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Abstract
In this paper, group multiple lags consensus of fractional-order leader-following multi-agent systems with nonlinear dynamics are investigated, in which

two kinds of lag consensus are considered. One is said to be outergroup lag consensus, which means that different group leaders reach lag consensus.

The other one is called innergroup lag consensus, that is to say, the followers will reach lag consensus with their own group leader. Based on Mittag–

Leffler stability for fractional-order systems, algebraic graph theory, a class of novel control protocols is designed and the corresponding sufficient con-

ditions are derived to guarantee the achievement of group multiple lags consensus. Furthermore, considering parametric uncertainties, an adaptive con-

trol technology is employed to solve the group multiple lags consensus for fractional order multi-agent systems, and the corresponding adaptive

control protocols and sufficient conditions are proposed. Finally, numerical simulations are given to demonstrate the effectiveness of the obtained

results.
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Introduction

It is well-known that the distributed coordination control of

multi-agent systems (MASs) have been paid more and more

attention from various disciplines, such as applied mathe-

matics, physics, computer sciences and control theory. There

is no doubt that it is partly own to its broad applications, for

example, unmanned air vehicles (Reynolds, 1987), formation

control (Dong and Hu, 2016, 2017; Fax and Murray, 2004;

Olfati–Saber and Murray, 2002; Peng et al., 2013, 2016), mul-

tiple mobile robots (Chu et al., 2017; Consolini et al., 2008),

attitude control (Hu et al., 2017, 2018a,b), flocking and track-

ing (Olfati-Saber, 2006; Porfiri et al., 2007; Su et al., 2009),

etc. Within these applications, one object is to hope all agents

reach an agreement on common qualities (position, velocity,

phases and attitudes) by communicating with their local

neighbours, which is called a consensus problem.
As a fundamental topic in distributed coordination con-

trol, consensus problems have received a great deal of atten-

tion, and have obtained a lot of interesting results (Cheng

et al., 2016a; Xing and Deng, 2017). The previous publications

on consensus problems mainly focus on MASs with first-

order linear dynamics (Liu and Liu, 2015; Olfati–Saber and

Murray, 2004; Ren and Beard, 2005; Xie and Wang, 2007).

Later, many researchers put their vision on second-order

dynamics (Mei et al., 2013; Ren and Atkins, 2007; Song et al.,

2017; Wen et al., 2016b; Xu et al., 2014; Yu et al., 2013, 2017).

The all articles of first-order and second-order MASs men-

tioned mainly concern the complete consensus, i.e. the desti-

nation of controller design is to drive all the agents achieve a

common state. For instance, Liu et al. (2017) investigated the

consensus of second-order multi-agent systems by using

pulse-modulated intermittent control. However, in many

cases, agents may be divided into multiple subgroups due to

different environments or tasks, and in each subgroup can

reach different consistent state, this is so-called group consen-

sus or cluster consensus. Recently, the topic of group consen-

sus has been extensively studied in many aspects (Gao et al.,

2017; Liu and Liu, 2015; Wen et al., 2016c; Xia et al., 2016).

In Xia et al. (2016), the authors considered the group consen-

sus of MASs with communication delays under fixed and

switching topologies. Miao and Ma (2015) proposed group

consensus protocols for discrete-time and continuous-time
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MASs with nonlinear input constrains. By using frequency-
domain analysis method and matrix theory, the dynamics
group consensus problem of heterogeneous MASs with time
delay was investigated in Wen et al. (2016c). In Liu and Liu
(2015), the authors investigated the adaptive group consensus

of networked Euler-Lagrange systems. Meanwhile, some cor-
responding necessary and sufficient conditions for solving
group consensus problem are established.

It is interesting to note that most of existing research
results about consensus or group consensus problems of
MASs are integer-order dynamic models (Cheng et al., 2016b;
Wen et al., 2016a, 2017a,b). For example, in Liu et al. (2012)
an impulsive consensus algorithm was proposed for second-
order continuous-time multi-agent networks with switching
topology. In fact, integer-order systems are the special cases
of the fractional-order systems, and many phenomenon are
difficult to explain in the framework of integer-order
dynamics, examples include heat transfer process (Gabano
and Poinot, 2011), chemotaxis behaviours and food seeking
of microbes (Cohen et al., 2001; Kozlovsky et al., 1999).
Besides, fractional-order calculus offer an excellent tool for
the description of memory and hereditary properties of vari-
ous substance and processes, which can describe the systems
more precise than the integer-order models. Therefore, it is
very meaningful to deal with the consensus problem of
fractional-order systems. In the past few decades, the
fractional-order MASs have gained considerable research
attention (Bai et al., 2017). In Wang et al. (2014), the authors
studied the consensus about linear and nonlinear fractional-
order MASs with bounded input time delay and gave some
sufficient conditions. By using adaptive pinning control
method, Yu et al. (2015) discussed the leader-following con-
sensus problem of fractional-order MAS and obtained some
corresponding criteria based on matrix inequalities.

