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Credit default swaps in two-dimensional

models with various information flows∗

Pavel V. Gapeev† Monique Jeanblanc‡

We study a credit risk model of a financial market in which the dynamics of intensity

rates of two default times are described by linear combinations of three independent

geometric Brownian motions. The dynamics of two default-free risky asset prices are

modeled by two geometric Brownian motions which are dependent of the ones describing

the default intensity rates. We obtain closed form expressions for the rational prices of

both risk-free and risky credit default swaps given the reference filtration initially and

progressively enlarged by the two default times. The accessible default-free reference

filtration is generated by the standard Brownian motions driving the model.

1 Introduction

In the present paper, we derive closed form expressions for the rational (or no-arbitrage) prices

of credit default swaps (or CDSs for short) without and with consideration of counterparty

risk in a model of a financial market given the flows of information which are expressed by
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the reference filtration progressively and initially enlarged by means of the default times. It is

assumed that the recovery payoffs depend on the default times and the current prices of the

underlying default-free risky assets taken at the times of defaults. The dynamics of market

prices of the two risky assets are described by geometric Brownian motions driven by con-

stantly correlated standard Brownian motions. The default times are given by the first times

at which linear combinations of three integral processes of independent geometric Brownian

motions hit certain random thresholds which are independent of each other and of the stan-

dard Brownian motions driving the model. The dependence between the default times is then

expressed by means of the dynamics of their intensity rates given by linear combinations of

the three independent geometric Brownian motions which are driven by standard Brownian

motions constantly correlated with the ones related to the risky asset prices. The default-free

reference filtration accessible from the market is generated by the standard Brownian motions

driving the model. The rational prices of the resulting defaultable European style contingent

claims are explicitly expressed through the transition densities of the marginal distributions of

the geometric Brownian motions and their integral processes describing the model.

The credit risk models in which the default times are defined as the first times at which

the associated cumulative intensity processes reach certain random thresholds were initiated

by Lando [21]. The computations of conditional distributions of the default times given the

observable filtrations in such a first passage intensity model with independent default intensi-

ties and correlated thresholds were presented in Schönbucher [23; Chapter X, Proposition 10.9].

Brigo and Chourdakis [7] studied the problem of pricing of CDSs in such a model with coun-

terparty risk in which the intensities of the default times are independent of each other, but

the associated random thresholds are correlated. Brigo, Capponi, and Pallavicini [6] developed

the rational pricing framework for bilateral counterparty credit risk models and specified the

credit and debit valuation adjustments in the cases in which the default intensity rates are

expressed by means of the (strictly positive) Feller’s square root diffusion processes, and the

associated thresholds are correlated through a Gaussian copula. Bielecki et al. [3] provided the

analytic basis for the quantitative methodology of dynamic hedging of the counterparty risk

and developed the main theoretical issues of dynamic hedging of credit valuation adjustments.

Assefa et al. [1] derived a model-free general counterparty risk representation formula for the

credit valuation adjustment of a netted and collateralised portfolio. Some related discussions

on modelling and computational aspects regarding managing of exposure to counterparty risk

are provided in the recent monographs by Gregory [20], Cesari, Aquilina, and Charpillon [10],
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Brigo, Morini, and Pallavicini [8], and Crépey, Bielecki, and Brigo [11].

El Karoui, Jeanblanc, and Jiao [15]-[16] emphasised the roles of conditional distributions

of several default times in the intensity credit risk models given the appropriate filtrations

and presented general expressions for the rational prices of various defaultable European style

contingent claims. In this paper, we consider a model in which the default intensity rates are

explicitly given as linear combinations of three independent geometric Brownian motions which

are dependent of the ones describing the dynamics of the risky asset price processes. We then

use the Markov property of the resulting multi-dimensional process describing the model and

apply the explicit formula from Yor [25] for the joint marginal density of a geometric Brownian

motion and its integral process to derive closed form expressions for the rational prices of both

risk-free and risky CDSs given the reference filtration progressively and initially enlarged by

means of the default times. The model of a financial market with such dynamics of prices of

dependent risky assets and default intensity rates in which the rational prices of defaultable

European style contingent claims can be computed explicitly appears to be novel for the related

literature, to the best of our knowledge. We also note that the model proposed in the paper

keeps its Markovian feature in the filtrations which are obtained by means of the progressive

and initial enlargements of the initial Brownian reference filtration. The results of this paper

can naturally be extended to the case of credit risk models with more than two default times

and more than two underlying risky assets of a similar dependence structure. The rational

prices of CDSs and other European style defaultable contingent claims can then be expressed

through the transition densities of the marginal distributions of the resulting multi-dimensional

continuous Markov process describing the model.

The paper is organised as follows. In Section 2, we introduce a credit risk model of a

financial market with the dependence structure of the dynamics of prices of two risky assets

and two default intensity rates described above. In Section 3, we derive explicit expressions

for the conditional distributions of two default times given the accessible default-free reference

filtration and the observable filtrations. In Section 4, we compute closed form expressions

for the rational prices of risk-free CDSs (without consideration of counterparty risk) in the

models with one and two underlying risky assets given the reference filtration progressively and

initially enlarged by the default times. In Section 5, we compute closed form expressions for

the rational prices of risky CDSs (with consideration of counterparty risk) in the model with

two underlying risky assets given the reference filtration progressively and initially enlarged by

the default times. The main results of the paper are stated in Propositions 4.1-4.3, and 5.1.
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2 The model

In this section, we introduce a model of a financial market with two defaultable risky assets.

We also define the accessible default-free reference filtration as well as the observable filtrations

and refer some known results and distribution laws.

2.1 The dynamics of default intensities and firm values

Let (Ω,G, P ) be a probability space supporting independent standard Brownian motions W j =

(W j
t )t≥0 and Bj = (Bj

t )t≥0 , j = 0, 1, 2, as well as the random variables Ui , i = 1, 2, which

are uniformly distributed on (0, 1). Suppose that the variables Ui , i = 1, 2, are independent

of each other and of the processes W j and Bj , j = 0, 1, 2. We define the random times τi ,

i = 1, 2, by

τi = inf
{
t ≥ 0

∣∣ δiA0
t + λiA

i
t ≥ − lnUi

}
(2.1)

where the processes Aj = (Ajt)t≥0 , j = 0, 1, 2, are given by

Ajt =

∫ t

0

Y j
s ds (2.2)

for all t ≥ 0, and some δi, λi ≥ 0, i = 1, 2, fixed, so that the processes (δiA
0
t + λiA

i
t)t≥0 ,

i = 1, 2, form the cumulative intensities, and the processes (δiY
0
t + λiY

i
t )t≥0 , i = 1, 2, are

the intensity rates of the random times τi , i = 1, 2. These notions mean that the processes

(I(τi ≤ t)− δiA0
t∧τi − λiA

i
t∧τi)t≥0 , i = 1, 2, are martingales in their natural filtrations. Assume

that the processes Y j = (Y j
t )t≥0 , j = 0, 1, 2, admit the representations

Y j
t = exp

((
βj −

γ2j
2

)
t+ γjW

j
t

)
(2.3)

for all t ≥ 0, and some constants βj ∈ R and γj > 0, j = 0, 1, 2. Note that the random times

τi , i = 1, 2, defined in (2.1) with (2.2) and (2.3) can occur simultaneously only with probability

zero, and thus, the property P (τ1 = τ2) = 0 holds, by construction.

Suppose that the random times τi , i = 1, 2, represent the default times of two firms (ref-

erence credits) with the value dynamics described by the processes X i = (X i
t)t≥0 , i = 1, 2,

given by X i
t = (Y i

t )αi(Z0
t )ζiZi

t , for some αi and ζi ∈ R , i = 1, 2, fixed. Here, the processes

Zj = (Zj
t )t≥0 , j = 0, 1, 2, are defined by

Zj
t = exp

((
ηj −

θ2j
2

)
t+ θj B

j
t

)
(2.4)
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for all t ≥ 0, and some constants ηj ∈ R and θj > 0, j = 0, 1, 2. We further assume that

the discounted firm value processes (e−rtX i
t)t≥0 , i = 1, 2, are martingales with respect to the

pricing measure P under which the processes Y j and Zj , j = 0, 1, 2, admit the representations

in (2.3) and (2.4), where r ≥ 0 is the interest rate of a riskless bank account. Thus, taking into

account the independence of the driving processes W j and Bj , j = 0, 1, 2, we may conclude

that the equality

βiαi +
γ2i
2
αi(αi − 1) + η0ζi +

θ20
2
ζi(ζi − 1) + ηi = r (2.5)

should hold, for every i = 1, 2.

