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Let Ω be a smooth bounded domain in R n (n ≥ 3) such that 0 ∈ ∂Ω. We consider issues of non-existence, existence, and multiplicity of variational solutions in H 2 1,0 (Ω) for the borderline Dirichlet problem,

n-2 , γ ∈ R and h ∈ C 0 (Ω). We use sharp blowup analysis on -possibly high energy-solutions of corresponding subcritical problems to establish, for example, that if γ < n 2 4 -1 and the principal curvatures of ∂Ω at 0 are non-positive but not all of them vanishing, then Equation (E) has an infinite number of high energy (possibly sign-changing) solutions in H 2 1,0 (Ω). This complements results of the first and third authors, who showed in [21] that if γ ≤ n 2 4 -1 4 and the mean curvature of ∂Ω at 0 is negative, then (E) has a positive least energy solution.

On the other hand, the sharp blow-up analysis also allows us to show that if the mean curvature at 0 is nonzero and the mass, when defined, is also nonzero, then there is a surprising stability of regimes where there are no variational positive solutions under C 1 -perturbations of the potential h. In particular, and in sharp contrast with the non-singular case (i.e., when γ = s = 0), we prove non-existence of such solutions for (E) in any dimension, whenever Ω is star-shaped and h is close to 0, which include situations not covered by the classical Pohozaev obstruction.

Introduction

This manuscript is the continuation of a long-time project initiated by the first and the third author in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] about nonlinear critical equations involving the Hardy potential when the singularity is located on the boundary of the domain under study. Let Ω be such a smooth bounded domain in R n , n ≥ 3, with 0 ∈ ∂Ω. We fix s ∈ (0, 2) and define the critical Sobolev exponent 2 (s) := 2(n-s) n-2 . For γ ∈ R and h 0 ∈ C 1 (Ω), we consider in the sequel issues of non-existence, existence, and multiplicity of variational solutions in H 2 1,0 (Ω) for the borderline Dirichlet problem,

-∆u -γ u |x| 2 -h 0 (x)u = |u| 2 (s)-2 u |x| s
in Ω, u = 0 on ∂Ω \ {0}.

By solutions, we mean here functions u ∈ H 2 1,0 (Ω), i.e., the completion of C ∞ c (Ω) for the L 2 -norm of the gradient ∇u 2 . This problem has by now a long history starting with the fact that when γ = s = 0 and h 0 is a constant, it is the counterpart of the Yamabe problem [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] John | The Yamabe Problem[END_REF][START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] in Euclidian space, as initiated by Brezis-Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical exponents[END_REF], with important contributions in the critical dimension n = 3, by Druet [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF], and for multiplicity results for n ≥ 7, by Devillanova-Solimini [START_REF] Devillanova | Concentration estimates and multiple solutions to elliptic problems at critical growth[END_REF], among many others.

The case dealing with least energy solutions for s > 0 but γ = 0, when the singularity 0 is on the boundary of the domain was initiated by Ghoussoub-Kang [START_REF] Ghoussoub | Hardy-Sobolev Critical Elliptic Equations with Boundary Singularities[END_REF] and developed by Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF]. The case involving the Hardy potential, i.e., when γ > 0, was introduced by Lin-Wadade [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] with a follow-up contribution by Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]. This paper addresses remaining issues about the multiplicity of solutions, but also about obstructions to the existence of solutions and their stability under small perturbations.

The existence of solutions is related to the coercivity of the operator-∆ -γ |x| 2h 0 (x). It is clear that the operator -∆ -γ |x| 2 is coercive on H 2 1,0 (Ω) whenever γ < γ H (Ω), where γ H (Ω) is the Hardy constant associated to the domain Ω, that is

γ H (Ω) := inf u∈H 2 1,0 (Ω)\{0} Ω |∇u| 2 dx Ω u 2 |x| 2 dx , (2) 
which has been extensively studied (see for example [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] and [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]). We recall that if 0 ∈ Ω, then

γ H (Ω) = γ H (R n ) = (n -2) 2 4 . (3) 
When 0 ∈ ∂Ω, the situation is extremely different. For non-smooth domains modeled on cones, we refer to Egnell [START_REF] Egnell | Positive solutions of semilinear equations in cones[END_REF], and the more recent works of Cheikh-Ali [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF][START_REF]Hardy-Sobolev inequalities with singularities on non smooth boundary. Part 2: Influence of the global geometry in small dimensions[END_REF]. If Ω is smooth, then, around 0, the domain is modeled on the half-space R n -:= {x ∈ R n ; x 1 < 0}. We then get that (see [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF])

(n -2) 2 4 < γ H (Ω) ≤ γ H (R n -) = n 2 4 . (4) 
Note that when h 0 ≡ 0, [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] is the Euler-Lagrange equation for the following Hardy-Sobolev variational problem: For γ < γ H (Ω) and 0 ≤ s ≤ 2, there exists µ γ,s (Ω) > 0 such that

µ γ,s (Ω) = inf      Ω |∇u| 2 dx -γ Ω u 2 |x| 2 dx Ω |u| 2 (s) |x| s dx 2 2 (s) ; u ∈ H 2 1,0 (Ω) \ {0}      . ( 5 
)
Note that when s = 2 and γ = 0, this is the Hardy inequality mentioned above, while if s = 0 and γ = 0, it is the Sobolev inequality. If Ω = R n , s ∈ [0, 2] and γ ∈ (-∞, (n-2) 2 4

), [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical exponents[END_REF] contains -after a suitable change of variables -the Caffarelli-Kohn-Nirenberg inequalities [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]. The latter state that there is a constant

C := C(a, b, n) > 0 such that, R n |x| -bq |u| q 2 q ≤ C R n |x| -2a |∇u| 2 dx for all u ∈ C ∞ c (R n ), (6) 
where

-∞ < a < n -2 2
, 0 ≤ b -a ≤ 1, and q = 2n n -2 + 2(b -a) .

