
HAL Id: hal-02117588
https://hal.science/hal-02117588v1

Submitted on 2 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing With Software Collapse
Konrad Hinsen

To cite this version:
Konrad Hinsen. Dealing With Software Collapse. Computing in Science and Engineering, 2019, 21
(3), pp.104-108. �10.1109/MCSE.2019.2900945�. �hal-02117588�

https://hal.science/hal-02117588v1
https://hal.archives-ouvertes.fr


COMPUTING IN SCIENCE AND ENGINEERING 1

Dealing with software collapse
Konrad Hinsen

F

There is a good chance that you have never heard of
software collapse before, for the simple reason that it’s a
term I have made up myself two years ago in a blog post.
However, if you have been doing computational science
for a few years, there is a good chance that you have
experienced software collapse, and probably it was not a
pleasant experience. In this article, I will explain what soft-
ware collapse is, what causes it, and how you can manage
the risk of it happening to you.

What I call software collapse is more commonly referred
to as software rot: the fact that software stops working
eventually if is not actively maintained. The rot metaphor
has a long history, the first documented reference being the
1983 edition of the Hacker’s Dictionary [1]. Back then, it was
used jokingly by a small community of computer experts
who understood the phenomenon perfectly well, and there-
fore a funny but technically inaccurate metaphor was not a
problem. Today, it is being discussed in much wider circles,
for example in the context of reproducible research. In my
opinion, it is appropriate to introduce a useful metaphor
in place of the traditional humorous one, because good
metaphors contribute to a better understanding of what’s
actually going on.

The main issue with the rot metaphor is that it puts the
blame on the wrong piece of the puzzle. If software becomes
unusable over time, it’s not because of any alteration to
that software that needs to be reversed. Rather, it’s the
foundation on which the software has been built, rang-
ing from the actual hardware via the operating system to
programming languages and libraries, that has changed so
much that the software is no longer compatible with it. Since
unstable foundations resemble how a house is destroyed by
an earthquake, rather than how spoiling food is transformed
by fungi, I consider collapse an appropriate metaphor.

Fig. 1. A typical scientific software stack

THE LAYERS OF THE SOFTWARE STACK

Let’s make this more concrete by considering the layers of
a typical scientific software stack as shown in Fig. 1. Its
ultimate foundation (in black) is the computer hardware
that does all the computations. The gray layer right above
it, the operating system, performs basic services and isolates
the upper layers of the stack from hardware minutiae. So
much, in fact, that most software developers consider the
operating system, rather than the hardware, the foundation
to keep in mind for their artefacts. What computational
scientists are most concerned with are the four numbered
white layers in Fig. 1, and that is what I will concentrate on.
However, it happens occasionally that software collapse is
caused by the two foundation layers, as in the case of the
Pentium FDIV bug that made a lot of noise in 1994.

Layer 1 contains infrastructure software that is not spe-
cific to scientific computing. This includes compilers and
interpreters, libraries for data management, but also higher-
level tools such as text editors and Web browsers. For the
typical computational scientist, this is software that they
obtain from the wider non-scientific software market. They
can choose which software to use, but they do not have
much impact on its development.

Layer 2 is infrastructure created specifically for scientific
computing, but not for any particular application domain.
Here we find widely used mathematical libraries such as
BLAS, LAPACK or SciPy, scientific data management tools
such as HDF5, visualization libraries such as VTK, infras-
tructure for high-performance computing such as MPI, and
many more. These software packages are often developed
by software professionals as well, but in contrast to layer
1 software, computational scientists are the specific client
group the software is written for, which gives them more
influence on its evolution.

Layer 3 contains domain-specific research software.
These are tools and libraries that implement models and
methods which are developed and used by communities
ranging in size from a single research lab to thousands of
researchers. The examples I have quoted in Fig. 1 are from
my own field of research, biomolecular simulation, so unless
that is your field as well, you have probably never heard of
them. Often the developers are simply a subset of the user
community, i.e. scientists who do software development on
the side. Larger communities may have research software
engineers who have a science background but specialize in
software development. In either case, developers work in
very close contact with their users, who provide essential

https://en.wikipedia.org/wiki/Pentium_FDIV_bug


COMPUTING IN SCIENCE AND ENGINEERING 2

feedback not only on the quality of the software, but also on
the directions that future developments should take.