2.2 Some filtrations and distribution laws

Let us denote by (Ft)t≥0 the natural filtration of the processes Y j and Zj , j = 0, 1, 2, defined

by Ft = σ(Y j
t , Z

j
t | 0 ≤ s ≤ t, j = 0, 1, 2), for all t ≥ 0, which coincides with the one of the

driving standard Brownian motions W j and Bj , j = 0, 1, 2, given by σ(W j
t , B

j
t | 0 ≤ s ≤ t, j =

0, 1, 2), for all t ≥ 0. We define the progressively enlarged filtrations (Git)t≥0 , i = 1, 2, by

Git = Ft ∨ σ(τi ∧ t), and (Gt)t≥0 by Gt = Ft ∨ σ(τi ∧ t) ∨ σ(τ3−i ∧ t), for all t ≥ 0. Let us

also introduce the initially enlarged filtrations (F it )t≥0 , i = 1, 2, by F it = Ft ∨ σ(τi), for all

t ≥ 0. We actually consider the smallest right-continuous completed filtrations that contain

the appropriate filtrations defined above. The default-free reference filtration (Ft)t≥0 reflects

the information flow which is accessible for the investors trading in the market, while the

filtrations (Git)t≥0 , i = 1, 2, and (Gt)t≥0 reflect the accessible information including the one

about the appearance of the default times. Note that, by virtue of the independence of the

random variables Ui , i = 1, 2, and the filtration (Ft)t≥0 , it follows that (Ft)t≥0 is immersed

in the filtration (Ft ∨ σ(Ui)∨ σ(U3−i))t≥0 , and thus, in the smaller filtrations (Git)t≥0 , i = 1, 2,

and (Gt)t≥0 (see, e.g. [5] and [17]). Moreover, by virtue of the independence of the random

variable U3−i and the filtration (Git)t≥0 , it follows that (Git)t≥0 is immersed in the filtration

(Ft ∨ σ(Ui) ∨ σ(U3−i))t≥0 , and thus, in the filtration (Gt)t≥0 , for every i = 1, 2. This notion is

also known as the (H)-hypothesis for the filtrations (Ft)t≥0 and (Gt)t≥0 in the literature (see,

e.g. [5], [22; Chapter V, Section 4], [4; Chapter VIII, Section 3], or [2; Chapter III]). Note that

the immersion of (Ft)t≥0 in (Git)t≥0 is equivalent to the conditional independence of Git and

F∞ with respect to Ft , for i = 1, 2, while the immersion of (Ft)t≥0 in (Gt)t≥0 is equivalent to

the conditional independence of Gt and F∞ with respect to Ft , for all t ≥ 0 (see, e.g. [13]).

Let us now consider a filtration (Kt)t≥0 larger than the filtration (Ft)t≥0 , that is, Ft ⊆ Kt ,
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for all t ≥ 0. Then, if Kt coincides with Ft on the event Jt ∈ Kt such that P (Jt) > 0, that

is, if for any Kt ∈ Kt , there exists an event Ft ∈ Ft such that Jt ∩ Kt = Jt ∩ Ft , then the

conditional expectation E[V | Kt] of an integrable random variable V on the event Jt is equal

to an Ft -measurable random variable. Hence, according to the results in [12; page 122] and [4;

Section 5.1], this fact leads to the equality

I(Jt)E
[
V
∣∣Kt]P (Jt | Ft) = I(Jt)E

[
V I(Jt)

∣∣Ft] (2.6)

and thus, taking into account the fact that P (Jt | Ft) > 0 on the event Jt , we have

I(Jt)E
[
V
∣∣Kt] = I(Jt)

E[V I(Jt) | Ft]
P (Jt | Ft)

(2.7)

for any (positive) integrable random variable V and all t ≥ 0. We further refer to the result

in (2.6)-(2.7) as to the generalised key lemma for the filtrations (Kt)t≥0 and (Ft)t≥0 . Observe

that Git coincides with Ft on the event {τi > t} , and Gt coincides with Ft on the event

{τi ∧ τ3−i > t} , while Git ∨ σ(τ3−i) coincides with F3−i
t ≡ Ft ∨ σ(τ3−i) on the event {τi > t} ,

for all t ≥ 0 and every i = 1, 2. In these cases, the expressions in (2.6)-(2.7), together with

the tower property for conditional expectations, imply that, for each GiT -measurable integrable

random variable V i
T , the equality

I(τi > t)E
[
V i
T

∣∣Git] = I(τi > t)
E[V i

TP (τi > t | FT ) | Ft]
P (τi > t | Ft)

(2.8)

holds, for all t ≥ 0 and every i = 1, 2 (see, e.g. [2; Lemma 2.9]). Moreover, it follows that, for

each (Ft)t≥0 -progressively measurable process V i = (V i
t )t≥0 , the equality

E
[
V i
τi
I(τi > t) | Git

]
= I(τi > t)E

[ ∫ ∞
t

V i
uP (τi ∈ du | Fu)
P (τi > t | Ft)

∣∣∣∣Ft] (2.9)

holds, for all t ≥ 0 and every i = 1, 2 (see, e.g. [2; Corollary 2.10]). We further refer to the

results in (2.8) and (2.9) as to the first and second part of the key lemma for the filtrations

(Git)t≥0 and (Ft)t≥0 , for every i = 1, 2.

For any (positive measurable) bounded function ψi(u), for u ≥ 0, let us now compute the

conditional expectation

Ψi
t(τ3−i) = E

[
ψi(τi) I(τi > t) | Ft ∨ σ(τ3−i)

]
(2.10)

for all t ≥ 0 and every i = 1, 2. For this purpose, we apply the result of [9; Proposition 2.7] to

conclude that any Ft ∨ σ(τ3−i)t≥0 -progressively measurable process can be written as Ψi
t(τ3−i)
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where Ψi(v) = (Ψi
t(v))t≥0 is (Ft)t≥0 -progressively measurable, for any v ≥ 0 fixed, while

the function v 7→ Ψi
t(v) is (Borel) measurable, for all t ≥ 0 and every i = 1, 2. Then, we

observe that, by definition of conditional expectation, for any event Ft ∈ Ft , and any (positive

measurable) bounded function ϕ3−i(v), the equality

E

[ ∫ ∞
v=0

Ψi
t(v) I(Ft)ϕ3−i(v)P (τ3−i ∈ dv | Ft)

]
(2.11)

= E

[
I(Ft)

∫ ∞
u=t

∫ ∞
v=0

ψi(u)ϕ3−i(v)P (τi ∈ du, τ3−i ∈ dv | Ft)
]

holds, for all t ≥ 0 and every i = 1, 2. Hence, the application of the equality in (2.11) yields

the fact that the expression

Ψi
t(τ3−i) =

∫ ∞
u=t

ψi(u)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

(2.12)

is satisfied, for all t ≥ 0 and every i = 1, 2.

Let us finally refer the explicit expressions for the transition density functions of the pro-

cesses (Y j, Aj), j = 0, 1, 2, defined in (2.2)-(2.3) above. For this purpose, we recall from [25;

page 527] that the random variable A
(νj)
t =

∫ t
0
e2(W

j
s+νjs)ds has the conditional distribution

P
(
A

(νj)
t ∈ da

∣∣∣W j
t + νjt = x

)
= pj(t, x, a) da (2.13)

where the density function pj is given by

pj(t, x, a) =
1

πa2
exp

(
x2 + π2

2t
+ x− 1 + e2x

2a

)
(2.14)

×
∫ ∞
0

exp

(
−w

2

2t
− ex

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw

with t, a > 0 and x ∈ R , and νj ∈ R given and fixed. This fact yields that the random vector

(2(W j
t + νjt), A

(νj)
t ) has the distribution:

P
(

2(W j
t + νjt) ∈ dx,A

(νj)
t ∈ da

)
= qj(t, x, a) dxda (2.15)

where the density function qj is given by

qj(t, x, a) = pj

(
t,
x

2
, a
) 1

2
√
t

1√
2π

exp

(
− 1

2

(x− 2νjt

2
√
t

)2)
(2.16)

=
1

(2π)3/2a2
√
t

exp

(
π2

2t
+
(νj + 1

2

)
x−

ν2j
2
t− 1 + ex

2a

)
×
∫ ∞
0

exp

(
−w

2

2t
− ex/2

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw
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with t, a > 0 and x ∈ R (see also [14] and [24] for related expressions in terms of Hermite

functions). Therefore, using the fact that the scaling property of W j implies

P

((
βj −

γ2j
2

)
t+ γjW

j
t ≤ x,

∫ t

0

e(βj−γ
2
j /2)s+γjWs ds ≤ a

)
(2.17)

= P

(
2(W j

t′ + νjt
′) ≤ x,

∫ t′

0

e2(W
j
s+νjs) ds ≤

γ2j a

4

)
with t′ = γ2j t/4 and νj = 2βj/γ

2
j − 1, by virtue of the expressions in (2.15)-(2.16), it follows

from the definition in (2.3) and the Markov property of the process (Y j, Aj), j = 0, 1, 2, that

the random vector (Y j
T /Y

j
t , (A

j
T − A

j
t)/Y

j
t ) has the distribution

P
(
Y j
T /Y

j
t ∈ dy, (A

j
T − A

j
t)/Y

j
t ∈ da

)
= P

(
Y j
T−t ∈ dy,A

j
T−t ∈ da

)
= gjT−t(y, a) dyda (2.18)

where the density function gj is given by

gjT−t(y, a) =
γ2j
4y
qj

(
γ2j
4

(T − t), ln(y),
γ2j a

4

)
(2.19)

=
2
√

2

π3/2γ3j

1

a2y
√
T − t

exp

(
2π2

γ2j (T − t)
+
βj
γ2j

ln(y)−
(
βj
γj
− γj

2

)2
(T − t)

2
− 2(1 + y)

γ2j a

)
×
∫ ∞
0

exp

(
− 2w2

γ2j (T − t)
−

4
√
y

γ2j a
cosh(w)

)
sinh(w) sin

(
4πw

γ2j (T − t)

)
dw

for all T − t, y, a > 0, and every j = 0, 1, 2. Note that the formulas above were also used in

[19; Section 4] for the computation of the marginal density of the posterior probability process

in the one-dimensional quickest change-point detection problem.

