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Abstract 

Molecular phylogenetics based on nucleotide sequence comparisons has profoundly influenced 

plant taxonomy. A comprehensive chemotaxonomical approach based on GC-MS and UHPLC-

HRMS profiling was evaluated for its ability to characterize a large collection of plants all in 

the violet family Violaceae (n = 111) and thus decipher the taxonomy. A thorough identification 

of violets is challenging due to their natural hybridization and phenotypic variability. 

Phylogenetic inference performed on ribosomal internal transcribed spacer sequences using 

maximum likelihood and neighbor-joining distance methods allowed the clear identification of 

58% of the collection. Metabolomic approaches with multivariate data analysis were performed 

on SPME/GC-MS chromatograms of volatile compounds emitted by fresh mature flowers and 

on UHPLC-HRMS/MS leaf extracts for non-volatile compounds. Interestingly, molecular and 

biochemical approaches provided separate classifications while highlighting several common 

clusters. The profiling of secondary metabolites was proved most suitable for the classification 

of hundreds of extracts. The combination of phylogenetic and chemotaxonomic approaches, 

allowed the classification of 96% of the entire collection. A correlation network revealed 

specific chemotaxonomic biomarkers, in particular flavonoids, coumarins and cyclotides. 

Overall, our pioneering approach could be useful to solve misclassification issues within 

collections of close plant species.  

Highlight 

• Genetic-based phylogeny allowed the classification of 58 % of the violet collection (n 

= 111) 

• GC-MS from native flowers volatile did not improve significantly the classification. 

• UHPLC-MS profiling of lyophilized leaf samples significantly expands the 

classification rate to reach 96% of the entire collection 

• Chemotaxonomic markers of each violet species were annotated 

 

Keywords:  

Biomarkers; Chemotaxonomy; GC-MS; Metabolomic, Phylogeny; UHPLC-HRMS; Violets. 
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1 Introduction  

The Violaceae family of plants contains 23 genera and approximately 900 species distributed 

all over the world. Its three largest genera represent 98% of its species, including Viola with 

approximately 600 species. This genus is separated into two main groups (sections) widely 

distributed in the Northern Hemisphere (Ballard et al. 1999): violets in the Viola section and 

pansies in the Melanium section (Yockteng et al. 2003). Viola are perennial herbs with very 

short stems, often stolons and typically zygomorphous flowers. 

The delimitation of Viola species into sections and subsections can be problematic in particular 

when using morphological characteristics. This is due to hybridization, which is relatively 

common in vascular plants and has a large impact on speciation events (Erben 1996). Such 

hybridization can contribute to rapid diversification of many plant lineages with karyotypic and 

genomic changes (Arnold 2006) but can also lead to the demise of rare species (Todesco et al. 

2016). Hybridization may reduce a population's growth rate by the production of hybrid seed, 

which is produced at the expense of conspecific (pure) seed when they competed with them for 

resources or they possess better vigor and fertility than parents, for instance (Levin et al.1996). 

In the past, taxonomists have studied the phylogeny of Viola based on anatomical characteristics 

(Marcussen et al. 2012), chromosome numbers (Clausen 1927), nuclear ribosomal sequences 

(Ballard et al. 1999) (Mereda et al. 2011) and chloroplast DNA as complementary tools in 

particular to detect maternal lineages (Cennamo et al. 2011). Within nuclear ribosomal 

sequences, internal transcribed spacer (ITS) regions are highly popular in phylogenetic studies 

(Álvarez 2003) and have been efficiently used to differentiate plant species. Indeed, they are 

easily amplified by polymerase chain reaction (PCR) using universal primers (Baldwin et al. 

1995) and the nucleotide sequences of ITS1 and ITS2 regions are highly polymorphic between 

species.  

The French National collection of violets held in Toulouse (France) comprises 111 plants 

individuals from all over the world (Asia, America, and Europe), each characterized by its 

phenotypic traits like flower shape and color and to a lesser extent leaf shape. Although they 

all possess vernacular names, only 21% have been scientifically identified with respect to taxa. 

Their rigorous classification was therefore necessary to allow better identification and 

discrimination. A first strategy was to identify species and cultivars according to ITS regions 

known to be conserved. However, due to hybridization between violets, distinction of 

individuals based on phenotype and ITS alone is often insufficient and complementary methods 

such as chloroplast genome comparison are necessary. To improve the resolution of the 
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genotypic characterization of our collection, we conducted chemotaxonomic studies using a 

metabolomic approach with the aim of facilitating the analyses of large datasets via the 

association of potential biomarkers to specific genotypes (Cox et al. 2014). Our first 

chemotaxonomic study investigated volatiles of fresh native flowers at maturity using 

headspace solid-phase microextraction coupled to gas chromatography with mass spectrometry 

(HS-SPME-GC-MS). The second analyzed the secondary metabolites of ethanolic leaf extracts 

by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-

HRMS).  

2 Results  

2.1 Phylogenetic analysis 

The whole ITS region (500 bp) was amplified for the 85 plant individuals of the French 

collection of violets and sequenced. In this way, 80 well-defined sequences were obtained. 

Other violets were either not sequenced (N = 26) or presented non-exploitable sequences 

(N = 9), likely due to the presence of heterozygotes and intra-individual polymorphism as 

suggested by the presence of double peaks for some nucleotide sites. For 31 violets, only a few 

double peaks along the whole sequence were observed, thus the two sequences were studied 

separately by manually substituting nucleotides and identification performed for both. In each 

case, the same species but sometimes different isolates were obtained, revealing the significant 

hybridization between violets of the same species. Sequence alignment (see Supplementary 

Fig. S1) highlighted few differences: twenty nucleotide sites were polymorphic in ITS 1 and 

12 in ITS 2. Alignment of experimental sequences was made with references of GenBank 

database from the National Center for Biotechnology Information (NCBI), a curated non-

redundant public nucleotide sequence database used internationally as a standard for genome 

annotation (Pruitt 2004) used in previous pansies (Yockteng et al. 2003) and violet (Conesa at 

al. 2008) studies. It provided a similarity score and a no-doubt-identification was decided above 

99%. This was the case for 64 violets (58% of the whole collection): two were referenced as V. 

subs Rostratae Kupffer (namely V. labradorica and V. grypoceras) (Marcussen et al. 2010), 

two as V. alba Besser, six as V. suavis Bieberstein, twelve as V. sp Hearn cult 33, one as V. 

verecunda A Gray, one as V. mandshurica Becker and forty as V. odorata Linneaus.  

