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1 Introduction

Instead of classical V belts, serpentine drives are used in front

end accessory drives �FEADs�. They use flat and multiribbed belts
running over multiple accessory pulleys, leading to simplified as-
sembly and replacement, longer belt life, and compactness �1�.
Numerous mechanical phenomena occur in this application: rota-
tional vibrations �2�, hysteretic behavior of belt tensioner �3�, non-
linear transverse vibration due to the existence of pulley eccen-
tricity �4�, dry friction tensioner behavior �5�, or parametric
excitation.

Commonly known under the category of axially moving media,
belt spans are subjected to parametric excitation from their oper-
ating environment as studied by Zhang �6�. A theoretical nonlinear
dynamic analysis is also analyzed by Mockenstrum et al. �7,8�.
However, only Pellicano et al. �9,10� present a coupled theoretical
and experimental investigation, where the excitation comes from
pulley eccentricity, which causes simultaneous direct and para-
metric excitation.

Widely used in automotive engines, belt spans experience mul-
tifrequency excitation caused by engine firing and accessory vari-
able torques �11�. Belt parametric instability occurs as transverse
vibration in these applications, where the problems are noise and
belt fatigue.

This paper builds on a previous work of Parker and Lin �12� as
an experimental illustration and model validation. First, it deals
with the general moving belt model subjected to multifrequency
tension and speed fluctuations. Then a specific test bench is pre-
sented, which produce this kind of excitation. Data acquisition is
based on the principle of pulse timing method and leads to angular

sampling for frequency analysis �13�. This method is applied here
for the first time on a nondiscrete geometry. The theoretical results
from perturbation analysis are compared to the experimental ones.
An unexpected source of parametric excitation is also highlighted.

2 Mathematical Model

A mathematical model of an axially moving beam subjected to
multifrequency tension and speed parametric excitation is used to
establish the parametric instability region transition curves. The

equation of motion for transverse vibration of a beam of length L

moving with time dependent transport velocity c�T� is governed

by �14�

�A�V,TT + c,TV,X + 2cV,TX + c2V,XX� − �Ps + Pd�T��V,XX + EIV,XXXX

= 0 �1�

where �A is the mass per unit length, EI the bending stiffness, V

the transverse displacement, Ps the mean belt tension, Pd�T� the

dynamic tension, and T and X the independent time and spatial
variables. The dynamic tension results from longitudinal motion
of the endpoints as a result of pulley oscillations and quasistatic
midplane stretching from transverse deflection, and is given by

Pd�T� =
EA

L �U�L,T� − U�0,T� +
1

2
�

0

L

V,X
2 dX� �2�

EA is the longitudinal stiffness modulus and U the longitudinal
displacement. With the dimensionless parameters,

x,v,u =
X,V,U

L
, t = T� Ps

�AL2
, � = c	� Ps

�A
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� =
EA

Ps

, � =
EI

PsL
2
, �i =��AL2

Ps

�̃i �3�

Equation �1� becomes

v,tt + 2�v,tx + �,tv,x − �1 − �2�v,xx + �v,xxxx

− ��u�1,t� − u�0,t� +
1

2
�

0

1

v,x
2 dx�v,xx = 0 �4�

The belt tension and speed fluctuations are, respectively,

��u�1,t� − u�0,t�� = 

i=1

k

�i cos��it + �i� �5�

� = �0 + 

i=1

k�

�i� cos��i�t + �i�� �6�

where �i=EAui / Ps�1 represents the ratio of the ith spectral com-
ponent of the dynamic tension fluctuation to the mean span ten-
sion.

As investigated in Ref. �12�, the boundaries of the instability
regions can be obtained on the basis of Floquet theory and pertur-
bation analysis.

