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GEVREY INDEX THEOREM FOR THE INHOMOGENEOUS

n-DIMENSIONAL HEAT EQUATION WITH A POWER-LAW

NONLINEARITY AND VARIABLE COEFFICIENTS

PASCAL REMY

Abstract. We are interested in the Gevrey properties of the formal power
series solution in time of the inhomogeneous semilinear heat equation with a

power-law nonlinearity in 1-dimensional time variable t P C and n-dimensional

spatial variable x P Cn and with analytic initial condition and analytic coeffi-
cients at the origin x “ 0. We prove in particular that the inhomogeneity of

the equation and the formal solution are together s-Gevrey for any s ě 1. In

the opposite case s ă 1, we show that the solution is 1-Gevrey at most while
the inhomogeneity is s-Gevrey, and we give an explicit example in which the

solution is s1-Gevrey for no s1 ă 1.

1. Setting the Problem

For several years, various works have been done on the divergent solutions of some
classes of linear partial differential equations or integro-differential equations in two
variables or more, allowing thus to formulate many results on Gevrey properties,
summability or multisummability (e.g. [2, 4–7, 9, 11, 12, 14, 19, 21, 23, 24, 27–35, 41,
42,45–47,55,57]).

In the case of the nonlinear partial differential equations, the situation is much
more complicated. The existing results concern mainly Gevrey properties, espe-
cially the convergence (e.g. [10,16,18,20,25,36–38,48–54]), and there are very few
results about the summation (see [17,22,26,40,43]).

In this article, we propose to investigate the Gevrey properties of the inhomoge-
neous semilinear heat equation

(1.1)

"

Btu´ apxq∆xu´ bpxqu
m “ rfpt, xq

up0, xq “ ϕpxq

with a 1-dimensional time variable t P C and a n-dimensional spatial variable
x :“ px1, ..., xnq P Cn, where

‚ ∆x :“ B2
x1
` ...` B2

xn is the Laplace operator;
‚ the coefficients apxq and bpxq and the initial condition ϕpxq are analytic on

a polydisc Dρ1,...,ρn :“ Dρ1 ˆ ... ˆ Dρn centered at the origin of Cn (Dρ

denotes the disc with center 0 P C and radius ρ ą 0);
‚ the degree m of the power-law nonlinearity is an integer ě 2;
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‚ the inhomogeneity rfpt, xq is a formal power series in t with analytic coeffi-

cients in Dρ1,...,ρn (we denote by rfpt, xq P OpDρ1,...,ρnqrrtss) which may be
smooth, or not1.

Equation (1.1) arises in many physical, chemical, biological, and ecological problems
involving diffusion and nonlinear growth such as heat and mass transfer, combustion
theory, and spread theory of animal or plant populations. For example, if a chemical
reaction generates heat at a rate depending on the temperature u, then u satisfies
equation eq. (1.1). In biological and ecological problems, the nonlinear term um

represents the growth of animal or plant population.

Let us now write the inhomogeneity rfpt, xq on the form

rfpt, xq “
ÿ

jě0

fj,˚pxq
tj

j!

with fj,˚pxq P OpDρ1,...,ρnq for all j ě 0. Then, it is clear that equation eq. (1.1)
admits a unique formal series solution

rupt, xq
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1,...,ρnqrrtss,

where, for all j ě 0, the coefficients uj,˚pxq P OpDρ1,...,ρnq are recursively deter-
mined from u0,˚pxq “ ϕpxq by the relations

(1.2) uj`1,˚pxq “ fj,˚pxq ` apxq∆xuj,˚pxq`

bpxq
ÿ

k1`...`km“j

j!

k1!...km!
uk1,˚pxq...ukm,˚pxq.

An important particular case of equation eq. (1.1) is the case apxq “ 1, bpxq “ 0,

and rfpt, xq “ 0, for which equation eq. (1.1) becomes the classical linear heat initial
conditions problem

"

Btu “ ∆xu
up0, xq “ ϕpxq

In this case, it is well-known that the solution rupt, xq is generally divergent and
generically 1-Gevrey [19,27]. This Gevrey property was extended later to the non-

constant case apxq ‰ 1 [9] and to the inhomogeneous case rfpt, xq ‰ 0 [5,28]. In the
latter case, it was proved in particular that the solution rupt, xq and the inhomo-

geneity rfpt, xq are together 1-Gevrey.