The first difficulty in these problems is due to the fact that 2 (s) is critical from the viewpoint of the Sobolev embeddings, in such a way that if Ω is bounded, then H 2 1,0 (Ω) is embedded in the weighted space L p (Ω, |x| -s ) for 1 ≤ p ≤ 2 (s), and the embedding is compact if and only if p < 2 (s). This lack of compactness defeats the classical minimization strategy to get extremals for [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical exponents[END_REF]. In fact, when s = 0 and γ = 0, this is the setting of the critical case in the classical Sobolev inequalities, which started this whole line of inquiry, due to its connection with the Yamabe problem on compact Riemannian manifolds [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF], [START_REF] John | The Yamabe Problem[END_REF]. Another complicating feature of the problem is that the term u |x| 2 is as critical as u 2 * (s)-1

|x| s in the sense that they have the same homogeneity as the Laplacian. These difficulties are summarized by the invariance of the problem under conformal transformation. Indeed, for a function u : Ω → R and r > 0, let

u r : x → r n-2 2 u(r • x) (8) 
and note that Equation (1) is then "essentially" invariant under the transformation u → u r in the sense that -∆u r -γ ur |x| 2 -r 2 h 0 (rx)u r = |ur| 2 (s)-2 ur |x| s in r -1 Ω, u r = 0 on r -1 ∂Ω \ {0}.

This "invariance" is behind the lack of compactness in the embeddings associated to the variational formulation of [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF], which prohibits the use of general abstract topological or variational methods. However, as one notices, the invariance is not complete, since the potential h has changed, and the domain itself was transformed.

As we shall see, both the geometry of the domain and -to a lesser extent-the potential h break the invariance enough that one will be able to recover compactness for [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF].

Another important aspect of this problem is the singularity at 0 and its location within the domain since the Hardy potential does not belong to the Kato class. Elliptic problems with singular potential arise in quantum mechanics, astrophysics, as well as in Riemannian geometry, in particular in the study of the scalar curvature problem on the standard sphere. Indeed, if the latter is equipped with its standard metric whose scalar curvature is singular at the north and south poles, then by considering its stereographic projection of R n , the problem of finding a conformal metric with prescribed scalar curvature K(x) leads to finding solutions of the form -∆u -γ u |x| 2 = K(x)u 2 (0)-1 on R n . The latter is a simplified version of the nonlinear Wheeler-DeWitt equation, which appears in quantum cosmology (see [START_REF] Bahri | Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent[END_REF]3,[START_REF] Li | Yamabe type equations on three-dimensional Riemannian manifolds[END_REF][START_REF] Smets | Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities[END_REF] and the references cited therein).

This paper deals specifically with the case where 0 belongs to the boundary of a smooth domain Ω. We shall see that the boundary at 0 plays an important role, and our starting point is the existence Theorem 1 below for least energy solutions. It was first established by Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF] when γ = 0, then by Lin-Wadade [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] when 0 < γ < (n-2) 2 under the assumption that the mean curvature at 0 is negative. The result was extended to the range γ ≤ n 2 -1 4 in [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF], but more importantly, it was shown there that in the remaining range ( n 2 -1 4 , n 2 4 ), the curvature condition does not suffice anymore and a more global condition is needed: the boundary mass m γ,h (Ω) of a domain associated to γ and h, that we now recall.

1.1. The models and the definition of the mass. Letting formally r → 0 in [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF], we get that u should behave like solutions to

-∆U -γ U |x| 2 = |U | 2 (s)-2 U |x| s in R n -, U = 0 on ∂R n -. (10) 
To the best of our knowledge, no explicit positive solution of [START_REF] Druet | Stability of elliptic PDEs with respect to perturbations of the domain[END_REF] is known. This was the reason why a specific blowup analysis was carried out in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF], which relied on the symmetry properties and a precise description of the asymptotic behavior of such solutions -also established in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF]. On the other hand, the asymptotic behavior of such nonlinear problems is governed by the solutions to the linear problem

-∆U -γ U |x| 2 = 0 in R n -, U = 0 on ∂R n -. (11) 
One can then easily see that a function of the form u(x) = x 1 |x| -β is a solution to [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] if and only if β ∈ {β -(γ), β + (γ)}, where

β ± (γ) := n 2 ± n 2 4 -γ for γ < n 2 4 . (12) 
Theorem-Definition 1 ( [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]). Let Ω be a smooth bounded domain of R n (n ≥ 3) such that 0 ∈ ∂Ω. Suppose γ < n 2 4 and let h ∈ C 1 (Ω) be such that the operator -∆ -γ|x| -2 -h is coercive. Assuming that γ > n 2 -1 4 , then there exists H ∈ C 2 (Ω \ {0}) such that

   -∆H -γ |x| 2 H + h(x)H = 0 in Ω H > 0 in Ω H = 0 on ∂Ω \ {0}.
Then, there exist constants c 1 , c 2 ∈ R with c 1 > 0 such that

H(x) = c 1 d(x, ∂Ω) |x| β+(γ) + c 2 d(x, ∂Ω) |x| β-(γ) + o d(x, ∂Ω) |x| β-(γ)
as x → 0. In the spirit of Schoen-Yau [START_REF] Schoen | Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF], we define the boundary mass as

m γ,h (Ω) := c 2 c 1 ,
which is independent of the choice of H.

The problem of existence of least energy solutions can now be summarized in the following theorem, whose proof can also be deduced from the refined blow-up techniques developed in this paper.