Clear defined sequences (N = 80) were compared by a distance based reconstruction method to 

identify clades with a bootstrap threshold value of 80%. Six clades of various sizes were 

highlighted and seemed to correlate with specific species (Supplementary Fig. S2). Fifty-five 
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percent of the sequences grouped together in one clade, around 15% in each of two clades and 

5% in each of the remaining three. Therefore, while the collection presented some genotype 

variability, the majority of the violets were found to possess similar DNA sequences.  

Comparisons were then made with references found in GenBank nucleotides database to 

reconstruct maximum parsimony (Fig. 1 A) and the maximum likelihood phylogenetic trees, 

the latter built with few selected sequences of distinct clades for visual quality (Fig. 1 B). These 

references were: Viola alba isolate ALB184 V6 (GenBank: EU413916), Viola sp Hearn cult33 

(GenBank: DQ521291), Viola suavis isolate SUW170 V17 (GenBank: EU413930), Viola 

mandshurica isolate TKM201586 (GenBank: KX394615), Viola alba subsp dehnhardtii clone 

200781 (GenBank: EU430656), Viola odorata isolate ODO178 V11 (GenBank: EU413922), 

isolate ODO214 V8 (GenBank: EU413919), isolate ODO182 V3 (GenBank: EU413918). One 

V. odorata botanically identified obtained for the Museum of Natural History of Toulouse was 

also included and 99.7% correspondence with V. odorata from NCBI was obtained. Cladograms 

was thus obtained and Rinorea ledermannii as species of Violaceae was used to root the tree. 

As used previously, a bootstrap threshold value of 80% was fixed and same clades were 

highlighted in both trees with confirmed identifications made as V. odorata for the orange clade 

with 44 violets, V. alba for the purple clade with 5 violets, V. sp Hearn for the pink clade with 

14 violets, V. suavis for the turquoise clade with 11 violets, and V. subs Rostratae for the red 

clade with 3 violets; an unidentified cluster in green with 3 violets was well separated from the 

other clades.  

Fig. 1 Cladograms obtained with maximum parsimony (A) and maximum likelihood (B) method showing genetic relationship 

of selected experimental sequences and references based on ITS sequences. To improve the quality of the figure, only sequences 

of a few characteristic samples from each clade observed with distance model were selected for B. The outgroup is used to root 

the tree. Bootstrap values to study robustness are indicated in red (in colour). 

It was quite interesting to also note certain similarities in terms of phenotypic traits of violets 

belonging to the same clade. A lavender and sometimes white double flower characterized V. 

alba (Supplementary data Fig. S3 a) against mainly big dark purple and sometimes single 

white flowers for V. sp Hearn (Fig. S3 b), small violet single flowers for V. subs Rostratae 

(Fig.S3 c) and single mauve flowers for V. suavis (Fig. S3 d). Nevertheless, such phenotypes 

cannot be described as species-specific since various colors and shapes were observed for 

different violets all belonging to V. odorata (Fig. S3 e), for example either lavender or white 

double flowers.  

Besides, botanical studies based on morphological and anatomical (bracteoles and leaf 

epidermis) aspects were conducted on three characteristic violets belonging to each clade. For 
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V. subs Rostratae, both V. labradorica and V. grypoceras species were described. All violets 

possess heart shape leave with either rounded or sharped extremity of various size. Average 

size of 3 to 4 cm were observed but bigger and smaller leaves were respectively noted for V. sp 

Hearn and violets belonging to V. subs Rostratae. Average flower size is around 1 to 2 cm and 

bigger and smaller flowers were as well observed for V. sp Hearn and V. subs Rostratae. 

Main anatomical divergences focused on the presence, shape and localization of glandular and 

non-glandular trichomes, the size of the anisocytic-type stomata bigger for V. sp Hearn and V. 

labradorica as well as the shape of adjoining cells, either rounded or epidermal. Presence of 

mucilage and hypertrophied epidermal cells were also of varying importance depending on the 

clade. Tables of resemblances and divergences can be noted in Supplementary Table S2. This 

study allowed the validation of species identification by comparison with literature (Bonnier et 

al. 1990) (Tutin  et al. 1968) 

Regarding the identification, data could be more precise than that obtained here, for example 

violet of Toulouse being identified as Viola alba (purple cluster). Indeed, in the literature it is 

known as Viola alba sups dehnhardtii (Malécot et al. 2007). In addition, violets belonging to 

Viola odorata were distributed among the three previously quoted isolates (ODO178, ODO182 

and ODO214), however, their sequences were highly analogous with 99% and even 100% 

similarity. This is indicative of the insufficiency of the ITS sequence for precise identification 

and the need for further methods such as chloroplast DNA in such cases. Indeed, chloroplast 

DNA markers showed variability among Viola and allowed the distinction of sections and 

subsections as in the analysis of Korean Viola (Yoo et al. 2010). Nevertheless, since the main 

goal of our study was to obtain a classification of violets into various clades limiting their 

identification to the species level was sufficient.  

These genetic results were then used as a base model on which to apply a new strategy based 

on chemotaxonomic studies. From the dataset of violets analyzed by each of two methods (GC-

MS and UHPLC-HRMS), genetically well-identified violets (N = 64 violets) were used as 

training set on which to build statistical models. The unidentified violets were used as a 

prediction set to try to classify them and attribute a potential identification (Fig. 2). 

 
Fig. 2 Strategy of classification based on training and prediction sets. Pie charts show the distribution of results of classification 
(in colour).  
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2.2 HS-SPME-GC-MS  

2.2.1 HS-SPME protocol optimization 

A second order Doehlert design (Ferreira 2004) was used to optimize the release and the 

trapping of volatiles emitted by fresh flowers at maturity. Two time parameters were studied: 

the time leading up to volatile release and the adsorption time of volatiles trapped onto the 

SPME fiber. This optimization was undertaken with the violet of Toulouse at room temperature. 

Plants were kept under a bell-shaped hood to ensure non-degradation of the vegetal matter. 