We also recall the transition density functions of the geometric Brownian motions Zj , j =

0, 1, 2, defined in (2.4) above. It follows that the random variable Zj
T/Z

j
t has the distribution

P
(
Zj
T/Z

j
t ∈ dz

)
= P

(
Zj
T−t ∈ dz

)
= hjT−t(z) dz (2.20)

where the density function hj is given by

hjT−t(z) =
1

θjz
√

2π(T − t)
exp

(
−

(ln(z)− (ηj − θ2j/2)(T − t))2

2θ2j (T − t)

)
(2.21)

for all T − t, z > 0, and every j = 0, 1, 2.

3 Conditional distributions of the default times

In this section, we derive explicit expressions for the conditional distributions of two default

times given the accessible filtration generated by the market prices of the risky assets as well

as given the observable filtrations.
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We first compute the conditional distributions P (τi > u | Ft) of the default times τi , i = 1, 2,

given the reference filtration (Ft)t≥0 , for all t, u ≥ 0. In this case, we see from the independence

of the random variables Ui , i = 1, 2, and the filtration (Ft)t≥0 that the equalities

P (τi > t | F∞) = P
(
δiA

0
t + λiA

i
t < − lnUi

∣∣F∞) (3.1)

= e−δiA
0
t−λiAi

t = P (τi > t | Ft) for t ≥ 0

hold, so that the equalities

P (τi ∈ dt | F∞) = e−δiA
0
t−λiAi

t (δiY
0
t + λiY

i
t ) dt = P (τi ∈ dt | Ft) for t ≥ 0 (3.2)

are satisfied, for every i = 1, 2. In particular, it follows from the representation in (3.1) that

the equalities

P (τi > u | Ft) = P
(
δiA

0
u + λiA

i
u < − lnUi

∣∣Ft) = e−δiA
0
u−λiAi

u for 0 ≤ u ≤ t (3.3)

hold, for every i = 1, 2. Then, according to the tower property for conditional expectations,

we obtain that the equalities

P (τi > u | Ft) = E
[
P
(
δiA

0
u + λiA

i
u < − lnUi

∣∣Fu) ∣∣Ft] (3.4)

= e−δiA
0
t−λiAi

t E
[
e−δiY

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t

∣∣Ft]
= e−δiA

0
t−λiAi

t Ci
u−t(Y

0
t , Y

i
t ) for 0 ≤ t < u

are satisfied, for every i = 1, 2. Here, by means of the Markov property of the processes

(Y j, Aj), j = 0, 1, 2, and the fact that the random variables Y j
u /Y

j
t have the same laws as

Y j
u−t , j = 0, 1, 2, for each 0 ≤ t < u , taking into account the independence of the driving

standard Brownian motions W j , j = 0, 1, 2, we have

Ci
u−t(y0, yi) = E

[
e−δiy0A

0
u−t−λiyiAi

u−t
]

= E
[
e−δiy0A

0
u−t
]
E
[
e−λiyiA

i
u−t
]

(3.5)

=

∫ ∞
0

∫ ∞
0

e−δiy0a0 g0u−t(y
′
0, a0) dy

′
0da0

∫ ∞
0

∫ ∞
0

e−λiyiai giu−t(y
′
i, ai) dy

′
idai

for all 0 ≤ t < u , and the functions gj , j = 0, 1, 2, are given in (2.19) above. Moreover,

taking into account the representation in (3.2), according to the tower property for conditional

expectations, we obtain that the equalities

P (τi ∈ du | Ft) = E
[
P (τi ∈ du | Fu)

∣∣Ft] = E
[
e−δiA

0
u−λiAi

u (δiY
0
u + λiY

i
u)
∣∣Ft] du (3.6)

= e−δiA
0
t−λiAi

t E
[
e−δiY

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t
(
δi Y

0
t (Y 0

u /Y
0
t ) + λi Y

i
t (Y i

u/Y
i
t )
) ∣∣Ft] du

= e−δiA
0
t−λiAi

t Di
u−t(Y

0
t , Y

i
t ) du for 0 ≤ t < u

9



are satisfied, for every i = 1, 2. Here, by means of the Markov property of the processes

(Y j, Aj), j = 0, 1, 2, and the fact that the random variables Y j
u /Y

j
t have the same laws as

Y j
u−t , j = 0, 1, 2, for each 0 ≤ t < u , we have

Di
u−t(y0, yi) = E

[
e−δiy0A

0
u−t−λiyiAi

u−t (δiy0Y
0
u−t + λiyiY

i
u−t)

]
(3.7)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−δiy0a0−λiyiai (δiy0y
′
0 + λiyiy

′
i) g

0
u−t(y

′
0, a0) g

i
u−t(y

′
i, ai) dy

′
0da0dy

′
idai

for all 0 ≤ t < u ≤ T and every i = 1, 2, while the functions gj , j = 0, 1, 2, are given in (2.19)

above.

We proceed with computing the conditional distribution P (τi > u, τ3−i > v | Ft) of the

default times τi , i = 1, 2, given the reference filtration (Ft)t≥0 , for all t, u, v ≥ 0. For this

purpose, we observe from the independence of the random variables Ui , i = 1, 2, and the

filtration (Ft)t≥0 that the equalities

P (τi > u, τ3−i > v | F∞) (3.8)

= P
(
δiA

0
u + λiA

i
u < − lnUi, δ3−iA

0
v + λ3−iA

3−i
v < − lnU3−i

∣∣F∞)
= e−δiA

0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v = P (τi > u, τ3−i > v | Fu) for 0 ≤ v ≤ u

hold, so that the equalities

P (τi ∈ du, τ3−i ∈ dv | F∞) (3.9)

= e−δiA
0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δiY

0
u + λiY

i
u) (δ3−iY

0
v + λ3−iY

3−i
v ) dudv

= P (τi ∈ du, τ3−i ∈ dv | Fu) for 0 ≤ v ≤ u

are satisfied, for every i = 1, 2. In particular, it follows from the representation in (3.8) that

the equalities

P (τi > u, τ3−i > v | Ft) (3.10)

= P
(
δiA

0
u + λiA

i
u < − lnUi, δ3−iA

0
v + λ3−iA

3−i
v < − lnU3−i

∣∣Ft)
= e−δiA

0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v for 0 ≤ u, v ≤ t

hold, for every i = 1, 2. Hence, according to the tower property for conditional expectations,

10



we obtain

P (τi > u, τ3−i > v | Ft) = E
[
P (τi > u, τ3−i > v | Fu)

∣∣Ft] (3.11)

= E
[
P
(
δiA

0
u + λiA

i
u < − lnUi, δ3−iA

0
v + λ3−iA

3−i
v < − lnU3−i

∣∣Fu) ∣∣Ft]
= e−δiA

0
t−λiA

3−i
t −δ3−iA

0
v−λ3−iA

i
v E
[
e−δiY

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t

∣∣Ft]
= e−δiA

0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v Ci

u−t(Y
0
t , Y

i
t ) for 0 ≤ v ≤ t ≤ u

while

P (τi > u, τ3−i > v | Ft) (3.12)

= e−δiA
0
u−λiAi

u−δ3−iA
0
t−λ3−iA

3−i
t C3−i

v−t(Y
0
t , Y

3−i
t ) for 0 ≤ u ≤ t < v

where Ci
u−t(y0, yi) and C3−i

v−t(y0, y3−i) are given as in (3.5) above, for every i = 1, 2. Moreover,

taking into account the representation in (3.9), according to the tower property for conditional

expectations, we obtain that the equalities

P (τi ∈ du, τ3−i ∈ dv | Ft) (3.13)