In the present paper, we consider the very general equation eq. (1.1), where no
restrictive assumption is made on the coefficients apxq and bpxq, on the inhomo-

geneity rfpt, xq and on the initial condition ϕpxq, except the assumption that apxq,

bpxq and ϕpxq are analytic at the origin x “ 0 of Cn and the assumption that rfpt, xq
is a formal power series in t with analytic coefficients at x “ 02.

Let us mention here that a real variant of equation eq. (1.1) was already studied

in the case apxq “ 1, bpxq “ 1 and rfpt, xq “ 0 by T. Gramchev and G. Lysik

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
2Thereby, our study includes in particular the case bpxq “ 0; hence, the linear case. Therefore,

all the results stated in this article generalize the results already known for the classical heat
equation.



GEVREY INDEX THEOREM FOR INHOMOGENEOUS SEMILINEAR HEAT EQUATION 3

[10], then by G. Lysik and S. Michalik [20] by replacing the nonlinearity um by a
polynomial in u with constant coefficients, and has shown that the solution rupt, xq
is again 1-Gevrey.

The organization of the paper is as follows. In section 2, we recall the definition
and some properties about the s-Gevrey formal power series in OpDρ1,...,ρnqrrtss
which are needed in the sequel. Section 3 is devoted to the main result of the article

which states that the solution rupt, xq and the inhomogeneity rfpt, xq are together
s-Gevrey for any s ě 1 (theorem 3.1), generalizing thus the results already known
for the linear heat equation (see references just above). In the opposite case s ă 1,

we show that rupt, xq is 1-Gevrey at most while rfpt, xq is s-Gevrey and an explicit
example for which rupt, xq is s1-Gevrey for no s1 ă 1 is displayed (proposition 3.2). A
detailed proof of the main theorem 3.1 is developed in section 4. This one is based
on the Nagumo norms, a technique of majorant series and a fixed point procedure.

2. Gevrey Formal Series

Before stating our main result (see theorem 3.1 below), let us first recall for the
convenience of the reader some definitions and basic properties about the Gevrey
formal series in OpDρ1,...,ρnqrrtss, which are needed in the sequel.

All along the article, we consider t as the variable and x as a parameter. Thereby,
to define the notion of Gevrey classes of formal power series in OpDρ1,...,ρnqrrtss,
one extends the classical notion of Gevrey classes of elements in Crrtss to families
parametrized by x in requiring similar conditions, the estimates being however
uniform with respect to x. Doing that, any formal power series of OpDρ1,...,ρnqrrtss
can be seen as a formal power series in t with coefficients in a convenient Banach
space defined as the space of functions that are holomorphic on a polydisc Dρ,...,ρ
(0 ă ρ ď min ρ`) and continuous up to its boundary, equipped with the usual
supremum norm. For a general study of series with coefficients in a Banach space,
we refer for instance to [3].

In the sequel, we endow Cn with the maximum norm: for x “ px1, ..., xnq P Cn,

}x} “ max
`Pt1,...,nu

|x`| .

Definition 2.1. Let s ě 0 be. A formal series

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1,...,ρnqrrtss

is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive
constants 0 ă ρ ă min ρ`, C ą 0 and K ą 0 such that the inequalities

sup
}x}ďρ

|uj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0.

In other words, definition 2.1 means that rupt, xq is s-Gevrey in t, uniformly in x
on a neighborhood of x “ p0, ..., 0q P Cn.

We denote by OpDρ1,...,ρnqrrtsss the set of all the formal series in OpDρ1,...,ρnqrrtss
which are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at
the origin of Cn`1 coincides with the union

Ť

ρ1ą0,...,ρną0 OpDρ1,...,ρnqrrtss0; in par-

ticular, any element of OpDρ1,...,ρnqrrtss0 is convergent and Ctt, xuXOpDρ1,...,ρnqrrtss “
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OpDρ1,...,ρnqrrtss0. Observe also that the sets OpDρ1,...,ρnqrrtsss are filtered as fol-
lows:

OpDρ1,...,ρnqrrtss0 Ă OpDρ1,...,ρnqrrtsss Ă OpDρ1,...,ρnqrrtsss1 Ă OpDρ1,...,ρnqrrtss

for all s and s1 satisfying 0 ă s ă s1 ă `8.