Finally, layer 4 contains the software written by scientists
for a specific research project. It can take various forms in-
cluding scripts, notebooks, and workflows, but also special-
purpose libraries and utilities. It is becoming more and
more common to publish this software in the interest of
transparency and reproducibility, but for inspection rather
than for reuse by other scientists.

Software in any of these four layers depends on software
from the same or lower layers, and is therefore at risk of
collapse if one of its direct or indirect dependencies intro-
duces changes that break backwards compatibility. There
are three main causes for such changes. What comes to
mind first is a development decision to give up backwards
compatibility in exchange for the freedom to improve the
software’s interface. But accidental breakage is probably
more common in practice, in particular when interfaces
are defined ambiguously and/or insufficiently documented.
Bugs can also cause accidental breakage, but since they will
usually be fixed upon discovery, they are less of an issue in
the long run. Finally, a dependency may simply disappear
together with the server that hosted it. That risk is highest
for software distributed via a lab’s home page, rather than
via code hosting sites such as GitHub, but code hosting sites
aren’t eternal either - anyone remember Google Code?

STRATEGIES FOR RISK MANAGEMENT

There are basically four strategies to adopt when facing
potential software collapse, and they are quite similar to the
strategies that architects can adopt when facing the risk of
earthquakes:

1) Avoid risk at all cost. Build on stable foundations
only. Don’t build a house in a zone with seismic
activity, don’t accept software dependencies unless
they have a very good track record for stability.

2) Make your construction robust. Make your house
solid enough to withstand typical seismic activity in
your area, with a safety margin.

3) When shaking foundations cause damage, do repair
work before collapse happens.

4) Accept that your construction is short-lived. In case
of collapse, start from scratch.

For architects, the fourth strategy is unacceptable, and
the third one is not that much better because it requires
constant attention to prevent a catastrophe. Number one,
on the other hand, is very restrictive. It’s what you choose
for exceptional stability needs, such as for storing nuclear
waste, but for most residential and business needs, the
second strategy represents a sweet spot between risks and
constraints.

For software developers, strategy one is also limiting, but
to highly variable degree. It is adopted by necessity when
the stakes are particularly high. Banks relying on proven
decades-old Cobol programs are a good example. In com-
putational science, a minimal-dependency strategy is usu-
ally adopted by choice to escape the collapse-management
treadmill when the cost is not too high. As an example,

number-crunching on simple data structures can be done in
C or Fortran with no other dependencies than the compiler.

When the complexity of data structures or algorithms
is higher, a reasonable development productivity requires
building on a wider range of infrastructure software, and
thus dependencies. This is particularly true for visualization
or graphical user interfaces that require extensive inter-
facing with the operating system. But perhaps the most
frequent motivation for adding dependencies in layer-3 soft-
ware is the desire to write less code oneself, avoiding both
vertical integration [2] and reinventing the wheel. The risk
of collapse incurred is then a classical case of technical debt
[3]. For layer-4 software, this almost becomes an imperative
as it is rarely possible to develop dependency-free software
for a single project within the typical constraints on time
and resources.

Strategy two, the sweet spot for buildings, is not really
applicable to software in the current state of the art. The
reason is that we do not know how to make software robust
against small incompatible changes in their dependencies.
In the physical world, the importance of a change can be
quantified, the impact of quantified changes can be esti-
mated, and sufficient safety margins can then be found. In
the world of bits, there is no such thing as a small change.
A library API either is or is not a subset of another library
API. One can imagine more tolerant APIs that include, for
example, a negotiation phase between library and client, but
I am not aware of any developments in this direction.

The third strategy is the most popular one for scientific
software development in layers 2 and 3. A team adapts its
code to breaking changes in its dependencies as part of an
ongoing development process that also includes fixing bugs
and implementing new functionality. This tends to work
rather well as long as adaptation and bug fixing represent
a minor effort compared to new developments. In that
scenario, volunteer developers are attracted to the project
by the interesting work on new functionality, and accept the
drudgery of maintenance as the price to pay. When mainte-
nance takes a larger share of the developers’ attention, this
strategy can still be made to work by actually paying people
to do the job, but funding for software maintenance remains
very difficult to find.