Linearizing Eq. �4� and writing in state-space form gives �12�

AWt + BW + 

i=1

k�

�i��sin��i�t + �i��C + �i� cos��i�t + �i��D�W

− 

i=1

k

�i cos��it + �i�EW + 


i=1

k�

�i� sin��i�t + �i���2

EW = 0

�7�

where

A = �
1 0

0 − �1 − �0
2�

�
2

�x2
+ 	

�
4

�x4 � ,

B = � 2�0

�

�x
− �1 − �0

2�
�

2

�x2
+ 	

�
4

�x4

�1 − �0
2�

�
2

�x2
− 	

�
4

�x4
0 �

C = �2
�

�x
2�0

�
2

�x2

0 0
�, D = �0

�

�x

0 0
�, E = �0

�
2

�x2

0 0
� ,

W = �v,t

v

� �8�

The inner product in the state space is �W ,V�=�0
1WTV̄dx, where

overbar denotes the complex conjugate and superscript T denotes
the transpose. The Galerkin basis consists of the state-space eigen-

functions of the nonparametrically excited moving string ��=0�
system �15�


n = � j�n�n

�n

� = �
n�n

�n

� �9�

where �n are the complex eigenfunctions of Eq. �4� and �n the
natural frequencies

�n =
1

n��1 − �0
2
e jn��0x sin�n�x�, 
n = jn��1 − �0

2� �10�

Let us define Enm= �E
n ,
m� and En̄m= �E
̄n ,
m�, with similar

relations for the C and D operators.
Using perturbation analysis to consider speed and tension fluc-

tuations, primary instability occurs when

�l = �l� = 2�n � ���l��− jCn̄n + 2�nDn̄n��2 + ��l�En̄n��2 − �En̄n�2

��− 

i=1,i�l

k

�i
2 2�n

�i
2 − 4�n

2
+

�l
2

8�n
� − �− jCn̄n + 2�nDn̄n�2

��− 

i=1,i�l

k�

�i�
2 2�n

�i�
2 − 4�n

2
+

�l
2

8�n

� + 

i=1

k� 
�i�

2
�2

�Enn� �11�

and secondary instability occurs when

�l = �l� = �n ��
 �l
2

�n

Im�Enn��En̄n��2
�l�
2

�n

Im�− jCnn + �nDnn��− jCn̄n + �nDn̄n��2

− �En̄n�2�− 

i=1,i�l

k

�i
2 �n

�i
2 − 4�n

2
+

�l
2

3�n
� − �− jCn̄n

+ �nDn̄n�2�− 

i=1,i�l

k�

�i�
2 �n

�i�
2 − 4�n

2
+

�l
2

3�n

� + 

i=1

k� 
�i�

2
�2

�Enn� �12�

3 Experimental Setup

In industrial applications, excitation sources are not at a single

frequency, especially in an automotive engine. Engine firing and

driven accessories cause multifrequency speed and tension fluc-

tuations. Furthermore, practical belt speeds are such that they im-

pact the dynamics and must be included. The following experi-

ment examines parametric instabilities from this kind of excitation

in a moving belt system.

3.1 Belt Drive Description. The studied transmission con-

sists of four pulleys linked together by an automotive multiribbed

belt, as shown in Fig. 1. The input shaft speed �from

0 rpm to 2000 rpm� is controlled by a 60 kW electric motor. The

driven shaft is connected to a hydraulic pump. The output pressure

of the fluid is controlled to apply a mean torque on the driven

pulley. Due to its design, however, the pump generates torque

fluctuations of order 2 �i.e., 2 pulses/rev� around the mean value.

These fluctuations cause tension variations that parametrically ex-

cite the moving belt.

Due to the rotation direction, the upper span is tight and the

lower one is slack. As these two spans have approximately the

same length, the instability will appear in the slack span for the

lowest excitation frequencies. Figure 2 shows an example of

transverse vibration of the lower span.

3.2 Measurement Devices. Angular positions are measured

by optical encoders mounted on Pulleys 1, 2, and 3 �respectively,
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2048 pulses/rev, 2048 pulses/rev, and 2500 pulses/rev�. Belt ten-
sion is measured by a piezoelectric sensor on the Pulley 3 support

and belt lateral vibration by a laser displacement sensor �0.02 m

range, 10 �m dynamic resolution�.
The data acquisition system is custom made with a PXI frame

including classical data acquisition boards and a four-channel
counterboard permitting the use of the pulse timing method. Each
optical encoder delivers a square signal �TTL� as it rotates. Be-
tween two rising edges of this signal, a counter records the num-

ber of pulses given by a high frequency clock �80 MHz�, see Fig.