It is important to point out that most existing research
results relative to fractional-order MASs are concerned with-
out time delay. In reality, time delay is unavoidable to exist in
many situations. For example, in the consensus of migrating

geese or locust population migration, all agents in the same
group almost reach the place at the same time, but the differ-
ent groups arrive at the place in different times. That is, not
all agents arrive at the same place simultaneously, but the arri-
val time of the agents may be different. In addition, proper
time delays between different vehicles in the way can keep the
road safe and orderly. Otherwise, congestion often occurs. As
is known to all, time delay can cause oscillations or in stabili-
ties. Thus, it is extremely important and necessary to investi-
gate fractional-order MAS with time delay. To the best of our
knowledge, only a few articles consider the time delay issue in
consensus problem of fractional-order MASs. Moreover, the
group multiple lags consensus of fractional-order nonlinear
MASs of leader-following fractional-order MASs have not
been addressed before.

Motivated by the above discussions, in this paper, we con-
sider group multiple lags consensus of fractional-order non-
linear leader-following MASs via adaptive control. The
contribution of this paper can be summarized as the following
aspects. Firstly, two kinds of lag consensus are defined. One
is called as outergroup lag consensus, which means that dif-
ferent group leaders reach lag consensus. The other one is

called as innergroup lag consensus, which means the followers

reach lag consensus with their own group leaders. Only the

two kinds of lag consensus are reached can the group multiple

lag consensus be realised. Secondly, to achieve group multiple

lags consensus, a class of distributed control protocols is

designed and the corresponding sufficient conditions are

obtained based on Fractional-order Lyapunov direct method,

algebraic graph theory. Thirdly, considering parametric

uncertainties that may exist in the leader or follower

dynamics, a class of adaptive control protocols for the

fractional-order MASs is employed. Then the corresponding

sufficient conditions are obtained. Finally, numerical simula-

tions are provided to illustrate the effectiveness of the theore-

tical results obtained in this paper. Compared with existing

works, this paper has the following advantages. In contrast to

integer-order models (Reynolds, 1987), formation control

(Dong and Hu, 2016, 2017; Fax and Murray, 2004; Olfati–

Saber and Murray, 2002; Peng et al., 2013, 2016), this paper

considers fractional-order models, which offer an excellent

tool for the description of memory and hereditary properties

of various substance and processes, as well as describe the

systems more precise than the integer-order models. In con-

trast to the existing literatures (Ma et al., 2015; Wang et al.,

2014) that time delays are only between leader and followers

or only among leaders, this paper considers two kinds of time

delays not only between leader and followers, but also among

leaders, which is more considerate and practical.

Notations: In this paper, IN denotes the identity matrix with

dimension N. Rm 3 n denote the set of all m 3 n real matrices,

diag � � �f g stands for a block-diagonal matrix. The superscript

‘T ’ denotes matrix transposition. Notations k � k and �
denote the Euclidean norm and the Kronecker product

respectively. li Að Þ is the ith eigenvalue of matrix A. lmax Að Þ
and lmin Að Þ are the maximum and minimum eigenvalues of

A, respectively.

Preliminaries and problem description

Graph theory

Consider a directed simple graph denoted by G= V, E,Að Þ,
where V= v1, v2, . . . , vNf g represents the nonempty set of

nodes, E � V3V is the set of edges. Edge eij = vi, vj

� �
2 E in

a directed graph means that agent vj can receive information

from agent vi. A= ½aij�N 3 N denotes the weighted adjacency

matrix with nonnegative entries, aij . 0 if eji 2 E and aij = 0 if

eji 62 E . Let D=diag d1, d2, . . . , dNf g be the N 3 N diagonal

matrix, where di=degin ið Þ=
PN

j= 1, j6¼i

aij, The Laplacian matrix

L= ½lij�N 3 N of graph G is L=D� A.