= E
[
e−δiA

0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δiY

0
u + λiY

i
u) (δ3−iY

0
v + λ3−iY

3−i
v )

∣∣Ft] dudv
= e−δiA

0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v )

× E
[
e−δiY

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t
(
δiY

0
t (Y 0

u /Y
0
t ) + λiY

i
t (Y i

u/Y
i
t )
) ∣∣Ft] dudv

= e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v )Di

u−t(Y
0
t , Y

i
t ) dudv for 0 ≤ v ≤ t ≤ u

are satisfied, where Di
u−t(y0, yi) is given in (3.7) above, for every i = 1, 2. Finally, taking into

account the representation in (3.9), according to the tower property for conditional expectations,

we obtain

E
[
P (τi > u, τ3−i > v | Fu)

∣∣Fv] (3.14)

= E
[
P
(
δiA

0
u + λiA

i
u < − lnUi, δ3−iA

0
v + λ3−iA

3−i
v < − lnU3−i

∣∣Fu) ∣∣Fv]
= e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v E

[
e−δ3−iY

0
v (A0

u−A0
v)/Y

0
v −λ3−iY

3−i
v (A3−i

u −A3−i
v )/Y 3−i

v
∣∣Fv]

= e−(δi+δ3−i)A
0
v−λiAi

v−λ3−iA
3−i
v Ci

u−v(Y
0
v , Y

i
v ) for 0 ≤ v ≤ u

while

E
[
P (τi > u, τ3−i > v | Fv)

∣∣Fu] (3.15)

= e−(δi+δ3−i)A
0
u−λiAi

u−λ3−iA
3−i
u C3−i

v−u(Y
0
u , Y

3−i
u ) for 0 ≤ u < v

11



where Ci
u−v(y0, yi) and C3−i

v−u(y0, y3−i) are given as in (3.5) above, for every i = 1, 2. Thus,

according to the tower property for conditional expectations, we obtain

P (τi > u, τ3−i > v | Ft) = E
[
e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v Ci

u−v(Y
0
v , Y

i
v )
∣∣Ft] (3.16)

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t E

[
e−(δi+δ3−i)Y

0
t (A0

v−A0
t )/Y

0
t −λiY i

t (A
i
v−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

v −A3−i
t )/Y 3−i

t

× Ci
u−v(Y

0
t (Y 0

v /Y
0
t ), Y i

t (Y i
v /Y

i
t )
∣∣Ft]

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t C

i

v−t,u−v(Y
0
t , Y

i
t , Y

3−i
t ) for 0 ≤ t ≤ v ≤ u

while

P (τi > u, τ3−i > v | Ft) = E
[
e−(δi+δ3−i)A

0
u−λiAi

u−λ3−iA
3−i
u C3−i

v−u(Y
0
u , Y

3−i
u )

∣∣Ft] (3.17)

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t E

[
e−(δi+δ3−i)Y

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

u −A3−i
t )/Y 3−i

t

× C3−i
v−u(Y

0
t (Y 0

u /Y
0
t ), Y 3−i

t (Y 3−i
u /Y 3−i

t )
∣∣Ft]

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t C

3−i
u−t,v−u(Y

0
t , Y

3−i
t , Y i

t ) for 0 ≤ t < u < v

for every i = 1, 2. Here, by virtue of the Markov property of the processes (Y j, Aj), j = 0, 1, 2,

and the fact that the random variables Y j
v /Y

j
t have the same laws as Y j

v−t , j = 0, 1, 2, for each

0 ≤ t < v , we have

C
i

v−t,u−v(y0, yi, y3−i) (3.18)

= E
[
e−(δi+δ3−i)y0A

0
v−t−λiyiAi

v−t−λ3−iy3−iA
3−i
v−t Ci

u−v(y0Y
0
v−t, yiY

i
v−t)

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i Ci
u−v(y0y

′
0, yiy

′
i)

× g0v−t(y
′
0, a0) g

i
v−t(y

′
i, ai) g

3−i
v−t(y

′
3−i, a3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−i

for all 0 ≤ t < v < u ≤ T and every i = 1, 2, while the functions gj , j = 0, 1, 2, are given in

(2.19) above.

Let us now compute the conditional distributions P (τi > u | Git) and P (τi > u | G3−it ) of the

default times τi , i = 1, 2, given the filtrations (Git)t≥0 and (G3−it )t≥0 , for all t, u ≥ 0. In this

case, we obviously have P (τi > u | Git) = I(τi > u), for all 0 ≤ u ≤ t . Then, we apply the first

part of the key lemma in (2.8) for the filtrations (Git)t≥0 and (Ft)t≥0 , and use the expressions

in (3.1) and (3.4) to get

P (τi > u | Git) = I(τi > t)
P (τi > u | Ft)
P (τi > t | Ft)

= I(τi > t)Ci
u−t(Y

0
t , Y

i
t ) for 0 ≤ t < u (3.19)

12



where Ci
u−t(y0, yi) is given in (3.5) above, for every i = 1, 2. Moreover, taking into account the

expressions in (3.1) and (3.2), we see from the independence of the random variable Ui and the

filtration (G3−it )t≥0 that the equalities

P (τi > t | G3−i∞ ) = P
(
δiA

0
t + λiA

i
t < − lnUi

∣∣G3−i∞ )
(3.20)

= e−δiA
0
t−λiAi

t = P (τi > t | Ft) for t ≥ 0

hold, so that the equalities

P (τi ∈ dt | G3−i∞ ) = e−δiA
0
t−λiAi

t (δiY
0
t + λiY

i
t ) dt = P (τi ∈ dt | Ft) for t ≥ 0 (3.21)

are satisfied, for every i = 1, 2. In particular, it follows from the representation in (3.20) that

the equalities

P (τi > u | G3−it ) = P
(
δiA

0
u + λiA

i
u < − lnUi

∣∣G3−it

)
(3.22)

= e−δiA
0
u−λiAi

u = P (τi > u | Ft) for 0 ≤ u ≤ t

hold, for every i = 1, 2. Then, we apply the first part of the key lemma in (2.8) for the

filtrations (G3−it )t≥0 and (Ft)t≥0 , where G3−it coincides with F3−i
t on the event {τ3−i ≤ t} and

with Ft on {τ3−i > t} , for all t ≥ 0, and use the equality in (2.12) as well as the expressions

in (3.1), (3.4), and (3.13) to get

P (τi > u | G3−it ) = I(τ3−i ≤ t)P (τi > u | F3−i
t ) + I(τ3−i > t)

P (τi > u, τ3−i > t | Ft)
P (τ3−i > t | Ft)

(3.23)

= e−δiA
0
t−λiAi

t Ci
u−t(Y

0
t , Y

i
t ) = P (τi > u | Ft) for 0 ≤ t < u

where Ci
u−t(y0, yi) is given in (3.5) above, for every i = 1, 2.

We finally compute the conditional distributions P (τi > u, τ3−i > v | Gt) of the default

times τi , i = 1, 2, given the filtration (Gt)t≥0 , for all t, u, v ≥ 0. In this case, we obviously

have P (τi > u, τ3−i > v | Gt) = I(τi > u, τ3−i > v), for all 0 ≤ u, v ≤ t and every i = 1, 2.

Then, we apply the first part of the key lemma for the filtrations (Gt)t≥0 and (Ft)t≥0 , where

Gt coincides with Git ∨ σ(τ3−i) on the event {v < τ3−i ≤ t} and with Git on {τ3−i > t} , and use

the expressions in (3.14)-(3.15) and (3.19) to get

P (τi > u, τ3−i > v | Gt) (3.24)

= I(v < τ3−i ≤ t)P (τi > u | Git ∨ σ(τ3−i)) + I(τi > t, τ3−i > t)
P (τi > u, τ3−i > t | Ft)
P (τi > t, τ3−i > t | Ft)

= I(τi > t, τ3−i > v)Ci
u−t(Y

0
t , Y

i
t ) for 0 ≤ v ≤ t ≤ u

13



while

P (τi > u, τ3−i > v | Gt) = I(τi > u, τ3−i > t)C3−i
v−t(Y

0
t , Y

3−i
t ) for 0 ≤ u ≤ t < v (3.25)

where Ci
u−t(y0, yi) and C3−i

v−t(y0, y3−i) are given as in (3.5) above, for every i = 1, 2. Moreover,

by means of the first part of the key lemma for the filtrations (Gt)t≥0 and (Ft)t≥0 , and taking

into account the expressions in (3.16) and (3.17), we have

P (τi > u, τ3−i > v | Gt) = I(τi > t, τ3−i > t)
P (τi > u, τ3−i > v | Ft)
P (τi > t, τ3−i > t | Ft)

(3.26)

= I(τi > t, τ3−i > t)C
i

v−t,u−v(Y
0
t , Y

i
t , Y

3−i
t ) for 0 ≤ t ≤ v ≤ u

while

P (τi > u, τ3−i > v | Gt) = I(τi > t, τ3−i > t)C
3−i
u−t,v−u(Y

0
t , Y

3−i
t , Y i

t ) for 0 ≤ t ≤ u < v (3.27)

where C
i

v−t,u−v(y0, yi, y3−i) and C
3−i
u−t,v−u(y0, y3−i, yi) are given as in (3.18) above, for every

i = 1, 2.