3. For each encoder, it is therefore possible to build a time vector
that contains the times of occurence of the TTL signal’s rising
edges. Hence, the total rotation angle of each shaft is determined
and instantaneous rotation speed and acceleration are deduced. In
this application, measurement is triggered on the reference en-
coder mounted on the driving shaft and analog signals are ac-
quired at each instant of the reference encoder’s rising edge. Ob-

viously, when an analog signal is sampled in the angular domain,

the speed conditions are taken into account in order to set the

cutoff frequency of antialiasing filters. An important characteristic

of this measurement principle is to separate resolution and preci-

sion. Resolution is given by the number of pulses/rev, and the

theoretical angular precision is proportional to the ratio between

rotation speed and counterclock frequency. The grating quality of

the optical encoder disk, as well as the electronic signal condition-

ing and processing, may also affect the practical accuracy.

3.3 Angular Sampling Benefits. Compared to classical ac-

quisition �16�, data are resampled based on the angular rotation of

a chosen encoder, which is not necessarily the reference one. It

consists in calculating the angular rotations of the other encoders

at the times corresponding to the rising edges of the sampling

encoder. Hence, if angular sampling is performed on encoder i,

the angular positions of each of the slave encoders are computed

from linear interpolation at the times corresponding to the encoder

i rising edge locations, see Fig. 4�a�.
For the analog signals, the same method is applied and they are

recorded at the angular frequency of the reference encoder. This

method is called angular sampling and is detailed in Ref. �13�. It is

mainly applied in rotating machines with synchronous transmis-

sion elements, such as gears or timing belts. Its application to a

transmission in the presence of belt slip is novel and provides

important advantages as described below. This technique is espe-

cially useful for systems with variable speed because the position

of the sampling points and the angular resolution remain exactly

the same when the speed fluctuates.

As the angular sampling frequency is constant based on the

encoder resolution, instead of performing the fast Fourier trans-

form �FFT� analysis in the time domain, this is performed in the

angular domain. In other words, the measured signals are treated

as functions of the angular position of the sampling encoder. The

sampling encoder’s position plays the role typically filled by time

in classical FFT analysis.

The spectral data are a function of angular frequency, which has

units of rad−1. The maximum angular frequency is 1 /��, where

��=2� /Ng is the angular resolution of the sampling encoder

based on Ng gratings. Increments on the angular frequency axis

are spaced at �f =1 /N��, where N is the number of sampling

encoder rising edges in the collected data. Examples of classical

Campbell and angular frequency diagrams are compared in Fig. 5.

On Fig. 5�a�, natural frequencies are located at a constant fre-

quency when speed increases while speed-dependent frequency

orders linearly increase. In the angular frequency domain, how-

ever, natural frequencies appear as hyperbola �f =��1 /��� and

(a) (b)

Fig. 1 Experimental setup for parametrically excited moving belt drive

Fig. 2 Example of instability in slack belt span

Fig. 3 Angular sampling principle
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speed-dependent frequency orders are located at a constant angu-

lar frequency �f =a ·� leads to 1 /�=a�, vertical lines parallel to
the speed axis, see Fig. 5�b�.

Thus, the main advantages of performing angular sampling in
this application are as follows:

• Sampling points are exactly located in reference to the ge-
ometry of the rotating machine, even when speed varies. It
permits to compare several measurement results based on
the same sampling conditions.

• Spectral analysis is always performed with the same accu-
racy and the same resolution. Angular sampling also ensures
that the magnitude of harmonic components are exactly es-
timated �13�.

• By choosing Encoder 3 as reference, and assuming that no
slip occurs between belt and the idler pulley since no torque
is being transmitted, the sampling points are attached to the
belt.

Therefore, it is more convenient to identify speed-
dependent frequency components on a graph with an angu-
lar frequency axis related to a chosen reference encoder.

For standard Fourier analysis, it is necessary to get the mea-
surements as a function of one single time vector with equally
spaced intervals. This requires a time resampling of the data using
linear interpolation, as shown in Fig. 4�b�.