Then, one has

lij =

�aij if i 6¼ jPN
j= 1, j6¼i

aij if i= j

8<
: i, j= 1, 2, . . . ,N

Suppose the N follower agents can be partitioned into n

groups V1 = v1, v2, . . . , vm1
f g, . . ., Vi = fvm1 +m2 + ...+mi�1 + 1,
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. . . , vm1 +m2 + ...+mi�1 +mi
g, . . ., Vn = vm1 +m2 + ...+mn�1 + 1,f

. . . , vNg. Let î represents the subscript of the group that the

ith agent belongs, that is vi 2 V î. Let
V = 1, 2, . . . ,Nf g,O= 1, 2, . . . , nf g denote the subscript set
of the followers and leaders, respectively. It is obvious that
the followers of the jth leader are in Vj,j 2 O.

Caputo fractional derivative

In this subsection, the Caputo fractional-order derivative is
introduced, which will be used in later section. The Caputo
fractional-order derivative of a function x tð Þ is defined as
follows.

Definition 1. (Li et al., 2009)

t0 Da
t x tð Þ= 1

G n� að Þ

Z t

t0

x nð Þ tð Þ
(t � t)a+ 1�n

dt ð1Þ

where G �ð Þ denotes the Gamma function and n is a positive
integer such that n� 1\a\n.

Property 1. When C is any constant, t0
Da

t C = 0 holds.

Property 2. For constants m and n, the linearity of Caputo

fractional-order derivative is described by

t0
Da

t mf tð Þ+ ng tð Þð Þ=m t0 Da
t f tð Þ+ n t0 Da

t g tð Þ

Mittag–Leffler function

In the following the definition of Mittag–Leffler function is
given to deal with the solutions of fractional-order differential
equations.

Definition 2. (Li et al., 2009) The Mittag–Leffler function
with two parameters is defined as

Ea,b zð Þ=
X‘

k = 0

zk

G ak +bð Þ

where a . 0, b . 0 and z 2 C. When b= 1, its one-parameter
form is shown as

Ea zð Þ=
X‘

k = 0

zk

G ak + 1ð Þ =Ea, 1 zð Þ

In particular, E1, 1 zð Þ= ez.

Definition 3. (Li et al., 2009) The fractional nonautonomous
system t0 Da

t x tð Þ= f t, xð Þ with initial condition x t0ð Þ is said to
be Mittag–Leffler stable if the following relationship holds

k x tð Þ k � ½m x t0ð Þð ÞEa(� l t � t0)
að Þ�b ð2Þ

where x 2 Rn,l . 0, b . 0, m 0ð Þ= 0, m xð Þ � 0 and m xð Þ satis-
fies locally Lipschitz condition on x.

Lemma 3.1. (Li et al., 2009) For t0 = 0, the fractional-order

system t0 Da
t x tð Þ= f t, xð Þ with initial condition x t0ð Þ is

Mittag–Leffler stable at the equilibrium point �x= 0 if

there exists a continuously differentiable function V t, x tð Þð Þ
satisfies

a1 k xka�V t, x tð Þð Þ�a2 k xkab ð3Þ

0Da
t V t, x tð Þð Þ� � a3 k xkab ð4Þ

where V t, x tð Þð Þ : 0,‘½ Þ3 D! R satisfies locally Lipschitz con-

dition on x; D 	 Rn is a domain containing the origin; t � 0,

a 2 0, 1ð Þ, a1, a2, a3, a and b are arbitrary positive constants.

If the assumptions hold globally on Rn, then �x= 0 is globally

Mittag–Leffler stable.

Lemma 3.2. (Duarte–Mermoud et al., 2015) For any time

instant � t0, the following relationship holds

1

2t0

Da
t xT tð ÞPx tð Þ� xT tð ÞPt0 Da

t x tð Þ, 8a 2 0, 1ð � ð5Þ

where x tð Þ 2 Rn is a vector of differentiable functions and

P 2 Rn 3 n is a constant, square, symmetric, positive definite

matrix. Specially, when the matrix P denotes identity matrix I,

the conclude holds.

