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Setting the Problem

For several years, various works have been done on the divergent solutions of some classes of linear partial differential equations or integro-differential equations in two variables or more, allowing thus to formulate many results on Gevrey properties, summability or multisummability (e.g. [2, 4-7, 9, 11, 12, 14, 19, 21, 23, 24, 27-35, 41, 42, 45-47, 55, 57]).

In the case of the nonlinear partial differential equations, the situation is much more complicated. The existing results concern mainly Gevrey properties, especially the convergence (e.g. [START_REF] Gramchev | Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation[END_REF][START_REF] Lastra | On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems[END_REF][START_REF] Lastra | On Gevrey solutions of threefold singular nonlinear partial differential equations[END_REF][START_REF] Lysik | Formal solutions of semilinear heat equations[END_REF][START_REF] Malek | On Gevrey asymptotic for some nonlinear integro-differential equations[END_REF][START_REF] Miyake | Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain[END_REF][START_REF] Miyake | Structure of formal solutions of nonlinear first order singular partial differential equations in complex domain[END_REF][START_REF] Miyake | Two proofs for the convergence of formal solutions of singular first order nonlinear partial differential equations in complex domain. Surikaiseki Kenkyujo Kokyuroku Bessatsu[END_REF][START_REF] Shirai | Maillet type theorem for nonlinear partial differential equations and newton polygons[END_REF][START_REF] Shirai | Convergence of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type[END_REF][START_REF] Shirai | A maillet type theorem for first order singular nonlinear partial differential equations[END_REF][START_REF] Shirai | Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type[END_REF][START_REF] Shirai | Alternative proof for the convergence or formal solutions of singular first order nonlinear partial differential equations[END_REF][START_REF] Shirai | Gevrey order of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type[END_REF][START_REF] Shirai | Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type, part ii[END_REF]), and there are very few results about the summation (see [START_REF] Lastra | On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems[END_REF][START_REF] Malek | On the summability of formal solutions of nonlinear partial differential equations with shrinkings[END_REF][START_REF] Malek | On the summability of formal solutions for doubly singular nonlinear partial differential equations[END_REF][START_REF] Ouchi | Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations[END_REF][START_REF] Pliś | Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables[END_REF]).

In this article, we propose to investigate the Gevrey properties of the inhomogeneous semilinear heat equation (1.1)

"
B t u ´apxq∆ x u ´bpxqu m " r f pt, xq up0, xq " ϕpxq with a 1-dimensional time variable t P C and a n-dimensional spatial variable x :" px 1 , ..., x n q P C n , where ' ∆ x :" B 2 x1 `... `B2 xn is the Laplace operator; ' the coefficients apxq and bpxq and the initial condition ϕpxq are analytic on a polydisc D ρ1,...,ρn :" D ρ1 ˆ... ˆDρn centered at the origin of C n (D ρ denotes the disc with center 0 P C and radius ρ ą 0); ' the degree m of the power-law nonlinearity is an integer ě 2;

' the inhomogeneity r f pt, xq is a formal power series in t with analytic coefficients in D ρ1,...,ρn (we denote by r f pt, xq P OpD ρ1,...,ρn qrrtss) which may be smooth, or not 1 . Equation (1.1) arises in many physical, chemical, biological, and ecological problems involving diffusion and nonlinear growth such as heat and mass transfer, combustion theory, and spread theory of animal or plant populations. For example, if a chemical reaction generates heat at a rate depending on the temperature u, then u satisfies equation eq. (1.1). In biological and ecological problems, the nonlinear term u m represents the growth of animal or plant population.

Let us now write the inhomogeneity r f pt, xq on the form

r f pt, xq " ÿ jě0 f j,˚p xq t j j!
with f j,˚p xq P OpD ρ1,...,ρn q for all j ě 0. Then, it is clear that equation eq. ( where, for all j ě 0, the coefficients u j,˚p xq P OpD ρ1,...,ρn q are recursively determined from u 0,˚p xq " ϕpxq by the relations

