes the criterion

CA(S) =
n∑
i=1

φ(Yi,m
RS

(Xi)) + AnS , (3.1)

among all subtrees of the maximal tree, where A is a positive constant. Hence, the trees
with large numbers of leaves (i.e. of rules) are disadvantaged compared to smaller ones.
To determine this tree Ŝ(A), it is not necessary to compute any subtree from the maximal
tree. It suffices to determine, for all K ≥ 0, the subtree SK which minimizes the criterion
(3.1) among all subtrees S with nS = K, and then to choose the tree SK which minimizes
the criterion with respect to K. From [Breiman et al., 1984, p.284–290], these SK are easy
to determine, since SK is obtained by removing one leaf to SK+1.

The penalization constant A is chosen using a test sample or k−fold cross-validation.
In the first case, data are split into two parts before growing the tree (a training data of
size n and a test sample which is not used in computing the tree). In the second case,
the dataset is randomly split into k parts which successively act as a training or a test
sample.

Let Â denote the penalization constant calibrated using the test sample or the k−fold
cross-validation approach, our final estimator is then m̂(x) = mŜ(Â)(x).
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3.2 Analysis of the tail of the distribution through regression

trees

3.2.1 Peaks over threshold method for extreme value analysis

Extreme value analysis is the branch of statistics which has been developped and broadly
used to handle extreme events, such as extreme floods or heat waves episodes with extreme
financial losses [Katz et al., 2002, Embrechts et al., 2013]. Given a series of observations
Y1, Y2, . . . independent and identically distributed with an unknown survival function F̄
(that is F̄ (y) = P(Y1 > y)). A natural way to define extreme events is to consider the
values of Yi which have exceeded some high threshold u. The excesses above u are then
defined as the variables Yi − u given that Xi > u. The asymptotic behavior of extreme
events is characterized by the distribution of the excesses which is given by

F u(y) = P[Y1 − u > y | Y1 > u] =
F (u+ y)

F (u)
, y > 0 .

If F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ, ∀y > 0, (3.2)

with γ > 0, then Balkema and De Haan [1974] have shown that there exist normalizing
sequences a(u) > 0 and b(u) and a non-degenerated distribution function H such that

F u(a(u)y + b(u))
d−−−→

n→∞
Hσ,γ(y),

with Hσ,γ necessarily of the form

Hσ,γ(y) =
(

1 + γ
y

σ

)−1/γ
, y > 0. (3.3)

Here, σ > 0 is a scale parameter and γ > 0 is a shape parameter, which reflects the
heaviness of the tail distribution. The result from [Balkema and De Haan, 1974] states
that, if the survival function of the normalized excesses above a high threshold u weakly
converges toward a non-degenerate distribution, then the limit distribution belongs to a
parametric family called the Generalized Pareto distribution.

In our situation of highly volatile severity variables, the assumption γ > 0 is reasonable
and supported by the empirical results of [Maillart and Sornette, 2010].

In practice, the so-called Peaks over threshold method has been widely used since 1990
[see Davison and Smith, 1990]. It consists in choosing a high threshold u and fitting a
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Generalized Pareto distribution on the excesses above that threshold u. The estimation
of the parameters σ and γ may be done by maximising the Generalized Pareto likelihood.
The choice of the threshold u implies a balance between bias and variance. Too low a
threshold is likely to violate the asymptotic basis of the model, leading to bias; too high
a threshold will generate few excesses with which the model can be estimated, leading to
high variance. The standard practice is to choose as low a threshold as possible, subject
to the limit model providing a reasonable approximation.

Remark 3.1 Property (3.2) is called regular variation. When γ > 0, we say that F is
heavy-tailed, meaning that its tail decreases exponentially fast to 0. Usual distributions
as Pareto, Cauchy and Student distributions satisfy this property. For more details, see
[De Haan and Ferreira, 2007, Appendix B].

3.2.2 Generalized Pareto Regression Trees

When it comes to studying the severity of cyber claims, we expect to see a potential
heterogeneity in the tail of the distribution, depending on the circonstances of the claim
and on the characteristics of the victim. Several authors have proposed regression models
to study the influence of some covariates on the parameters σ and γ in (3.3). Typically,
these approaches are either parametric as in [Beirlant et al., 1999], or nonparametric using
kernel smoothing (which supposes continuous covariates) as in [Beirlant and Goegebeur,
2004]. Alternatively, we propose to adapt the regression tree approach to study the tail
of the distribution of the response variable Y .