Problem description

Let’s consider a fractional-order nonlinear MAS with N fol-
lowers and n leaders. The dynamics of each follower can be
expressed as

Daxi tð Þ= f xi tð Þð Þ+
X
j6¼i

aij xj tð Þ � xi tð Þ
� �

+ ui tð Þ, i 2 V ð6Þ

where xi tð Þ 2 R and f xi tð Þð Þ 2 R denote the position state and
nonlinear intrinsic dynamic of the ith agent, ui tð Þ 2 R denotes
the control input. Da denotes the operator of Caputo frac-

tional derivatives. By applying the definition of the Laplacian
matrix, the formula (6) can be rewritten as follows

Daxi tð Þ= f xi tð Þð Þ �
X
j2V

lijxj tð Þ+ ui tð Þ, i 2 V ð7Þ

or

Daxi tð Þ= f xi tð Þð Þ �
X
j2Vî

lijxj tð Þ �
X
j 62Vî

lijxj tð Þ+ ui tð Þ, i 2 V ð8Þ

Next, the leader’s dynamics can be described as

Dasj tð Þ= f sj tð Þ
� �

� kj sj tð Þ � s1 t � tj

� �� �
, j= 1, 2, . . . , n ð9Þ

where, sj tð Þ denotes the jth leader’s position state, kj . 0, the
time delay t1 = 0 and tj . 0 for j 2 2, . . . , nf g. It is obvious
that s1 tð Þ= f s1 tð Þð Þ. Note from (9) that the first leader is the
leader of the first group, meanwhile it is also the leader of
other leaders. In (6) and (9), f �ð Þ is the nonlinear inherent
dynamics of agent, and satisfies the following Assumption 1.

Assumption 1. For any vectors , y 2 Rm, there exists a constant

g . 0 satisfies (x� y)T f xð Þ � f yð Þð Þ� g(x� y)T x� yð Þ.

Definition 4. The fractional-order nonlinear MASs (9) reach
outergroup lag consensus, if for any initial conditions,

Zhang et al. 3



lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0, where et

j tð Þ= sj tð Þ � s1 t � tj

� �
, where tj

are the time delays among different group leaders.

Definition 5. The fractional-order nonlinear leader-following
MASs (6) and (9) reach innergroup lag consensus, if for any

initial conditions, lim
t!‘

PN
i= 1

hi tð Þj jj j= 0, where hi tð Þ= xi tð Þ�

ŝi t � p̂i

� �
, p̂i are the time delays that between followers and

their own group leaders.

Definition 6. The fractional-order nonlinear leader-following

MASs with (6) and (9) reach group multiple lags
consensus(GMLC), if for any initial conditions,

lim
t!‘

PN
i=1

hi tð Þj jj j=0 and lim
t!‘

Pn
j=2

et
j tð Þ
��� ������ ���=0, where hi tð Þ=xi tð Þ

�ŝi t� p̂i

� �
, and et

j tð Þ=sj tð Þ� s1 t�tj

� �
, where p̂i are the time

delays that between followers and their own group leaders, tj

are the time delays among different group leaders.

Remark 1. In this article, all agents are supposed to be in
one-dimensional space, i.e. xi tð Þ, sj tð Þ, f xi tð Þð Þ, ui tð Þ 2 R, in

this way, it is convenient for us to prove the main result.
However, we can extend our result in n-dimensional space by

employing the Kronecker product. In other words, the results

obtained in this paper for xi tð Þ, sj tð Þ, f xi tð Þð Þ, ui tð Þ 2 Rm are
still valid.

Main results

Group multiple lags consensus of fractional-order
nonlinear leader-following MASs

In order to reach group multiple lags consensus, we propose

the following control inputs for the system (6)

ui tð Þ=�k̂i ŝi t � p̂i

� �
� s1 t � p̂i � t î

� �� �
�si xi tð Þ � ŝi t � p̂i

� �� �
+
X
j62Vî

lij xj tð Þ � xi tð Þ
� �

, i 2 V
ð10Þ

where p̂i are the time delays that between leaders and fol-
lowers, t î are the time delays among different group leaders,

k̂i . 0 and si . 0.

Theorem 6.1. Under Assumption 1, the fractional-order MASs

(6) and (9) with the control protocol (10) reach group multi-

ple lags consensus, that is to say, lim
t!‘

PN
i= 1

hi tð Þj jj j= 0 and

lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0, if the matrix H =gIN � s � 1

2
M +MTð Þ

is negative definite and minj2O, j6¼1kj . g, where M =(mij)N 3 N ,

mij = lij for j 2 Vî and i 6¼ j, mij = 0 for j 62 Vî, mii =�
P
j6¼i

mij,

s= diag s1,s2, . . . ,sNf g.

