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In this paper we show that ensembles of well-structured and unstructured proteins can be dis-
tinguished by borrowing concepts from non-equilibrium statistical mechanics. For this purpose, we
represent proteins by two different polymer models and interpret the resulting polymer configura-
tions as random walks of a diffusing particle in space. The first model is the trace of the Cα-atoms
along the protein main chain and the second their projections onto the protein axis. The resulting
trajectories are subsequently analyzed using the theory of the Generalized Langevin Equation. Ve-
locities are replaced by displacements relating consecutive points on the discrete protein axes and
equilibrium ensemble averages by averages over appropriate protein structure ensembles. The re-
sulting displacement autocorrelation functions resemble those of velocity autocorrelation functions
of simple liquids and display a minimum, which can be related to the lengths of secondary structure
elements. This minimum is clearly more pronounced for well-structured proteins than for unstruc-
tured ones and the corresponding memory function displays a slower decay, indicating a stronger
“folding memory”.
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I. INTRODUCTION

The protein structure-function relationship is one of
the basic concepts in structural biology and it has for
several decades driven the determination of protein struc-
tures by X-ray and neutron crystallography as well as
by nuclear magnetic resonance (NMR) techniques. It
was soon recognised that protein function requires dy-
namic structures,1–4 and one can observe a change in
paradigm over the last years, admitting that protein
function does not necessarily require well-defined struc-
tures. One speaks here of intrinsically disordered pro-
teins (IDP), where the term “disorder” describes the ab-
sence of well-defined secondary structure elements and
may concern the whole protein or parts of it.5–8 In con-
trast to well-structured proteins, for which more than
140000 structures can be found at present in the Pro-
tein Data Bank9, much less is known about the possible
conformations of IDPs. Information comes here essen-
tially from computer-generated models which are com-
patible with experimental data from structural NMR and
small angle diffraction techniques. Corresponding data
bases are being built up10,11 and start to become ex-
ploitable from a statistical point of view. One can there-
fore search for criteria that allow a distinction between
structured and unstructured proteins on a purely statis-
tical basis. Since protein structure data bases contain
structures and structure ensembles of different proteins,
such statistical models should be based on the confor-
mation of the protein main chain only. The simplest ex-
ample is the polymer chain model by W. Kuhn,12 which
consists of equidistantly spaced point-like monomers and
which can be transposed to proteins by associating each
Cα-atom along the protein main chain with a monomer
of the Kuhn chain. We note here that that due to the

rigid geometry of peptide bonds, the distances between
consecutive Cα-atoms in proteins have an almost con-
stant value of 0.4 nm. The polymer configurations in
Kuhn’s model are random chains, where all monomers
are placed randomly at the fixed distance to their respec-
tive predecessor along the polymer chain. These freely
jointed chains lead to a Gaussian model for the prob-
ability distribution of finding a monomer at a distance
r from a given monomer and they can be interpreted as
trajectories of Brownian particles whose subsequent posi-
tions in time correspond to the monomer positions along
the polymer chain. The Markovian character of Brow-
nian motion reflects the fact that the position of each
monomer depends only on the position of its predecessor.
The Gaussian chains thus have “zero folding memory”.
Kuhn’s model was the motivation for the present work,
where the concept of folding memory will be used in or-
der to distinguish between ensembles of well-structured
and (partially) unstructured proteins (IDPs).

II. PROTEINS AS DISCRETE PATHS

In the standard discrete path representation of pro-
teins, each residue is represented by its Cα-atom. In the
following, we will both this standard representation and
an alternative one, in which secondary structure elements
(SSEs) are essentially filtered out. SSEs are characterised
by a regular winding of the protein main chain with
a typical period between 2 and 4 monomers (residues)
and thus lead to a priori “trivial” folding memory ef-
fects on that scale. Our straightened path representa-
tion replaces SSEs by the axis around which the main
chain is wound. This axis can be obtained using the
ScrewFrame algorithm.13 The global fold of a protein is
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FIG. 1: Left: Exact helicoidal trace of Cα-atoms (red points)
and corresponding screw motion centres (blue points). The
figure also shows two consecutive Frenet frames (black ar-
rows), which are attached to Cα-atoms 2 and 3, respectively.
Right: Cα-trace and corresponding screw motion centres for
myoglobin (PDB structure code 1AB6). The local radius of
the gray tube is defined by the radius of the corresponding
screw motion.