Following proposition 2.2 specifies the algebraic structure of OpDρ1,...,ρnqrrtsss.

Proposition 2.2. Let s ě 0. Then, the set pOpDρ1,...,ρnqrrtsss, Bt, Bx1
, ..., Bxnq is a

C-differential algebra.

Proof. Since pOpDρ1,...,ρnqrrtss, Bt, Bx1
, ..., Bxnq is a C-differential algebra, it is suffi-

cient to prove that OpDρ1,...,ρnqrrtsss is stable under multiplication and derivations.
The proof of the stability under the multiplication and the derivation Bt is similar

to the one already detailed in [45, Prop. 1] (see also [3, p. 64]) in the case n “ 1.
To prove the stability under the derivation Bx` with ` P t1, ..., nu, we proceed as

follows. Let rupt, xq P OpDρ1,...,ρnqrrtsss as in definition 2.1 and rwpt, xq “ Bx`rupt, xq.
For a given 0 ă ρ1 ă ρ, the Cauchy integral formula gives us, for all j ě 0 and all
}x} ď ρ1:

wj,˚pxq “ Bx`uj,˚pxq “
1

p2iπqn

ż

γpxq

uj,˚px
1q

px`1 ´ x`q2
n
ź

k“1
k‰`

px1k ´ xkq

dx1,

where γpxq :“ tx1 “ px11, ..., x
1
nq P Cn; |x1k ´ xk| “ ρ ´ ρ1 for all k P t1, ..., nuu.

Hence, the inequalities

sup
}x}ďρ1

|wj,˚pxq| ď C 1KjΓp1` ps` 1qjq with C 1 “
C

ρ´ ρ1
for all j ě 0.

Indeed, the definition of the path γpxq implies }x1} ď ρ. The proof is complete. �

Observe that the stability under the derivation Bx` would not be guaranteed
without the condition “there exist 0 ă ρ ă min ρ` ...” in definition 2.1.

Observe also that a direct consequence of proposition 2.2 is the following.

Corollary 2.3. Suppose that the formal solution rupt, xq of equation eq. (1.1) is

s-Gevrey for some s ě 0. Then, the inhomogeneity rfpt, xq is s-Gevrey too.

In section 3 below, we are interested in the following question which ensues
naturally from corollary 2.3:

(Q) “If rfpt, xq is s-Gevrey for some s ě 0,
is the formal solution rupt, xq s-Gevrey too?”

As we shall prove, the response to this question depends on the value of the index
s and, more precisely, on the value of s in relation to the critical value sc “ 1.

3. Gevrey Index Theorem

In the case s ě 1, the Gevrey Index Theorem below (see theorem 3.1) asserts that
the converse of corollary 2.3 is true, providing thus a positive answer to Question
eq. (Q).
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Theorem 3.1 (Gevrey Index Theorem). The formal solution rupt, xq of equation

eq. (1.1) and the inhomogeneity rfpt, xq are together s-Gevrey for any s ě 1.

On the other hand, in the opposite case s ă 1, the answer to Question eq. (Q) is
generally negative (hence, the converse of corollary 2.3 is false). In fact, according
to the filtration of the s-Gevrey spaces OpDρ1,...,ρnqrrtsss (see section 2) and theo-
rem 3.1, we can only be said that the formal solution rupt, xq of equation eq. (1.1) is

generically 1-Gevrey at most when rfpt, xq is s-Gevrey with s ă 1. Proposition 3.2
below gives just us an example in which rupt, xq is s1-Gevrey for no s1 ă 1.

Proposition 3.2 (A counter-example for s ă 1). Let ϕpxq be the analytic fonction
on D :“ D1{n,...,1{n defined by

ϕpxq “
1

1´ x1 ´ ...´ xn
.