Proof: We prove the theorem by two steps. The first step is to

prove that lim
t!‘

PN
i= 1

hi tð Þj jj j= 0, and the second step is to prove

lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0.

The first step: Denote hi tð Þ=xi tð Þ� ŝi t� p̂i

� �
, h tð Þ=(h1 tð Þ,

h2 tð Þ, ...,hN tð Þ)T , f x tð Þð Þ=(f x1 tð Þð Þ,f x2 tð Þð Þ, ..., f xN tð Þð Þ)T ,
and f s t�pð Þð Þ=(f s1 t�p1ð Þð Þ,f s2 t�p2ð Þð Þ, ...,f sN t�pNð Þð Þ)T .
By (8), (9), (10) and the definition of M, we can obtain

Dahi tð Þ= f xi tð Þð Þ � f ŝi t � p̂i

� �� �� �
�
P
j2V

î

mijhj tð Þ � sihi tð Þ

ð11Þ

Furthermore, equation (11) can be written in the matrix

form as follows

Dah tð Þ= f x tð Þð Þ � f s t � pð Þð Þð Þ �Mh tð Þ � sh tð Þ
= f x tð Þð Þ � f s t � pð Þð Þ � M +sð Þh tð Þ

ð12Þ

Construct the following Lyapunov function candidate

V1 tð Þ= 1

2
hT tð Þh tð Þ ð13Þ

Combining with Lemma 3.2, take the time derivative of
(13) as

DaV1 tð Þ�hT tð ÞDah tð Þ
�hT tð Þ f x tð Þð Þ � f s t � pð Þð Þ � M +sð Þh tð Þð Þ
�hT tð Þ gI �M � sð Þh tð Þ

=hT tð Þ gI � 1

2
MT +M
� �

� s

� �
h tð Þ

=hT tð ÞHh tð Þ� lmax Hð Þ h tð Þj jj j

ð14Þ

Since H\0, it follows from Lemma 3.1 that the fractional-
order MAS (6) and (9) satisfy satisfy lim

t!‘
h tð Þj jj j= 0, i.e.

lim
t!‘

PN
i= 1

hi tð Þj jj j= 0.

The second step: By (9), we can obtain

Daet
j (t)= (f (sj(t))� f (s1(t � tj)))� kje

t
j (t),

j= 2, 3, . . . , n
ð15Þ

Let et tð Þ=( et
2 tð Þ

� �
, . . . , et

n tð Þ
� �

)T , K = diag k2, . . . , knf g,
f s tð Þð Þ=(f s2 tð Þð Þ, f s3 tð Þð Þ, . . . , f sn tð Þð Þ)T , and f s1 t�tð Þð Þ=
(f s1 t� t2ð Þð Þ, f s1 t�t3ð Þð Þ, . . . , f s1 t�tnð Þð Þ)T . Then

Daet tð Þ= f s tð Þð Þ � f s1 t � tð Þð Þð Þ � Ket tð Þ ð16Þ

Construct the following Lyapunov function

V2 tð Þ= 1

2
(et tð Þ)T et tð Þ ð17Þ

Combining with Lemma 3.2, calculate the derivative of
V2 tð Þ as

DaV2 tð Þ� (et tð Þ)T Daet tð Þ
� (et tð Þ)T f s tð Þð Þ � f s1 t � tð Þð Þð Þ � Ket tð Þð Þ
� (et tð Þ)T gIn�1 � Kð Þet tð Þ
� lmax gIn�1 � Kð Þ k et tð Þ k

ð18Þ
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Since minj2O, j6¼1kj . g, it follows that gIn�1 � K is a nega-

tive definite matrix. Furthermore, according to Lemma 3.1,

one has lim
t!‘

et tð Þj jj j= 0, that is to say, lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0.

Through the above two steps of proof, we can say that the

group multiple lags consensus of the fractional-order MASs

with (6) and (9) is achieved under the control inputs (10).

Remark 2. In the process of proof, we split it into two parts.

In the first step, we prove that the agents in the same group

can reach innergroup lag consensus, in other words, all fol-

lowers can track their own leaders with time delay. The sec-

ond part prove that the group leaders in different groups can

reach outergroup lag consensus, it is to say, all group leaders

can track the first group leader with time delay. Only the

above two parts are finished, can the group multiple lags con-

sensus be completed.