3.4 Phase Difference Measurement. This angular sampling
method has already been used for many synchronous transmission
studies �gearbox, timing belt drive� but never for nonsynchronous

transmissions, such as serpentine multiribbed belt drives. The

transmission error � is defined as the angular rotation difference

between shaft i and shaft j,

� = �i − � · � j �13�

where � and �i,j are, respectively, the transmission ratio and the

angular positions of shaft i, j.
In the case of nonsynchronous belt drive systems, some creep

occurs between the belt and the pulleys due to the power trans-
mission by friction �17,18�. Indeed, the creep corresponds to the
relative slip between the belt and the driven pulley as the belt
elongates on the pulley contact arc as its tension increases. Here,
the transmission error between Pulleys 3 and 2 is considered.

The rotation of Pulley 3 is not totally transmitted to Pulley 2
due to the belt stretching on Pulley 2, which causes a delay.
Therefore, the mean value of the transmission error is not zero as
it is for a synchronous drive, but rather always increases �Fig. 6�.
In our application, analysis permits decomposition of the observed
transmission error as the sum of a linear function of time repre-

senting the transmission error due to the pulley belt creep �creep,

and the residual transmission error �res due to the system dynamic
as in synchronous transmission.

� = �3 − � · �2 = �res + �creep �14�

where �creep is identified from � as a linear regression of time
assuming a constant mean rotation speed. Removing the linear

part �creep from the transmission error � yields the zero-mean pe-

(a) (b)

Fig. 4 Angular resampling method „a… and time resampling method „b…

Fig. 5 Campbell diagrams in „a… time and „b… angular frequency domain
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riodic residual transmission error �res �Fig. 6�.
As mentioned in the theoretical model description, the dynamic

belt tension can be expressed as the difference of the endpoint
positions and midplane stretching from transverse vibration, see
Eq. �2�. Considering the belt span that connects Pulleys 3 and 2,

and taking into account the belt translation direction, U�L ,T� and

U�0,T� correspond, respectively, to the belt unseating point on

Pulley 3 and to the belt seating point on Pulley 2. These two
points are not fixed in space since pulley rotations oscillate around

the linearly increasing angles w3t and w2t. Assuming a no-slip

condition at these two points, U�L ,T� and U�0,T� can be esti-

mated from pulley angle oscillations multiplied by the respective

pulley pitch radius. Finally, the difference between U�L ,T� and

U�0,T� corresponds to the residual transmission error at time T.

Therefore, residual transmission error and belt tension fluctuation
are related. Figure 7 presents the measured progression of belt
tension and residual transmission error angular waterfall analysis

with change in rotation speed �note that all waterfall plots are top
views�. The same frequency components appear on each graph
and prove that the measurement system with optical encoders and
angular sampling permits evaluation of belt tension fluctuation.
Finally, this analysis shows that the transmission error includes
the pulley belt creep plus the system dynamic.

3.5 Nonuniform Belt Characteristic Identification and
Consequences. The low modulation observed on the dynamic
transmission error �Fig. 6� corresponds to the belt traveling fre-
quency and demonstrates that there are nonuniform belt charac-
teristics. In order to check this nonuniformity, a belt has been cut
in ten equal parts. Each part has been tested to determine longi-

tudinal rigidity modulus k and damping C. Each belt sample is

clamped at one end and has a mass m suspended at the other, see
Fig. 8. This system is excited via a shock hammer. The free re-
sponse is recorded via an accelerometer and postprocessed to ob-
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Fig. 6 Total „a… and residual „b… transmission error versus time

Fig. 7 Belt tension and transmission error angular top-view waterfall as a
function of rotation speed
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tain belt longitudinal stiffness and damping. Longitudinal damp-
ing coefficients of belt samples, normed by the maximum
measured value, are plotted versus belt sample number in Fig. 9.

Non-negligible variation is observed for C while local stiffness,

and therefore EA, is constant. This irregularity is probably due to
the manufacturing process �printing, cord winding, cutting�. The
low frequency modulation observed is shown to be a parametric
excitation source next.