Consider a threshold u. Based on observations such that Yi ≥ u, we fit a regression
tree using the Generalized Pareto log-likelihood as splitting criterion, that is

φ(y,m(x)) = − log(σ(x))−
(

1

γ(x)
+ 1

)
log

(
1 +

yγ(x)

σ(x)

)
,

where m(x) = (σ(x), γ(x)).

After completing the growth and the pruning phases as described in Section 3.1.1 and
Section 3.1.3, the leaves give a decomposition of the data in subpopulations associated
with a different tail behavior. On each of them, the estimated value of (σ, γ) gives the
parameters of the proper Generalized Pareto distribution that better fits this subpopula-
tion.

When adjusting a Generalized Pareto distribution to the tail of the distribution, the
results are clearly threshold dependent. We will discuss in Section 4.4 a heuristic way to
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determine such a threshold. Typically, we need to take a threshold small enough so that
there is a sufficient number of observations beyond this threshold to fit a regression tree,
and large enough so that the Generalized Pareto approximation is legitimate.

Remark 3.2 In extreme value regression, the conditional version of (3.3) leads to the
introduction of a threshold u that should depend on x on the event X = x. A possibility
would be to adapt the CART algorithm to select, at each step, a choice of threshold that
could be different in each leaf. However, this complexifies considerably the technique, and
we did not consider it. See also [Beirlant and Goegebeur, 2003] for a similar fixed threshold
in Generalized Pareto regression.

4 Analysis of cyber claims

In this section, we propose a detailed analysis of the cyber incidents gathered in the
PRC database. The description of the database is done in Section 4.1—which focuses on
the sources that feed the database—and in Section 4.2, where we give some elementary
statistics on the variables available in PRC. The aim is then to calibrate a model, based
on the database, describing cyber events. This is done in two steps, first by analyzing the
frequency and the typology of the claims in Section 4.3, then by taking a closer look at
the severity in Section 4.4 using regression trees. In this last part, we focus not only on
the central part of the distribution but also on the tail.

4.1 Multiple sources feeding the database

Privacy Rights Clearinghouse (PRC) is a nonprofit organization founded in 1992 which
aims at protecting privacy for US citizens by “empowering individuals and advocating
for positive change”. The PRC database is publicly available and this article is based
on a download made on January 23 2019, corresponding to 8860 events. In order to
raise awareness about privacy issues, PRC has been maintaining a chronology since 2005,
listing companies that have been implicated in data breaches affecting US citizens. Un-
fortunately, although this chronology is not exhaustive, PRC organization is been trying
to increase its scope by gathering notifications of data breaches from different sources of
information which can be clustered in four groups:

• US Government Agencies on the federal level: a significant amount of the events is
present due to the legal obligation to report data breaches (consequence of privacy
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regulation). In the health domain, the Health Insurance Portability and Account-
ability Act (HIPAA) imposes a notification to the Secretary of the U.S. Department
of Health and Human Services for each breach that affects 500 or more individuals,
see [U.S. HHS department, b]. Those notifications are reported online with free
access on the breach portal [U.S. HHS department, a].

• US Government Agencies on the state level: since 2018, every state has had a specific
legislation related to data breaches. Differences have been studied by Maddie Ladner
[2018]. One can note that there is no uniformity in the choice of a threshold (in terms
of number of victims) to trigger the obligation to notify. Therefore, the requirement
for an organization to report a data breach depends on its state. On the reporting
procedure, some states use an online notification such as California, see State of
California, but this is not systematic.

• Media: these events have been brought to the attention of the PRC organization
due to their high visibility. They are typically more severe than the events from
other sources of information.

• Non profit organizations: the PRC database includes the data breaches reported by
non profit organizations such as [Databreaches.net].