Theorem 1 (G.-R. [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF], Lin-Wadade [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF], G.-R. [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]). Let Ω be a smooth bounded domain in R n (n ≥ 3) such that the singularity 0 belongs to the boundary ∂Ω. Suppose that 0 < s < 2 and fix h 0 ∈ C 1 (Ω) such that -∆ -γ|x| -2 -h 0 is coercive. Assume one of the following two conditions:

• γ ≤ n 2 -1 4
and the mean curvature of ∂Ω at 0 is negative.

• n 2 -1 4 < γ < n 2
4 and the boundary mass m γ,h0 (Ω) is positive. Then, there is a positive solution to (1) that is a minimizer for the associated variational problem,

inf      Ω |∇u| 2 dx -γ Ω u 2 |x| 2 dx -Ω h 0 (x)u 2 dx Ω |u| 2 (s) |x| s dx 2 2 (s) ; u ∈ H 2 1,0 (Ω) \ {0}      . ( 13 
)
Our focus in this project, is to investigate the extent to which the above local curvature condition at 0 and the global (mass) condition on the domain are necessary for the existence of positive solutions. Most importantly, we give results pertaining to the persistence of the lack of positive solutions for (1) under C 1 -perturbations of the potential h. We will also show that, under suitable curvature conditions, this equation has an infinite number of non-necessarily positive solutions.

Both existence and non-existence results will follow from a sharp blow-up analysis of solutions to perturbations of Equation [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF]. More precisely, we consider p ∈ [0, 2 (s) -2) such that lim →0 p = 0, [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] and a family (h ) >0 ∈ C 1 (Ω) such that lim

→0 h = h 0 in C 1 (Ω) and -∆ - γ |x| 2 -h 0 is coercive in Ω. ( 15 
)
We then perform a blow-up analysis, as go to zero, on a sequence of functions (u ) >0 in H 2 1,0 (Ω) such that u is a solution to the Dirichlet boundary value problems:

-∆u -γ u |x| 2 -h u = |u | 2 (s)-2-p u |x| s in Ω, u = 0 on ∂Ω. (E )
The novelty and delicacy of our analysis stem from the fact that the sequence (u ) >0 might blow up along excited states, as opposed to a unique ground state in [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF]. Moreover, the sequence (u ) >0 is not assumed to have a fixed sign.

1.2. Non-existence: stability of the Pohozaev obstruction. Starting with issues of non-existence of solutions, we shall prove the following surprising stability of regimes where variational positive solutions do not exist.

Theorem 2. Let Ω be a smooth bounded domain in R n (n ≥ 3) such that the singularity 0 belongs to the boundary ∂Ω. Assume that 0 < s < 2 and γ < n 2 /4. Fix h 0 ∈ C 1 (Ω) such that -∆ -γ|x| -2 -h 0 is coercive, and assume that one of the following conditions hold:

• γ ≤ n 2 -1 4
and the mean curvature at 0 is non-zero;

• γ > n 2 -1 4
and the boundary mass m γ,h0 (Ω) is non-zero.

If there is no positive variational solution to [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] with h = h 0 , then for all Λ > 0, there exists := (Λ, h 0 ) > 0 such that for any h ∈ C 1 (Ω) with h -h 0 C 1 (Ω) < , there is no positive solution to (1) such that ∇u 2 ≤ Λ.

The above result is surprising for the following reason: Assuming Ω is starshaped with respect to 0, then the classical Pohozaev obstruction (see Section 11) yields that [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF] has no positive variational solution whenever h 0 (x) + 1 2 (∇h 0 (x), x) ≤ 0 for all x ∈ Ω. [START_REF] Ghoussoub | Multiplicity and stability of the Pohozaev obstruction for Hardy-Sobolev equations[END_REF] We then get the following corollaries.

Corollary 1.

Let Ω be a smooth bounded domain in R n (n ≥ 3) such that 0 ∈ ∂Ω.

Assume Ω is starshaped with respect to 0, 0 < s < 2 and γ < γ H (Ω). If γ ≤ n 2 -1 4 , we shall also assume that the mean curvature at 0 is non-vanishing. If h 0 is a potential satisfying [START_REF] Ghoussoub | Multiplicity and stability of the Pohozaev obstruction for Hardy-Sobolev equations[END_REF], then for all Λ > 0, there exists (Λ, h 0 ) > 0 such that for all h ∈ C 1 (Ω) satisfying h -h 0 C 1 (Ω) < (Λ, h 0 ), there is no positive solution to (1) such that ∇u 2 ≤ Λ.

Corollary 2.

Let Ω be a smooth bounded domain in R n (n ≥ 3), such that 0 ∈ ∂Ω. We fix 0 < s < 2 and γ < γ H (Ω), the Hardy constant defined in [START_REF] Bahri | Non-linear elliptic equations on Riemannian manifolds with the Sobolev critical exponent[END_REF]. Assume that Ω is starshaped with respect to 0.

When γ ≤ n 2 -1
4 , we assume that the mean curvature at 0 is positive. Then for all Λ > 0, there exists (Λ) > 0 such that for all λ ∈ [0, (Λ)), there is no positive solution to

     -∆u -γ u |x| 2 -λu = u 2 (s)-1 |x| s in Ω, u > 0 in Ω u = 0 on ∂Ω \ {0} (17) 
with ∇u 2 ≤ Λ.