The fourth strategy is acceptable only for software that
has no long-term importance. The only category I can think
of is research prototypes, i.e. software that is developed in
order to gain a better understanding of a problem, but not
to be used as a tool. In today’s practice, the first part of this
strategy, “accept that your construction is short-lived”, is
also adopted by the majority of layer-4 software, not because
it is a good choice but because it is the only possible one in
a context of limited resources. The “starting from scratch”
part never happens. This is one of the causes for the all to
common non-reproducibility of computational results.

EVALUATING THE RISK OF COLLAPSE

Let’s move on to more practical considerations. You are
developing scientific software that has been or will be pub-
lished. How do you deal with the possibility of one of your
dependencies causing your work to collapse? And what are
you going to do to prevent a problem with your product to



COMPUTING IN SCIENCE AND ENGINEERING 3

cause the collapse of someone else’s software that depends
on yours?

As a first step, consider the time scale of change in your
own project. Do you develop software that implements well-
known and trusted methods for use by a large number of
researchers? In that case, your software will evolve very
slowly, fulfilling the same role for decades. At the other
extreme, if your software is developed as part of research in
a fast-moving field like machine learning or bioinformatics,
it will evolve rapidly, and last year’s release may be of
interest only for the history of science. As a rule of thumb,
the time scale of layer-4 software is the duration of the
project it serves plus the length of time you expect your
computations to remain reproducible. For layer-3 software,
it’s the time scale of methodological advance in its research
domain that matters. Check for example How old are the
methodological papers that you tend to cite. Infrastructure
software, i.e. layers 1 and 2, can fulfill its role only if it is
more conservative than anything that depends on it, so its
time scale of change is defined by its intended application
domains.

Next, you must estimate the time scale of change of
your dependencies. For layer-3 dependencies, that should
be rather straightforward, as they are likely to evolve in
the same research community as yourself, and thus evolve
on similar time scales as your own work. For infrastructure
software, the task is more difficult. The fact that you are
considering to adopt package X as a dependency does not
mean that the developers of X have your needs in mind. So
you have to look at the past evolution of X, and perhaps at
the time scales of the major clients of X, to get an idea of
what to expect for the future. For young projects, there isn’t
much past to study, so you should estimate their time scale
by their age.

Once you have all these time scale estimates, you can
identify the most risky dependencies: those whose time
scales of change are faster than your own. If you go for strat-
egy number 3, i.e. adapting your code rapidly to changes in
the dependencies, then you might have to invest a lot of
effort into catching up with those fast-moving projects.

Of course, change doesn’t mean breaking change. Your
dependencies may well evolve at a rapid pace by growing
to implement more functionality, while being careful not to
break backward compatibility. It’s therefore also important
to know the projects’ policies, and the means at their dis-
posal to actually implement them. But even if a project’s
policy assigns a high priority to preserve backward compat-
ibility, a fast pace of change is still a warning sign because
all change entails a risk of making your software collapse
by accident. Again, the best estimate is obtained by looking
at the project’s track record.

Speaking of policies, you should also think about your
own, and ideally write it down clearly as part of your
documentation. You can make your clients’ life even easier
by adding your estimate of your project’s time scale of
change.

SOFTWARE COLLAPSE IN REAL LIFE

I will conclude this article with the story that started me
thinking about software collapse, which is the story of my

first personal encounter with the phenomenon. In 2007, I
started a joint project with experimental biologists whose
goal was to find the atomic-scale structure of a protein from
low-resolution images combined with biochemical evidence
for the proximity of certain pairs of amino acid residues.
The result of this work was published in 2014, meaning that
the project took seven years to completion. That’s not un-
typical for projects that involve a back-and-forth interaction
between experiments and computations.

At the start of that project, my software environment
for molecular simulation was built around my very own
Molecular Modelling Toolkit (layer 3), a Python library
I had been developing since 1997 with Python (layer 1),
Numerical Python (layer 2), and netCDF (layer 2) as its
main dependencies. The major additional dependency for
my project-specific layer-4 work was matplotlib (layer 2) for
plotting.