The source of information is clearly identified in the database, and is available for
each reported data breach. Although merging different sources of notifications increases
the scope of the PRC chronology, it also introduces a new level of heterogeneity in data
breaches events. Indeed, the source of the report gives an information on the typology
of the event (for example, media reported events are usually more severe). On the other
hand, let us also observe, as shown in Figure 4.1, that, through time, the proportion
of events reported from one source compared to others strongly fluctuates (the global
proportion of sources of reports is summarized in Table 3). Another visualization of
this phenomenon is shown in Figure 2, representing the evolution of monthly numbers
of reported events depending on the source. This constitutes an important issue at least
when one tries to estimate the frequency of occurrence. Indeed, the increasing number
of reported claims may be partially caused by an evolution of the risk, but also on an
evolution on the way these claims are reported. For example, before the requirement to
report from some government agencies, some claims may be absent from the database. In
other words, Figure 4.1 tends to prove that the reported claims of the PRC database do
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not refer to a stable population. We will develop this discussion on the exposure to the
risk in Section 4.3.1.

Figure 1: Time evolution of the reports of cyber events depending on the source of
information.

Figure 2: Evolution of monthly frequency of reporting depending on the source of infor-
mation (smoothed curves).
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Source PRC: all events
PRC: events with

known number of records
Events with

records

Nonprofit organization 39% 37% 72%

US GA - HIPAA 27% 36% 99%

US GA - State 22% 17% 58%

Media 12% 10% 60%

Total 8860 6641 75%

Table 3: Relative weights of the different sources in PRC database: third column considers
only events where the number of records is known by PRC; fourth column presents the
proportion of events from a given source for which the number of records is known.

4.2 Description of the database

The PRC database gathers informations regarding each reported cyber event (its type,
the number of records affected by the breach, a description of the event) and its vic-
tim (targeted company name, its activities, its localization). These variables and their
different modalities are summarized in Tables 4 to 6.

The number of records is a key information for an actuarial analysis of the database.
Indeed, although it does not quantify the financial loss generated by an event, it is an
indicator in the PRC database of the severity of a data breach. The number of records
is defined by the number of rows (not the number of cells) of the database concerned by
a data breach. Although few rows may refer to the same person, for instance in case of
multiple accounts, and that some rows may contain false information, for instance in case
of a wrong filling, the number of records is often interpreted as the number of individuals
affected by the breach.

PRC database Variable

Victim data
Name of organization
Sector of organization

Geographic position of organization

Event data

Source of release
Date of release
Type of breach

Number of affected records
Description of the event

Table 4: List of the variables of the PRC database.
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BSF Businesses - Financial and Insurance Services

BSO Businesses - Other

BSR Businesses - Retail/Merchant - Including Online Retail

EDU Educational Institutions

GOV Government & Military

MED Healthcare, Medical Providers & Medical Insurance Services

NGO Nonprofits

Table 5: Description of sectors of organizations.

CARD
Fraud involving debit and credit cards that

is not accomplished via hacking

HACK Hacked by outside party or infected by malware

INSD
Insider (someone with legitimate access intentionally

breaches information)

PHYS
Includes paper documents that are lost,
discarded or stolen (non electronic)

PORT
Lost, discarded or stolen laptop, PDA, smartphone,

memory stick, CDs, hard drive, data tape, etc.

STAT
Stationary computer loss

(lost, inappropriately accessed, discarded or
stolen computer or server not designed for mobility)

DISC
Unintended disclosure (not involving hacking,

intentional breach or physical loss

UNKN Unknown

Table 6: Description of types of data breaches.

4.3 Number and typology of claims

We now analyze the process of occurrence of claims. In Section 4.3.1 we focus on the
frequency of claims, that we modelize the number of events striking a company whatever
its nature. Due to the lack of data, the typology of the claim, considered in Section 4.3.2,
is assumed to be independent of the occurrence of a claim.

4.3.1 Frequency analysis

Estimation of the frequency of occurrence of cyber events based on the PRC database is
not straightforward due to the difficulty to collect information on the exposure. Figures 4.1
and 2 highlight the significant evolution in the data collection process of the Privacy Right
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Clearinghouse. For example, the choice of PRC to stop gathering data breaches revealed
by nonprofit organizations as from 2013 and a peak of data released by Media between
2015 and 2016 may be observed. Therefore, the comment of Forrest et al. claiming
that “there is no obvious reason why [the] size/frequency distributions [used in informal
studies] should differ from PRC” (p.5 of [Forrest et al., 2016b]) may not seem adapted.
This is not solely a question of unreported data breaches in PRC: Bisogni et al. [2017]
claim that the majority of data breaches proves to be unreported. The exposure to the
risk is not easy to track, since the population of potential victims that would report to
PRC is not stable through time (or, at least not known in opposition to data coming from
an insurance company which can have a clearer view on its exposure, for example).