described as a succession of screw motions aligning suc-
cessive discrete Frenet frames along the Cα-trace. The
centres for the constructed screw motions then define a
“polymer chain” along the protein axis. In contrast to
the Cα-trace, where the distances between adjacent Cα-
atoms are nearly constant, ∆ ≈ 0.38 nm, the distances
between adjacent screw motion centres vary and are con-
siderably shorter. The protein axis polymer chain may
be associated with a Rouse chain, where the monomers
are connected by springs.14

The left part of Fig. 1 illustrates the construction of the
screw motion centres (blue points) from a Cα-trace (red
points) which has the form of an ideal helix, such that
the corresponding screw motion centres lie on a straight
axis (except for the first and the last one). The two
Frenet frames shown in black define the screw motion
from “monomer” 2 to 3. For N Cα-atoms there are N−1
screw motion centres. The right part of the figure shows
the corresponding analysis for myoglobin (PDB structure
code 1AB6). It is important to note that ScrewFrame is
applicable to any Cα-trace, i.e. also to β-strands, which
are “flat helices”, and for unstructured parts of a pro-
tein. Secondary structure elements are characterised by
recurrent screw motion parameters and in particular by
a straight axis joining the screw motion centres. The
ScrewFrame algorithm leads effectively to a tube model
for proteins (indicated in transparent grey), where the
local tube axis is defined by the succession of screw mo-
tions centres and the local radius by the radius of the
respective screw motion. The tube can be considered as
excluded volume of the protein main chain. In polymer
physics, tube models are used to explain the slow dynam-
ics of reptation,15,16 where the tube represents the space
accessible to a single polymer inside the polymer matrix
forming its environment, but the reptation model is ob-
viously not a valid picture for the dynamics of protein
main chains.
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FIG. 2: Mean square displacement as a function of residue lag
for well-structured and unstructured proteins. In both cases
the MSDs are shown for the Cα-traces and for the protein
axes.

III. DIFFUSIVITY OF PROTEIN PATHS

A. Mean square displacements

Starting from the analogy between polymer mod-
els and discrete stochastic paths, we consider first the
ensemble-averaged mean square displacement (MSD)

W (n) =

〈
1

Nx − n

Nx−1−n∑
k=0

(x(k + n)− x(k))2

〉
, (1)

where Nx is the number of steps in the discrete path,
x(k) (k = 0, . . . , Nx − 1), and n = 0, . . . , P � Nx
to obtain good statistics. For our calculations we used
P = 100. The brackets in (1) denote an average over
the protein structures in the given ensemble, where each
protein structure counts equally. This weighting scheme,
which corresponds to unconstrained maximum entropy
weighting17, is very different from thermal averaging of
configurations in statistical mechanics, where each con-
figuration is weighted with a Boltzmann factor. Eq. (1)
is constructed in complete analogy with time-dependent
MSDs, as they are for example calculated from single
particle tracking in biological systems or from molecular
dynamics simulations. MSDs of discretely sampled tra-
jectories are traced as a function of the time lag n ≡ n∆t,
where ∆t is the sampling step, whereas the MSDs pre-
sented in this paper are traced as function of the dimen-
sionsless “residue lag”. In this context, it may appear
more appropriate to speak of “mean square distances”
instead of “mean square displacements”, because we are
not considering moving particles. However, we keep the
first term in order to maintain the analogy with trajec-
tory analyses.
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FIG. 3: Upper panel: DACFs for well structured proteins
comparing the Cα-traces and protein axes. Lower panel:The
same for unstructured proteins.