(1.2) u j`1,˚p xq " f j,˚p xq `apxq∆ x u j,˚p xqb pxq ÿ k1`...`km"j j! k 1 !...k m ! u k1,˚p xq...u km,˚p xq.
An important particular case of equation eq. (1.1) is the case apxq " 1, bpxq " 0, and r f pt, xq " 0, for which equation eq. (1.1) becomes the classical linear heat initial conditions problem " B t u " ∆ x u up0, xq " ϕpxq In this case, it is well-known that the solution r upt, xq is generally divergent and generically 1-Gevrey [START_REF] Lutz | On the Borel summability of divergent solutions of the heat equation[END_REF][START_REF] Michalik | Summability of divergent solutions of the n-dimensional heat equation[END_REF]. This Gevrey property was extended later to the nonconstant case apxq ‰ 1 [START_REF] Costin | Borel summability of the heat equation with variable coefficients[END_REF] and to the inhomogeneous case r f pt, xq ‰ 0 [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Michalik | Summability of formal solutions to the n-dimensional inhomogeneous heat equation[END_REF]. In the latter case, it was proved in particular that the solution r upt, xq and the inhomogeneity r f pt, xq are together 1-Gevrey.

In the present paper, we consider the very general equation eq. (1.1), where no restrictive assumption is made on the coefficients apxq and bpxq, on the inhomogeneity r f pt, xq and on the initial condition ϕpxq, except the assumption that apxq, bpxq and ϕpxq are analytic at the origin x " 0 of C n and the assumption that r f pt, xq is a formal power series in t with analytic coefficients at x " 0 2 .

Let us mention here that a real variant of equation eq. (1.1) was already studied in the case apxq " 1, bpxq " 1 and r f pt, xq " 0 by T. Gramchev and G. Lysik 1 We denote r f with a tilde to emphasize the possible divergence of the series r f . 2 Thereby, our study includes in particular the case bpxq " 0; hence, the linear case. Therefore, all the results stated in this article generalize the results already known for the classical heat equation.

[10], then by G. Lysik and S. Michalik [START_REF] Lysik | Formal solutions of semilinear heat equations[END_REF] by replacing the nonlinearity u m by a polynomial in u with constant coefficients, and has shown that the solution r upt, xq is again 1-Gevrey.

The organization of the paper is as follows. In section 2, we recall the definition and some properties about the s-Gevrey formal power series in OpD ρ1,...,ρn qrrtss which are needed in the sequel. Section 3 is devoted to the main result of the article which states that the solution r upt, xq and the inhomogeneity r f pt, xq are together s-Gevrey for any s ě 1 (theorem 3.1), generalizing thus the results already known for the linear heat equation (see references just above). In the opposite case s ă 1, we show that r upt, xq is 1-Gevrey at most while r f pt, xq is s-Gevrey and an explicit example for which r upt, xq is s 1 -Gevrey for no s 1 ă 1 is displayed (proposition 3.2). A detailed proof of the main theorem 3.1 is developed in section 4. This one is based on the Nagumo norms, a technique of majorant series and a fixed point procedure.

Gevrey Formal Series

Before stating our main result (see theorem 3.1 below), let us first recall for the convenience of the reader some definitions and basic properties about the Gevrey formal series in OpD ρ1,...,ρn qrrtss, which are needed in the sequel.

All along the article, we consider t as the variable and x as a parameter. Thereby, to define the notion of Gevrey classes of formal power series in OpD ρ1,...,ρn qrrtss, one extends the classical notion of Gevrey classes of elements in Crrtss to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. Doing that, any formal power series of OpD ρ1,...,ρn qrrtss can be seen as a formal power series in t with coefficients in a convenient Banach space defined as the space of functions that are holomorphic on a polydisc D ρ,...,ρ (0 ă ρ ď min ρ ) and continuous up to its boundary, equipped with the usual supremum norm. For a general study of series with coefficients in a Banach space, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF].

In the sequel, we endow C n with the maximum norm: for x " px 1 , ..., x n q P C n , }x} " max hold for all j ě 0.

In other words, definition 2.1 means that r upt, xq is s-Gevrey in t, uniformly in x on a neighborhood of x " p0, ..., 0q P C n .

We denote by OpD ρ1,...,ρn qrrtss s the set of all the formal series in OpD ρ1,...,ρn qrrtss which are s-Gevrey. Observe that the set Ctt, xu of germs of analytic functions at the origin of C n`1 coincides with the union Ť ρ1ą0,...,ρną0 OpD ρ1,...,ρn qrrtss 0 ; in particular, any element of OpD ρ1,...,ρn qrrtss 0 is convergent and Ctt, xuXOpD ρ1,...,ρn qrrtss " OpD ρ1,...,ρn qrrtss 0 . Observe also that the sets OpD ρ1,...,ρn qrrtss s are filtered as follows: OpD ρ1,...,ρn qrrtss 0 Ă OpD ρ1,...,ρn qrrtss s Ă OpD ρ1,...,ρn qrrtss s 1 Ă OpD ρ1,...,ρn qrrtss for all s and s 1 satisfying 0 ă s ă s 1 ă `8.