More precisely, consider νi the random number of reported claims in a time period i.
This number can be decomposed into νi =

∑wi

j=1 nj, where nj is the number of reported
claims concerning the entity j and wi is the number of entities constituting what could
be referred to as the scope of the PRC database. By scope, we mean the set of potential
victims on which PRC could obtain information if a claim would occur in the time period i.
In a simple modeling where all the variables nj are identically distributed, the expectation
of νi is proportional to wi. Since, from our observation of the database, wi erratically
evolves through time, there is a clear uncertainty about any modeling of the frequency of
occurrence.

This is why, in this paper, we do not consider the model developed by Eling and
Loperfido [2017], since it does not seem adapted to the poor quality of the PRC base
regarding the frequency. The model from [Eling and Loperfido, 2017] has of course many
advantages when dealing with a real insurance portfolio or with more consistant and
reliable data: while we only focus on a Poisson modeling of the number of claims, Eling
and Loperfido consider models with higher number of parameters, including a trend, and
develop a goodness-of-fit procedure. We think that public data (and potentially with poor
quality) will still constitute an important source of information for insurers until they get
sufficient experience on the risk. Therefore, we develop in detail the methodology we used
on the PRC as a way to treat such databases.

Our basic idea is to focus on what we consider to be a reliable part of the data. Let
us first notice that among the 8860 events release in the database, only 7737 different
companies are present, as summarized in Table 7.

Our main (strong) assumption is that, if a company has many reports in the database,
this company is efficiently monitored by PRC. Hence we consider that it belongs to the
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Number of reports k 1 2 3 4 5 6 7 8 9 10 11 12

Total : 7737 6929 634 103 41 12 6 7 3 1 0 0 1

Table 7: Number of companies having k reports in PRC database for k = 1, . . . , 12

regardless the sector of activity.

Type of organization λ̂(d)

Unknown 0.27

Education 0.23

Banking and Insurance 0.15

Business (others) 0.13

Retail (including online) 0.13

Health 0.10

Government 0.07

Nonprofit organization 0.01

Table 8: Poisson rates λ̂(d) estimated on 1-truncated count data depending on the sector.

“stable” part of the scope of PRC. Due to the large number of companies with only 1
claim, we therefore only considered companies with more than 2 claims. Let N denote
the number of claims that occur for a given company. We choose to model this random
variable using a Poisson distribution with parameter depending on the sector of activity.

Let D denote the sector of activity of a given company, with λ(d) = E[N |D = d] the
corresponding Poisson parameter. We assume that N |D = d is Poisson distributed with

logE[N |D = d] = α + βd,

that is a Poisson Generalized Linear Model with log link function. In terms of estimation,
we take into account the fact that our data is 1-truncated, since our data consists of
observations of N given that N ≥ 2. The results of the estimation of λ̂(d) are shown in
Table 8.

Figure 2 shows that none of the sources of information has been observed more than 8
years (except for the media source, but which constitutes a small proportion of the total
data). Therefore, to compute annual rates of occurrence, we consider that each company
has been under observation during only 8 years (and not during the whole 13 years of
chronology reported in the database).
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p̂m(d) CARD DISC HACK INSD PHYS PORT STAT

BSF 0.03 0.17 0.3 0.14 0.09 0.23 0.04

BSO 0 0.11 0,62 0.06 0,06 0.13 0.02

BSR 0.06 0.12 0,5 0.12 0,06 0.11 0.03

EDU 0 0.3 0,36 0.03 0,08 0.17 0.06

GOV 0 0.3 0,2 0.11 0,14 0.23 0.03

MED 0 0.24 0,23 0.06 0,33 0.11 0.03

NGO 0 0.13 0,33 0.08 0,1 0.32 0/04

Table 9: Estimates of multinomial parameters p̂m(d) depending on the sector and the
type of breach.

4.3.2 Typology of claims

Until now, we have modeled N without taking into account the variety of situations
contained in the variable “Type of breach”. On the other hand, the severity can reasonably
be thought as strongly dependent on the type of event. Let Nm denote the number of
breaches of type m striking a company. We develop a compound Poisson approach,
introducing a multinomial random variable Z taking its values in {1, ...,M} (M denoting
the number of types of breaches, here M = 7) and with parameters pm(d) = P(Z =

m|D = d). Then, considering i.i.d. copies (Zi)i≥1 of Z assumed to be independent of N,
we consider that

Nm =
N∑
i=1

1Zi=m.

