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ABSTRACT
This paper presents the use of the so called Proper Gener-

alized Decomposition method (PGD) for solving nonlinear vi-
bration problems. PGD is often presented as an a priori reduc-
tion technique meaning that the reduction basis for expressing
the solution is computed during the computation of the solution
itself. In this paper, the PGD is applied in addition with the Har-
monic Balance Method (HBM) in order to find periodic solutions
of nonlinear dynamic systems. Several algorithms are presented
in order to compute nonlinear normal modes and forced solu-
tions. Application is carried out on systems containing geometri-
cal nonlinearity and/or friction damping. We show that the PGD
is able to compute a good approximation of the solutions event
with a projection basis of small size. Results are compared with a
Proper Orthogonal Decomposition (POD) method showing that
the PGD can sometimes provide an optimal reduction basis rel-
ative to the number of basis components.

INTRODUCTION
The objective of this paper is to evaluate the efficiency of

the proper generalized decomposition (PGD) for solving nonlin-
ear vibration problems in the context of reduced order modeling.
Most of the reduction method (e.g. krylov subspace [1,2], proper
orthogonal decomposition [3], dual modes [4]) aim at reducing
the model by first computing a set of vector which will constitute
a reduced basis for solving the problem. This basis is computed

∗Address allcorrespondence to this author.

relatively to some information already known about the system
behaviour. For instance, the Proper Orthogonal Decomposition
(POD) uses preliminary simulations (or mesurements) to extract
a basis by using data analysis tools such as singular value de-
composition. Thus those methods are often calleda posteriori
reduction methods. Contrary to those methods, the PGD aims
at finding a reduced basis during the computation of the solution
itself without any previous information on the system, thus mak-
ing it ana priori reduction method. PGD was introduced under a
different name (radial time-space approximation) by P.Ladeveze
in the LATIN method [5]. In the last decade, A.Nouy wrote a
series of paper on the use of PGD for solving linear stochastic
problems [6–8] and first order (in time) linear partial differential
equations [7, 9]. The core of the method resides in separation
of variable (also called radial decomposition by P.Ladeveze [5]),
alternate Galerkin projections in time and space and fixed point
computation. In this paper the PGD is used for finding steady
state solutions of nonlinear second order differential equation
arising for instance when modeling nonlinear structural dynamic
problems with finite element methods. We will show how the
harmonic balance method (HBM) can be used in conjunction
with PGD for finding periodic solution of the problem. A com-
parison will be drawn between PGD and POD on a numerical
example. The paper is organized as follows: the first section
presents generically the kind of nonlinear problems studied in
this paper along with the description of Galerkin projections and
the particular case of the Harmonic Balance Method. In the sec-
ond section the POD and the PGD are presented in detail along
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with the modifications used to find periodic solutions. The last
section is dedicated to numerical examples and to the comparison
between POD and PGD.

NONLINEAR VIBRATION PROBLEMS AND GALERKIN
PROJECTIONS

In this section we presents the kind of nonlinear problems
studied in the paper and the application of Galerkin projection
on such problems.

Nonlinear vibrations
Problems considered in this paper are related to the study of

nonlinear vibration of structural systems. After discretization of
the problem (e.g. by finite elements methods) one have to solve a
systems ofn second order nonlinear differential equations, where
n is the number of degree of freedom (dof) of the model. Gener-
ally speaking the system can be put in the following form:

Müuu+Cu̇uu+Kuuu+ggg(uuu, u̇uu) = fff (t) (1)

whereM,C,K are respectively the mass, damping and stiffness
matrices of sizen× n, uuu is the vector of dof,fff (t) is the vector
of excitation forces which will be assumed to be harmonic with
periodT, andggg is the vector of nonlinear forces acting on the
system. In this paper we will consider a polynomial forces of
maximum degree 3 corresponding to geometric nonlinearity, this
force can be expressed as follows [4]:

gggi(uuu) = ∑
j

k(1)i j u j +∑
j ,k

k(2)i jk u juk+ ∑
j ,k,l

k(3)i jkl u jukul ,1≤ i ≤ n (2)

wherek(1),k(2),k(3) are tensors of coefficient computed by the
finite element model.