Suppose that the inhomogeneity rfpt, xq satisfies:

‚ rfpt, xq is s-Gevrey for some s ă 1,
‚ Bαx fj,˚p0q ě 0 for all α P Nn and all j ě 03.

Suppose also that the coefficients apxq and bpxq are analytic on D and satisfy the
inequalities ap0q ą 0, Bαxap0q ě 0 and Bαx bp0q ě 0 for all α P Nn.
Then, the formal solution rupt, xq of equation eq. (1.1) is exactly 1-Gevrey.

Proof. It is sufficient to prove that rupt, xq is s1-Gevrey for no s1 ă 1.
Using the recurrence relations eq. (1.2), we first have

uj,˚pxq “ pnapxqq
jp2jq!pϕpxqq2j`1 ` ϕpxqremjpϕpxqq

for all x P D and all j ě 0, where remjpXq is a polynomial in X, the coefficients of
which read on the form

c
ź

α,β,γPNn
j1
Pt0,...,ju
finite

pBαxapxqq
kα

`

Bβxbpxq
˘kβ

pBγxfj1,˚pxqq
kγ,j1 ,

with c ą 0 and kα, kβ , kγ,j1 P N. In particular, for x “ 0, the assumptions on apxq,
bpxq and the fj1,˚pxq’s lead us to the inequalities

(3.1) uj,˚p0q ě pnap0qq
jΓp1` 2jq ą 0 for all j ě 0.

Let us now suppose that rupt, xq is s1-Gevrey for some s1 ă 1. Then, definition 2.1
and eq. (3.1) imply the relations

1 ă C

ˆ

K

nap0q

˙j
Γp1` ps1 ` 1qjq

Γp1` 2jq

for all j ě 0 and some convenient positive constants C and K independent of j.
Proposition 3.2 follows since such inequalities are impossible. Indeed, applying the
Stirling’s Formula, we get

C

ˆ

K

nap0q

˙j
Γp1` ps1 ` 1qjq

Γp1` 2jq
„

jÑ`8
C

c

s1 ` 1

2

˜

Kps1 ` 1qs
1
`1e1´s1

4nap0qj1´s1

¸j

which goes to 0 when j tends to infinity. This ends the proof. �

3As usual, we set Bαx :“ Bα1
x1 ...B

αn
xn while α “ pα1, ..., αnq.
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Observe that theorem 3.1 and proposition 3.2 apply in particular in the case
bpxq “ 0, that is in the case of the classical n-dimensional inhomogeneous heat
initial conditions problem

"

Btu´ apxq∆xu “ rfpt, xq
up0, xq “ ϕpxq

generalizing thus the results already proved in [5, 9, 19,27,28].
Section 4 below is devoted to the proof of the main theorem 3.1.

4. Proof of theorem 3.1

We have just to prove the converse of corollary 2.3.

Let us fix s ě 1 and let us suppose that the inhomogenity rfpt, xq is s-Gevrey.
By assumption, its coefficients fj,˚pxq P OpDρ1,...,ρnq satisfy the following condition
(see definition 2.1): there exist three positive constants 0 ă ρ ă min ρ`, C ą 0 and
K ą 0 such that the inequalities

(4.1) |fj,˚pxq| ď CKjΓp1` ps` 1qjq

hold for all j ě 0 and all }x} ď ρ.
We must prove that the coefficients uj,˚pxq P OpDρ1,...,ρnq of rupt, xq satisfy similar

inequalities. The approach we present below is analoguous to the ones already
developed in [5, 45–47] in the framework of linear partial and integro-differential
equations and is based on the Nagumo norms [8, 39, 56] and on a technique of
majorant series. However, our calculations appear to be much more complicated
than in the linear case: the nonlinear term um of equation eq. (1.1) generates indeed
several new technical combinatorial situations.

Before starting the calculations, let us first recall for the convenience of the
reader the definition of the Nagumo norms and some of their properties which are
needed in the sequel.

4.1. Nagumo Norms.

Definition 4.1. Let f P OpDρ1,...,ρnq, p ě 0 and 0 ă r ă min ρ` be. Then, the
Nagumo norm }f}p,r with indices pp, rq of f is defined by

}f}p,r :“ sup
}x}ďr

|fpxqdrpxq
p| ,

where drpxq denotes the Euclidian distance drpxq :“ r ´ }x}.