Fig. 2 shows the MSD as a function of residue lag for
well-structured and unstructured proteins. In the first
case we used protein structures from the ASTRAL data
base18,19 and in the second from the pE-DB data base.10

The diffusion coefficients indicated in the plot have been
obtained by fitting a linear expression of the form

W (n) = 2Dn+ a (2)

to the MSD data for n ≥ 20. This offset appears clearly
in the data for well-structured proteins and corresponds
roughly to the maximum length of protein secondary
structure elements. Practically no differences can be
found between the MSDs for the Cα-trace and the protein
axis, but the diffusion coefficient for unstructured pro-
teins is about ten times larger than for well-structured
proteins. We find D ≈ 0.18 nm2/res. in the first case
and D ≈ 0.017 nm2/res. in the second. Using the the
polymer-trajectory analogy, the asymptotic linear form
of W (n) for both well-structured and unstructured pro-
teins corresponds to “normal diffusion”. From this point
of view they behave like Gaussian chains or, equivalently,
like trajectories of Brownian particles. As we will show
in the following, the local behaviour is, however, very
different.

B. Displacement autocorrelation functions

In order to investigate the local properties of our
two polymer models for well-structured and unstructured
proteins, we make use of a well-known relation between
the time-dependent MSD for a diffusing classical par-
ticle and its velocity autocorrelation function (VACF),
cvv(τ) = 〈v(0) · v(τ)〉. Assuming stationarity of the

VACF one derives20

W (t) = 2

∫ t

0

dτ (t− τ)cvv(τ), (3)

were 〈. . .〉 denotes a classical ensemble average over the
phase space of the diffusing particle. The VACF itself
fulfils an equation of motion of the form21

ċvv(t) +

∫ t

0

dτ κv(t− τ)cvv(τ) = 0, (4)

where the memory kernel κ(t)v can be formally expressed
by the microscopic forces acting on the diffusing parti-
cle and between the solvent particles. In the following,
only use the general form of the equation of motion (4)
is of importance. At the velocity level, the motion of
a Brownian particle is described by the Langevin equa-
tion, v̇(t) + γv(t) = fs(t), where fs(t) is white noise,
γ > 0 a friction constant. The memory kernel has the
form κv(t) = γδ(t), where δ(t) is the Dirac delta func-
tion. Brownian motion is thus “memory-less” and the
VACF has the form cvv(t) = 〈|v|2〉 exp(−γt). We will
now investigate which kind of VACF and corresponding
memory function will emerge from the polymer paths
representing well-structured and unstructured proteins.
The VACF becomes here in fact a discrete displacement
autocorrelation function (DACF),

cdd(n) =

〈
1

Nd − n

Nd−1−n∑
k=0

d(k + n) · d(k)

〉
, (5)

where d(k) = x(k+1)−x(k) (k = 0, . . . , Nd−1) andNd =
Nx − 1. Using that the convolution is commutative, the
memory function equation (4) is replaced by the discrete
version

∆cdd(n) +

P∑
k=0

w(k)cdd(n− k)κd(k) = 0, (6)

for n = 0, . . . , P � Nd. Here w(k) are integration
weights according to the second order (trapezoidal) rule
for numerical integration, w(0) = w(P ) = 1/2 and
w(k) = 1 for k = 2, P − 1, and ∆ denotes a numerical
derivative of second order. Eq. (6) represents a triangu-
lar linear system of equations for κd(k) (k = 0, . . . , P ),
which can be solved recursively. The second order ap-
proximation for numerical integration and differentiation
ensures that, to a good approximation, κd(n) ∝ λδ0n, if
cdd(n) = cdd(0) exp(−λn) and Nd >∼ 100.