Based on one report in the literature, the expertise domain was defined as: a time for volatile 

release between 20 and 80 min and an adsorption time between 15 and 45 min (Vercammen et 

al. 2000). The Doehlert matrix indicated nine experiments to perform with two repetitions at 

the center of the experimental domain (Supplementary Table S3). Two responses were 

observed, the number of peaks and their global integration (Supplementary Tables S4 and 

S5). The repeatability of the plan was confirmed by the repetition of the same order of 

magnitude: number of peaks 13 ± 1 and integration 21 ± 3. Method optimization was sought 

using the maximum final parameter values: 65 min to release the volatiles and 37 min for the 

adsorption. This theoretical maximum was experimentally confirmed by the analyses of three 

different plants on three days (Supplementary Table S6). For routine analyses, a proposed 

technical maximum of 60 min and 30 min was validated upon similar results to those of the 

theoretical maximum with a standard deviation of only 2% regarding the peak integration. This 

practical optimum was therein conserved.  

2.2.2 HS-SPME-GC-MS-based metabolomic approach 
 
HS-SPME-GC-MS profiles of all 39 analyzed flowering plants afforded 82 features (m/z-RT 

pairs). As a preliminary step, principal component analysis (PCA) was applied as an exploratory 

tool to provide an unsupervised overview of the GC-MS volatile fingerprints. Use of binary 

data based on the presence or absence of peaks in each sample was preferred to avoid intensity 

variability (Fig. 3). Indeed, analyses of the same violet of Toulouse throughout one season 

(February-March) provided quantitative but not qualitative variations and the identification of 

the same profile with only peak intensity variations (Supplementary Fig. S4). This PCA 

revealed a group composed of only violets belonging to V. sp Hearn that were well-separated 

from the four other clusters. This separation was dependent on PC1 while the other species were 

separated by PC2. This observation suggests that V. sp Hearn features volatile profiles that 

differ considerably from the other species which among themselves share common features.  
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Fig. 3 PCA score plot of GC-EIMS data from SPME flower extracts using binarized data (in colour). 

 

We then applied a supervised orthogonal partial least square discriminant analysis (OPLS-DA) 

in order to try to classify the unidentified violets by projection and thus extend the classification 

of our collection. A base model was built with only violets identified genetically (N = 19 

violets) (Fig. 4A) with distinction of five clusters related to specific species.  V. sp Hearn cluster 

is separated by PC1 axis whereas the others by PC2 axis. The quality of model prediction was 

not satisfactory (R2Y = 0.93, Q2Y = 0.505, CV-ANOVA p-value = 0.59) and a permutation 

test did not assess its validity (Supplementary Fig. S5). This result could be explained by the 

overlapping of clusters relating to V. alba, V. odorata and V. suavis (Fig. 4B) clearly observed 

after prediction of unidentified violets (N = 20 violets).  It suggests that these three species 

might share common features which did not allow their clear distinction compared to V. subs 

Rostratae and V. sp Hearn which are both well separated in the variance plot. Prediction results 

which were quite weak, as only ten violets in twenty (i.e., 50%) were projected and classified 

into the defined clusters, have to be taken with hindsight as projections in V. sp Hearn could be 

quite certain due to its good separation, but those in the three overlapping clusters remain 

hypothetical.   

 
Fig. 4 OPLS-DA base model of GC-EIMS data (A) and prediction set of unidentified violets (B). Well-projected violets are 
indicated by a star (in colour).   

 

2.2.3 Identification of violet species-specific volatile biomarkers  

Despite the poor classification of violets with volatile analyses, some species-specific 

biomarkers were highlighted through database interrogation (Fig. 5). A profile with major 

amount of limonene (Supplementary Fig. S6.1 a) was revealed for violets belonging to V. sp 

Hearn with the presence of some terpenes such as α-terpinene (S6.1 b). Two ionone profiles 

enabled a distinction between violets belonging to V. alba and V. suavis. Regarding V. alba, the 

three ionones classically found for violets were noted, i.e. α-ionone (S6.1 c), β-ionone (S6.1 d) 

and dihydro-β-ionone (S6 e), as well as one methoxybenzene named methylanisole (S6.1 f). 

This latter is absent for V. suavis but we suspect the presence of other ionone derivatives near 

the area of well-identified ionones as two new peaks appeared. Finally, violets identified as V. 

subs Rostratae have no quantitative volatiles according to the absence of chromatographic 
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peaks, correlating to nearly no flower fragrance compared to the others. These profiles correlate 

well with our findings using the OPLS-DA base model, showing high levels of similarity 

between V. suavis and V. alba in view of the presence of ionones, in contrast to both V. sp 

Hearn, which while devoid of these compounds are rich in others, and V. subs Rostratae with 

no volatiles. These ionone profiles thus explain the well-defined clusters of V. sp Hearn and V. 

subs Rostratae and the tendency for the others to merge.  

Finally, the standard deviation reaching 7% between retention times of standards and 

compounds derived from violet extracts, as well as the strong similarity of the experimental 

mass spectra allowed the validation of all the proposed annotations obtained in silico with 

databases (Supplementary Fig. S6.2).  

 

Fig. 5 Specific volatile profiles with identification of characteristic volatile biomarkers for each OPLS-DA cluster of GC-EIMS 
data. Stars indicate well-projected violets (in colour). 

 

2.3 UHPLC-HRMS-based metabolomic approach 

UHPLC-HRMS profiles of all 119 extracts (110 crude extracts, 1 botanical reference V. odorata 

and 8 QC samples prepared by pooling aliquots of all extracts) afforded 208 and 198 features 

in NI and PI modes respectively and 120 common features between both ionization modes. The 

analytical method was optimized so as to obtain as much information as possible in a 

satisfactory analysis time (about twenty minutes). The four most intense ions in each scan were 

fragmented to provide structural information and facilitate annotation of the compounds. 

As expected, PCA-X grouped QC near the plot center with violet extracts distributed around 

this central point (Fig. 6). Clusters correlated with species were highlighted according to genetic 

results. They matched with the five identified species: V. subs Rostratae, V. suavis, V. alba, V. 

odorata, and V. sp Hearn. These results indicated then a stable chemical composition within 

aerial parts of violets belonging to the same species. Moreover, it can be noticed the formation 

of two main groups based on PC1 with on the one hand V. odorata and on the other hand 

V. suavis, V. sp Hearn, V. alba and V. subs Rostratae. According to this configuration, V. alba 

and V. subs Rostratae seem to present similar profiles compared to the others, especially V. 

odorata and V. suavis which are both well-separated from the other clusters suggesting they 

possess specific metabolites.  
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Fig. 6 PCA score plot of UHPLC-HRMS-ESI-NI/PI combined dataset from violets leaf extracts (in colour). 