Following proposition 2.2 specifies the algebraic structure of OpD ρ1,...,ρn qrrtss s . Proposition 2.2. Let s ě 0. Then, the set pOpD ρ1,...,ρn qrrtss s , B t , B x1 , ..., B xn q is a C-differential algebra.

Proof. Since pOpD ρ1,...,ρn qrrtss, B t , B x1 , ..., B xn q is a C-differential algebra, it is sufficient to prove that OpD ρ1,...,ρn qrrtss s is stable under multiplication and derivations.

The proof of the stability under the multiplication and the derivation B t is similar to the one already detailed in [45, Prop. 1] (see also [3, p. 64]) in the case n " 1.

To prove the stability under the derivation B x with P t1, ..., nu, we proceed as follows. Let r upt, xq P OpD ρ1,...,ρn qrrtss s as in definition 2.1 and r wpt, xq " B x r upt, xq. For a given 0 ă ρ 1 ă ρ, the Cauchy integral formula gives us, for all j ě 0 and all }x} ď ρ 1 :

w j,˚p xq " B x u j,˚p xq " 1 p2iπq n ż γpxq u j,˚p x 1 q px 1 ´x q 2 n ź k"1 k‰ px 1 k ´xk q dx 1 ,
where γpxq :" tx 1 " px 1 1 , ..., x 1 n q P C n ; |x 1 k ´xk | " ρ ´ρ1 for all k P t1, ..., nuu. Hence, the inequalities sup

}x}ďρ 1 |w j,˚p xq| ď C 1 K j Γp1 `ps `1qjq with C 1 " C ρ ´ρ1 for all j ě 0.
Indeed, the definition of the path γpxq implies }x 1 } ď ρ. The proof is complete.

Observe that the stability under the derivation B x would not be guaranteed without the condition "there exist 0 ă ρ ă min ρ ..." in definition 2.1.

Observe also that a direct consequence of proposition 2.2 is the following.

Corollary 2.3. Suppose that the formal solution r upt, xq of equation eq. (1.1) is s-Gevrey for some s ě 0. Then, the inhomogeneity r f pt, xq is s-Gevrey too.

In section 3 below, we are interested in the following question which ensues naturally from corollary 2.3:

(Q) "If r f pt,
xq is s-Gevrey for some s ě 0, is the formal solution r upt, xq s-Gevrey too?"

As we shall prove, the response to this question depends on the value of the index s and, more precisely, on the value of s in relation to the critical value s c " 1.

Gevrey Index Theorem

In the case s ě 1, the Gevrey Index Theorem below (see theorem 3.1) asserts that the converse of corollary 2.3 is true, providing thus a positive answer to Question eq. (Q). On the other hand, in the opposite case s ă 1, the answer to Question eq. (Q) is generally negative (hence, the converse of corollary 2.3 is false). In fact, according to the filtration of the s-Gevrey spaces OpD ρ1,...,ρn qrrtss s (see section 2) and theorem 3.1, we can only be said that the formal solution r upt, xq of equation eq. (1.1) is generically 1-Gevrey at most when r f pt, xq is s-Gevrey with s ă 1. Proposition 3.2 below gives just us an example in which r upt, xq is s 1 -Gevrey for no s 1 ă 1.

Proposition 3.2 (A counter-example for s ă 1). Let ϕpxq be the analytic fonction on D :" D 1{n,...,1{n defined by ϕpxq " 1 1 ´x1 ´... ´xn .

Suppose that the inhomogeneity r f pt, xq satisfies:

' r f pt, xq is s-Gevrey for some s ă 1, ' B α
x f j,˚p 0q ě 0 for all α P N n and all j ě 03 . Suppose also that the coefficients apxq and bpxq are analytic on D and satisfy the inequalities ap0q ą 0, B α x ap0q ě 0 and B α x bp0q ě 0 for all α P N n . Then, the formal solution r upt, xq of equation eq. (1.1) is exactly 1-Gevrey.