Figure 3 shows the DACFs for well-structured (upper
panel) and unstructured proteins (lower panel). In con-
trast to the MSDs, there is a clear difference between the
DACFs corresponding, respectively, to the Cα-trace and
the protein axis. The DACFs for the protein axis do not
display the fast initial oscillations which are seen in the
DACFs for the Cα-trace and which are particularly pro-
nounced for well-structured proteins. These oscillations
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FIG. 4: Upper panel: DACFs for the protein axis of well
structured proteins containing essentially α-helices and his-
togram for the lengths of the latter. Lower panel: The
same for β-strands.

can be attributed to the presence of secondary struc-
ture elements, in which the direction of the displacements
changes periodically with residue lags of approximately
2 (β-strands) to 4 (α-helices). The fact that the oscilla-
tions are less pronounced for unstructured proteins than
for well-structured ones is simply due to the fact that
unstructured proteins contain fewer secondary structure
elements.

The DACF for the protein axis of well-structured pro-
teins has a striking similarity with the VACF of simple
liquids. A surprising result of Rahman’s historic simu-
lation of liquid argon22 was that the VACF for such a
system does not decay exponentially, as for the Langevin
model, but displays damped oscillations which are as-
cribed to rattling motions of the diffusing molecules in
the cage of nearest neighbours. The lag time corre-
sponding to the first minimum corresponds here to the
typical time for a reversal of its velocity. In analogy,
the DACF for the protein axis of well-structured pro-
teins displays a pronounced minimum for residue lags
of about n = 18, which means that the displacement
vector d tends to invert its direction after 18 consec-
utive steps. The ScrewFrame protein axis may here
be considered as an analogue of a simulated (discrete)
Molecular Dynamics trajectory. Knowing that typical
secondary structure elements have about a length of 18,
such a behavior could be explained by the typical “helix-
loop-helix” successions in well-structured proteins such
as myoglobin. The term “helix” must here be under-
stood in the sense of the ScrewFrame algorithm, i.e. as a
regular secondary structure element, a category that in-
cludes α-helices and β-strands. To investigate this point
in more detail, we have computed the DACFs for the pro-
tein axis of well-structured proteins separately for sub-
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FIG. 5: Memory kernel of the protein axis DACF for well-
structured proteins and unstructured proteins.

ensembles of protein structures containing, respectively,
essentially α-helices and β-strands and recording in both
cases histograms for the lengths of these secondary struc-
ture elements. Fig. 4 shows clearly that the first min-
ima of the axis DACFs are correlated with the maximum
lengths of the secondary structure elements, which con-
firms the hypothesis that the first minimum of the DACF
reflects effectively the recurrent “helix-loop-helix” motif
in globular well-structured proteins. Since this motif is
less present in IDPs, the minimum of the corresponding
protein axis DACF is less pronounced.

The frequency of the “helix-loop-helix” motif should
also be reflected in the memory kernel of the DACF.
Fig. 5 shows the memory kernels for protein axis DACFs
of well-structured proteins and unstructured proteins.
Although the difference is small, it is systematic: The
memory function corresponding to the DACF of well-
structured is systematically larger than its counterpart
for unstructured proteins, indicating stronger “folding
memory”. The slight oscillations in the latter case should
not be overinterpreted since they might be artefacts due
to insufficient statistics.

IV. CONCLUSIONS

Our study shows that suitably defined polymer mod-
els for proteins enable a meaningful statistical analysis of
their folding properties on the basis of “polymer paths”.
Each path is here a succession of points that represent
the residues, and two types of paths are considered: 1)
the Cα-representation, where each residue is represented
by its Cα-atom, and 2) the ScrewFrame representation,
where each residue is represented by the projection of
the Cα position onto an appropriately constructed pro-
tein main axis. The resulting paths are analyzed within
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a theoretical framework that is inspired by the theory
of the generalized Langevin equation. We show in par-
ticular that the memory functions associated with the
displacement autocorrelation function along the protein
chain display much stronger “folding memory” for well-
structured proteins than for IDPs. Although the statisti-
cal basis for unstructured proteins is still fairly small, the
theoretical framework allows for discriminating between
ensembles of well-structured and unstructured proteins.
The next step will be to develop suitable simple memory

function models which explain the the data at least semi-
quantitatively and which have a physical interpretation.

Supplementary Material

See supplementary material for the complete source
code of our analysis software with the input and output
datasets.
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