Galerkin projections
Here we briefly recall the results given by Galerkin projec-

tion applied to the system in Eq.(1) as they will be used through
the paper. Galerkin projection assumes a separation of vari-
ables such that a solutionuuu can be expressed under the form
uuu= Pqqq(t) = ∑r

i=1 pppiqi(t) with P a matrix of sizen× r andqqq(t) a
vector of sizer. A time (resp. space) projection basis of sizer is
then set and projections are computed in order to derive a purely
spatial (resp. temporal) system.

Time projections In the case of a projection in time, the
basisqqq is set and we search forP such that the following holds

for 1≤ i ≤ r:

r

∑
j=1

[

∫

I
qi q̈ jM+

∫

I
qiq̇ jC+

∫

I
qiq jK]pppj +

∫

I
qiggg(Pqqq,Pq̇qq) =

∫

I
qi fff

(3)
which can be rewritten as:

(I2⊗M+ I1⊗C+ I0⊗K)p̃pp+ g̃gg(p̃pp) = f̃ff (4)

where p̃pp = [pppT
1 , . . . , ppp

T
r ]

T , g̃gg(p̃pp) = [
∫

I qiggg]1≤i≤r and f̃ff =

[
∫

I qi fff ]1≤i≤r are vector of sizenr and Ik = [
∫

I qi
dkq j

dtk
] are matri-

ces of sizer× r. The approximated solutionuuua(t) =Pqqq(t) is then
computed by solving thenr nonlinear algebraic equations Eq.(4).
A typical use of Galerkin projection in time is the harmonic bal-
ance method described later in the paper.

Space Projections In the case of a projection in space,
the basisP is set and we search forqqq(t) such that the following
holds:

PT(MPq̈qq+CPq̇qq+KPqqq+ggg(Pqqq,Pq̇qq)) = PT fff (5)

or

Mr q̈qq+Cr q̇qq+Krqqq+gggr(qqq, q̇qq) = fff r (6)

whereAr = PTAP,A = M,C,K are reduced matrices of sizes
r × r andgggr , fff r reduced vector of sizer. The approximated so-
lution is then computed by solving ther non linear differential
equations Eq.(6).

Harmonic Balance Method
The harmonic balance method is a particular case

of Galerkin projection in time, and a widespread way
to find periodic solutions of nonlinear systems such as
Eq.(1) [10–13]. The basis used for this projection is
a truncated Fourier basis up toH harmonics TTT(t) =
[1, cos(ωt), sin(ωt), . . . , cos(Hωt), sin(Hωt)] and the time in-
terval for integration is reduced toI = [0, 2π/ω ]. In this case the
integralsIk Eq.(4) are simplified intoI0 = Id (identity matrix),

I1 = D = ω diag(0,

[
0 −1
1 0

]
, ...,H

[
0 −1
1 0

]
), I2 = D2 leading

to the following algebraic system with̃n= 2H +1 equations:

L(ω)p̃pp+ g̃gg(p̃pp) = f̃ff (7)
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with L = D2⊗M+D⊗C+ Id ⊗K a matrix ofsize(2H+1)n×
(2H +1)n, g̃gg and f̃ff vectors of size(2H +1)n corresponding re-
spectively to the nonlinear forces and the excitation forces in the
frequency domain. When no analytical expressions can be de-
rived for the nonlinear forces in the frequency domaing̃gg, an al-
ternate frequency time (AFT) procedure is used to approximate
g̃gg [14].

Let distinguish the two cases of forced and free solutions. In
the case of forced solution, the frequencyω is taken equal to the
frequency of the harmonic forcefff , that isω = 2π/T. In the case
of free solution, the excitation forces are null, and the frequency
ω is considered as an unknown. In this case a phase equation is
added (for instance null velocities att = 0) along with an equa-
tion controlling the amplitude of the displacements in order to
avoid obtaining the null solution.