Estimates of the parameters pm(d) are provided in Table 9.

4.4 Severity analysis

As we already mentioned, our only way to measure the severity of a cyber incident based
on the PRC data is to use the number of records. This information is not available for all
claims in the database, but only for 6641 events among the total of 8860. We make the
assumption that, if the information about this variable is missing, this should be purely
random and non related to the severity of the event.

Let us notice that the severity of data breaches is highly volatile. Indeed, the severity
of the worst data breach represents 27% of the total number of records affected by the
totality of the data breaches. The severity of the top ten data breaches corresponds to 68%
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Figure 3: Hill plot for the number of records.

of the total severity and the severity of the top hundred data breaches to 97%. Therefore,
the shape of the empirical distribution is highly skew. This motivates to separate the
study of the center of the distribution from the right tail.

Another motivation for this separation is the important difference between the median
of the number of records (2000) and the empirical mean (1.692 millions). This empirical
mean is driven by extreme events (the largest having 3 billions of records).

On the other hand, in the spirit of Section 3.2.1, we investigate the choice of a high
threshold u after which a Generalized Pareto behavior is observed. The Hill plot [see
Resnick, 2007, pp 85–89] in Figure 3 is a common graphical indicator to perform this
choice in classical extreme value analysis. The choice of an appropriate threshold is done
by looking at the stability of the Hill plot, leading us to take the value u = 29156. This
choice corresponds to looking at the 1000 highest data breaches in the sample, standing
for around 15% of the total number of breaches. Estimating shape and scale parameter of
the Generalized Pareto distribution leads to σ̂ = 5.14 × 104 and γ̂ = 2.13. This analysis
is done without considering the potential impact of covariates on tail behavior, and has
therefore to be compared with the GPD regression trees obtained in Section 4.4.2.

A first description of this heterogeneity is summarized in Table 10, indicating a need
to develop a regression analysis, which is done in Section 4.4.1 for the central part of the
distribution, and in Section 4.4.2 for the tail.
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Variable Modality
Number
of data
breaches

Median
Share of
extreme
values

Shape
(lower
bound 95%)

Shape
(estimate)

Shape
(upper
bound 95%)

Source

Unknown 34 2894 21 % 0.44 3.46 6.48
Media 641 10597 38 % 2.55 3.07 3.59
US GA:
State

1114 566 8 % 1.12 1.72 2.32

US GA:
Federal
HIPAA

2380 2267 9 % 1.15 1.48 1.80

Nonprofit
organization

2472 2000 18 % 1.29 1.53 1.76

Type of breach

CARD 32 300 12 % -0.98 2.81 6.61
STAT 184 3060 20 % 0.45 1.11 1.76
INSD 377 651 12 % 1.14 2.07 2.99
Unknown 636 589 8 % 1.16 1.93 2.71
PORT 874 3575 21 % 1.02 1.37 1.72
PHYS 1463 1726 7 % 0.89 1.37 1.85
DISC 1469 1615 11 % 1.91 2.43 2.95
HACK 1606 4605 26 % 2.19 2.54 2.88

Sector of organization

NGO 75 2000 16 % 0.32 1.92 3.53
BSR 299 1000 27 % 1.94 2.75 3.56
Unknown 376 500 6 % 0.21 1.25 2.29
BSF 412 2005 24 % 1.63 2.29 2.95
BSO 428 5830 36 % 2.62 3.30 3.99
GOV 562 2837 23 % 1.12 1.58 2.03
EDU 685 2400 17 % 0.65 1.01 1.38
MED 3804 2039 10 % 1.14 1.38 1.62

Year

2005 117 16500 43 % 0.69 1.37 2.04
2006 385 2000 21 % 0.90 1.49 2.08
2007 340 3000 21 % 0.94 1.51 2.08
2008 270 3800 23 % 1.03 1.66 2.28
2009 193 2000 24 % 1.12 1.97 2.83
2010 579 1907 13 % 0.97 1.56 2.14
2011 585 1800 12 % 1.26 1.93 2.60
2012 629 1593 11 % 1.09 1.73 2.36
2013 589 2600 11 % 1.12 1.77 2.43
2014 606 1204 14 % 1.52 2.19 2.87
2015 377 2259 15 % 1.78 2.79 3.79
2016 608 2500 15 % 2.05 2.85 3.66
2017 449 2969 15 % 1.72 2.61 3.50
2018 914 947 12 % 2.07 2.76 3.45

Table 10: Descriptive statistics for the different groups of the PRC database.
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Figure 4: Tree obtained by the CART algorithm based on the quadratic loss.