4 The rational prices of risk-free CDSs (Main results)

In this section, we derive explicit expressions for the rational prices of credit default swaps

without consideration of counterparty risk in the model defined above with some (continuously

compounded) premia κi > 0 and (non-negative measurable) deterministic recovery payoff

functions Ri
t(xi), i = 1, 2, for all xi > 0 and 0 ≤ t ≤ T , and every i = 1, 2. In order to

simplify the notations, without loss of generality, we further assume that the payoffs are already

discounted by the dynamics of the bank account, that is equivalent to letting the interest rate

r equal to zero. We compute the rational prices for the holders of risk-free CDSs in various

particular cases of available information contained in the filtrations (Git)t≥0 , or (Gt)t≥0 , or

(Git ∨ σ(τ3−i))t≥0 defined above, for every i = 1, 2. In those cases, the holders of CDSs can

observe only the default time τi , or observe the both default times τi , i = 1, 2, or observe the

default time τi but know the default time τ3−i from the beginning of observations, respectively.

4.1 The case of filtration (Git)t≥0

Let us begin by computing the rational price P i = (P i
t )t≥0 for the holder of a CDS in the model

with the filtration (Git)t≥0 given by

P i
t = E

[
− κi (τi ∧ T − t) I(t < τi) +Ri

τi
(X i

τi
) I(t < τi ≤ T )

∣∣Git] (4.1)

14



for 0 ≤ t ≤ T ∧ τi , and P i
t = 0, for t > T ∧ τi , so that the premium κi is then determined

from the equation P i
0 = 0, for every i = 1, 2. In order to compute the both terms in (4.1), we

apply the second part of the key lemma in (2.9) for the filtrations (Git)t≥0 and (Ft)t≥0 , and use

Fubini’s theorem for interchanging the order of conditional expectation and integration to get

E
[
(τi ∧ T − t) I(t < τi)

∣∣Git] = I(t < τi)
E[(τi ∧ T − t)I(t < τi) | Ft]

P (t < τi | Ft)
(4.2)

= I(t < τi)E

[ ∫ ∞
t

(u ∧ T − t)P (τi ∈ du | Fu)
P (t < τi | Ft)

∣∣∣∣Ft] = I(t < τi)

∫ ∞
t

(u ∧ T − t)P (τi ∈ du | Ft)
P (t < τi | Ft)

and

E
[
Ri(X i

τi
) I(t < τi ≤ T )

∣∣Git] = I(t < τi)
E[Ri

τi
(X i

τi
)I(t < τi ≤ T ) | Ft]

P (t < τi | Ft)
(4.3)

= I(t < τi)E

[ ∫ T

t

Ri
u(X

i
u)P (τi ∈ du | Fu)
P (t < τi | Ft)

∣∣∣∣Ft] = I(t < τi)

∫ T

t

E[Ri
u(X

i
u)P (τi ∈ du | Fu)

∣∣Ft]
P (t < τi | Ft)

for all 0 ≤ t ≤ T and every i = 1, 2. Here, we recall from the expressions in (3.1)-(3.2) and

(3.6)-(3.7) that P (t < τi | Ft) = e−δiA
0
t−λiAi

t and P (τi ∈ dt | Ft) = e−δiA
0
t−λiAi

t(δiY
0
t + λiY

i
t ), for

all t ≥ 0, as well as P (τi ∈ du | Ft) = e−δiA
0
t−λiAi

t Di
u−t(Y

0
t , Y

i
t ) du , for all 0 ≤ t < u and every

i = 1, 2. Then, taking into account the expressions in (3.2), according to the tower property

for conditional expectations, for each 0 ≤ t < u , we obtain that

E
[
Ri
u(X

i
u)P (τi ∈ du | Fu)

∣∣Ft] = E
[
Ri
u(X

i
u) e

−δiA0
u−λiAi

u (δi Y
0
u + λi Y

i
u)
∣∣Ft] du (4.4)

= e−δiA
0
t−λiAi

t E
[
Ri
u

(
X i
t(Y

i
u/Y

i
t )αi(Z0

u/Z
0
t )ζi(Zi

u/Z
i
t)
)
e−δiY

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t

×
(
δiY

0
t (Y 0

u /Y
0
t ) + λiY

i
t (Y i

u/Y
i
t )
) ∣∣Ft] du

= e−δiA
0
t−λiAi

t Qi
t,u−t(X

i
t , Y

0
t , Y

i
t ) du

holds. Here, by means of the Markov property of the processes (Y j, Aj) and Zj , j = 0, 1, 2,

and the fact that the random variables Y j
u /Y

j
t and Zj

u/Z
j
t have the same laws as Y j

u−t and

Zj
u−t , j = 0, 1, 2, for each 0 ≤ t < u , respectively, we have

Qi
t,u−t(xi, y0, yi) (4.5)

= E
[
Ri
u

(
xi(Y

i
u−t)

αi(Z0
u−t)

ζiZi
u−t
)
e−δiy0A

0
u−t−λiyiAi

u−t (δiy0Y
0
u−t + λiyiY

i
u−t)

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Ri
u

(
xi(y

′
i)
αi(z′0)

ζiz′i
)
e−δiy0a0−λiyiai (δiy0y

′
0 + λiyiy

′
i)

× g0u−t(y′0, a0) giu−t(y′i, ai)h0u−t(z′0)hiu−t(z′i) dy′0da0dy′idaidz′0dz′i

for all 0 ≤ t < u ≤ T and every i = 1, 2, while the functions gj and hj , j = 0, 1, 2, are given

in (2.19) and (2.21) above.
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Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.1. Suppose that r = 0. The rational price for the holder of a risk-free credit

default swap in (4.1) is given by the sum of the expressions in (4.2) and (4.3). The latter terms

are computed by means of the expressions in (3.6) and (4.4) with (3.7) and (4.5), respectively.

4.2 The case of filtration (Gt)t≥0

Let us now continue by computing the rational price P̂ i = (P̂ i
t )t≥0 for the holder of a CDS in

the model with the filtration (Gt)t≥0 given by

P̂ i
t = E

[
− κ̂i (τi ∧ T − t) I(t < τi) +Ri

τi
(X i

τi
) I(t < τi ≤ T )

∣∣Gt] (4.6)

for 0 ≤ t ≤ T ∧ τi , and P̂ i
t = 0, for t > T ∧ τi , so that the premium κ̂i is then determined

from the equation P̂ i
0 = 0, for every i = 1, 2. It is seen that the equality κ̂i = κi should hold

with κi , i = 1, 2, from (4.1), since we have G0 = F0 . In order to compute the both terms in

(4.6), we apply the second part of the key lemma for the filtrations (Gt)t≥0 and (Ft)t≥0 , where

Gt coincides with F3−i
t on the event {τ3−i ≤ t < τi} and with Ft on {t < τi ∧ τ3−i} , for all

t ≥ 0, and use the equality in (2.12) as well as Fubini’s theorem for interchanging the order of

conditional expectation and integration to obtain

E
[
(τi ∧ T − t) I(t < τi)

∣∣Gt] (4.7)

= I(τ3−i ≤ t < τi)
E[(τi ∧ T − t)I(t < τi) | F3−i

t ]

P (t < τi | F3−i
t )

+ I(t < τi ∧ τ3−i)
E[(τi ∧ T − t)I(t < τi ∧ τ3−i) | Ft]

P (t < τi ∧ τ3−i | Ft)

= I(τ3−i ≤ t < τi)E

[ ∫ ∞
u=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Fu)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

+ I(t < τi ∧ τ3−i)E
[ ∫ ∞

u=t

∫ ∞
v=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi ∧ τ3−i | Ft)

∣∣∣∣Ft]
= I(τ3−i ≤ t < τi)

∫ ∞
u=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

+ I(t < τi ∧ τ3−i)
∫ ∞
u=t

∫ ∞
v=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (t < τi ∧ τ3−i | Ft)
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and

E
[
Ri
τi

(X i
τi

) I(t < τi ≤ T )
∣∣Gt] (4.8)

= I(τ3−i ≤ t < τi)
E[Ri

τi
(X i

τi
) I(t < τi ≤ T ) | F3−i

t ]

P (t < τi | F3−i
t )

+ I(t < τi ∧ τ3−i)
E[Ri

τi
(X i

τi
) I(t < τi ∧ τ3−i ≤ T ∧ τ3−i) | Ft]
P (t < τi ∧ τ3−i | Ft)

= I(τ3−i ≤ t < τi)E

[ ∫ T

u=t

Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

+ I(t < τi ∧ τ3−i)E
[ ∫ T

u=t

∫ ∞
v=t

Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi ∧ τ3−i | Ft)

∣∣∣∣Ft]
= I(τ3−i ≤ t < τi)

∫ T

u=t

E[Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu) | Ft]
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

+ I(t < τi ∧ τ3−i)
∫ T

u=t

∫ ∞
v=t

E[Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu) | Ft]
P (t < τi ∧ τ3−i | Ft)

for all 0 ≤ t ≤ T and every i = 1, 2. Here, we recall from the expressions in (3.8) and (3.9)

that P (t < τi ∧ τ3−i | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t , for all t ≥ 0, and P (t < τi, τ3−i ∈

dv | Ft) = e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v ), for all 0 ≤ v ≤ t and every i =

1, 2. Moreover, it is seen from the expressions in (3.13) that P (τi ∈ du, τ3−i ∈ dv | Ft) =

e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v )Di

u−t(Y
0
t , Y

i
t ) dudv , for all 0 ≤ v ≤ t ≤ u , where

Di
u−t(y0, yi) is given in (3.7) above, for every i = 1, 2.