MODEL REDUCTION METHODS: POD AND PGD
Proper Orthogonal Decomposition

The proper orthogonal decomposition is a model reduction
technique which has been employed in various domain such as
fluids [15] or structural [3] dynamics. It consist in extracting a
reduction basis from data acquired during numerical simulations
or measurements. From a solutionuuu= uuu(xxx, t) the reduction basis
V(x) is computed such that it maximize the average in time of the
inner product〈uuu(x, t),V〉. The result is a set of proper orthogonal
modes (POM)VVV i(xxx) associated to a set of proper orthogonal val-
ues (POV)λi . The participation of POM numberi in the solution
is given by the ratioλi/∑ j λ j . A convenient way to compute the
reduced basis in the discrete case is the so called snapshot meth-
ods [3]. From a set of dataU = uuu(xxxi , t j), the POD is obtained by
performing a singular value decomposition of the matrixU, i.e.
U = VSWT whereV is the matrix of proper orthogonal modes
andS the matrix containing the singular values on its diagonal.
When carrying the POD, one observe that the magnitude of the
POV is rapidly decreasing by several order of magnitude. This
fact allow for model reduction by building a reduction basisP
composed of only ther most significant POMs. The reduction
is then carried out by searching an approximated solutionuuua of
Eq.(1) under the formuuua(t) = Pqqq(t), and performing a Galerkin
projection in space as described in Eq.(6). The resolution of the
reducedr differential equations finally allow to find the approxi-
mated solutionuuua.

Although the POD can give good approximations, its ma-
jors drawback resides in the fact that data is needed to build the
reduced model. If the data comes from numerical simulations,
this mean that one has to solve then dof system in Eq.(1) (e.g.
by numerical integration, or HBM) for various loading casefff .
Those simulations can time consuming and are only valid for an
excitation forcefff lying in the neighborhoods of the load cases
used to derived the reduced basis.

Proper generalized decomposition
The PGD is a numerical method allowing to reduce models

during the computation of the solution itself. The method and the
related algorithms have been described in numerous papers [6–
8,16] and especially in [9]. It is based on variable separation and
on an iterative procedure including alternate Galerkin projection
in space and in time. In this section we describe how we applied
the PGD to find approximated solutions of system in Eq.(1). Two
variants are presented, namely optimal Galerkin PGD (oPGD)
and progressive PGD (pPGD), along with their corresponding
algorithms.

Optimal Galerkin PGD During the optimal
Galerkin PGD, solutions are sought under the form
uuum(t) = ∑m

k=1 pppkqk(t) = Pqqq(t). The matrix P and the time
evolution vectorqqq(t) are computed such that the following
criterion hold simultaneously:

B(uuum,P∗qqq(t)) = L(P∗qqq(t)), ∀P∗ ∈ E
oPGD
S (8a)

B(uuum,Pqqq∗(t)) = L(Pqqq∗(t)), ∀qqq∗(t) ∈ E
oPGD
T (8b)

whereE oPGD
S is the set of real-valued matrix of sizen×m,

E oPGD
T is the set of periodic functions vector of sizemwith period

T = 2π/ω continuously derivable andB, L are two applications
defined by the following relations:

B(uuu,vvv) =
∫

I vvvT(Müuu+Cu̇uu+Kuuu)+
∫
I vvvTggg(uuu, u̇uu)

L(vvv) =
∫

I vvvT fff
(9)

We define the two applicationsSSSm : qqq 7→ P such that Eq.(8a)
holds (the space problem), andTTTm : P 7→ qqq such that Eq.(8b)
holds (the time problem). The couple(Pm,qqqm(t)) is given when
stationarity has been reached, i.e whenPm = SSSm(qqqm(t)) and
qqqm(t) = TTTm(Pm).

When applied to problem in Eq.(1), this procedure reduces
to perform Galerkin projections in time and in space alterna-
tively. The space problem corresponds to solve equation Eq.(4)
and the time problem corresponds to solve Eq.(6).

Algorithm 1 gives the algorithm corresponding to oPGD.
At each stepk, the computation of the couple(Pm,qqqm(t)) re-
quires solvingnmnonlinear algebraic equation (space problem in
Eq.(4)) andm nonlinear differential equations (time problem in
Eq.(6)). The time problem is quite small (onlym equations) and
can solved by HBM efficiently. The resolution of the space prob-
lem can become very costly when dealing with large number of
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Algorithm 1 ALGORITHM FOR OPTIMAL PGD
for m= 1 to mmax do

Initializeqqqm(t)
for k= 1 to kmax do

ComputePm = SSSm(qqqmmm) by solving Eq.(4)
OrthonormalizePm [optional]
Computeqqqm(t) = TTTm(Pm) by solving Eq.(6)

end for
Setuuum(t) = Pmqqqm(t) and check convergence

end for

dof n. To improve performances, solutions of the space problem
can be searched for in a smaller space, for instance by searching
solutions as a linear combination of linear modes shapes [17].