Following proposition 4.2 gives us some properties of the Nagumo norms.

Proposition 4.2. Let f, g P OpDρ1,...,ρnq, p, p1 ě 0 and 0 ă r ă min ρ` be. Then,

(1) }¨}p,r is a norm on OpDρ1,...,ρnq.
(2) |fpxq| ď }f}p,r drpxq

´p for all }x} ă r .

(3) }f}0,r “ sup
}x}ďr

|fpxq| is the usual sup-norm on the polydisc Dr,...,r.

(4) }fg}p`p1,r ď }f}p,r }g}p1,r.

(5) }Bx`f}p`1,r ď epp` 1q }f}p,r for all ` P t1, ..., nu.
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Proof. Properties 1–4 are straightforward and are left to the reader. To prove
Property 5, we proceed as follows. Let ` P t1, ..., nu be, x P Cn such that }x} ă r
and 0 ă R ă drpxq. Using the Cauchy Integral Formula, we have

Bx`fpxq “
1

p2iπqn

ż

γpxq

fpx1q

px`1 ´ x`q2
n
ź

k“1
k‰`

px1k ´ xkq

dx1,

where γpxq :“ tx1 “ px11, ..., x
1
nq P Cn; |x1k ´ xk| “ R for all k P t1, ..., nuu. Since

x1 P γpxq ñ
›

›x1
›

› ă r,

we can apply Property 2 of proposition 4.2; hence, the inequalities

|Bx`fpxq| ď
1

R
max
x1Pγpxq

ˇ

ˇfpx1q
ˇ

ˇ ď
1

R
}f}p,r max

x1Pγpxq
drpx

1q´p “
1

R
}f}p,r pdrpxq ´Rq

´p.

Observe that the last equality stems from the relations

drpx
1q “ r ´

›

›x1
›

› “ r ´
›

›x` x1 ´ x
›

› ě drpxq ´
›

›x1 ´ x
›

› “ drpxq ´R ą 0.

When p “ 0, the choice R “
drpxq

e
implies the inequality

|Bx`fpxq| ď e }f}0,r drpxq
´1;

hence, the inequality

(4.2) |Bx`fpxq| drpxq ď e }f}0,r .

When p ą 0, the choice R “
drpxq

p` 1
and the relations

ˆ

1´
1

p` 1

˙´p

“

ˆ

1`
1

p

˙p

ă e,

brings us to the inequalities

|Bx`fpxq| ď }f}p,r drpxq
´p´1pp` 1q

ˆ

1´
1

p` 1

˙´p

ď epp` 1q }f}p,r drpxq
´p´1

and then to the inequality

(4.3) |Bx`fpxq| drpxq
p`1 ď epp` 1q }f}p,r .

Property 5 follows since inequalities eqs. (4.2) and (4.3) are still valid when }x} “ r.
This achieves the proof of proposition 4.2. �

Remark 4.3. Inequalities 4–5 of proposition 4.2 are the most important properties.
Observe besides that the same index r occurs on their both sides, allowing thus to
get estimates for the product fg in terms of f and g and for the derivatives Bx`f
for any ` P t1, ..., nu in terms of f without having to shrink the polydisc Dr,...,r.

Let us now turn to the proof of theorem 3.1.
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4.2. Some Inequalities. From recurrence relations eq. (1.2), we first derive the
following identities for all j ě 0:

(4.4)
uj`1,˚pxq

Γp1` ps` 1qpj ` 1qq
“

fj,˚pxq

Γp1` ps` 1qpj ` 1qq
`

apxq∆xuj,˚pxq

Γp1` ps` 1qpj ` 1qq
`

bpxq
ÿ

k1`...`km“j

j!

k1!...km!

uk1,˚pxq...ukm,˚pxq

Γp1` ps` 1qpj ` 1qq
,

with the initial condition u0,˚pxq “ ϕpxq. Let us now define the constant A ą 0 by

(4.5) A :“ }u0,˚}0,ρ “ }ϕ}0,ρ

and let us apply the Nagumo norm of indices pps`1qpj`1q, ρq to relations eq. (4.4).
From Property 1 of proposition 4.2, we first obtain:

}uj`1,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
ď

}fj,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
`
}a∆xuj,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
`

ÿ

k1`...`km“j

j!

k1!...km!