 

After PCA-X, we applied OPLS-DA analysis in order to try to classify the unidentified violets 

by projection and extend the classification of the collection. A base model was first built with 

only genetically-identified violets (N = 62 violets) (Fig. 7A). This model was quite well-defined 

(R2Y = 0.962, Q2Y = 0.822, CV-ANOVA p-value < 0.001) and validated by a permutation test 

(Supplementary Fig. S7). Unidentified violets (N = 46 violets) were then projected on the 

same model as prediction set. Forty-two out of the forty-six unknown violets were putatively 

identified by projection and thereby affiliated to clear-defined clusters characterized by specific 

chemical profiles and related to specific species (Fig. 7B). Three violets were associated with 

V. alba, two with V. subs Rostratae, nine with V. sp Hearn, two with V. suavis and twenty-six 

with V. odorata. Four violets remained totally separate from these clusters and could therefore 

be neither classified nor putatively identified.  

In our previous genetic results, some violets were not clearly identified due to similarity scores 

under 99% but were then affiliated to one clade through distance model phylogeny. Upon 

comparison with the UHPLC-HRMS results, predictions correlated with genetic affiliation thus 

reinforcing the putative identification of these violets which allowed reaching the classification 

of 96 % of the collection. The four undefined violets were not well correlated to any specific 

cluster and regarding genetic results, two were not sequenced and the others revealed clear 

sequence with low identification scores. Thus 4% of our collection of violets remain 

unidentified. 

 
Fig. 7 OPLS-DA base model of UHPLC-HRMS-ESI-NI/PI combined dataset (A) and prediction set of unidentified violets (B). 
Well projected violets are indicated by a star (in colour). 

 

The stability of leaves metabolome over time was assessed by a kinetic study. Every two 

months, ten leaves of violet of Toulouse were collected and extracted as depicted in section 2.4. 

The PCA score plot (Supplementary Fig. S8) containing few selected extracts of each species 

representative of each cluster was built. All kinetic extracts of violet of Toulouse were distinctly 

projected within V. alba cluster. Thus, the model validity obtained at one precise moment of 

the season may be more generally interpreted as attested by these kinetic results. 

To complete this study, phylogenetic reconstruction was tried by combining ITS sequence and 

LC-MS data through a parsimony method. Since no standardization method was found in the 
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literature to treat LC-MS data, the binary matrix was built on the average intensity as threshold, 

independently for each variable. Thus superior values were indexed with 1 against 0 on the 

contrary. All data were combined and the resulting combined tree (Supplementary Fig. S9) 

conducted to the observation of the majority of the groups identified in ITS phylogenetic tree. 

The only difference focused on the scission of V. odorata clade into two groups. 

Complementary hierarchical cluster analysis (HCA) of LCMS data highlighted the same 

organization as one branch related to V. odorata was noted with a separation into two groups 

(Supplementary Fig. S10). These results could be then explained by the presence of different 

varieties within V. odorata which seem highlighted by combination of data.  

2.4 Annotation of UHPLC-HRMS chemotaxonomic biomarkers of violet species  

In an attempt to take our classification further and identify potential chemotaxonomic 

biomarkers, we built a correlation network (Fig. 8). This was composed of a set of nodes 

corresponding to UHPLC-HRMS peaks and correlated by edges using Spearman correlation. 

This correlation was based on the relative intensity of each peak in each extract. Compounds 

having the same pattern would thus be correlated together.  

The network obtained was composed of around 250 nodes and allowed us to observe, as 

expected, clear clusters of metabolites specific to identified species. Non-discriminant 

metabolites shared by different and sometimes all species were also found plotted at the center 

of the network (Supplementary Fig. S11). 

  
Fig. 8 Correlation network based on ESI-NI/PI combined dataset of UHPLC-HRMS performed on leaf extracts and 
identification of characteristic biomarkers. Color tag is based on species identification by genetic analysis. Node size was 
emphasized based on OPLS-DA coefficient value. Putative structures were based on HRMS and MS/MS spectra and 
correspond to the first hit in MS-FINDER as annotation illustration (in colour). 

 

The annotation of characteristic features of each species was undertaken using in silico 

fragmentation to compare against our own in-house Viola databases as well as local databases 

within MS-FINDER (Table 1). Every correspondence between experimental and in silico 

fragments is presented in Supplementary Fig. S12. Moreover, UV spectra were also combined 

to confirm the chemical class of compounds. The combination of spectral data allows 

annotation of level 2 (Sumner et al., 2007).  

It is interesting to note the abundance of C- and O-glycosylated coumarin and flavonoid 

derivatives. It can be noted that C- and O-glycosylated aglycone can be differentiated by their 

MS-MS spectra as previously described (Benayad et al. 2014). For O-hexose like glucose, a 
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difference of 162 Da is observed; for O-deoxyhexose like rhamnose it is a difference of 146 Da 

and for O-pentose like arabinose, this is a difference of 132 Da. On the contrary, for C-

glycosylated substituents, these losses are not observed but rather 60, 90 or 120 Da (Ferrere et 

al. 2003). For instance, fragments with mass differences of 162 Da and 15 Da suggest the 

presence of one methoxy and one O-hexose substituents for compounds 1 and 2. NMR 

characterizations confirmed these substitutions of a coumarin aglycone (Chervin et al. 2017). 

On the contrary, for compound 5, observation of fragments 503.11 (-90 Da) and 473.21(-120 

Da) suggested the presence of a C-rhamnose whereas fragments 383.05 and 353.11 highlighted 

a C-glucose. Relative intensities of fragments suggest the rhamnose is linked at the 8 position 

and the glucose is linked at the 6 position (Benayad et al. 2014). 

OPLS-DA coefficients were determined for every feature and for each identified species. 

Characteristic features were correlated to the highest OPLS-DA coefficient scores. V. odorata 

presents mainly cyclotides as biomarkers with [M+3H]3+ showing a characteristic isotopic 

shape, whereas V. alba, V. subs Rostratae, V. sp Hearn and V. suavis seem well characterized 

by polyphenols, in particular flavonoids and coumarins specific to V. alba. As in the above-

mentioned UHPLC-HRMS-based metabolomic approach, the identification of two groups was 

reinforced by the putative distinguished biomarkers. 
 