Observe that, taking into account the expressions in (3.9), according to the tower property

for conditional expectations, for each 0 ≤ v ≤ t ≤ u , we obtain

E
[
Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Ft] (4.9)

= E
[
Ri
u(X

i
u) e

−δiA0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δi Y

0
u + λi Y

i
u) (δ3−i Y

0
v + λ3−i Y

3−i
v )

∣∣Ft] dudv
= e−δiA

0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )E

[
Ri
u

(
X i
t(Y

i
u/Y

i
t )αi(Z0

u/Z
0
t )ζi(Zi

u/Z
i
t)
)

× e−δiY 0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t
(
δi Y

0
t (Y 0

u /Y
0
t ) + λi Y

i
t (Y i

u/Y
i
t )
) ∣∣Ft] dudv

= e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )Qi

t,u−t(X
i
t , Y

0
t , Y

i
t ) dudv

where Qi
t,u−t(xi, y0, yi) is defined in (4.5) above, for every i = 1, 2. Furthermore, taking into

account the expressions in (3.9), according to the tower property for conditional expectations,
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we obtain

E
[
P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Fv] (4.10)

= E
[
e−δiA

0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δiY

0
u + λiY

i
u) (δ3−iY

0
v + λ3−iY

3−i
v )

∣∣Fv] dudv
= e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v (δiY

0
v + λiY

i
v )E

[
e−δ3−iY

0
v (A0

u−A0
v)/Y

0
v −λ3−iY

3−i
v (A3−i

u −A3−i
v )/Y 3−i

v

×
(
δ3−iY

0
v (Y 0

u /Y
0
v ) + λ3−iY

3−i
v (Y 3−i

u /Y 3−i
v )

) ∣∣Fv] dudv
= e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v (δ3−iY

0
v + λ3−iY

3−i
v )Di

u−v(Y
0
v , Y

i
v ) dudv for 0 ≤ v ≤ u

while

E
[
P (τi ∈ du, τ3−i ∈ dv | Fv)

∣∣Fu] (4.11)

= e−(δi+δ3−i)A
0
u−λiAi

u−λ3−iA
3−i
u (δiY

0
u + λiY

i
u)D3−i

v−u(Y
0
u , Y

3−i
u ) dudv for 0 ≤ u < v

where Di
u−v(y0, yi) and D3−i

v−u(y0, y3−i) are given as in (3.7) above, for every i = 1, 2. Hence,

according to the tower property for conditional expectations, we obtain

P (τi ∈ du, τ3−i ∈ dv | Ft) (4.12)

= E
[
e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v (δiY

0
v + λiY

i
v )Di

u−v(Y
0
v , Y

3−i
v )

∣∣Ft] dudv
= e−(δi+δ3−i)A

0
t−λiAi

t−λ3−iA
3−i
t E

[
e−(δi+δ3−i)Y

0
t (A0

v−A0
t )/Y

0
t −λiY i

t (A
i
v−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

v −A3−i
t )/Y 3−i

t

×
(
δiY

0
t (Y 0

v /Y
0
t ) + λiY

i
t (Y i

v /Y
i
t )
)
Di
u−v(Y

0
t (Y 0

v /Y
0
t ), Y 3−i

t (Y 3−i
v /Y 3−i

t ))
∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t D

i

v−t,u−v(Y
0
t , Y

i
t , Y

3−i
t ) dudv for 0 ≤ t ≤ v ≤ u

while

P (τi ∈ du, τ3−i ∈ dv | Ft) (4.13)

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t D

3−i
u−t,v−u(Y

0
t , Y

3−i
t , Y i

t ) dudv for 0 ≤ t ≤ u < v

for every i = 1, 2. Here, by virtue of the Markov property of the processes (Y j, Aj), j = 0, 1, 2,

and the fact that the random variables Y j
v /Y

j
t have the same laws as Y j

v−t , j = 0, 1, 2, for each

0 ≤ t < v , we have

D
i

v−t,u−v(y0, yi, y3−i) (4.14)

= E
[
e−(δi+δ3−i)y0A

0
v−t−λiyiAi

v−t−λ3−iy3−iA
3−i
v−t (δiy0Y

0
v−t + λiyiY

i
v−t)D

i
u−v(y0Y

0
v−t, y3−iY

3−i
v−t )

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i (δiy0y
′
0 + λiyiy

′
i)

×Di
u−v(y0y

′
0, y3−iy

′
3−i) g

0
v−t(y

′
0, a0) g

i
v−t(y

′
i, ai) g

3−i
v−t(y

′
3−i, a3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−i
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for all 0 ≤ t < v < u ≤ T and every i = 1, 2, while the functions gj , j = 0, 1, 2, are given in

(2.19) above.

On the other hand, taking into account the expressions in (3.9), according to the tower

property for conditional expectations, for each 0 ≤ v ≤ u , we obtain

E
[
Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Fv] (4.15)

= e−δ3−iA
0
v−λ3−iA

3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )E

[
Ri
u(X

i
u) e

−δiA0
u−λiAi

u (δi Y
0
v + λi Y

i
v )
∣∣Fv] dudv

= e−(δi+δ3−i)A
0
v−λiAi

v−λ3−iA
3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )E

[
Ri
u

(
X i
v(Y

i
u/Y

i
v )αi(Z0

u/Z
0
v )ζi(Zi

u/Z
i
v)
)

× e−δiY 0
v (A0

u−A0
v)/Y

0
v −λiY i

v (A
i
u−Ai

v)/Y
i
v
(
δi Y

0
v (Y 0

u /Y
0
v ) + λi Y

i
v (Y i

u/Y
i
v )
) ∣∣Fv] dudv

= e−(δi+δ3−i)A
0
v−λiAi

v−λ3−iA
3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )Qi

v,u−v(X
i
v, Y

0
v , Y

i
v ) dudv

where Qi
v,u−v(xi, y0, yi) is given as in (4.5) above, while, for each 0 ≤ u < v , we get

E
[
Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fv)

∣∣Fu] (4.16)

= E
[
Ri
u(X

i
u) e

−δiA0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δi Y

0
u + λi Y

i
u) (δ3−i Y

0
v + λi Y

3−i
v )

∣∣Fu] dudv
= Ri

u(X
i
u) e

−(δi+δ3−i)A
0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)

× E
[
e−δ3−iY

0
u (A0

v−A0
u)/Y

0
u−λ3−iY

3−i
u (A3−i

v −A3−i
u )/Y 3−i

u

×
(
δ3−i Y

0
u (Y 0

v /Y
0
u ) + λ3−i Y

3−i
u (Y 3−i

v /Y 3−i
u )

) ∣∣Fu] dudv
= Ri

u(X
i
u) e

−(δi+δ3−i)A
0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)D3−i

v−u(Y
0
u , Y

3−i
u ) dudv

where D3−i
v−u(y0, y3−i) is given as in (3.7) above, for every i = 1, 2. Hence, according to the

tower property for conditional expectations, for each 0 ≤ t ≤ u < v , we obtain

E
[
Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Ft] (4.17)

= E
[
Ri
u(X

i
u) e

−(δi+δ3−i)A
0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)D3−i

v−u(Y
0
u , Y

3−i
u )

∣∣Ft] dudv
= e−(δi+δ3−i)A

0
t−λiAi

t−λ3−iA
3−i
t E

[
Ri
u

(
X i
t(Y

i
u/Y

i
t )αi(Z0

u/Z
0
t )ζi(Zi

u/Z
i
t)
)