It is worth comparing these results to what happens in the nonsingular case. Indeed, in contrast to the singular case, a celebrated result of Brezis-Nirenberg [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical exponents[END_REF] shows that, for γ = s = 0, a variational solution to [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] always exists whenever n ≥ 4 and 0 < λ < λ 1 (Ω), with the geometry of the domain playing no role whatsoever. On the other hand, Druet-Laurain [START_REF] Druet | Stability of the Pohožaev obstruction in dimension 3[END_REF] showed that the geometry plays a role in dimension n = 3, still for γ = s = 0, by proving that when Ω is star-shaped, then there is no solution to [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] for all small values of λ > 0 (with no apriori bound on ∇u 2 ). Another point of view is that for n = 3, the nonexistence of solutions persists under small perturbations, but it does not for n ≥ 4: the Pohozaev obstruction is stable only for n = 3 in the nonsingular case. This is in stark contrast with the situation here, i.e. when 0 ∈ ∂Ω and s > 0. In this case, for both the existence and non-existence results, the geometry plays a role in all dimensions: it is either the local geometry at 0 (i.e., depending on whether the mean curvature at 0 is vanishing or not) in high dimensions, or the global geometry of the domain (i.e., depending on whether the mass is positive or the domain is star-shaped) in low dimensions. Corollaries 1 and 2 show that the Pohozaev obstruction is stable in all dimensions in the singular case. Let us discuss some extensions related to this absence or not of low/large dimension phenomenon.

• Our stability result still holds under an additional smooth perturbation of the domain Ω, as was done by Druet-Hebey-Laurain [START_REF] Druet | Stability of elliptic PDEs with respect to perturbations of the domain[END_REF] when n = 3, γ = s = 0. • In the forthcoming paper [START_REF] Ghoussoub | Multiplicity and stability of the Pohozaev obstruction for Hardy-Sobolev equations[END_REF], we tackle the case of the interior singularity 0 ∈ Ω, where the results are much more in the spirit of Brezis-Nirenberg and Druet-Laurain concerning the dichotomy between low and high dimensions. • On of the main features of the stability result of Druet-Laurain [START_REF] Druet | Stability of the Pohožaev obstruction in dimension 3[END_REF] is the absence of any apriori control on ∇u 2 . In the interor case 0 ∈ Ω, we expect to get rid also of the apriori bound in the singular case s > 0. In the boundary case 0 ∈ ∂Ω, bypassing the apriori bound by Λ is more delicate and will require extra care. These issues are projects in progress.

The proof of Theorem 2 (and Corollaries 1 and 2) relies on the blow-up analysis. Namely, arguing by contradiction, we assume the existence of solutions (u ) to [START_REF] Ghoussoub | Functional inequalities: new perspectives and new applications[END_REF] with p ≡ 0 and (h ) → h 0 in C 1 with a control on the Dirichlet energy. Due to the "invariance" under the conformal transformation [START_REF] Druet | Elliptic equations with critical Sobolev exponents in dimension 3[END_REF], the u 's might concentrate on some peaks at 0. The formation of these peaks is described via blow-up analysis in Proposition 3. Then Proposition 6 applies which yields vanishing of the mean curvature or the mass, depending on the dimension, contradicting the hypothesis of Theorem 2. Concerning Corollaries 1 and 2, the hypothesis imply that the mass is negative when defined.

1.3. Multiplicity of sign-changing solutions. As to the question of multiplicity, we shall prove the following result, which uses that in the subcritical case, i.e., when p > 0, there is an infinite number of higher energy solutions for such . Again, the core of the proof is a sharp blow-up analysis of such solutions as p → 0.

Theorem 3 (The general case). Let Ω be a smooth bounded domain in R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2. Let h 0 ∈ C 1 (Ω) and (h ) >0 ∈ C 1 (Ω) be such that (15) holds, and let (p ) >0 be such that [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] holds. Consider a sequence of functions (u ) >0 that is uniformly bounded in H 2 1,0 (Ω) such that for each > 0, u satisfies Equation (E ). Then, (1) If γ < n 2 4 -1 and the principal curvatures of ∂Ω at 0 are non-positive but not all of them vanish, then the sequence (u ) >0 is pre-compact in H 2 1,0 (Ω).

(2) In particular, Equation (1) has an infinite number of (possibly sign-changing) solutions in H 2 1,0 (Ω).

The above result was established by Ghoussoub-Robert [START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] in the case when γ = 0. The main challenge here is to prove the compactness of the subcritical solutions at high energy levels, as the nonlinearities approach the critical exponent. The multiplicity result then follows from standard min-max methods. The proof relies heavily on pointwise blow-up analysis techniques in the spirit of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] and Druet [START_REF]From one bubble to several bubbles: the low-dimensional case[END_REF], though our situation adds considerable difficulties to carrying out the program. 1.4. Compactness Theorems and blow-up analysis. As mentioned above, the central tool is an analysis of the formation of peaks on families (u ) of solutions to equations like (1) when blow-up occurs. This long analysis yields Propositions 5 and 6 that describe the blow-up rate. When blowup does not occur, there is compactness. The following theorems are immediate consequences of these propositions.

We note that the restrictions on both γ and on the curvature at 0 are more stringent than for the existence of a ground state solution in Theorem 1. The stronger assumptions turned out to be due to the potentially sign-changing approximate solutions -actually solutions of subcritical problems-and not because they are not necessarily minimizing. Indeed, the following theorem does not assume any smallness of the energy bound as long as the approximate solutions are positive. It therefore yields another proof for Theorem 1, which does not rely on the existence of minimizing sequence below the energy level of a single bubble.

Theorem 4 (The non-changing sign case). Assume in addition to the hypothesis of Theorem 3, that the solutions (u ) >0 satisfy for all > 0, u > 0 on Ω. [START_REF] Ghoussoub | Hardy-Sobolev Critical Elliptic Equations with Boundary Singularities[END_REF] Then, the sequence (u ) >0 is pre-compact in H 2 1,0 (Ω), provided one of the following conditions is satisfied:

• γ ≤ n 2 -1 4
and the mean curvature of ∂Ω at 0 is negative.