Table 1: Summary of all annotated compounds with MS-FINDER 

 

3 Discussion  

We have described the taxonomic delimitation of the French national collection of violets held 

in the municipal greenhouses of Toulouse performed by combining their genotypic and 

chemotaxonomic profiles. Untargeted metabolomic approaches coupled to LC-MS (Martucci 

et al. 2014) as well as SPME GC-MS (Khalil et al. 2017) phytochemical characterizations have 

already demonstrated their potential in taxonomic classification on different species. As 

explained previously, regarding the species concept (Smedsgaard et al. 2005), the classification 

and understanding of any species rely on three main axes to distinguish their phenotypic 

characteristics, ecological behavior and genome. However, these aspects are not always 

sufficient to well-differentiate closely related species or during the speciation process. Since 

the metabolome represents the final picture of what is extracted resulting from genomic and 

environmental interaction, metabolite profiling appears to offer the data required to bridge the 

gap left by genetic-based taxonomical studies performed alone. Implementation of such 
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metabolite profiling should thus provide new clues with which to refine genomic-based 

classification. Genetic analyses based on the study of ITS sequences 

 allowed the classification of 72% of the collection of violets into six different clades with 

distance-based phylogeny reconstruction. Nevertheless, only 58% of the collection clearly 

matched to one reference found in the NCBI database with a similarity score above 99%. To 

improve this classification, we undertook chemotaxonomic studies involving native flower 

volatile profiling obtained by HS-SPME/GC-MS and UHPLC-HRMS analyses of fresh leaf 

extracts. We found the volatile profiling unsuitable for discrimination of the complete 

collection, mainly due to the small number of features inducing a less significant variability 

among the species. In addition, this technique is quite sensitive, in particular to environmental 

conditions, and is long to perform (around two and half hours for one analysis). Moreover, 

profiling the volatile emitted by flowers is limited to the flowering period, which is only two 

winter months for the Viola genus. Analysis of a large collection is therefore laborious and was 

deemed unsuitable in our case.  

On the contrary, UHPLC-HRMS analyses worked well for our classification purposes. Indeed, 

the strategy used here based on genetic results to build a statistical model from which a 

prediction set was used for unidentified violets, the classification rate rose to 96 % of the whole 

collection composed of 111 violets. Importantly, this technique is easy to implement, in our 

case requiring only an ethanolic extraction which lasted 30 minutes using around 1g of fresh 

sample (the equivalent of a dozen leaves in the case of Viola plantlets). Moreover, separations 

are of better quality and are achieved in a shorter time (around thirty minutes per sample) 

thereby reducing the cost of analysis (Dong et al. 2014) making it better suited to the analysis 

of a whole collection containing hundreds of samples. The overall good predictive quality of 

our LCMS-based models could be explained by the larger number of variables involved (around 

250 in total). Furthermore, the variability observed over time is higher for volatile compounds 

compare to non-volatiles, as depicted in Fig. S4 and Fig. S8. As a consequence, the inter-sample 

variation is lower for leaf extracts. The main limitation remains the false discovery rate 

(Benjamini et al. 1995); a common way of circumventing this is to employ the diagnostic tool 

CV-ANOVA (analysis of variance testing of cross-validated predicted residuals) to assess the 

reliability of the OPLS model. This tool displays the p-value indicating the probability level 

where a model with one value is the result of chance. A p-value lower than 0.05 is correlated to 

a significant model. Permutation tests are also often applied in validation procedure to 

diagnostic model overfit (Eriksson et al. 2008). The acquisition of UHPLC–HRMS profiles in 
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data-dependent analysis mode provided accurate mass-to-charge ratios for molecular formula 

determination along with MS/MS fragments used for peak assignments. Regarding the various 

databases used, our Viola databases provided more pertinent annotations than those based on 

natural products databases within MS-FINDER, which allowed a more general identification 

for which mainly chemical class was relevant. 

Cross referencing with the genetic classification reinforced the putative identification of 

unknown violets. In this way, more than half of the collection was identified as V. odorata, 

around 18 % as V. sp Hearn, 5 % as V. alba, 7 % as V. suavis and 4 % as V. subs Rostratae. 

While V. alba, V. suavis and V. odorata possess similar volatile profiles principally composed 

of ionones, they could be better differentiated by their non-volatile secondary metabolites from 

coumarines, flavonoids and various non-phenolic classes of compounds. On the contrary, while 

V. sp Hearn and V. subs Rostratae possess similar secondary metabolite markers within the 

flavonoid class, they could be accurately distinguished by their volatile profiles with the 

presence of terpenic compounds within the first group and the absence of quantitative volatiles 

from the second.  

Metabolite profiling, as depicted in a previous study of tomato species (Overy 2004), allowed 

the examination of biological diversity with clear discrimination of violet species; this permitted 

their segregation through multivariate data analysis. The chemical profiling methods used in 

our study provided complementary information and contributed towards the establishment of a 

significant relationship with ITS phylogenetic analysis for Viola genus.  

Consensus tree based on ITS sequences and binary LC-MS matrix validated the majority of the 

clades correlated to one species (Fig. S9). However, for V. odorata a scission was observed 

conducting to two groups instead of the only one observed with ITS sequence. The first 

hypothesis was about the potential loss of information due to the binarization of LC-MS data. 

Indeed, there are continuous data with semi-quantitative information at one variable level. But 

HCA of LC-MS data highlighted the same phenomenon which could then be explained by the 

potential presence of several varieties. Comparison of both clades highlighted a highest 

concentration of cycloviolacin O9 in the major group of V. odorata. Independent analysis of 

ITS data did not permit the clear identification of varieties but combination of information 

conducted to this revelation thus reinforcing the complementarity of the methods and the 

relevance of metabolome profiles in classification.  
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One of the main limitations of our workflow concerns the non-referenced sequences. As 

depicted for the four unclassified violets (grey dots, Fig. 7b), two of them displayed exploitable 

ITS sequences, with no satisfactory matches within the NCBI bank (> 99%). According to our 

combined results, these violets could be new species which warrants further investigation. 