Checking convergence is done by monitoring the rela-
tive changeε between two solutions given byε = ‖uuum+1 −
uuum‖/‖uuum‖.

Progressive PGD During the progressive PGD, solu-
tions are computed iteratively. At stepm, the previously com-
puted solutionuuum−1 is completed with a new termpppmqm(t) such
that uuum(t) = uuum−1(t) + pppmqm(t) with uuum−1 = ∑m−1

k=1 pppkqk(t) =
Pm−1qqqm−1(t). The vectorppp and the time evolutionq(t) are com-
puted such that the following orthogonality criterion hold simul-
taneously:

B(uuum, ppp∗q(t)) = L(ppp∗q(t)), ∀ppp∗ ∈ E
pPGD

S

B(uuum, pppq∗(t)) = L(pppq∗(t)), ∀q∗(t) ∈ E
pPGD

T

(10)

whereE
pPGD

S is the set of real-valued vector of sizen, E
pPGD

T
is the set of periodic function of periodT = 2π/ω , B(uuu,vvv) and
L(vvv) are given in Eq.(9). We define the two applicationsSm−1 :
q 7→ ppp such that Eq.(10.1) holds (the space problem), andTm−1 :
ppp 7→ q such that Eq.(10.2) holds (the time problem). The couple
(pppm,qm(t)) is given when stationarity has been reached, i.e when
pppm = Sm(qm(t)) andqm(t) = Tm(pppm).

This procedure again results in Galerkin projections, but the
projection is carried out on only one vector of the basis (eitherpppm
or qm(t)), leading to the following equation for the time (Eq.(11))
and the space problem (Eq.(12)):

pT
m(Mpppmq̈m+Cpppmq̇m+Kpppmqm)+ggg(Pqqq+ pppmqm)

= pT
m fff −pT

m(MPq̈qq+CPq̇qq+KPqqq)
(11)

∫

I
qmq̈mM+

∫

I
qmq̇mC+

∫

I
qmqmK]pppm+

∫

I
qmggg(Pqqq+ pppmqm)

=
∫

I
qm fff −

m−1

∑
k=1

[
∫

I
qmq̈kM+

∫

I
qmq̇kC+

∫

I
qmqkK]pppk

(12)

Algorithm 2 ALGORITHM FOR PROGRESSIVE PGD
for m= 1 to mmax do

Initializeqm(t)
for k= 1 to kmax do

Computepppm = Sm(qm) by solving Eq.(11)
Orthonormalizepppm relative toppp1, . . . , pppm−1 [optional]
Computeqm(t) = Tm(pppm) by solving Eq.(12)

end for
if updatethen

Update time functionsqqqm = TTTm(Pm) by solving Eq.(6)
Setuuum(t) = Pmqqqm(t) and check convergence

else
Setuuum = uuum−1+ pppmqm(t) and check convergence

end if
end for

The algorithm used to implement pPGD is depicted in Al-
gorithm 2. At each stepm the computation of the new term to
be added consist in solvingkmax times an algebraic problem with
n unknowns and a differential equation with one variable, where
kmax is the number of iteration needed to achieve stationarity.
Since we are searching for periodic solutions, HBM is used to
solve time problems in Eq.(12). The number of pPGD stepmmax

can be determined by monitoring the relative change in norm be-
tween two solutions (as in oPGD), or can be set a priori by the
user. The results of the pPGD can be improved by updating the
whole set of time functionsqqq after a new couple(pppm,qm) has
been computed. This update is done by solving the time prob-
lem associated with the mappingTTT : P 7→ qqq(P), i.e. by solving
Eq.(6). pPGD can also be improved by computing several term
at the same times. This method is based on the progressive PGD,
but instead of computing one term(pppm,qm) at each iteration we
choose to computer terms simultaneously (withr remaining rel-
atively small) by solving spacial and time problems derived from
oPGD.

