N

N

Structural Equivalence in Reversible Calculus of
Communicating Systems (Abstract)

Clément Aubert, Ioana Cristescu

» To cite this version:

Clément Aubert, Ioana Cristescu. Structural Equivalence in Reversible Calculus of Communicating
Systems (Abstract). 2019. hal-02118036v1

HAL Id: hal-02118036
https://hal.science/hal-02118036v1

Preprint submitted on 9 May 2019 (v1), last revised 26 Dec 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02118036v1
https://hal.archives-ouvertes.fr

Structural Equivalence in Reversible Calculus of
Communicating Systems (Abstract)

Clément Aubert
School of Computer and Cyber Sciences, Augusta University, USA

Ioana Cristescu
Inria Rennes, France
“In a process-algebraic approach to system verification, one typically writes two specifica-
tions. One, call it SYS, captures the design of the actual system and the other, call it SPEC,
describes the system’s desired ‘high-level’ behavior. One may then establish the correctness
of SYS with respect to SPEC by showing that SYS behaves the ‘same as’ SPEC.” ([2, p. V])
The approach described is used for the calculus of communicating systems (CCS) [5], an
important actor in process calculus, a branch of Computer Science that formally models
concurrent systems. However, this approach was not adopted when the reversible calculus
of communicating systems (RCCS) [3, 4] was defined. Our current investigation aims at
understanding if there is a fundamental reason not to do so, and this lead us to also question
how a syntactic equivalence used to go from SYSccs to SPECccs was defined.

1 From SYSccs to SPECccs

CCS processes are defined using Backus—Naur form with simple operators (parallel composi-
tion, name prefixing or action, choice or sum, recursion, restriction and renaming), a single
empty process denoted 0, and a collection of (co-)names a,@, b, b, ... over which A ranges:

» Definition 1 (CCS process). The set of CCS processes is inductively defined:

PQ=P|Q | \P | ZPi | A P\a | Pla+<1d] | 0 (CCS Processes)
icl

d
where A are (recursive) definitions of processes, that is A :efiand A can occur in P, Pla < b]
is the capture-avoiding substitution, and we write P[7 +— b] for Pla; < by,...,a, < by].

To create SYSccs, the processes are endowed with an evaluation mechanism given by
the labeled transition system (LTS) of Fig. 1. A process P reduces, or evaluates, to P’ with
label « (which can be a (co-)name, or the special label 7 for “silent”; internal, transitions) if
a tree whose root is P >+ P’ can be derived using the rules of Fig. 1.

This specification, although capturing the intended calculus, is cumbersome because of its
syntactical rigidity: everything has to be spelled out rigorously, and basics properties like the
commutativity of the product (i.e., writing Py | P, or P; | P> should not make a difference)

P P! Q-5 qQ PP QN
R ——— com. A ICOHI.Q syn.
PlQ—=P[Q PlQ=P|Q PlQ= P |Q

—— act. Py = P jel pesp A¥Pp

. rec.
AP P Sier P P A2 p
PP ada PP |
= y res. N a[ﬁ’e?] N rel.
P\a == P'\a Pld « b =" P'[d + b]

Figure 1 Rules of the labeled transition system of CCS (LTSccs)

https://orcid.org/0000-0001-6346-3043

Structural Equivalence in RCCS

are impossible to prove. The solution is to define an equivalence relation on processes, define
another specification using it—SPECccgs—, and then to prove that they coincide.

» Definition 2 (CCS Structural equivalence). Structural equivalence on processes is the
smallest equivalence relation generated by the following rules:

rPlQ=Q|P (PlR)IV=P(Q]V) Plo=P

P+Q=Q+P (P+Q)+V=P+(Q+V) P+0=P
(P\a) | Q = (P | Q)\a with a ¢ In(Q) (P\a)\b = (P\b)\a

A¥Ypoa=p P=,Q=P=Q

Where fn(Q) is the set of free names in Q, and =, is the a-equivalence given by capture-free
substitution.
P{EPl P1L>P2 PQEPQI
SPECgcs is then defined by adding the rule con. to
P = P}
LTSccs, and removing coml. (or com2.), rec. and rel. from it.

» Lemma. If P P’ with SYSccs and P = Q then Q = Q' with SPEC¢cs and P' = Q'.

2 Disentangling SYSgccs from SPECgrccs

Reversible systems have the possibility of backtracking to return to some previous state.
Implementing reversibility in a programming language often requires a mechanism to record
the history of the execution. Ideally, this history should be complete, so that every forward
step can be backtracked, and minimal, so that only the relevant information is saved.
Concurrent programming languages have additional requirements: the history should be
distributed, to avoid centralization, and should prevent steps that required a sychronization
with other parts of the program to backtrack without undoing this synchronization.

To fulfill those requirements, RCCS uses memories attached to the threads of a process.

T=mp>P (Reversible Thread)
R,S=T | R|S | R\a (RCCS Processes)

for m a memory stack (whose definition is not included here, but that can be find in, e.g.,
[1]), and P a CCS process.

A forward and backward LTS is then be defined, but it is extremely limited: any transition
leading to m > (P; | P») is blocked. Indeed, to fulfill our requirement to distribute as much
as possible the memories, the system needs to block this execution, and to be given an
equivalence rule m > (Py | P2) = (Y.m > Pp) | (Y.m > P») that distributes the computation
(and the memory, prepended with a special “fork” symbol Y) over two units of computation.

There are two perspectives on this: 1. We can consider that the equivalence relation now
becomes part of the definition of SYSgrccs, and that there are no SPECracs, 2. We can
consider that SPECrccs is strictly more expressive than SYSgrccs.

Both approaches are somehow problematic since we are losing a way of syntactically
assessing that the equivalence relation is “the right one”, and have to assume that it is
reasonable. But, looking back, the way CCS asses that its equivalence relation is “the right
one” is somehow circular, since our Lemma uses the equivalence “on the outside” and “on
the inside”. One of our current investigation is to precisely pinpoint why is this equivalence
in CCS acceptable, and to see if the criteria we identify can be imported to RCCS.

C. Aubert and |. Cristescu

—— References

1

Clément Aubert and Ioana Cristescu. Contextual equivalences in configuration structures and
reversibility. J. Log. Algebr. Methods Program., 86(1):77-106, 2017. doi:10.1016/j.jlamp.
2016.08.004.

J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra. Elsevier
Science, Amsterdam, 2001. doi:10.1016/B978-044482830-9/50017-5.

Vincent Danos and Jean Krivine. Reversible communicating systems. In Philippa Gardner
and Nobuko Yoshida, editors, CONCUR, volume 3170 of LNCS, pages 292-307. Springer,
2004. doi:10.1007/978-3-540-28644-8_19.

Vincent Danos and Jean Krivine. Transactions in RCCS. In Martin Abadi and Luca
de Alfaro, editors, CONCUR, volume 3653 of LNCS, pages 398-412. Springer, 2005. doi:
10.1007/11539452_31.

Robin Milner. A Calculus of Communicating Systems. LNCS. Springer-Verlag, 1980. doi:
10.1007/3-540-10235-3.

http://dx.doi.org/10.1016/j.jlamp.2016.08.004
http://dx.doi.org/10.1016/j.jlamp.2016.08.004
http://dx.doi.org/10.1016/B978-044482830-9/50017-5
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/11539452_31
http://dx.doi.org/10.1007/11539452_31
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-10235-3

	From SYS CCS to SPEC CCS
	Disentangling SYS RCCS From SPEC RCCS