Another drawback of our procedure is the identification of metabolite biomarkers which is time-

consuming and elusive despite recent advances in this area (Perez de Souza et al. 2017). 

Contrary to other “-omics” based approaches, such as genomics and proteomics, metabolomic 

is still in its infancy and requires protocol standardization to overcome this identification 

shortfall. Nevertheless, taxonomy can expect a strong complementary partnership between 

comprehensive metabolome profiling methods and genetic-based approaches in the near future. 

4 Materials and methods  

4.1 Plant material 

Violet leaves were harvested in spring 2016 from the whole collection of violet plants 

maintained in the municipal greenhouses of Toulouse, France: two leaves for genetic analysis 

and ten for UHPLC-HRMS analysis. Directly after collection, they were immerged in liquid 

nitrogen to stop any enzymatic activity and then stored at -80°C. Genetic analysis was 

undertaken on frozen leaves; for UHPLC-HRMS profiling, the vegetable matter was 

lyophilized and ground into powder using a microtube homogenizer (BeadBug, 40W). Overall, 

108 distinct violet leaves were extracted. 

For volatile profiling, the whole native flowering plants were analyzed between February and 

April 2016 according to their blossoming quality. A total of 39 flowering plants were analyzed. 

4.2 DNA amplification, purification and sequencing 

Genetic analyses were performed directly on a small portion (approx. 1mm²) of a frozen fresh 

leaf of the various plants without previous DNA extraction. Species discrimination was 

accomplished through amplification of the whole internal transcribed sequence region ITS1-

5.8S-ITS2 by PCR (Mullis et al. 1986) using the KAPA3G Plant PCR kit (Kapabiosystems).  

The forward primer ITS (GGAGAAGTCGTAACAAGGTTTCCG) (Aceto et al. 1999) and the 

reverse primer ITS (GCTCGCCGTTACTAGGGGAATC ) were used to amplify the ITS region 

according to the manufacturer's recommendations. Briefly, a small sample of frozen leaf was 

mixed with 50 µl of 1X PCR buffer solution, containing 1 mM of MgCl2 and 0.2 mM of dNTPs, 

0.3 µM of each primer and 1 Unit of KAPA3G DNA polymerase, in sterile conditions under a 
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fume hood, with filter tips, after a UV cycle of 20 min. Amplification was performed on a 

Mastercycler (Eppendorf), starting with an initial denaturation step of 10 min at 95 °C followed 

by 35 cycles composed of a denaturation step at 95 °C for 30 sec, followed by an annealing step 

at 62 °C for 20 sec, and an extension step at 72 °C for 30 sec. PCR amplicons were resolved on 

a 1 % agarose gel, after 30 min at 100 V. DNA revelation was achieved under UV with ethidium 

bromide (EtBr) solution. PCR products were then purified with Promega Wizard® SV Gel and 

PCR Clean-Up System (Promega Corp., Madison, Wisconsin). Finally DNA was collected in 

50 µL of nuclease-free water. Sanger sequencing was performed by GATC Biotech (Constance, 

German). Sequence identification was achieved by matching against references found within 

the National Center for Biotechnology Information (NCBI) database (Pruitt 2004). 

4.3 Sequence alignment and phylogenetic inference 

Phylogenetic analyses were performed using ITS1-5.8S-ITS2 sequences of references available 

from GenBank (see Supplementary Table S1). Alignment of ITS sequences was performed 

using the ClustalX program within the CLC Main Workbench software version 7.8.1 (Qiagen 

Aarhus A/S) and then manually adjusted. Two inferences were then performed: a distance 

analysis by Neighbor Joining (using Kimura 80 as distance setting) to define sequence 

similarity, and a phylogenetic analysis using the maximum likelihood method. Maximum 

parsimony trees of ITS sequences as well as combined ITS and metabolomic data were also 

built using PAUP* 4.0 software (Swofford 2001). Searches were heuristic with the parsimony 

criterion, with MulTrees and ACCTRAN options in effect and TBR branch swapping 

algorithm. Bootstrap values were derived from 1000 replicates and were calculated for both 

inferences to define clade robustness. The LC-MS data were binarized according to mean peak 

intensity with a value of “1” for intensity above mean and “0” on the contrary. Outgroups 

composed of sequences of Viola species from section Melanium (pansies), the different genus 

Rinorea from Violaceae and Malpighia from Malpighiaceae were also introduced to obtain 

rooted trees. 

4.4 Leaf metabolite extraction  

Metabolites were extracted by adding ten volumes of 80% ethanol to the powdered material 

(80.0 ± 0.2 mg). The solutions were sonicated in a bath (Fisher Scientific, Illkirch, France) at 

room temperature for 10 min, then centrifuged for 2 min at 5°C and 14 000 rpm. The supernatant 

was put aside and this procedure then repeated once on the residue with fresh solvent. In order 

to discard chlorophyll pigments, the combined liquid extracts were mixed with silica-C18 in 
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final weight proportions of 4 silica powder per 1 initial plant material. The mixture was 

centrifuged and the resulting liquid extract put in an UHPLC-HRMS vial for subsequent 

UHPLC-HRMS analysis. 

4.5 UHPLC-HRMS profiling 

UHPLC-HRMS analyses were performed with diode array detector (DAD) on a UHPLC-LTQ 

Orbitrap XL instrument (Ultimate 3000, Thermo Fisher Scientific, Hemel Hempstead, UK) as 

previously reported (Chervin et al. 2017). Briefly, the LC–MS system was run using a Acquity 

UPLC BEH C18 column (100 × 2.1 mm i.d., 1.7 µm, Waters, MA, USA) equipped with a guard 

column. The mobile phase A (MPA) was water with 0.1% formic acid (FA) and mobile phase 

B (MPB) was acetonitrile with 0.1% FA. The solvent gradient was: 0 min, 95% MPA; 0.5 min 

95% MPA; 12 min, 5% MPA; 15 min, 5% MPA, 15.5 min, 95% MPA; 19 min, 95% MPA. The 

flow rate was 0.3 mL/min, the column temperature was set to 40 °C and injection volume fixed 

to 2 µL. The UV detection was performed by a diode array detector (DAD) from 210 to 400 

nm. Mass detection was performed using an electrospray source (ESI) in positive ionization 

(PI) and negative ionization (NI) modes. The mass scanning range was m/z 100–2000 Da. Each 

full MS scan was followed by data dependent MS/MS on the three most intense peaks.  