• n 2 -1 4 < γ < n 2
4 and the boundary mass m γ,h0 (Ω) is positive. Our method also shows that if the -possibly sign-changing-sequence is weakly null, then the compactness result in Theorem 3 will still hold for γ up to n 2 4 -1 4 : Theorem 5 (The case of a weak null limit). Assume in addition to the hypothesis of Theorem 3, that the solutions (u ) >0 satisfy,

lim →0 u 2 = 0. ( 19 
)
If γ < n 2 -1 4
and the principal curvatures of ∂Ω at 0 are non-positive but not all of them vanishing, then the sequence (u ) >0 converges strongly to 0 in H 2 1,0 (Ω).

1.5. Structure of the manuscript. This paper is organized as follows. Section 2 consists in preliminary material in order to introduce the sequence of functions that will be thoroughly analyzed in Sections 3 to 8 in the case where they "blow-up". Section 9 contains the proof of the multiplicity result and Section 10 will have the applications to non-existence regimes and their stability under perturbations. We then have five relevant appendices. The first (Appendix A, Section 11) introduces the Pohozaev identity in our setting. The second (Appendix B, Section 12) contains a technical lemma on the continuity of the first eigenvalue λ 1 (∆ + V ) with respect to variations of the potential V . Appendix C (Section 13) recalls regularity results established in [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] about the regularity and behavior at 0 of solutions of equations involving the Hardy-Schrödinger operator on bounded domains having 0 on their boundary. In Appendix D (Section 14), we construct the Green functions associated to the operators -∆-γ |x| 2 -h on such domains, and exhibit some of their properties needed throughout the memoir. The last Appendix E (Section 15) does the same but for the Hardy-Schrödinger operator -∆ -γ |x| 2 on R n -.

Setting up the blow-up

Throughout this paper, Ω will always be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω. We will always assume that γ < n 2 4 and s ∈ (0, 2). We set 2 (s) := 2(n-s) n-2 . When γ < γ H (Ω), then the following Hardy-Sobolev inequality holds on Ω: there exists C > 0 such that

C Ω |u| 2 (s) |x| s dx 2/2 (s) ≤ Ω |∇u| 2 dx -γ Ω u 2 |x| 2 dx for all u ∈ H 2 1,0 (Ω). ( 20 
)
For each > 0, we consider p ∈ [0, 2 (s) -2) such that

lim →0 p = 0. ( 21 
)
Let h 0 ∈ C 1 (Ω) and consider a family (h ) >0 ∈ C 1 (Ω) such that (15) holds. Consider a sequence of functions (u ) >0 in H 2 1,0 (Ω) such that for all > 0 the function u is a solution to the Dirichlet boundary value problem:

-∆u -γ u |x| 2 -h u = |u | 2 (s)-2-p u |x| s in H 2 1,0 (Ω), u = 0 on ∂Ω. (E )
By the regularity result Theorem 6 in Appendix B, we have u ∈ C 2 (Ω \ {0}) and there exists K ∈ R such that lim x→0

|x| β -(γ) u (x) d(x,∂Ω)
= K . In addition, we assume that the sequence (u ) >0 is bounded in H 2 1,0 (Ω) and we let Λ > 0 be such that

Ω |u | 2 (s)-p |x| s dx ≤ Λ for all > 0. ( 22 
)
It then follows from the weak compactness of the unit ball of H 2 1,0 (Ω) that there exists

u 0 ∈ H 2 1,0 (Ω) such that as → 0 u u 0 weakly in H 2 1,0 (Ω). ( 23 
)
Note that u 0 is a solution to the Dirichlet boundary value problem:

-∆u -γ u |x| 2 -h 0 u = |u| 2 (s)-2-p u |x| s in Ω, u = 0 on ∂Ω \ {0}.
From the regularity Theorem 6 we have u 0 ∈ C 2 (Ω \ {0}) and lim

x→0 |x| β-(γ) u 0 (x) d (x, ∂Ω) = K 0 ∈ R. It then follows that sup Ω |x| β-(γ) u 0 (x) d(x, ∂Ω) and hence |x| β-(γ)-1 u 0 (x) L ∞ (Ω)
is finite.

We fix τ ∈ R such that

β -(γ) -1 < τ < n -2 2 . ( 24 
)
The following proposition shows that the sequence (u

) is pre-compact in H 2 1,0 (Ω) if (|x| τ u ) >0 is uniformly bounded in L ∞ (Ω). Proposition 1.
Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . We let (u ), (h ) and (p ) be such that (E ), ( 15) and (21) holds. Suppose that there exists C > 0 such that |x| τ |u (x)| ≤ C for all x ∈ Ω and for all > 0. Then up to a subsequence, lim

→0 u = u 0 in H 2 1,0 (Ω)
, where u 0 is as in [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF].

Proof of Proposition 1: The sequence (u ) is clearly uniformly bounded in L ∞ (Ω ) for any Ω ⊂⊂ Ω \ {0}. Then by standard elliptic estimates and from [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] 

it follows that u → u 0 in C 2 loc (Ω \ {0}). Now since |x| τ |u (x)| ≤ C for all x ∈ Ω
and for all > 0, and since τ < n-2 2 , we have

lim δ→0 lim →0 Ω∩B δ (0) |u | 2 (s)-p |x| s dx = 0 and lim δ→0 lim →0 Ω∩B δ (0) |u | 2 |x| 2 dx = 0. (25) 
Therefore lim

→0 Ω |u | 2 (s)-p |x| s dx = Ω |u 0 | 2 (s)
|x| s dx and lim

→0 Ω |u | 2 |x| 2 dx = Ω |u 0 | 2 |x| 2 dx.
From (E ) and [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] we then obtain lim

→0 Ω |∇u | 2 -γ u 2 |x| 2 -h u 2 dx = Ω |∇u 0 | 2 -γ u 2 0 |x| 2 -h 0 u 2 0 dx so then lim →0 Ω |∇u | 2 = lim →0 Ω |∇u 0 | 2 .

And hence lim

→0 u = u 0 in H 2 1,0 ( 
Ω). This proves Proposition 1.