Proof. It is sufficient to prove that r upt, xq is s 1 -Gevrey for no s 1 ă 1. Using the recurrence relations eq. ( 1.2), we first have u j,˚p xq " pnapxqq j p2jq!pϕpxqq 2j`1 `ϕpxqrem j pϕpxqq for all x P D and all j ě 0, where rem j pXq is a polynomial in X, the coefficients of which read on the form c ź α,β,γPN n j 1 Pt0,...,ju finite

pB α x apxqq kα `Bβ x bpxq ˘kβ pB γ x f j 1 ,˚p xqq k γ,j 1 ,
with c ą 0 and k α , k β , k γ,j 1 P N. In particular, for x " 0, the assumptions on apxq, bpxq and the f j 1 ,˚p xq's lead us to the inequalities (3.1) u j,˚p 0q ě pnap0qq j Γp1 `2jq ą 0 for all j ě 0.

Let us now suppose that r upt, xq is s 1 -Gevrey for some s 1 ă 1. Then, definition 2.1 and eq. (3.1) imply the relations

1 ă C ˆK nap0q ˙j Γp1 `ps 1 `1qjq Γp1 `2jq
for all j ě 0 and some convenient positive constants C and K independent of j. Proposition 3.2 follows since such inequalities are impossible. Indeed, applying the Stirling's Formula, we get

C ˆK nap0q ˙j Γp1 `ps 1 `1qjq Γp1 `2jq " jÑ`8 C c s 1 `1 2 ˜Kps 1 `1q s 1 `1e 1´s 1 4nap0qj 1´s 1 ¸j
which goes to 0 when j tends to infinity. This ends the proof.

Observe that theorem 3.1 and proposition 3.2 apply in particular in the case bpxq " 0, that is in the case of the classical n-dimensional inhomogeneous heat initial conditions problem " B t u ´apxq∆ x u " r f pt, xq up0, xq " ϕpxq generalizing thus the results already proved in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Costin | Borel summability of the heat equation with variable coefficients[END_REF][START_REF] Lutz | On the Borel summability of divergent solutions of the heat equation[END_REF][START_REF] Michalik | Summability of divergent solutions of the n-dimensional heat equation[END_REF][START_REF] Michalik | Summability of formal solutions to the n-dimensional inhomogeneous heat equation[END_REF].

Section 4 below is devoted to the proof of the main theorem 3.1.

Proof of theorem 3.1

We have just to prove the converse of corollary 2.3. Let us fix s ě 1 and let us suppose that the inhomogenity r f pt, xq is s-Gevrey. By assumption, its coefficients f j,˚p xq P OpD ρ1,...,ρn q satisfy the following condition (see definition 2.1): there exist three positive constants 0 ă ρ ă min ρ , C ą 0 and K ą 0 such that the inequalities (4.1)

|f j,˚p xq| ď CK j Γp1 `ps `1qjq hold for all j ě 0 and all }x} ď ρ.

We must prove that the coefficients u j,˚p xq P OpD ρ1,...,ρn q of r upt, xq satisfy similar inequalities. The approach we present below is analoguous to the ones already developed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] in the framework of linear partial and integro-differential equations and is based on the Nagumo norms [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed differential equations[END_REF][START_REF] Nagumo | Über das Anfangswertproblem partieller Differentialgleichungen[END_REF][START_REF] Walter | An elementary proof of the Cauchy-Kowalevsky theorem[END_REF] and on a technique of majorant series. However, our calculations appear to be much more complicated than in the linear case: the nonlinear term u m of equation eq. (1.1) generates indeed several new technical combinatorial situations.

Before starting the calculations, let us first recall for the convenience of the reader the definition of the Nagumo norms and some of their properties which are needed in the sequel. Proposition 4.2. Let f, g P OpD ρ1,...,ρn q, p, p 1 ě 0 and 0 ă r ă min ρ be. Then, (1) }¨} p,r is a norm on OpD ρ1,...,ρn q.

(2) |f pxq| ď }f } p,r d r pxq ´p for all }x} ă r .

(3) }f } 0,r " sup }x}ďr |f pxq| is the usual sup-norm on the polydisc D r,...,r .

(4) }f g} p`p 1 ,r ď }f } p,r }g} p 1 ,r .

(5) }B x f } p`1,r ď epp `1q }f } p,r for all P t1, ..., nu.