4.6 Native plant volatiles emission 

Analysis of the volatiles of fresh mature flowers from native plants was performed using HS-

SPME coupled to GC-MS. The whole plant was analyzed to ensure that no fragile vegetal 

matter was destroyed in preparation. Optimization of the protocol was undertaken on the violet 

of Toulouse with use of a Doelhert experimental design (Ferreira 2004) and the following 

parameters were obtained at ambient temperature: time leading up to volatile release of 1 hour 

under a bell followed by 30 min of adsorption on the divinylbenzene/carboxen/ 

polydimethylsiloxane (DVB/CAR/PDMS) SPME fiber (Supelco, Oakville, ON, Canada). This 

fiber was chosen for its mixed properties. The fiber was retracted and transferred to the GC-MS 

injection port at 250°C with desorption time of 5 min.  

4.7 GC-MS profiling 

GC-MS analyses were performed on an Agilent Technologies GC system 7890B equipped with 

HP 5 MS column (30 m x 0.25 mm id x 0.25 µm film thickness; Agilent, Santa Clara, USA) 

and coupled to Agilent Technologies 5977B MSD mass chromatograph. The temperature of the 

injector was maintained at 250°C. The following temperature gradient of the oven was used: 

60°C for 10 min, then increase to 130°C at 4°C/min, then to 150°C at 2°C/min and finally 
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ramped at a rate of 25°C/min to 250°C and maintained for 10 min. Helium was the carrier gas 

with flow rate of 1 mL/min. Splitless injection was used and no solvent delay was fixed. The 

mass spectrometer detector was operated in EI mode at 70 eV. The scan range was set at 50 to 

550 Da.  

4.8 Data processing  

The GC-MS and UHPLC-HRMS raw data were converted to abf files (Reifycs Abf Converter) 

and processed with MS-DIAL version 2.74 (Tsuagawa et al. 2015) for mass signal extraction 

respectively between 50 and 600 Da from 4 to 40 min and between 100 and 1500 Da from 0 to 

14 min.  

For LC-HRMS/MS, respective MS1 and MS2 tolerance were set to 0.01 and 0.2 Da in centroid 

mode. The optimized detection threshold was set to 4×105 for NI and 1.6x105 for PI concerning 

MS1 and 10 for MS2 in both cases. Adducts, correlated peaks among samples and neutral loss 

fragments from MS/MS found in higher m/z at a RT windows of 0.1 minute were identified to 

exclude them from the final peak list. Finally, the peaks were aligned on a quality control (QC) 

reference file with a retention time tolerance of 0.1 min and a mass tolerance of 0.025 Da. 

Identification was performed with a local database built on MS-FINDER model (Tsugawa et 

al. 2016) and based on Viola genus.  

Regarding GC-MS, the optimized detection threshold was set to 500. Finally, the peaks were 

aligned on the reference file of the violet of Toulouse with a retention time tolerance of 

0.075 min.  

The resulting peak lists were then exported to comma-separated value (CSV) format prior to 

multivariate data analysis (MVA) using SIMCA-P+ (version 14.0, Umerics, Umea, Sweden). 

For cyclotide detection, positive profiles were processed with MZmine 2.29. A peak list was 

built and deconvoluted. The identification of isotopes was made with a maximum charge fixed 

at 5, a m/z tolerance of 10 ppm and a retention time tolerance of 0.2 min. The representative 

isotope selected was the lowest.  

4.9 Statistical analysis 

Both UHPLC-HRMS CSV files of NI and PI mode were combined using MScombine package 

(Calderón-Santiago et al. 2016). The resulting CSV and GC-MS files were then separately 

imported into SIMCA-P+. For MVA, all data were log transformed and pareto scaled. The 

unsupervised principal component analysis (PCA) allowed the visualization of the global 

organization of the samples. The supervised orthogonal partial least square discriminant 
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analysis (OPLS-DA) was made with the names of species as qualitative Y input. Clearly 

genetically identified plant individuals (similarity score > 99%) were the starting point from 

which to build OPLS-DA models. Unidentified violets were predicted by projection in potential 

observable clusters. Coefficient scores were used to rank variables according to their 

chemotaxonomic biomarker potential. For each model, a leave-one-subject-out cross-validation 

was performed to assess the model fit. The validity of the discriminant model was verified using 

permutation tests (Y-scrambling). 

4.10 Identification of significant features 

Using the OPLS-DA regression analysis results, molecular formulae and structural 

identification of significant features were calculated with MS-FINDER 2.22 (Tsugawa et al. 

2016) based on our previously described model (Chervin et al. 2017). An in-house database 

based on Viola matches inside the Dictionary of Natural Products (DNP, CRC press, v25:2) 

extended to the chemical classes and of local databases within MS-FINDER (KNApSAck, 

PlantCyc and UNPD) were used. For each compound, the results afforded several candidates 

and ranked them according to their similarity score, which was based on comparison between 

experimental MS/MS fragments and in	silico	spectra of candidates. 

For cyclotide identification, a homemade database based on cyclotides found in the DNP was 

built, clarifying m/z of [M+3H]3+ and [M+4H]4+, and imported within MZmine with a m/z 

tolerance of 10 ppm.  

For volatile compounds, identification was based on retention time matching with NIST MS 

Search 2.2 (National Institute of Standards and Technology, Gaithersburg, MD, USA) mass 

spectral database and EI-MS databases proposed with MS-DIAL. The injection of standards 

analyzed with the same GC-MS method was undertaken in order to validate these results by 

comparing retention times and mass spectra. 