Corollary 6.2. Under Assumption 1, the fractional-order MASs

(6) and (9) with the following control protocol

ui tð Þ=�k̂i ŝi tð Þ � s1 t � t î

� �� �
� si xi tð Þ � ŝi tð Þ

� �
+
X
j62Vî

lij xj tð Þ � xi tð Þ
� �

, i 2 V ð19Þ

reach outergroup lag consensus, that is to say,

lim
t!‘

PN
i= 1

xi tð Þ � ŝi tð Þ
�� ���� ��= 0 and lim

t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0, if

minj2O, j6¼1kj . g and H =gIN � s � 1
2

M +MTð Þ is negative

definite, where M =(mij)N 3 N , mij = lij for j 2 Vî and i 6¼ j,

mij = 0 for j ( Vî, mii =�
P
j6¼i

mij.

Proof: The proof is similar to Theorem 6.1, therefore is

omitted here.

Group multiple lags consensus in the fractional order
MASs via adaptive control

In this subsection, considering the parameter uncertainty, we

first employ adaptive control to solve the group multiple lags

consensus for fractional order MASs. The dynamics of the

leaders are given by

Dasj tð Þ= f sj tð Þ
� �

� kj tð Þ sj tð Þ � s1 t � tj

� �� �
, j= 1, 2, . . . , n

ð20Þ

where the time delay t1 = 0, tj . 0 for j 2 2, . . . , nf g.
Obviously, Das1 tð Þ= f s1 tð Þð Þ. The gain function kj tð Þ in (20)

is continuous, and its derivative under Caputo definitions is

given by

Dakj tð Þ= b(sj tð Þ � s1 t � tj

� �
)T sj tð Þ � s1 t � tj

� �� �
ð21Þ

where b is a positive constant. Based on the definition of et
j tð Þ,

the equation (21) can be rewritten as

Dakj tð Þ= b(et
j tð Þ)T et

j tð Þ ð22Þ

In order to solve the group multiple lags consensus of sys-

tem (6) and (20), the following adaptive control protocol is

given as

ui tð Þ=�k̂i tð Þ ŝi t � p̂i

� �
� s1 t � p̂i � t î

� �� �
�si tð Þ xi tð Þ � ŝi t � pî

� �� �
+
X
j62Vî

lij xj tð Þ � xi tð Þ
� �

, i 2 V
ð23Þ

where p̂i are the time delays that between followers and their

own group leaders, tj are the time delays among different

group leaders, the derivative of k̂i tð Þ is same as (22), and the

derivative of si tð Þ is given as

Dasi tð Þ= d(xi tð Þ � ŝi t � p̂i

� �
)
T

xi tð Þ � ŝi t � p̂i

� �� �
ð24Þ

with d being a positive constant. Based on the definition of

hi tð Þ, the equation (24) can be rewritten as

Dasi tð Þ= dhT
i tð Þhi tð Þ ð25Þ

By (20), we can obtain

Daŝi t � p̂i

� �
=�k̂i ŝi t � p̂i

� �
� s1 t � p̂i � t î

� �� �
+ f ŝi t � p̂i

� �� �
, î= 1, 2, . . . , n

ð26Þ

It then follows from (6) and (26), we have

Dahi tð Þ= f xi tð Þð Þ � f ŝi t � pî

� �� �
� si tð Þhi tð Þ �

P
j2Vî

mijhj tð Þ

ð27Þ

Rewrite (27) in matrix form as follows

Dah tð Þ= f x tð Þð Þ � f s t � pð Þð Þ � s tð Þh tð Þ �Mh tð Þ ð28Þ

Theorem 6.3. Under Assumption 1, the fractional-order system

(6) and (20) with the control protocol (23) reach delay con-

sensus, that is to say, lim
t!‘

PN
i= 1

hi tð Þj jj j= 0 and

lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0, if ~k . g and Q=gIN � ~s � 1

2
M +MTð Þ

is negative definite, where M =(mij)N 3 N ,mij = lij for j 2 Vî

and i 6¼ j, mij = 0 for j(Vî, mii =�
P
j6¼i

mij,~k,~s is an undeter-

mined sufficiently large positive constant.