From now on, we assume that lim

→0 |x| τ u L ∞ (Ω) = +∞. ( 26 
)
We shall say that blow-up occurs whenever (26) holds.

Scaling Lemmas

In this section we state and prove two scaling lemmas which we shall use many times in our analysis. We start by describing a parametrization around a point of the boundary ∂Ω. Let p ∈ ∂Ω. Then there exists U ,V open in R n , there exists I ⊂ R an open interval, there exists U ⊂ R n-1 an open subset, and there exist a smooth diffeomorphism T : U -→ V and T 0 ∈ C ∞ (U ), such that upto a rotation of coordinates if necessary

                                   • 0 ∈ U = I × U and p ∈ V. • T (0) = p. • T (U ∩ {x 1 < 0}) = V ∩ Ω and T (U ∩ {x 1 = 0}) = V ∩ ∂Ω. • D 0 T = I R n .
Here D x T denotes the differential of T at the point x and I R n is the identity map on R n . • T * (0) (e 1 ) = ν p where ν p denotes the outer unit normal vector to ∂Ω at the point p.

• {T * (0)(e 2 ), • • • , T * (0)(e n )} forms an orthonormal basis of T p ∂Ω. • T (x 1 , y) = p + (x 1 + T 0 (y), y) for all (x 1 , y) ∈ I × U = U • T 0 (0) = 0 and ∇T 0 (0) = 0. ( 27 
)
This boundary parametrization will be throughout useful during our analysis. An important remark is that

(T (x 1 , y), ∂Ω) = (1 + o(1))|x 1 | for all (x 1 , y) ∈ I × U = U close to 0. ( 28 
) Lemma 1.
Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22 

) 29 
Then

|y | = O( ) as → 0.
Proof of Lemma 1: We proceed by contradiction and assume that lim

→0 |y | = +∞. ( 30 
)
Then it follows from the definition of κ that lim

→0 κ = 0, lim →0 κ = +∞ and lim →0 κ |y | = 0. ( 31 
)
Case 1: We assume that there exists ρ > 0 such for all > 0 that d(y , ∂Ω) κ ≥ 3ρ.

We define for all > 0

v (x) := ν n-2 2 u (y + κ x) for x ∈ B 2ρ (0)
Note that this is well defined for > 0 small enough. It follows from ( 29) that there exists C(ρ) > 0 such that all > 0

|v (x)| ≤ C(ρ) 1 y |y | + κ |y | x τ ∀x ∈ B 2ρ (0) (32) 
using [START_REF]Green's function for a singular Hardy-type operator with boundary singularity[END_REF] we then get as → 0

|v (x)| ≤ C(ρ) (1 + o(1)) ∀x ∈ B 2ρ (0).
From equation (E ) we obtain that v satisfies

-∆v - κ 2 |y | 2 γ y |y | + κ |y | x 2 v -κ 2 h (y + κ x) v = |v | 2 (s)-2-p v y |y | + κ |y | x s
weakly in B 2ρ (0) for all > 0. With the help of [START_REF]Green's function for a singular Hardy-type operator with boundary singularity[END_REF] and standard elliptic theory it then follows that there exists

v ∈ C 1 (B 2ρ (0)) such that lim →0 v = v in C 1 (B ρ (0)).
In particular,

|v(0)| = lim →0 |v (0)| = 1 (33) 
and therefore v ≡ 0.

On the other hand, a change of variables and the definition of κ yields

Bρκ (y ) |u | 2 (s)-p |x| s dx = |u (y )| 2 (s)-p κ n |y | s Bρ(0) |v | 2 (s)-p y |y | + κ |y | x s dx = -1+ 2(2-s) 2 (s)-2-p |y | s( n-2 2 ) Bρ(0) |v | 2 (s)-p y |y | + κ |y | x s dx ≥ |y | s( n-2 2 ) Bρ(0) |v | 2 (s)-p y |y | + κ |y | x s dx.
Using the equation (E ), ( 22), ( 30), (31) and passing to the limit → 0 we get that

Bρ(0) |v| 2 (s) dx = 0
and so then v ≡ 0 in B ρ (0), a contradiction with [START_REF] Schoen | Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF]. Thus [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] cannot hold in that case.

Case 2: We assume that, up to a subsequence,

lim →0 d(y , ∂Ω) κ = 0. ( 34 
)
Note that lim →0 y = 0. Consider the boundary map T : U → V as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF], where U, V are both open neighbourhoods of 0. We let ũ = u • T , which is defined in U ∩ R n -. For any i, j = 1, ..., n, we let g ij = (∂ i T , ∂ j T ), where (•, •) denotes the Euclidean scalar product on R n , and we consider g as a metric on R n . We let ∆ g = div g (∇) the Laplace-Beltrami operator with respect to the metric g. As easily checked, using (E ) we get that for all > 0

-∆ g ũ - γ |T (x)| 2 ũ -h • T (x) • ũ = |ũ | 2 (s)-2-p ũ |T (x)| s weakly in U ∩ R n -. We let z ∈ ∂Ω be such that |z -y | = d(y , ∂Ω). (35) 
We let ỹ , z ∈ U such that

T (ỹ ) = y and T (z ) = z . ( 36 
)
It follows from the properties [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] of the boundary map T that

lim →0 ỹ = lim →0 z = 0, (ỹ ) 1 < 0 and (z ) 1 = 0 (37)
We rescale and define for all > 0 ṽ (x) := ν n-2

2 ũ (z + κ x) for x ∈ U -z κ ∩ R n -.
With 37), we get that ṽ is defined on B R (0) ∩ {x 1 < 0} for all R > 0, for is small enough. Then for all > 0 the functions ṽ satisfies the equation:

-∆ g ṽ - κ 2 |y | 2 γ T (z +κ x) |y | 2 -κ 2 h • T (z + κ x)ṽ = |ṽ | 2 (s)-2-p ṽ T (z +κ x) |y | s weakly in B R (0) ∩ {x 1 < 0}.
In this expression, g = g(z + κ x) and ∆ g is the Laplace-Beltrami operator with respect to the metric g . With [START_REF] Smets | Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities[END_REF], [START_REF] Struwe | Variational methods[END_REF] and (36), we get for all > 0

T (z + κ x) = y + O R (1)κ for all x ∈ B R (0) ∩ {x 1 ≤ 0}
where, there exists

C R > 0 such that |O R (1)| ≤ C R for all x ∈ B R (0) ∩ {x 1 ≤ 0}.
With [START_REF]Green's function for a singular Hardy-type operator with boundary singularity[END_REF], we then get that lim

→0 |T (z + κ x)| |y | = 1 in C 0 (B R (0) ∩ {x 1 ≤ 0}).
It follows from ( 29) that there exists

C (R) > 0 such that all > 0 |ṽ (x)| ≤ C(R) 1 
T (z +κ x) |y | τ ∀x ∈ B R (0) ∩ {x 1 ≤ 0}. ( 38 
)
Using [START_REF]Green's function for a singular Hardy-type operator with boundary singularity[END_REF] and the propoerties of the boundary map T we then get as → 0

|ṽ (x)| ≤ C(R) (1 + o(1)) ∀x ∈ B R (0) ∩ {x 1 ≤ 0}.
With the help of [START_REF]Green's function for a singular Hardy-type operator with boundary singularity[END_REF] and standard elliptic theory it then follows that there exists ṽ

∈ C 1 (B R (0) ∩ {x 1 ≤ 0}) such that lim →0 ṽ = ṽ in C 0 (B R/2 (0) ∩ {x 1 ≤ 0}).
Since ṽ vanishes on B R (0) ∩ {x 1 = 0} and (38) holds, it follows that

ṽ ≡ 0 on B R/2 (0) ∩ {x 1 = 0}. ( 39 
)
Moreover, from [START_REF] Smets | Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities[END_REF], [START_REF] Struwe | Variational methods[END_REF] and (36) we have that ṽ ỹ -z κ = 1 and lim

→0 ỹ -z κ = 0.
In particular, ṽ(0) = 1, contradiction with (39). Thus [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] cannot hold in Case 2 also.

In both cases, we have contradicted [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] . This proves that y = O( ) when → 0, which proves the Lemma.

Lemma 2.

Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) such that (E ), ( 15), ( 21) and ( 22 Since 0 ∈ ∂Ω, we let T : U → V as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] with y 0 = 0, where U, V are open neighborhoods of 0. For > 0 we rescale and define

w (x) := ν n-2 2 u • T ( x) for x ∈ -1 U ∩ R n -\ {0}. Assume that for any R > δ > 0 there exists C(R, δ) > 0 such that for all > 0 | w (x)| ≤C(R, δ) for all x ∈ B R (0) \ B δ (0) ∩ R n -. (40) 
Then there exists

w ∈ H 2 1,0 (R n -) ∩ C 1 (R n -\ {0}) such that w w weakly in H 2 1,0 (R n -) as → 0 w → w in C 1 loc (R n -\ {0}) as → 0
And w satisfies weakly the equation

-∆ w - γ |x| 2 w = | w| 2 (s)-2 w |x| s in R n -. Moreover if w ≡ 0, then R n - | w| 2 (s) |x| s ≥ µ γ,s (R n -) 2 (s) 2 (s)-2
and there exists t ∈ (0, 1] such that lim →0 ν p = t, where µ γ,s (R n -) is as in [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical exponents[END_REF].

Proof of Lemma 2: The proof proceeds in four steps.

Step 2.1:

Let η ∈ C ∞ c (R n ). One has that η w ∈ H 2 0,1 (R n -)
for > 0 sufficiently small. We claim that there exists wη ∈ H 2 1,0 (R n -) such that upto a subsequence η w wη weakly in

H 2 1,0 (R n -) as → 0, η w → wη (x)
a.e in R n -as → 0.

We prove the claim. Let x ∈ R n -, then

∇ (η w ) (x) = w (x)∇η(x) + ν n-2 2 η(x)D ( x) T [∇u (T ( x))]
In this expression, D x T is the differential of the function T at x. Now for any θ > 0, there exists C(θ) > 0 such that for any a, b > 0

(a + b) 2 ≤ C(θ)a 2 + (1 + θ)b 2
With this inequality we then obtain

R n - |∇ (η w )| 2 dx ≤ C(θ) R n - |∇η| 2 w2 dx +(1 + θ)ν n-2 2 R n - η 2 D ( x) T [∇u (T ( x))] 2 dx Since D 0 T = I R n we have as → 0 R n - |∇ (η w )| 2 dx ≤ C(θ) R n - |∇η| 2 w2 dx + (1 + θ) (1 + O( )) ν n-2 2 R n - η 2 |∇u (T ( x))| 2 (1 + o(1)) dx
With Hölder inequality and a change of variables this becomes

R n - |∇ (η w )| 2 dx ≤ C(θ) ∇η 2 L n ν n-2   Ω |u | 2 (s) dx   n-2 n + (1 + θ) ν n-2 Ω |∇u | 2 dx (41) Since u H 2 1,0 (Ω) = O(1), so for > 0 small enough η w H 2 1,0 (R n -) ≤ C η Where C η is a constant depending on the function η. The claim then follows from the reflexivity of H 2 1,0 (R n -). Step 2.2: Let η 1 ∈ C ∞ c (R n ), 0 ≤ η 1 ≤ 1 be a smooth cut-off function, such that η 1 = 1 for x ∈ B 1 (0) 0 for x ∈ R n \B 2 (0) (42) 
For any R > 0 we let η R = η 1 (x/R). Then with a diagonal argument we can assume that upto a subsequence for any R > 0 there exists wR