I had started using Python in 1993 with version 1.3. In
2007, the current version was 2.5, but in spite of a significant
evolution of the language during those 14 years, I only had
to adapt my code once to change the name of a variable that
had become a new keyword. Numerical Python had been
around for ten years with continuous improvements, but no
breaking changes and few major bugs. It had just been su-
perseded by NumPy a year before, and everyone, including
myself, was at some stage of migration, but since NumPy
had a compatibility module for Numeric, that wasn’t much
of an issue. My own MMTK had evolved enormously but
without ever introducing breaking changes. My very first
simulation scripts from 1997 still worked fine. netCDF had
an excellent track record of stability as well. In short, I had
no reason to expect any trouble.

But then, over the seven years of the project, I ended up
spending a lot of time catching up with dependencies. New
releases of NumPy and matplotlib made my code collapse,
and the increasing complexity of Python installations added
another dose of instability. When I got a new computer in
2013 and installed the then-current versions of everything,
some of my scripts no longer worked and, worse, one
of them produced different results. Since then, software
collapse has become an increasingly serious issue for my
work. NumPy 1.9 caused the collapse of my Molecular
Modelling Toolkit, and it seems hardly worth doing much
about it because the upcoming end of support for Python 2
in 2020 will be the final death blow., since porting the code
to Python 3 would almost be a complete rewrite.

But if I were to attempt a rewrite, would I still choose the
Python ecosystem, whose time scale of change has become
too fast for the kind of work that I do? I have seen some
of my colleagues move back to C or Fortran in a quest
for stability. Should I do the same? But then, working with
complex molecules in these languages is no fun, and I’d
miss the convenience of all those nice tools and libraries
that exist in the Python universe. It’s not an easy choice.
The only conclusion I have drawn so far is to make my
software much more modular, to prevent collapse from
affecting all of it. Today I would definitely no longer start
a “molecular modelling toolkit” project combining lots of
distinct functionality in one package.

An interesting question is how it could happen that the
scientific Python ecosystem, which had been remarkably



COMPUTING IN SCIENCE AND ENGINEERING 4

stable for its first ten years, then turned into a fast-moving
target. I suspect that one cause is the enormous growth of
its user base associated with a shift in application domains
and thus time scales. Python has been widely adopted
in new fields of research, such as machine learning, that
hardly existed when Numerical Python was first released in
1995. Today’s contributors and maintainers of the scientific
Python infrastructure come from backgrounds with a much
faster time scale of change. For them, NumPy is probably a
sufficiently stable infrastructure, whereas for me it isn’t. The
second cause I see is Python 3. The cleanup of the language
at the cost of breaking backward compatibility has sent the
message to the community that this is the Right Way, or
at least a good way, to manage a long-running software
project.

The lesson to be learned from this is that second-order
effects can be important: the time scales of change are
themselves subject to change. Another second-order risk
factor is the uncertain survival probability of a project.
Funding for scientific software development is still very
difficult to obtain, and therefore projects flourishing today
could well be starving in a few years. The only reason-
able protection against this is software foundations that
have multiple implementations, ideally based on a common
written standard. C, Fortran, BLAS, and Unix are likely
to be around in 20 years even if the development teams
or companies backing them today disappear for whatever
reason. They are the software equivalent of institutions that
are too big to fail because too much depends on them.

REFERENCES

[1] Guy L. Steele Jr., Donald R. Woods, Raphael A. Finkel,
Mark R. Crispin, Richard M. Stallman and Geoffrey S. Goodfellow,
The Hacker’s Dictionary: A Guide to the World of Computer Wizards
(1983). http://jargon-file.org/archive/jargon-1.5.0.dos.txt

[2] M. Turk, Vertical Integration, Computing in Science & Engineering
17, 64 (2015)

[3] K. Hinsen, Technical Debt in Computational Science, Computing in
Science & Engineering 17, 103 (2015)

Konrad Hinsen is a researcher at the Centre de Biophysique
Moléculaire in Orléans and at the Synchrotron SOLEIL in Saint Aubin.
His research interests include protein structure and dynamics and sci-
entific computing. Hinsen has a PhD in theoretical physics from RWTH
Aachen University. Contact him at konrad.hinsen@cnrs.fr.

http://jargon-file.org/archive/jargon-1.5.0.dos.txt

	References
	Biographies
	Konrad Hinsen