}buk1,˚...ukm,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
.

Then, Properties 4–5 of proposition 4.2 imply the inequalities

}uj`1,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
ď

}fj,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
` αj,s

}uj,˚}ps`1qj,ρ

Γp1` ps` 1qjq
`

}b}s`1,ρ

ÿ

k1`...`km“j

βj,k1,...,km,s
}uk1,˚}ps`1qk1,ρ

Γp1` ps` 1qk1q
...
}ukm,˚}ps`1qkm,ρ

Γp1` ps` 1qkmq
,

where the constants αj,s and βk1,...,km,j are defined by

αj,s :“
ne2pps` 1qj ` 2qpps` 1qj ` 1q }a}s´1,ρ Γp1` ps` 1qjq

Γp1` ps` 1qpj ` 1qq
,

βj,k1,...,km,s :“
j!

k1!...km!

Γp1` ps` 1qk1q...Γp1` ps` 1qkmq

Γp1` ps` 1qpj ` 1qq
.

Observe that all the norms, especially the norm }a}s´1,ρ, are well-defined since
s ě 1.

Following propositions 4.4 and 4.5 allow us to bound the constants αj,s and
βj,k1,...,km,s.

Proposition 4.4. Let j ě 0 be. Then,

(4.6)
pps` 1qj ` 2qpps` 1qj ` 1qΓp1` ps` 1qjq

Γp1` ps` 1qpj ` 1qq
ď 1.

Proof. Applying the recurrence formula Γpz ` 1q “ zΓpzq twice, we first have

pps` 1qj ` 2qpps` 1qj ` 1qΓp1` ps` 1qjq “ Γp1` ps` 1qj ` 2q.

Inequality eq. (4.6) follows then from the relations

1` ps` 1qpj ` 1q “ 1` ps` 1qj ` s` 1 ě 1` ps` 1qj ` 2 ě 2

(we have indeed s ě 1) and from the increase of the Gamma function on r2;`8r.
�
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Proposition 4.5. Let j ě 0 be and k1, ..., km P N such that k1 ` ... ` km “ j.
Then,

(4.7)
Γp1` ps` 1qk1q...Γp1` ps` 1qkmq

Γp1` ps` 1qpj ` 1qq
ď
k1!...km!

j!
.

Proof. First of all, let us write the left-hand side of inequality eq. (4.7) on the form

Γp1` ps` 1qk1q...Γp1` ps` 1qkmq

Γp1` ps` 1qpj ` 1qq
“

Γp1` ps` 1qjq

Γp1` ps` 1qpj ` 1qq
Qj,k1,...,kmps` 1q,

where Q is the function defined on r0;`8r by

Qj,k1,...,kmpqq “
Γp1` k1qq...Γp1` kmqq

Γp1` jqq
.

Since proposition 4.4 implies

(4.8)
Γp1` ps` 1qjq

Γp1` ps` 1qpj ` 1qq
ď
pps` 1qj ` 2qpps` 1qj ` 1qΓp1` ps` 1qjq

Γp1` ps` 1qpj ` 1qq
ď 1,

it is sufficient to prove that

(4.9) Qj,k1,...,kmps` 1q ď
k1!...km!

j!
.

To this end, let us study the variations of the function Qj,k1,...,km . This latter is
derivable on r0;`8r and, for all q ě 0, we have

Q1j,k1,...,kmpqq “ Qj,k1,...,kmpqq

˜

m
ÿ

`“1

k`ψp1` k`qq ´ jψp1` jqq

¸

,

where ψ :“ Γ1{Γ is the Digamma function. Thereby, applying the classical relation
(see [1, p. 259] for instance)

ψp1` qq “ ´γ `
`8
ÿ

h“1

q

hph` qq
, q ě 0, γ :“ the Euler’s constant,

we get

Q1j,k1,...,kmpqq “ qQj,k1,...,kmpqq
`8
ÿ

h“1

˜

m
ÿ

`“1

k2
`

hph` k`qq
´

j2

hph` jqq

¸

.