× e−(δi+δ3−i)Y
0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

u −A3−i
t )/Y 3−i

t

×
(
δiY

0
t (Y 0

u /Y
0
t ) + λiY

i
t (Y i

u/Y
i
t )
)
D3−i
v−u(Y

0
t (Y 0

u /Y
0
t ), Y 3−i

t (Y 3−i
u /Y 3−i

t ))
∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t Q

i

t,u−t,v−u(X
i
t , Y

0
t , Y

i
t , Y

3−i
t ) dudv

19



while, for each 0 ≤ t ≤ v < u , we get

E
[
Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Ft] (4.18)

= E
[
e−(δi+δ3−i)A

0
v−λiAi

v−λ3−iA
3−i
v (δ3−iY

0
v + λ3−iY

3−i
v )Qi

v,u−v(X
i
v, Y

0
v , Y

i
v )
∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t

× E
[
e−(δi+δ3−i)Y

0
t (A0

v−A0
t )/Y

0
t −λiY i

t (A
i
v−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

v −A3−i
t )/Y 3−i

t

×
(
δ3−i Y

0
t (Y 0

v /Y
0
t ) + λ3−i Y

i
t (Y i

v /Y
i
t )
)

×Qi
v,u−v

(
X i
t(Y

i
v /Y

i
t )αi(Z0

v/Z
0
t )ζi(Zi

v/Z
i
t), Y

0
t (Y 0

v /Y
0
t ), Y i

t (Y i
v /Y

i
t )
) ∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t Q̂i

t,v−t,u−v(X
i
t , Y

0
t , Y

i
t , Y

3−i
t ) dudv

for every i = 1, 2. Here, by virtue of the Markov property of the processes (Y j, Aj) and Zj ,

j = 0, 1, 2, and the fact that the random variables Y j
u /Y

j
t and Zj

u/Z
j
t have the same laws as

Y j
u−t and Zj

u−t , j = 0, 1, 2, for each 0 ≤ t < u , respectively, we have

Q
i

t,u−t,v−u(xi, y0, yi, y3−i) = E
[
Ri
u

(
xi(Y

i
u−t)

αi(Z0
u−t)

ζiZi
u−t
)

(4.19)

× e−(δi+δ3−i)y0A
0
u−t−λiyiAi

u−t−λ3−iy3−iA
3−i
u−t (δiy0Y

0
u−t + λiyiY

i
u−t)D

3−i
v−u(y0Y

0
u−t, y3−iY

3−i
u−t )

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Ri
u

(
xi(y

′
i)
αi(z′0)

ζiz′i
)
e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i

× (δiy0y
′
0 + λiyiy

′
i)D

3−i
v−u(y0y

′
0, y3−iy

′
3−i) g

0
u−t(y

′
0, a0) g

i
u−t(y

′
i, ai) g

3−i
u−t(y

′
i, ai)h

0
u−t(z

′
0)h

i
u−t(z

′
i)

× dy′0da0dy′idaidy′3−ida3−idz′0dz′i

for all 0 ≤ t < u < v ≤ T , as well as

Q̂i
t,v−t,u−v(xi, y0, yi, y3−i) = E

[
e−(δi+δ3−i)y0A

0
v−t−λiyiAi

v−t−λ3−iy3−iA
3−i
v−t (4.20)

× (δ3−iy0Y
0
v−t + λ3−iy3−iY

3−i
v−t )Qi

u

(
xi(Y

i
v−t)

αi(Z0
v−t)

ζiZi
v−t, y0Y

0
v−t, y3−iY

3−i
v−t
)]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i

× (δ3−iy0y
′
0 + λ3−iy3−iy

′
3−i)Q

i
v,u−v

(
xi(y

′
i)
αi(z′0)

ζiz′i, y0y
′
0, yiy

′
i

)
× g0v−t(y′0, a0) giv−t(y′i, ai) g3−iv−t(y

′
3−i, a3−i)h

0
v−t(z

′
0)h

i
v−t(z

′
i) dy

′
0da0dy

′
idaidy

′
3−ida3−idz

′
0dz
′
i

for all 0 ≤ t < v < u ≤ T and every i = 1, 2.

Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.2. Suppose that r = 0. The rational price for the holder of a risk-free credit

default swap in (4.6) is given by the sum of the expressions in (4.7) and (4.8). The latter terms

are computed by means of the expressions in (3.13), (4.9), (4.12)-(4.13), and (4.17)-(4.18) with

(3.7), (4.5), (4.14), and (4.19)-(4.20), respectively.
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4.3 The case of filtration (Git ∨ σ(τ3−i))t≥0

Let us now continue by computing the rational price P̃ i(τ3−i) = (P̃ i
t (τ3−i))t≥0 for the holder of

a CDS in the model with the filtration (Git ∨ σ(τ3−i))t≥0 given by

P̃ i
t (τ3−i) = E

[
− κ̃i(τ3−i) (τi ∧ T − t) I(t < τi) +Ri

τi
(X i

τi
) I(t < τi ≤ T )

∣∣Git ∨ σ(τ3−i)
]

(4.21)

for 0 ≤ t ≤ T ∧ τi , and P̃ i
t (τ3−i) = 0, for t > T ∧ τi , so that the premium κ̃i(τ3−i) is

then determined from the equation P̃ i
0(τ3−i) = 0, for every i = 1, 2. It is seen that κ̃i(τ3−i)

depends on τ3−i , since we have Gi0 ∨ σ(τ3−i) = F0 ∨ σ(τ3−i) ≡ σ(τ3−i), i = 1, 2. In order to

compute the both terms in (4.21), we apply the second part of the key lemma for the filtrations

(Git ∨ σ(τ3−i))t≥0 and (F3−i
t )t≥0 , and use the equality in (2.12) as well as Fubini’s theorem for

interchanging the order of conditional expectation and integration to obtain

E
[
(τi ∧ T − t) I(t < τi)

∣∣Git ∨ σ(τ3−i)
]

= I(t < τi)
E[(τi ∧ T − t) I(t < τi) | F3−i

t ]

P (t < τi | F3−i
t )

(4.22)

= I(t < τi)E

[ ∫ ∞
u=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

= I(t < τi)

∫ ∞
u=t

(u ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

and

E
[
Ri
τi

(X i
τi

) I(t < τi ≤ T )
∣∣Git ∨ σ(τ3−i)

]
= I(t < τi)

E[Ri
τi

(X i
τi

) I(t < τi ≤ T ) | F3−i
t ]

P (t < τi | F3−i
t )

(4.23)

= I(t < τi)E

[ ∫ T

u=t

Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

= I(t < τi)

∫ T

u=t

E[Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu) | Ft]
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

for all 0 ≤ t ≤ T and every i = 1, 2. Here, we recall from the expressions in (3.6)-(3.7) and

(3.8)-(3.9) that P (t < τi, τ3−i ∈ dv | Ft) = e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v ), for

all 0 ≤ v ≤ t , and P (t < τi, τ3−i ∈ dv | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t D3−i

v−t(Y
0
t , Y

3−i
t )dv , for all

0 ≤ t < v and every i = 1, 2, respectively. Note that all the terms of interest in the integrands

on the right-hand sides of the expressions in (4.22) and (4.23) were computed in the previous

subsection. Therefore, we may formulate the following assertion.

Proposition 4.3. Suppose that r = 0. The rational price for the holder of a risk-free

credit default swap in (4.21) is given by the sum of the expressions in (4.22) and (4.23). The

latter terms are computed by means of the expressions in (3.13), (4.9), (4.12)-(4.13), and

(4.17)-(4.18) with (3.7), (4.5), (4.14), and (4.19)-(4.20), respectively.
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5 The rational prices of risky CDSs (Conclusions)

In this section, we derive explicit expressions for the rational prices of credit default swaps

in the model defined above with consideration of counterparty risk in the cases of available

information contained in the filtrations (Gt)t≥0 or (Git ∨ σ(τ3−i))t≥0 defined above, for every

i = 1, 2.

Let us consider the rational price Π̂i = (Π̂i
t)t≥0 of a CDS in the model with consideration

of counterparty risk with the filtration (Gt)t≥0 given by

Π̂i
t = E

[
− κ̂∗i (τi ∧ τ3−i ∧ T − t) I(t < τi ∧ τ3−i) +Ri

τi
(X i

τi
) I(t < τi ≤ T ∧ τ3−i) (5.1)

+ R̂3−i
τ3−i

(X3−i
τ3−i

, Y 0
τ3−i

, Y 3−i
τ3−i

, Y i
τ3−i

) I(t < τ3−i ≤ T ∧ τi)
∣∣Gt]

for 0 ≤ t ≤ T ∧ τi ∧ τ3−i , and Π̂i
t = 0, for t > T ∧ τi ∧ τ3−i , so that the premium κ̂∗i is then

determined from the equation Π̂i
0 = 0, for every i = 1, 2. Here, we set R̂3−i

t (x3−i, y0, y3−i, yi) =

R3−i
t (x3−i)(P̂

3−i
t )+(x3−i, y0, y3−i, yi)− (P̂ 3−i

t )−(x3−i, y0, y3−i, yi), for all t ≥ 0 and every i = 1, 2.