Remarks about the time and space problems In all
PGD methods described above, time problems (Eqs.(6) or (12))
are solved by HBM withH harmonics in order to find steady
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FIGURE 1. SCHEME OF THE CLAMPED/CLAMPED BEAM
AND REFERENCE ELEMENT

TABLE 1. NUMERICAL PARAMETERS USED IN THE BEAM
MODEL

L (m) h (m) ES (Pa.m2) EI (Pa.m4) ρS(kg.m−1)

1 3·10−2 1.89·108 1.41·104 7.02

state solutions. This mean that the set of differential equations
defining the time problem (Eqs.(6) or (12)) is transformed into a
system of nonlinear algebraic equation having the form of Eq.(7)
Since time problems only consists in a small set of differential
equations of sizem (m≤ n), a large number of harmonicsH
can be retained, leading to solve a system of algebraic equations
with m(2H +1) unknowns at each iteration of oPGD (or at each
update of pPGD).

When building space problems (Eqs.(4) or (11)) integrals
involvingq(t), q̇(t) andq̈(t) are easily computed in the frequency
domain. Indeed, the solution of time problems by HBM gives
qi(t) = T(t)q̃qqi whereT(t) contains the 2H+1 vectors of Fourier
basis. Integrals can then be approximated by:

Ik =
∫

I
qi(t)

dqk
j

dtk
(t)dt ≈ q̃qqT

i H(Dkq̃qq j) (13)

whereH =
∫

I TTTT(t)TTT(t)dt is a 2H +1×2H+1 matrix.

NUMERICAL APPLICATION
Beam featuring geometric nonlinearities

The system considered here consists in an Euler-Bernoulli
beam as depicted in Fig.1. Since the beam is clamped/clamped,
interactions can occur between axial and transverse displace-
ments leading to geometric nonlinearities. The numerical values
of physical and geometrical parameters are given in Table 1. The
beam is discretized by mean of finite element method with three
dof per node (axial displacementu, transverse displacementv,
rotationθ ) andne = 20 elements.
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m
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FIGURE 2. DISPLACEMENT OF THE CENTER OF THE BEAM
AS A FUNCTION OF FREQUENCY FOR THE REFERENCE SOLU-
TION

After assembling and adding a damping termC = 3M, the
resulting vibration equation for the beam is in the form of Eq.(1)
with n= 60 dof and with the nonlinear termggg arising from geo-
metric nonlinearities given by Eq.(2).

Forced Solution
In this section we consider that the beam is excited at its cen-

ter by an purely transverse harmonic forcef (t) =Acos(ωt) with
A = 200N. The reference solutionuuure f is computed by HBM
with H = 3 harmonics forω

2π from 155 to 180 Hz (upward di-
rection) and forω

2π from 190 to 162 Hz(downward direction) see
Fig.2.

For POD, at each frequency step, a POD is computed from
the reference solution, and an approximated solutionuuum

POD is
computed by projecting the system onto a basis withmelements
(this ideal version of the POD have no practical interests but for
comparison with other methods).

For optimal PGD the initialization ofqqqω1
m (t) (Alg.1) is cho-

sen randomly for the first frequency step, and for all subsequent
steps it is initialized with the previously computed valueqqqωi−1

m .
The same strategy is used for progressive PGD (Alg.2) along
with the update step each time a new vector has been computed.
Solutions computed by oPGD (resp.pPGD) withm terms are de-
noteduuum

oPGD (resp.uuum
pPGD). Since no theoretical results are avail-

able for proving the convergence of our fixed point problem, we
did some preliminary studies about the numerical convergence
of the fixed point problem. It turns out that the convergence is
actually very fast and can be achieve most of the time within 3
iterations. Consequently, we choose to set the number of maxi-
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mum iterations tokmax= 3. Finally the threshold for the relative
change is set toε = 0.005.

Solution are compared relative to the reference solution by
using the relative differenceεr = ‖uuure f(t)−uuu(t)‖/‖uuure f‖.

Figure 3 depicts the error relative to the reference solution
for various number of retained modem≤ 4 for the three meth-
ods POD, oPGD and pPGD. For POD the error is clearly de-
creasing each time a new mode is retained. For oPGD we can
see that increasing the number of maximum mode does not al-
ways decrease the error since the number of mode is actually
controlled by the relative change in solutionε. The same remark
holds for progressive PGD. We can see that oPGD gives very
similar result than POD in term of error, and can sometimes pro-
vides better result than POD for a fixed number of modes, for
example oPGD withm= 2 produces a smaller error than POD
with the same number of mode (this is also happening form= 4
see Fig.3) (a similar fact can be observed for pPGD withm= 2
which produces a smaller error than POD withm= 2). We be-
lieve this phenomenon is due to the fact that oPGD introduces ax-
ial displacements sooner that POD (recall that nonlinearity arise
from axial/transverse coupling), axial displacements are present
in the second mode of oPGD and in the third mode of POD (see
Figs.4,6).