4.11 Correlation network 

The text file format exported from MS-DIAL was cleaned-up by eliminating adducts and 

keeping only peaks with MS/MS data before importation into MetamapR (version 1.4.0) 

(Grapov et al. 2015). A correlation network was created using the Spearman model and a p-

value set to 5.10-6. The calculated edge list was then downloaded and processed with Cytoscape 

2.8.3 (Shannon et al. 2003). An attribute file containing all processed information was imported 

to improve network visualization and interpretation. The mean average intensity of each peak 
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was added to specify the relative part of each compound per species with the use of the plugin 

“Color Nodes”. 
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Fig. 1 Cladograms obtained with maximum parsimony (A) and maximum likelihood (B) method showing genetic relationship 
of selected experimental sequences and references based on ITS sequences. To improve the quality of the figure, only sequences 
of a few characteristic samples from each clade observed with distance model were selected for B. The outgroup is used to root 
the tree. Bootstrap values to study robustness are indicated in red (in colour).
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Fig. 2 Strategy of classification based on training and prediction sets. Pie charts show the distribution of classification results 

(in colour). 
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Fig. 3 PCA score plot of GC-EIMS data from SPME flower extracts using binarized data (in colour). 
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Fig. 4 OPLS-DA base model of GC-EIMS data (A) and prediction set of unidentified violets (B). Well-projected violets are 

indicated by a star (in colour).   
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Fig. 5 Specific volatile profiles with identification of characteristic volatile biomarkers for each OPLS-DA cluster of GC-

EIMS data. Stars indicate well-projected violets (in colour). 
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Fig. 6 PCA score plot of UHPLC-HRMS-ESI-NI/PI combined dataset from violets leaf extracts (in colour). 
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Fig. 7 OPLS-DA base model of UHPLC-HRMS-ESI-NI/PI combined dataset (A) and prediction set of unidentified violets 

(B). Well projected violets are indicated by a star (in colour). 
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Fig. 8 Correlation network based on ESI-NI/PI combined dataset of UHPLC-HRMS performed on leaf extracts and 
identification of characteristic biomarkers. Color tag is based on species identification by genetic analysis. Node size was 
emphasized based on OPLS-DA coefficient value. Putative structures were based on HRMS and MS/MS spectra and 
correspond to the first hit in MS-FINDER as annotation illustration (in colour).	
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Table 1: Summary of all annotated compounds with MS-FINDER in silico matches 

N° m/z RT  
(min) 

Detected 
pseudo-

molecular 
ion 

Molecular  
Formula 

Error  
(ppm) 

Chemical 
classa Putative annotation Cluster  

Affiliation 

Number of 
corresponding 
MS peaks with 

literature 

Biological 
source Reference 

1 385.0758 2.95 [M-H]- C16H18O11 4.6744 Coumarin 
glycosides 

7-Methoxy-5,6,8-
dihydroxycoumarin-5-β- 
glucopyranosideb 

V. alba - Tetraphis 
pellucida 

Jung et al., 
1995 

2 385.0758 3.47 [M-H]- C16H18O11 4. 6744 
 

Coumarin 
glycosides 

7-Methoxy-5,6,8-
trihydroxycoumarin-8-β- 
glucosideb 

V. alba - - - 

3 209.0446 3.32 [M-H]- C10H10O5 4.3053 Hydroxycinnamic 
acids 

Dihydroxy-methoxy-propenoic 
acid Phenyl * V. alba ND Viola 

betonicifolia 
Muhammad 
et al., 2013 

4 755.2011 3.92 [M-H]- C33H40O20 3.8625 Flavonoid 
glycosides 

Myricetin O-deoxyhexoside-O-
deoxyhexoxyl-deoxyhesoside* 

V. subs 
Rostratae 2 Ajuga remota 

Arot 
Manguro et 

al., 2006 

5 593.1483 4.46 [M-H]- C27H30O15 4.8891 Flavonoid 
glycosides 

Luteolin-C-deoxyhexoside-C-
hexoside* 

V. subs 
Rostratae ND Plagiomnium 

elatum 
Anhut et al., 

1992 

6 623.1589 4.63 [M-H]- C28H32O16 4.4932 Flavonoid 
glycosides 

Isorhamnetine-O-hexosyl-
deoxyhexoside* 

V. subs 
Rostratae 2 Ginkgo biloba Luo et al., 

2013 

7 593.1860 5.42 [M+H]+ C28H32O14 0.8429 Flavonoid 
glycosides 

Acateine-O-hexosyl-
deoxyhexoside* V sp Hearn 3 Salvia 

moorcroftiana 
Zahid et al. 

2003 

8 679.1852 5.71 [M-H]- C31H36O17 3.8281 Flavonoid 
glycosides 

Quercetin O-hexoside-C-
acylated-deoxyhexoside* 

V. sp Hearn ND Sinocrassula 
indica 

Xie et al., 
2013 

9 1070.8168 
803.3678 5.94 [M+3H]3+ 

[M+4H]4+ C138H216N36O40S6 1.0273 
Cyclotide  Cycloviolacin O11** 

V. sp Hearn ND 
Viola odorata Craik et al., 

1999 

10 725.1906 3.31 [M-H]- C32H38O19 3.8610 Flavonoid 
glycosides 

Apigenin O-hexoside-C-
pentoside-C-hexoside* 

V. suavis 8 Ceratonia 
siliqua 

Batista et al., 
1993 
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11 695.1801 3.52 [M-H]- C31H36O18 4.0277 
Flavonoid 
glycosides 

Apigenin C-pentoside-C-
hydroxyferuloyl-pentoside* V suavis 5 - Benayad et 

al., 2014 

12 1089.1653 
817.1260 

5.9 [M+3H]3+ 
[M+4H]4+ C142H221N35O41S6 3.4889 Cyclotide Cter D** V. odorata - Clitoria 

ternatea L 
Poth et al., 

2011 

13 1052.4690 5.42 [M+3H]3+ 
C135H211N35O40S6 

 

1.4252 Cyclotide Cter I** V. odorata - 
Clitoria 

ternatea L 
Poth et al., 

2011 

14 1047.1356 
785.6131 5,17 [M+3H]3+ 

[M+4H]4+ C133H207N37O39S6 4,8704 Cyclotide  Cycloviolacin** V. odorata - Viola odorata Craik et al., 
1999 

a Determined	with	ClassyFire	(Djoumbou	Feunang	et	al.,	2016)	
b	Compounds	confirmed	by	NMR	(Chervin	et	al.	2017)	
*	Putative	annotation	based	on	experimental	HRMS,	MS/MS	and	in	silico	fragmentation	matches	restricting	interrogation	to	Violaceae	family	and	close	derivatives	(See	figure	S12).	Positional	
group	could	not	be	determined	and	were	removed	from	proposed	names.		
**	Cyclotides	were	determined	based	on	their	characteristic	isotopic	shape	and	their	triply	and/or	fourthly	charged	pseudo-molecular	ions.		
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