Proof. Properties 1-4 are straightforward and are left to the reader. To prove Property 5, we proceed as follows. Let P t1, ..., nu be, x P C n such that }x} ă r and 0 ă R ă d r pxq. Using the Cauchy Integral Formula, we have

B x f pxq " 1 p2iπq n ż γpxq f px 1 q px 1 ´x q 2 n ź k"1 k‰ px 1 k ´xk q dx 1 ,
where γpxq :" tx 1 " px 1 1 , ..., x 1 n q P C n ; |x 1 k ´xk | " R for all k P t1, ..., nuu. Since

x 1 P γpxq ñ › › x 1 › › ă r,
we can apply Property 2 of proposition 4.2; hence, the inequalities

|B x f pxq| ď 1 R max x 1 Pγpxq ˇˇf px 1 q ˇˇď 1 R }f } p,r max x 1 Pγpxq d r px 1 q ´p " 1 R }f } p,r pd r pxq ´Rq ´p.
Observe that the last equality stems from the relations

d r px 1 q " r ´› › x 1 › › " r ´› › x `x1 ´x› › ě d r pxq ´› › x 1 ´x› › " d r pxq ´R ą 0.
When p " 0, the choice R " d r pxq e implies the inequality

|B x f pxq| ď e }f } 0,r d r pxq ´1;
hence, the inequality (4.2) |B x f pxq| d r pxq ď e }f } 0,r .

When p ą 0, the choice R " d r pxq p `1 and the relations

ˆ1 ´1 p `1 ˙´p " ˆ1 `1 p ˙p ă e,
brings us to the inequalities

|B x f pxq| ď }f } p,r d r pxq ´p´1 pp `1q ˆ1 ´1 p `1 ˙´p ď epp `1q }f } p,r d r pxq ´p´1
and then to the inequality Observe besides that the same index r occurs on their both sides, allowing thus to get estimates for the product f g in terms of f and g and for the derivatives B x f for any P t1, ..., nu in terms of f without having to shrink the polydisc D r,...,r .

Let us now turn to the proof of theorem 3.1.

4.2. Some Inequalities. From recurrence relations eq. ( 1.2), we first derive the following identities for all j ě 0: where the constants α j,s and β k1,...,km,j are defined by α j,s :" ne 2 pps `1qj `2qpps `1qj `1q }a} s´1,ρ Γp1 `ps `1qjq

(4.4) u j`1,
Γp1 `ps `1qpj `1qq , β j,k1,...,km,s :" j! k 1 !...k m ! Γp1 `ps `1qk 1 q...Γp1 `ps `1qk m q Γp1 `ps `1qpj `1qq .

Observe that all the norms, especially the norm }a} s´1,ρ , are well-defined since s ě 1. Following propositions 4.4 and 4.5 allow us to bound the constants α j,s and β j,k1,...,km,s . Proposition 4.4. Let j ě 0 be. Then, (4.6) pps `1qj `2qpps `1qj `1qΓp1 `ps `1qjq Γp1 `ps `1qpj `1qq ď 1.

Proof. Applying the recurrence formula Γpz `1q " zΓpzq twice, we first have pps `1qj `2qpps `1qj `1qΓp1 `ps `1qjq " Γp1 `ps `1qj `2q.

Inequality eq. (4.6) follows then from the relations 1 `ps `1qpj `1q " 1 `ps `1qj `s `1 ě 1 `ps `1qj `2 ě 2 (we have indeed s ě 1) and from the increase of the Gamma function on r2; `8r. Proposition 4.5. Let j ě 0 be and k 1 , ..., k m P N such that k 1 `... `km " j. Then, (4.7) Γp1 `ps `1qk 1 q...Γp1 `ps `1qk m q Γp1 `ps `1qpj `1qq ď k 1 !...k m ! j! .

Proof. First of all, let us write the left-hand side of inequality eq. (4.7) on the form Γp1 `ps `1qk 1 q...Γp1 `ps `1qk m q Γp1 `ps `1qpj `1qq " Γp1 `ps `1qjq Γp1 `ps `1qpj `1qq Q j,k1,...,km ps `1q, where Q is the function defined on r0; `8r by To this end, let us study the variations of the function Q j,k1,...,km . This latter is derivable on r0; `8r and, for all q ě 0, we have Q 1 j,k1,...,km pqq " Q j,k1,...,km pqq ˜m ÿ

Q j,
"1 k ψp1 `k qq ´jψp1 `jqq ¸,
where ψ :" Γ 1 {Γ is the Digamma function. Thereby, applying the classical relation (see [1, p. 259] for instance) ψp1 `qq " ´γ ``8 ÿ h"1 q hph `qq , q ě 0, γ :" the Euler's constant, we get Q 1 j,k1,...,km pqq " qQ j,k1,...,km pqq