In this case, we apply the generalised key lemma for the filtrations (Gt)t≥0 and (Ft)t≥0 , where

Gt coincides with Ft on the event {t < τi ∧ τ3−i} , for all t ≥ 0, and use the equality in (2.12)

as well as Fubini’s theorem for interchanging the order of expectation and integration to obtain

E
[
(τi ∧ τ3−i ∧ T − t) I(t < τi ∧ τ3−i)

∣∣Gt] (5.2)

= I(t < τi ∧ τ3−i)
E[(τi ∧ τ3−i ∧ T − t)I(t < τi ∧ τ3−i) | Ft]

P (t < τi ∧ τ3−i | Ft)

= I(t < τi ∧ τ3−i)E
[ ∫ ∞

t

∫ ∞
t

(u ∧ v ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi ∧ τ3−i | Ft)

∣∣∣∣Ft]
= I(t < τi ∧ τ3−i)

∫ ∞
t

∫ ∞
t

(u ∧ v ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (t < τi ∧ τ3−i | Ft)

and

E
[
Ri
τi

(X i
τi

) I(t < τi ≤ T ∧ τ3−i)
∣∣Gt] (5.3)

= I(t < τi ∧ τ3−i)
E[Ri

τi
(X i

τi
) I(t < τi ≤ T ∧ τ3−i) | Ft]

P (t < τi ∧ τ3−i | Ft)

= I(t < τi ∧ τ3−i)E
[ ∫ ∞

v=t

∫ T∧v

u=t

Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fv)
P (t < τi ∧ τ3−i | Ft)

∣∣∣∣Ft]
= I(t < τi ∧ τ3−i)

∫ ∞
v=t

∫ T∧v

u=t

E[Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu) | Ft]
P (t < τi ∧ τ3−i | Ft)
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as well as

E
[
R̂3−i
τ3−i

(X3−i
τ3−i

, Y 0
τ3−i

, Y 3−i
τ3−i

, Y i
τ3−i

) I(t < τ3−i ≤ T ∧ τi)
∣∣Gt] (5.4)

= I(t < τi ∧ τ3−i)
E[R̂3−i

τ3−i
(X3−i

τ3−i
, Y 0

τ3−i
, Y 3−i

τ3−i
, Y i

τ3−i
) I(t < τ3−i ≤ T ∧ τi) | Ft]

P (t < τi ∧ τ3−i | Ft)

= I(t < τi ∧ τ3−i)E
[ ∫ ∞

u=t

∫ T∧u

v=t

R̂3−i
v (X3−i

v , Y 0
v , Y

3−i
v , Y i

v )P (τi ∈ du, τ3−i ∈ dv | Fu)
P (t < τi ∧ τ3−i | Ft)

∣∣∣∣Ft]
= I(t < τi ∧ τ3−i)

∫ ∞
u=t

∫ T∧u

v=t

E[R̂3−i
v (X3−i

v , Y 0
v , Y

3−i
v , Y i

v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (t < τi ∧ τ3−i | Ft)

for all 0 ≤ t ≤ T and every i = 1, 2. Here, we recall from the expressions in (3.8) that

P (t < τi ∧ τ3−i | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t , for all t ≥ 0.

We also consider the rational price Π̃i(τ3−i) = (Π̃i
t(τ3−i))t≥0 of a CDS in the model with

consideration of counterparty risk with the filtration (Git ∨ σ(τ3−i))t≥0 given by

Π̃i
t(τ3−i) = E

[
− κ̃∗i (τ3−i) (τi ∧ τ3−i ∧ T − t) I(t < τi ∧ τ3−i) +Ri

τi
(X i

τi
) I(t < τi ≤ T ∧ τ3−i)

+ R̃3−i
τ3−i

(X3−i
τ3−i

, Y 0
τ3−i

, Y 3−i
τ3−i

, Y i
τ3−i

) I(t < τ3−i ≤ T ∧ τi)
∣∣Git ∨ σ(τ3−i)

]
(5.5)

for 0 ≤ t ≤ T ∧ τi ∧ τ3−i , and Π̃i
t(τ3−i) = 0, for t > T ∧ τi ∧ τ3−i , so that the premium

κ̃∗i (τ3−i) is then determined from the equation Π̃i
0(τ3−i) = 0, for every i = 1, 2. Here, we recall

that R̃3−i
t (x3−i, y0, y3−i, yi) = R3−i

t (x3−i)(P̃
3−i
t )+(x3−i, y0, y3−i, yi) − (P̃ 3−i

t )−(x3−i, y0, y3−i, yi),

for all t ≥ 0 and every i = 1, 2. In this case, we apply the generalised key lemma for the

filtrations (Git ∨σ(τ3−i))t≥0 and (F3−i
t )t≥0 , where Git ∨σ(τ3−i) coincides with F3−i

t on the event

{t < τi ∧ τ3−i} , for all t ≥ 0, and use the equality in (2.12) as well as Fubini’s theorem for

interchanging the order of expectation and integration to obtain

E
[
(τi ∧ τ3−i ∧ T − t) I(t < τi ∧ τ3−i)

∣∣Git ∨ σ(τ3−i)
]

(5.6)

= I(t < τi ∧ τ3−i)
E[(τi ∧ τ3−i ∧ T − t)I(t < τi) | F3−i

t ]

P (t < τi | F3−i
t )

= I(t < τi ∧ τ3−i)E
[ ∫ ∞

u=t

(u ∧ v ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Fu∨v)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

= I(t < τi ∧ τ3−i)
∫ ∞
u=t

(u ∧ v ∧ T − t)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i
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and

E
[
Ri
τi

(X i
τi

) I(t < τi ≤ T ∧ τ3−i)
∣∣Git ∨ σ(τ3−i)

]
(5.7)

= I(t < τi ∧ τ3−i)
E[Ri

τi
(X i

τi
) I(t < τi ≤ T ∧ τ3−i) | F3−i

t ]

P (t < τi | F3−i
t )

= I(t < τi ∧ τ3−i)E
[ ∫ T∧v

u=t

Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fv)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

= I(t < τi ∧ τ3−i)
∫ T∧v

u=t

E[Ri
u(X

i
u)P (τi ∈ du, τ3−i ∈ dv | Fu) | Ft]
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

as well as, on the event {τ3−i ≤ T} , we have

E
[
R̃3−i
τ3−i

(X3−i
τ3−i

, Y 0
τ3−i

, Y 3−i
τ3−i

, Y i
τ3−i

) I(t < τ3−i ≤ T ∧ τi)
∣∣Git ∨ σ(τ3−i)

]
(5.8)

= I(t < τi ∧ τ3−i)
E[R̃3−i

τ3−i
(X3−i

τ3−i
, Y 0

τ3−i
, Y 3−i

τ3−i
, Y i

τ3−i
) I(t < τ3−i ≤ T ∧ τi) | F3−i

t ]

P (t < τi ∧ τ3−i | F3−i
t )

= I(t < τi ∧ τ3−i)E
[ ∫ ∞

u=v

R̃3−i
v (X3−i

v , Y 0
v , Y

3−i
v , Y i

v )P (τi ∈ du, τ3−i ∈ dv | Fu)
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=τ3−i

= I(t < τi ∧ τ3−i)
∫ ∞
u=v

E[R̃3−i
v (X3−i

v , Y 0
v , Y

3−i
v , Y i

v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (t < τi, τ3−i ∈ dv | Ft)

∣∣∣∣
v=τ3−i

for all 0 ≤ t ≤ T and every i = 1, 2. Here, we recall from the expressions in (3.6)-(3.7) and

(3.8)-(3.9) that P (t < τi, τ3−i ∈ dv | Ft) = e−δiA
0
t−λiAi

t−δ3−iA
0
v−λ3−iA

3−i
v (δ3−iY

0
v + λ3−iY

3−i
v ), for

all 0 ≤ v ≤ t , and P (t < τi, τ3−i ∈ dv | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t D3−i

v−t(Y
0
t , Y

3−i
t )dv , for all

0 ≤ t < v and every i = 1, 2, respectively. Note that all the terms of interest in the integrands

on the right-hand sides of the expressions in (5.2)-(5.4) and (5.6)-(5.8) can be computed by

means of arguments similar to the ones applied in the previous subsection. Therefore, we may

formulate the following assertion.

Proposition 5.1. Suppose that r = 0. The rational prices for the holders of a risky credit

default swap in (5.1) and (5.5) are given by the sums of the expressions in (5.2)-(5.4) and (5.6)-

(5.8), respectively. The latter terms are computed by means of arguments similar to the ones

applied for the derivations of the expressions in (3.13), (4.9), (4.12)-(4.13), and (4.17)-(4.18)

with (3.7), (4.5), (4.14), and (4.19)-(4.20), respectively.
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