4.4.1 Mean and median regression trees

To evaluate the center part of the distribution, we apply the Regression Tree procedure
first using a square loss, that is, from the notations of Section 3.1, φ(y,m(x)) = (y −
m(x))2. The tree obtained in Figure 4 is then an estimator of E[Y |X = x]. The tree has
been computed using the R package rpart [see Therneau and Clinic, 2018], decomposing
randomly the database into a train set (67% of the data) on which the maximal tree is
built, and a validation set (33% of the data) that is used for error measurement and the
selection of a proper subtree from the pruning step.

From the obtained tree, we can observe that the first splitting variable is the type of
organization, with essentially highest predicted costs for the category “Business (others)”,
which is probably the most heterogeneous due to the uncertainty about the activities of
the corresponding companies. Another interesting issue is the importance of the source in
the analysis: this variable only appears at one node, but it shows that the heterogeneity of
the sources feeding the database has not only impact on the estimation of the frequency,
but also on the estimation of the severity. On the other hand, most of the events (93%)
are gathered in the same leaf, leading to a first impression that, regarding the conditional
mean, the heterogeneity of the claims is not so obvious apart from very large ones.

Estimation of E[Y |X = x] is of course crucial in order to perform pure premium
pricing, but the estimation of the conditional mean is known to lack robustness, since the
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Figure 5: Tree obtained by the CART algorithm based on the median splitting rule.

quadratic loss may be influenced by too large observations. Since the variable Y is highly
volatile, we challenge the tree of Figure 4 by computing a median regression tree, that is
with loss function φ(y,m(x)) = |y −m(x)|, providing an estimator of the median of the
distribution of Y |X = x. This leads to the tree presented in Figure 5.

We see that the structure of the obtained tree is quite different from Figure 4, which
seems to indicate that the largest observations strongly impact the estimation of the
conditional expectation. The obtained classes (that is leaves of the median tree) are
associated with smaller values of the median than of the conditional expectation associated
with leaves of the mean tree. Moreover, the situation in the category “Business (others)”
is different from the tree of Figure 4, since the high predicted number is caused essentially
by a particular shape of cyber incident (a malicious event caused by hacking or malware,
and reported by a media source). The variable “Type of breach” also appears in the
decomposition, which was not the case in the tree of Figure 4.

Figure 4 also presents the mean of the events that are gathered in each leaf. Indeed, a
possible compromise between the two trees of Figure 4 and 5 is to use the decomposition
obtained using the more robust criterion of the median, but still estimating an expectation
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in each group. The impact of such an approach on the evaluation of the risk of virtual
portfolios is considered in Section 5.

4.4.2 GPD Regression Tree

Let us recall that the GPD regression tree is built from the 1000 largest observations
in terms of records. The tree has been computed decomposing randomly the extreme
observations into a train set (67% of the data) on which the maximal tree is built, and a
validation set (33% of the data) that is used for error measurement and the selection of
a proper subtree from the pruning step. The obtained tree is shown in Figure 6.

Figure 6: Tree obtained by the CART algorithm based on the Generalized Pareto likeli-
hood splitting rule.

As we can see, we observe significant differences in the tail behaviors depending on the
cases. Let us observe that the worst case corresponds to a shape parameter of 3.55, far
from the shape parameter 2.14 obtained by our preliminary analysis on the whole set of
1000 largest observations (that is without clustering). This can be explained by the fact
that the media source seems to deviate from the rest of the population, since this source
is characterized by larger events. Clearly, one may fear the instability of the calibrated
model, since the structure of regression trees is known to be sensitive to the introduction
of new data, and this model should be monitored on a regular basis.
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5 An application on virtual portfolios

In this section, we try to measure the impact of the previous analysis on virtual portfolios.
Considering a given number of policies (np = 20000 in the following), we consider different
configurations for the composition of the virtual portfolios in terms of types of insured
companies, which are summarized in Table 11.