Proof: We prove the theorem still by two steps. First, we

prove that lim
t!‘

PN
i= 1

hi tð Þj jj j= 0. Construct the Lyapunov func-

tion as follows

V3 tð Þ= 1

2
hT tð Þh tð Þ+ 1

2d
(s tð Þ � ~s)2 ð29Þ

where s tð Þ= diag s1 tð Þ,s2 tð Þ, . . . ,sN tð Þf g and ~s is an unde-

termined sufficiently large positive constant. Combining with

Lemma 3.2, taking derivative of V3 tð Þ yields
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DaV3 tð Þ �hT tð ÞDah tð Þ+ 1

d
s tð Þ � ~sð ÞDas tð Þ

�hT tð Þf (x tð Þ � f s t � pð Þð Þ � hT tð ÞMh tð Þ

� s tð ÞhT tð ÞIN h tð Þ+ 1

d
s tð Þ � ~sð ÞDas tð Þ

�hT tð Þ gIN �M � ~sINð Þh tð Þ

=hT tð Þ gIN �
1

2
MT +M
� �

� ~sIN

� �
h tð Þ

=hT tð ÞQh tð Þ�lmax Qð Þ h tð Þj jj j

ð30Þ

Since Q is a negative definite matrix, it then follows from

Lemma 3.1 that the solutions of the fractional-order MAS

satisfy lim
t!‘

h tð Þj jj j= 0. It implies that lim
t!‘

PN
i= 1

hi tð Þj jj j= 0.

Next, we prove lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0. Consider the following

Lyapunov function

V4 tð Þ= 1
2
(et tð Þ)T 3 et tð Þ+ 1

2b
(K tð Þ � ~k)

2 ð31Þ

where K tð Þ= diag k2 tð Þ, . . . , kn tð Þf g and ~k is an undetermined

sufficiently large positive constant. Combining with Lemma

3.2, take the derivative of V4 tð Þ as

DaV4 tð Þ� 1

2
(et tð Þ)T f s tð Þð Þ � f s1 t � tð Þð Þð Þ

+
1

2
(et tð Þ)T f s tð Þð Þ � f s1 t � tð Þð Þð Þ

� K tð Þ(et tð Þ)T et tð Þ+ K tð Þ � ~k
� �

(et tð Þ)T et tð Þ
= et tð Þ)T f s tð Þð Þ � f s1 t � tð Þð Þð Þ � ~kIn�1(e

t tð Þ)T et tð Þ
� (et tð Þ)T 3 gIn�1 � ~kIn�1

� �
et tð Þ

� lmax g � ~k
� �

In�1

� �
k e tð Þ k ð32Þ

Since ~k . g, it follows that g � ~k
� �

In�1 is a negative definite

matrix. Furthermore, according to Lemma 3.1, we can get

lim
t!‘

et tð Þj jj j= 0, that is to say, lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0.

Combining the above two steps, the proof is completed.

Corollary 6.4. Under Assumption 1, the fractional-order system

(6) and (20) with the following control protocol

ui tð Þ=�k̂i tð Þ ŝi tð Þ � s1 t � t î

� �� �
� si tð Þ xi tð Þ � ŝi tð Þ

� �
+
X
j62Vî

lij xj tð Þ � xi tð Þ
� �

, i 2 V ð33Þ

with (21) and(24) reach outergroup lag consensus via adaptive

control, that is to say, lim
t!‘

PN
i= 1

xi tð Þ � ŝi tð Þ
�� ���� ��= 0 and

lim
t!‘

Pn
j= 2

et
j tð Þ
��� ������ ���= 0, if ~k . g and Q=gIN � ~s � 1

2
M +MTð Þ

is negative definite, where M =(mij)N 3 N , mij = lij for j 2 Vî

and i 6¼ j, mij = 0 for j(Vî, mii =�
P
j6¼i

mij.

Proof: The proof is similar to Theorem 6.3, therefore is

omitted here.

Simulation results

In this section, in order to validate our theoretical results, the

following simulation example is presented. We consider a

MASs consists of two leaders (indexed by S1 and S2) and six

followers (indexed by 1 to 6), whose communication topology

is shown in Figure 1. From Figure 1, we can see that there are

two subgroups, S1 and S2 are the leaders of the two subgroups,

and S1 is the leader of S2. In addition, we can obtain that

A=

0 1 0 0 0 0

0 0 1 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0
BBBBBBB@

1
CCCCCCCA
,

L=

1 �1 0 0 0 0

0 2 �1 �1 0 0

�1 0 1 0 0 0

0 0 0 1 �1 0

0 0 �1 0 2 �1

0 0 0 �1 0 1

0
BBBBBBB@

1
CCCCCCCA

Figure 1. The communication topology of the MAS, where sj denotes

the jth leader, and i denotes the ith follower, j= 1, 2; i= 1, 2, . . . , 6.