Next, lemma 4.6 below shows us that Q1j,k1,...,kmpqq ď 0 for all q ě 0 and, conse-

quently, the function Qj,k1,...,km is decreasing on r0;`8r. Hence,

Qj,k1,...,kmpqq ď Qj,k1,...,kmp1q “
Γp1` k1q...Γp1` kmq

Γp1` jq
“
k1!...km!

j!

for all q ě 1 and inequality eq. (4.9) stems from the relation s` 1 ě 2. This ends
the proof. �

Lemma 4.6. Let q ě 0 and h ě 1 be. Then, the inequality

(4.10)
m
ÿ

`“1

k2
`

h` k`q
ď

˜

m
ÿ

`“1

k`

¸2

h`

˜

m
ÿ

`“1

k`

¸

q

holds for all m ě 2 and all k1, ..., km ě 0.
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Proof. We proceed by induction on m. For m “ 2, we clearly have

k2
1

h` k1q
`

k2
2

h` k2q
´

pk1 ` k2q
2

h` pk1 ` k2qq
“

´k1k2hpk1q ` k2q ` 2hq

ph` k1qqph` k2qqph` pk1 ` k2qqq
ď 0.

Let us now suppose that inequality eq. (4.10) is true for all k P t2, ...,mu for a
certain m ě 2. Then, the successive relations

m`1
ÿ

`“1

k2
`

h` k`q
ď

˜

m
ÿ

`“1

k`

¸2

h`

˜

m
ÿ

`“1

k`

¸

q

`
k2
m`1

h` km`1q

ď

˜

m
ÿ

`“1

k` ` km`1

¸2

h`

˜

m
ÿ

`“1

k` ` km`1

¸

q

“

˜

m`1
ÿ

`“1

k`

¸2

h`

˜

m`1
ÿ

`“1

k`

¸

q

hold for any k1, ..., km`1 ě 0, which achieves the proof. �

Let us now apply propositions 4.4 and 4.5: we get

αj,s ď ne2 }a}s´1,ρ and βj,k1,...,km,s ď 1.

Hence, the following inequalities

(4.11)
}uj`1,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
ď

}fj,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
`

ne2 }a}s´1,ρ

}uj,˚}ps`1qj,ρ

Γp1` ps` 1qjq
`

}b}s`1,ρ

ÿ

k1`...`km“j

}uk1,˚}ps`1qk1,ρ

Γp1` ps` 1qk1q
...
}ukm,˚}ps`1qkm,ρ

Γp1` ps` 1qkmq

hold for all j ě 0.
We now shall bound the Nagumo norms }uj,˚}ps`1qj,ρ for any j. To do that,

we shall proceed similarly as in [5, 45–47] by using a technique of majorant series.
However, as we shall see, the calculations are much more complicated.

4.3. A Majorant Series. Let us consider the formal series vpXq “
ÿ

jě0

vjX
j ,

where the coefficients vj are recursively determined from v0 “ A (see identity
eq. (4.5) for the definition of A) by the relations

(4.12) vj`1 “ αvj ` gj ` β
ÿ

k1`...`km“j

vk1 ...vkm

with α :“ ne2 }a}s´1,ρ, β :“ }b}s`1,ρ and

gj :“
}fj,˚}ps`1qpj`1q,ρ

Γp1` ps` 1qpj ` 1qq
.
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By construction, we have

(4.13) 0 ď
}uj,˚}ps`1qj,ρ

Γp1` ps` 1qjq
ď vj

for all j ě 0 (proceed by induction on j). Following proposition 4.7 allows us to
bound the vj ’s.

Proposition 4.7. The formal series vpXq is convergent. In particular, there exist
two positive constants C 1,K 1 ą 0 such that vj ď C 1K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.
First of all, let us observe that vpXq is the unique formal power series in X

solution of the functional equation

(4.14) p1´ αXqvpXq “ βXpvpXqqm ` hpXq,

where

hpXq :“ A`X
ÿ

jě0

gjX
j

is a convergent power series with nonnegative coefficients. Indeed, according to the
assumption on the fj ’s (see inequality eq. (4.1) at the beginning of section 4) and
inequality eq. (4.8), we have

0 ď gj ď
CKjΓp1` ps` 1qjqρps`1qpj`1q

Γp1` ps` 1qpj ` 1qq
ď Cρs`1pKρs`1qj .