4 Belt Span Instability Analysis

4.1 Experimental Investigation. On the global experimental
setup for a given initial belt tension and mean torque, a speed

sweep of the driving shaft is performed from 532 rpm

to 1512 rpm in 14 rpm increments �70 tests�. The experimental
results are presented in Fig. 10 as a top-view waterfall in the
angular frequency domain for �a� the transverse vibration, �b� belt
tension, and �c� belt speed. All parameters are dimensionless as
defined in Sec. 2 �waterfall FFT in the time-frequency domain are
given in Appendix�.

The belt tension angular waterfall, Fig. 10�b�, exhibits lines
parallel to the speed axis, which proves a speed-dependent exci-
tation. The belt transverse vibration angular waterfall is presented
on Fig. 10�a�. The instabilities are represented by the black spots
located on a hyperbola. which proves parametric instability. The
system is unstable for numerous frequencies.

4.2 Main Instability Regions. The main excitation of the
system comes from the pump design, which creates torque fluc-
tuations of order 2, inducing speed and tension fluctuations. Re-
garding belt instability, speed variation is a negligible source of
excitation compared to the tension fluctuation. The latter is ob-
served to be the principle source of parametric excitation and is
located on the angular frequency waterfall graph at abscissa 2.60
as a vertical line. Primary and secondary instability regions,
circled on Fig. 10�a�, are the response to this torque excitation.

Experimentally, the primary instability occurs for �1

� �7.9,8.8�. This region is classically wider than the correspond-

ing secondary region �which occurs for �1� �4.1,4.5��, but also

shifted of 0.3 from 2�1 toward lower frequencies due to the mul-
tifrequency excitation.

Considering the small transverse rigidity modulus and the large
span length in this application, the bending stiffness modulus is
neglected. Therefore, in the following, the belt span is considered

as a string ��=0�. Thus, using Eqs. �7� and �8� and Cn̄n= �1
−e−2jn��0� /2, Dn̄n=0, En̄n= �1−e−2jn��0� / �4�0�, and Enn= jn��1
+�0

2� /2. The experimental parameters introduced in the model are

�0=0.5, �1=4.3, �2=8, �2�=8, �1�=0.001, �2=0.3, �2�=0.001. For

�1=0.7, the instability region occurs for �1� �7.8 9.2�.

(a) (b)

Fig. 8 Experimental setup for the local belt characteristics
identification
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Fig. 10 Experimental angular top-view waterfall: „a… transverse vibration, „b… belt tension fluctuation, „c… belt speed
fluctuation
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The instability region boundaries are plotted as a function of the

excitation amplitude �1 in Fig. 11. When �2�2�1, the second
source of excitation shift the instability region to lower frequen-
cies. While this phenomenon is not classical, the experimental
observations confirm the theoretical results of Ref. �12�.

4.3 Low Amplitude Instability Region. The low frequency
modulation observed on the residual transmission error due to the
belt characteristic irregularity highlighted in Sec. 3.5 is a source of
parametric excitation. It appears on the waterfall plot of the ten-
sion fluctuation as low level parallel lines separated by 0.20, that
is, the belt traveling frequency. This irregularity explains the pe-
ripheral instabilities presented on Fig. 10�a�.

5 Conclusion

This paper focuses on an experimental investigation of an in-
dustrial axially moving belt subjected to multifrequency excita-
tion. Comparison with analytical results from a perturbation

analysis is presented and permits to validate theoretical instabili-
ties. The main conclusion are as follows:

• Parametric instabilities occur in experimental system such
as belt drive.

• Measurement system based on angular sampling is shown to
be an efficient tool for instability analysis in belt drive sys-
tems.

• Irregular belt characteristics have been detected and high-
lighted as unexpected source of parametric excitation.

• Instability regions are shifted when subjected to multifre-
quency excitation.

• Experimental observations confirm the theoretical results.

Further analysis will focus on the role of the hysteretic behavior
of the belt tensioners on these instabilities.

Appendix

Figure 12 represents the top-view waterfall in the classical
Campbell-like diagram.
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