Figure 2. The first component sj1 of the jth leader’s state, where

j= 1, 2.
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and

M =

1 �1 0 0 0 0

0 1 �1 0 0 0

�1 0 1 0 0 0

0 0 0 1 �1 0

0 0 0 0 1 �1

0 0 0 �1 0 1

0
BBBBBB@

1
CCCCCCA

Without loss of generality, in this section we just verify the

results obtained in Theorem 6.3 and Corollary 6.4 because of
the limitation of space. Let f ( � ) in (6) and (9) be the Chua
network (Ma et al., 2015), which is described by

f =

9xi2(t)�
18

7
xi1(t)+

24

7
(jxi1(t)+ 1j � jxi1(t)� 1j)

xi1(t)� xi2(t)+ xi3(t)

� 100

7
xi2(t)

0
BBBB@

1
CCCCA

where xi(t)= (xi1(t), xi2(t), xi3(t))
T represents the state variable

of the ith agent. It is easy to calculate that g is equal to 9.1,

which satisfies the Assumption 1. Choose a= 0:97,

si(0)= 0:5, k2(0)= 0:5, t2 = 2 and p̂i = 0:5, where

i= 1, . . . , 6.
Figures 2 to 4 show the three components sj1, sj2 and sj3 of

the jth leader’s state, respectively, where j= 1, 2. Figure 5

shows the phase diagram of the leaders S1 and S2. Figure 6

shows the state error jjet
2(t)jj= jjs2(t)� s1(t � 2)jj. From

Figure 2 to Figure 6, we can see that the leader S1 and leader

S2 reach outergroup lag consensus. Figure 7 shows the first

components xi1 and s11 of the agents states in the first group

with p̂i = 0:5,where i= 1, 2, 3. Figure 8 shows the first com-

ponents xi1 and s21 of the agents’ states in the second group

with pi = 0:5,where i= 4, 5, 6. Figure 9 shows the state error

jjhi(t)jj= jjxi(t)� ŝi(t � 0:5)jj, where i= 1, . . . , 6. Figure 10

shows the time evolution of k2(t) and si(t), where i= 1, . . . , 6.

From Figures 7 to 9, agents 1, 2 and 3 reach innergroup lag

consensus with leader S1, and agents 4, 5 and 6 reach

innergroup lag consensus with leader S2. From the above

simulation results, the group multiple lags consensus has

achieved, the Theorem 6.3 is verified. In the following we

Figure 3. The second component sj2 of the jth leader’s state, where

j= 1, 2.

Figure 4. The third component sj3 of the jth leader’s state, where

j= 1, 2.

Figure 5. The phase diagram of the leaders s1 and s2.

Figure 6. The state error jjet
2(t)jj= jjs2(t)� s1(t� 2)jj.
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consider the case that p̂i = 0. Figure 11 shows the first compo-

nents xi1 and s11 of the agents’ states in the first group with

p̂i = 0, where i= 1, 2, 3. Figure 12 shows the first components

xi1 and s21 of the agents’ states in the second group with

p̂i = 0,where i= 4, 5, 6. Figure 13 shows the state error

jjei(t)jj= jjxi(t)� ŝi(t)jj, where i= 1, . . . , 6. we can see from

Figures 11 to 13 that the outergroup lag consensus has been

archived, that is to say, Corollary 6.4 has been verified.

Conclusions

This paper has investigated the group multiple lags consensus

in fractional-order leader-following MAS with nonlinear

dynamics via adaptive control. A class of novel control proto-

cols and adaptive control protocols have been designed

respectively. The corresponding sufficient conditions have

been derived based on Fractional-order Lyapunov direct

method, algebraic graph theory. Our future works will mainly

Figure 7. The first components xi1 and s11 of the agents’ states in the

first group with pi = 0:5,where i= 1, 2, 3.

Figure 8. The first components xi1 and s21 of the agents’ states in the

second group with pi = 0:5,where i= 4, 5, 6.

Figure 9. The state error jjhi(t)jj= jjxi(t)� ŝi(t� 0:5)jj, where

i= 1, . . . , 6.

Figure 10. The time evolution of k2(t) and si(t), where i= 1, . . . , 6.

Figure 11. The first components xi1 and s11 of the agents’ states in the

first group with pi = 0,where i= 1, 2, 3.
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concentrate on group multiple lags consensus of fractional-

order MAS under switching topologies or with time-varying

reference states via pinning control.
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