In term of performance, solving the spatial problem is very
costly since one need to solve a nonlinear algebraic set ofn×m
equations with Newton Raphson method. One way to improve
performance would be to consider an incremental or a Newton
linearization of the space problem as proposed in [18]. Another
mean of improving performance is to seek the solution of the
spatial problem in a smaller subspace as explained in [17].

Free Solutions
In this section we search for free solutions of Eq.(1) i.e.

nonlinear normal modes (NNM). We only concentrate on the
first mode of vibration but this procedure can be applied for any
mode. A reference solution is computed by HBM withH = 3
harmonics and with cosine term only, this last condition corre-
sponds to a phase condition in which the velocities are set to
zeros fort = 0. As in the forced case, a POD basis withm
components is computed from the reference solution for each
frequency step, and an approximated solution is obtained by pro-
jecting the system onto this basis. Finally, a PGD approximation
of the NNM is computed by optimal PGD. For the first frequency
step, the solution is initialized with the linear mode and then the
amplitude of the time evolution of the first mode is controlled in
order to avoid null solution. The parameter used for this compu-
tation with oPGD arekmax= 3 andε = 0.005.

Figure 7 shows the backbone curve of the first mode ob-
tained for the various methods (HBM,POD,oPGD) and Fig.8
show the relative error with respect to the reference solution.
Once again we see that oPGD gives results very close to POD
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FIGURE 4. DECOMPOSITION OF THE SOLUTION COMPUTED
BY oPGD FORm= 4 AT ω

2π = 180 (shape have been normed for the
purpose of comparison)

when using only one mode in the decomposition. Form= 2 we
can see that oPGD produces a smaller error than POD, and that
this solution is very close to the reference one.

CONCLUSION
In this paper proper generalized decomposition was applied

to solve nonlinear vibration problem. During PGD the solution
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FIGURE 6. DECOMPOSITION OF THE SOLUTION COMPUTED
WITH oPOD FORm= 4 AT ω

2π = 180

of the space problems was found by using the harmonic bal-
ance method thus allowing to search for periodic solutions. Sev-
eral algorithm were applied through a numerical example con-
sisting in beam featuring geometric nonlinearity, modeled by fi-
nite element method. Comparison were drawn between solution
computed by HBM, POD and PGD. Results show that optimal
Galerkin gives very similar result than POD and can sometimes
produce a smaller error than POD for the same number of mode
in the solution. Although PGD gives acceptable results, work has
to be done on performance and particularly on solving the space
problem which can be very costly for large dof systems.
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FIGURE 7. BACKBONE CURVE OF THE FIRST NONLINEAR
MODE COMPUTED BY HBM, POD and oPGD

165 170 175 180
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

frequency

lo
g 

ε r

 
160 170 180

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

frequency

lo
g 

ε r

oPGD m=1
POD m=1

oPGD m=2
POD m=2

FIGURE 8. RELATIVE ERRORεr FROM THE REFERENCE SO-
LUTION FOR POD AND oPGD FORm= 1,2 (MNL computation)

ACKNOWLEDGMENT
Thanks go to SNECMA for its technical and financial sup-

port.

REFERENCES
[1] Bai, Z., and Yangfeng, S., 2005. “Soar: A second order

arnoldi method for the solution of the quadratic eigenvalue
problem”. Matrix Anal. Appl., 26, pp. 640–659.

[2] Bai, Z., and Li, R., 2005. “Strcuture preserving model re-

7



duction using a krylov subspace projection formulation”.
Communication in mathematical science,3, pp. 179–199.

[3] Kerschen, G., Golinval, J., Vakakis, A., and Bergman, L.,
2005. “The method of proper orthogonal decomposition
for dynamical characterisation and order reduction of me-
chanical systems: an overview”.Nonlinear dynamics,41,
pp. 147–169.

[4] Chang, Y., Lernout, E. C., Mignolet, M., and Soize, C.,
2011. “Reduced order modelling for the nonlinear geomet-
ric response of some curved structures”.
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