VP qBSF qBSO qBSR qMED

1st 25 % 25 % 25 % 25 %

2nd 40 % 20 % 20 % 20 %

3rd 33 % 33 % 33 % 0 %

4th 20 % 30 % 30 % 20 %

Table 11: Proportions of sectors of the companies in virtual portfolios. qx stands for the
proportion of companies from sector x.

Compared to the PRC database, we only consider 4 types of companies. Then we
simulate number of claims (see Section 4.3.1), type of claims (see Section 4.3.2). Our
models for the severity require the knowledge of the type of reporting source. We assume
that this source is government agencies at a federal level, since regulation considerations
seem to make this source more reliable.

We then try to evaluate a “central scenario” for each portfolio. This is done thanks to
the linearity of the expectation by using two different severity models. First by using the
mean regression tree of Figure 4: conditionally on the numbers and the typologies of the
claims, we look at the corresponding leaf of the tree and report the mean value for the
number of records. The second way consists in using the clustering obtained through the
median tree, and then predicting the amount using the estimated mean in each leaf (see
Section 4.4.1). In each case, the link between the number of records Y and the amount
L is done first using (2.1), then (2.2).

We also want to evaluate the weight of the tail of the distribution. To this aim, we
use the GPD tree of Section 4.4.2, see Figure 6. We focus in the 15% highest part of the
distribution i.e. on claims in excess of the threshold u used in the calibration of our GPD
distributions. This is done by simulating the size of the claims (10 000 simulations by
portfolio) based on the distribution of the GPD trees (and augmented by the threshold
u), by computing an associated loss and by retaining only the amount of the claim in
excess of the loss associated with a claim of size u. The results are gathered in Table 12.
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VP

Expected loss per policy Share of loss in excess per policy
Mean tree Median tree GPD tree / Mean tree GPD tree / Median tree

Jacobs
formula

Formula
(2.2)

Jacobs
formula

Formula
(2.2)

Jacobs
formula

Formula
(2.2)

Jacobs
formula

Formula
(2.2)

1st 74 210 855 15 353 511 8 751 594 5 551 376 5 182 % 20.9 % 43 941 % 57.9 %

2nd 60 640 433 13 214 110 9 055 042 5 743 248 6 674 % 23.9 % 44 694 % 55.0 %

3rd 97 518 899 19 422 361 9 024 747 5 776 944 7 352 % 21.1 % 79 441 % 70.9 %

4th 87 987 095 17 643 633 8 681 808 5 523 106 5 169 % 19.5 % 52 388 % 62.4 %

Table 12: Evaluation of the mean loss for the virtual portfolios using mean-based and
median-based trees; comparison of the cost of the 10% upper part of the distribution with
the central scenario of the mean tree and median tree.

As expected, the results highlight the influence of the composition of portfolios on an
expected loss and a loss in excess for a (re)insurer point of view. It also enhances the
limit of the Jacobs formula concerning mega data breaches that seems to overestimate
the costs. We see that even with the less pessimist Formula (2.2), the weight of the cost
of the largest claim is heavy compared to the central scenario.

6 Conclusion

In this paper, we have taken a closer look at the heterogeneity of cyber events in order
to improve their evaluation and anticipation for insurance purpose. The main difficulty
is clearly the lack of data: the public PRC database is very rich in terms of reported
breaches, but has not been designed for insurance purpose. Therefore, we have tried to
emphasize the difficulty to estimate the frequency of claims using such data with such an
uncertainty on the exposure. This uncertainty is not expected from databases provided
by insurance companies, since they are aware of the number of policies they have, and
have informations on their characteristics. On the other hand, the study of databases
such as PRC is still important (at least for combining it with insurance data) since it
is one of the few databases gathering such a high number of cyber events, in a context
where the experience of insurers is quite recent. From a methodological point of view,
our main contribution is the analysis of the severity using regression trees. It raises the
difficulty to estimate a conditional mean due to the high volatility in the severity variable,
therefore the combination of a median regression tree to determine cluster, and a mean
evaluation inside these clusters seems to us a reasonable solution. Regarding the tail of the
distribution, our study via GPD trees highlights an heterogeneous severity. Understanding
its heterogeneity is important since we see, from the empirical study on virtual portfolios
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of Section 12, that it can have strong impacts on the final result depending on the structure
of the portfolio.
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