`8 ÿ h"1 ˜m ÿ "1 k 2 hph `k qq ´j2 hph `jqq ¸.
Next, lemma 4.6 below shows us that Q 1 j,k1,...,km pqq ď 0 for all q ě 0 and, consequently, the function Q j,k1,...,km is decreasing on r0; `8r. Hence, Q j,k1,...,km pqq ď Q j,k1,...,km p1q " Γp1 `k1 q...Γp1 `km q Γp1 `jq "

k 1 !...k m ! j!
for all q ě 1 and inequality eq. (4.9) stems from the relation s `1 ě 2. This ends the proof.

Lemma 4.6. Let q ě 0 and h ě 1 be. Then, the inequality

(4.10) m ÿ "1 k 2 h `k q ď ˜m ÿ "1 k ¸2 h `˜m ÿ "1
k ¸q holds for all m ě 2 and all k 1 , ..., k m ě 0.

Proof. We proceed by induction on m. For m " 2, we clearly have

k 2 1 h `k1 q `k2 2 
h `k2 q ´pk 1 `k2 q 2 h `pk 1 `k2qq " ´k1 k 2 hpk 1 q `k2 q `2hq ph `k1 qqph `k2 qqph `pk 1 `k2 qqq ď 0.

Let us now suppose that inequality eq. (4.10) is true for all k P t2, ..., mu for a certain m ě 2. Then, the successive relations hold for all j ě 0. We now shall bound the Nagumo norms }u j,˚} ps`1qj,ρ for any j. To do that, we shall proceed similarly as in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] by using a technique of majorant series. However, as we shall see, the calculations are much more complicated.

m`1 ÿ "1 k 2 h `k q ď ˜m ÿ "1 k ¸2 h `˜m ÿ "1 k ¸q `k2 m`1 h `km`1 q ď ˜m ÿ "1 k `km`1 ¸2 h `˜m ÿ "1 k `km`1 ¸q " ˜m`1 ÿ "1 k ¸2 h `˜m`1 ÿ "1 k ¸q hold for any k 1 , ..., k m`1 ě 0,

A Majorant Series. Let us consider the formal series vpXq

" ÿ jě0 v j X j ,
where the coefficients v j are recursively determined from v 0 " A (see identity eq. (4.5) for the definition of A) by the relations (4.12) v j`1 " αv j `gj `β ÿ k1`...`km"j v k1 ...v km with α :" ne 2 }a} s´1,ρ , β :" }b} s`1,ρ and g j :" }f j,˚} ps`1qpj`1q,ρ Γp1 `ps `1qpj `1qq .

numbers of order m 4 and we have

C i,m " 1 pm ´1qi `1 ˆim i ˙ď 2 im
for all i ě 0 (see [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF][START_REF] Klarner | Correspondences between plane trees and binary sequences[END_REF][START_REF] Pólya | Aufgaben und Lehrsätze aus der Analysis[END_REF] for instance). On the other hand, the convergent series hpXq defines an increasing function on r0, rs. Therefore, identities eq. This proves the analyticity of V pXq at 0 and achieves then the proof of proposition 4.7.

According to relations eq. (4.13), proposition 4.7 allows us to also bound the Nagumo norms }u j,˚} ps`1qj,ρ .

Corollary 4.8. Let C 1 , K 1 ą 0 be as in proposition 4.7. Then, the inequalities }u j,˚} ps`1qj,ρ ď C 1 K 1j Γp1 `ps `1qjq hold for all j ě 0.

We are now able to conclude the proof of theorem 3.1.

Conclusion.

We must prove on the sup-norm of the u j pxq estimates similar to the ones on the norms }u j,˚} ps`1qj,ρ (see corollary 4.8). To this end, we proceed by shrinking the closed polydisc }x} ď ρ. Let 0 ă ρ 1 ă ρ. Then, for all j ě 0 and all }x} ď ρ 1 , we have |u j,˚p xq| " ˇˇˇu j,˚p xqd ρ pxq ps`1qj 1 d ρ pxq ps`1qj ˇˇˇď ˇˇu j,˚p xqd ρ pxq ps`1qj ˇpρ ´ρ1 q ps`1qj ď }u j,˚} ps`1qj,ρ pρ ´ρ1 q ps`1qj and, consequently, sup }x}ďρ 1 |u j,˚p xq| ď C 1 ˆK1 pρ ´ρ1 q s`1 ˙j Γp1 `ps `1qjq by applying corollary 4.8. This ends the proof of theorem 3.1.