We denote in the sequel by rh ą 0 the radius of convergence of h.
Next, we proceed through a fixed point method as follows. Let us set

V pXq “
ÿ

iě0

VipXq

and let us choose the solution of equation eq. (4.14) given by the system
$

&

%

p1´ αXqV0pXq “ hpXq

p1´ αXqVi`1pXq “ βX
ÿ

k1`...`km“i

Vk1pXq...VkmpXq for i ě 0.

By induction on i ě 0, we easily check that

(4.15) VipXq “
Ci,mβ

iXiphpXqqipm´1q`1

p1´ αXqim`1
,

where the Ci,m’s are the positive constants recursively determined from C0,m :“ 1
by the relations

Ci`1,m “
ÿ

k1`...`km“i

Ck1,m...Ckm,m.

Thereby, all the Vi’s are analytic functions on the disc with center 0 P C and radius
minp1{α, rhq. Moreover, identities eq. (4.15) tell us that VipXq is of order Xi for
all i ě 0. Consequently, the series V pXq makes sense as a formal power series in X
and we get V pXq “ vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă
r ă minp1{α, rhq. By definition, the constants Ci,m’s are the generalized Catalan
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numbers of order m4 and we have

Ci,m “
1

pm´ 1qi` 1

ˆ

im

i

˙

ď 2im

for all i ě 0 (see [13,15,44] for instance). On the other hand, the convergent series
hpXq defines an increasing function on r0, rs. Therefore, identities eq. (4.15) imply
the inequalities

|VipXq| ď
hprq

1´ αr

ˆ

2mβphprqqm´1

p1´ αrqm
|X|

˙i

for all i ě 0 and all |X| ď r. Consequently, the series V pXq is normally convergent
on any disc with center 0 P C and radius

0 ă r1 ă min

ˆ

r,
p1´ αrqm

2mβphprqqm´1

˙

.

This proves the analyticity of V pXq at 0 and achieves then the proof of proposi-
tion 4.7. �

According to relations eq. (4.13), proposition 4.7 allows us to also bound the
Nagumo norms }uj,˚}ps`1qj,ρ.

Corollary 4.8. Let C 1,K 1 ą 0 be as in proposition 4.7. Then, the inequalities

}uj,˚}ps`1qj,ρ ď C 1K 1jΓp1` ps` 1qjq

hold for all j ě 0.

We are now able to conclude the proof of theorem 3.1.

4.4. Conclusion. We must prove on the sup-norm of the ujpxq estimates similar
to the ones on the norms }uj,˚}ps`1qj,ρ (see corollary 4.8). To this end, we proceed

by shrinking the closed polydisc }x} ď ρ. Let 0 ă ρ1 ă ρ. Then, for all j ě 0 and
all }x} ď ρ1, we have

|uj,˚pxq| “

ˇ

ˇ

ˇ

ˇ

uj,˚pxqdρpxq
ps`1qj 1

dρpxqps`1qj

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇuj,˚pxqdρpxq
ps`1qj

ˇ

ˇ

pρ´ ρ1qps`1qj
ď
}uj,˚}ps`1qj,ρ

pρ´ ρ1qps`1qj

and, consequently,

sup
}x}ďρ1

|uj,˚pxq| ď C 1
ˆ

K 1

pρ´ ρ1qs`1

˙j

Γp1` ps` 1qjq

by applying corollary 4.8. This ends the proof of theorem 3.1.

4These numbers were named in honor of the Belgian mathematician Eugène Charles Catalan

(1814-1894). They appear in many probabilist, graphs and combinatorial problems. For example,
they can be seen as the number of m-ary trees with i source-nodes, or as the number of ways of

associating i applications of a given m-ary operation, or as the number of ways of subdividing a

convex polygon into i disjoint (m ` 1)-gons by means of non-intersecting diagonals. They also
appear in theoretical computers through the generalized Dyck words. See for instance [13] and

the references inside.
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