4 These numbers were named in honor of the Belgian mathematician Eugène Charles Catalan (1814-1894). They appear in many probabilist, graphs and combinatorial problems. For example, they can be seen as the number of m-ary trees with i source-nodes, or as the number of ways of associating i applications of a given m-ary operation, or as the number of ways of subdividing a convex polygon into i disjoint (m `1)-gons by means of non-intersecting diagonals. They also appear in theoretical computers through the generalized Dyck words. See for instance [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF] and the references inside.

Definition 2 . 1 .

 21 Let s ě 0 be. A formal series r upt, xq " ÿ jě0 u j,˚p xq t j j! P OpD ρ1,...,ρn qrrtss is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive constants 0 ă ρ ă min ρ , C ą 0 and K ą 0 such that the inequalities sup }x}ďρ |u j,˚p xq| ď CK j Γp1 `ps `1qjq

Theorem 3 . 1 (

 31 Gevrey Index Theorem). The formal solution r upt, xq of equation eq. (1.1) and the inhomogeneity r f pt, xq are together s-Gevrey for any s ě 1.

4. 1 .

 1 Nagumo Norms. Definition 4.1. Let f P OpD ρ1,...,ρn q, p ě 0 and 0 ă r ă min ρ be. Then, the Nagumo norm }f } p,r with indices pp, rq of f is defined by }f } p,r :" sup }x}ďr |f pxqd r pxq p | , where d r pxq denotes the Euclidian distance d r pxq :" r ´}x}. Following proposition 4.2 gives us some properties of the Nagumo norms.

(4. 3 ) 2 . 4 . 3 .

 3243 |B x f pxq| d r pxq p`1 ď epp `1q }f } p,r . Property 5 follows since inequalities eqs. (4.2) and (4.3) are still valid when }x} " r. This achieves the proof of proposition 4.Remark Inequalities 4-5 of proposition 4.2 are the most important properties.

  p1 ´αrq m |X| ˙i for all i ě 0 and all |X| ď r. Consequently, the series V pXq is normally convergent on any disc with center 0 P C and radius 0 ă r 1 ă min ˆr, p1 ´αrq m 2 m βphprqq m´1 ˙.

As usual, we set B α x :" B α 1x 1 ...B αn xn while α " pα 1 , ..., αnq.

By construction, we have (4.13) 0 ď }u j,˚} ps`1qj,ρ Γp1 `ps `1qjq ď v j for all j ě 0 (proceed by induction on j). Following proposition 4.7 allows us to bound the v j 's.

Proposition 4.7. The formal series vpXq is convergent. In particular, there exist two positive constants C 1 , K 1 ą 0 such that v j ď C 1 K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.

First of all, let us observe that vpXq is the unique formal power series in X solution of the functional equation (4.14) p1 ´αXqvpXq " βXpvpXqq m `hpXq,

is a convergent power series with nonnegative coefficients. Indeed, according to the assumption on the f j 's (see inequality eq. ( 4.1) at the beginning of section 4) and inequality eq. (4.8), we have 0 ď g j ď CK j Γp1 `ps `1qjqρ ps`1qpj`1q Γp1 `ps `1qpj `1qq ď Cρ s`1 pKρ s`1 q j .

We denote in the sequel by r h ą 0 the radius of convergence of h. Next, we proceed through a fixed point method as follows. Let us set

and let us choose the solution of equation eq. (4.14) given by the system $ & % p1 ´αXqV 0 pXq " hpXq p1 ´αXqV i`1 pXq " βX ÿ k1`...`km"i V k1 pXq...V km pXq for i ě 0.

By induction on i ě 0, we easily check that (4.15)

where the C i,m 's are the positive constants recursively determined from C 0,m :" 1 by the relations

Thereby, all the V i 's are analytic functions on the disc with center 0 P C and radius minp1{α, r h q. Moreover, identities eq. (4.15) tell us that V i pXq is of order X i for all i ě 0. Consequently, the series V pXq makes sense as a formal power series in X and we get V pXq " vpXq by unicity. We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă minp1{α, r h q. By definition, the constants C i,m 's are the generalized Catalan