∈ H 2 1,0 (R n -) such that η R w wR weakly in H 2 1,0 (R n -) as → 0 η R w (x) → wR (x) a.e x in R n -as → 0 Since ∇η R 2 n = ∇η 1 2 n for all R > 0, letting → 0 in (41) we obtain that R n - |∇w R | 2 dx ≤ C for all R > 0 where C is a constant independent of R. So there exists w ∈ H 2 1,0 (R n -) such that wR w weakly in D 1,2 (R n ) as R → +∞ wR (x) → w(x) a.e x in R n -as R → +∞ Step 2.3: We claim that w ∈ C 1 (R n -\ {0}
) and it satisfies weakly the equation

-∆ w -γ |x| 2 w = | w| 2 (s)-2 w |x| s in R n - w = 0 on ∂R n -\ {0}.
We prove the claim. For any i, j = 1, ..., n, we let (g ) ij = (∂ i T ( x), ∂ j T ( x)), where (•, •) denotes the Euclidean scalar product on R n . We consider g as a metric on R n . We let ∆ g = div g (∇) the Laplace-Beltrami operator with respect to the metric g. From (E ) it follows that for any > 0 and R > 0, η R w satisfies weakly the equation

-∆ g (η R w ) - γ T ( x) 2 η R w -2 h • T ( x)η R w = | (η R w ) | 2 (s)-2-p (η R w ) T ( x) s . ( 43 
)
and note that η R w ≡ 0 on B R (0) \ {0} ∩ ∂R n -. From ( 27), (40) and using the standard elliptic estimates it follows that wR

∈ C 1 B R (0) \ {0} ∩ R n -and that up to a subsequence lim →0 η R w = wR in C 1 loc B R/2 (0) \ {0} ∩ R n -.
Letting → 0 in eqn (43) gives that w R satisfies weakly the equation

-∆ wR - γ |x| 2 wR = | wR | 2 (s)-2-p wR |x| s .
Again we have that | wR (x)| ≤ C(R, δ) for all x ∈ B R/2 (0) \ B 2δ (0) and then again from standard elliptic estimates it follows that w ∈ C 1 (R n -\{0}) and lim R→+∞ wR = w in C 1 loc (R n -\ {0}), up to a subsequence. Letting R → +∞ we obtain that w satisfies weakly the equation

-∆ w -γ |x| 2 w = | w| 2 (s)-2 w |x| s in R n - w = 0 on ∂R n -\ {0}
. This proves our claim.

Step 2.4: Coming back to equation (41) we have for R > 0

R n - |∇ (η R w )| 2 dx ≤ C(θ)    {x∈R n -:R<|x|<2R} (η 2R w ) 2 * dx    n-2 n + (1 + θ) ν n-2 Ω |∇u | 2 dx. ( 44 
)
Since the sequence (u ) is bounded in H 2 1,0 (Ω), letting → 0 and then R → +∞ we obtain for some constant C

R n - |∇ w| 2 dx ≤ C lim →0 ν n-2
. Now if w ≡ 0 weakly satisfies the equation

-∆ w -γ |x| 2 w = | w| 2 (s)-2 w |x| s in R n - w = 0 on ∂R n -\ {0}. using the definition of µ γ,s (R n -) it then follows that R n - |w| 2 (s) |x| s ≥ µ γ,s (R n -) 2 (s) 2 (s)-2 .
Hence lim →0 ν > 0 which implies that

t := lim →0 ν p > 0.
Since lim →0 ν = 0, therefore we have that 0 < t ≤ 1. This completes the lemma.

Construction and exhaustion of the blow-up scales

In this section we prove the following proposition in the spirit of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]:

Proposition 2.
Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) holds. Assume that blow-up occurs, that is

lim →0 |x| τ u L ∞ (Ω) = +∞ where β -(γ) -1 < τ < n -2 2 .
Then there exists N ∈ N families of scales (µ i, ) >0 such that we have:

(A1) lim →0 u = u 0 in C 2 loc (Ω \ {0}
) where u 0 is as in [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF].

(A2) 0 < µ 1, < ... < µ N, , for all > 0.

(A3) lim →0 µ N, = 0 and lim →0 µi+1, µi,

= +∞ for all 1 ≤ i ≤ N -1.

(A4) For any 1 ≤ i ≤ N and for > 0 we rescale and define ũi, (x

) := µ n-2 2 i, u (T (k i, x)) for x ∈ k -1 i, U ∩ R n -\ {0},
where

k i, = µ 1-p 2 (s)-2 i,
. Then there exists ũi

∈ H 2 1,0 (R n -) ∩ C 1 (R n -\ {0}
), ũi ≡ 0 such that ũi weakly solves the equation

-∆ũ i -γ |x| 2 ũi = |ũi| 2 (s)-2 ũi |x| s in R n - ũi = 0 on ∂R n -\ {0}. and ũi, -→ ũi in C 1 loc (R n -\ {0}) as → 0, ũi, ũi weakly in H 2 1,0 (R n -) as → 0. (A5) There exists C > 0 such that |x| n-2 2 |u (x)| 1-p 2 (s)-2 ≤ C for all > 0 and all x ∈ Ω. (A6) lim R→+∞ lim →0 sup Ω\B Rk N, (0) |x| n-2 2 |u (x) -u 0 (x)| 1-p 2 (s)-2 = 0. (A7) lim δ→0 lim →0 sup B δk 1, (0)∩Ω |x| n-2 2 u (x) -µ -n-2 2 1, ũ1 T -1 (x) k1, 1-p 2 (s)-2 = 0.
(A8) For any δ > 0 and any 1 ≤ i ≤ N -1, we have

lim R→+∞ lim →0 sup δki+1, ≥|x|≥Rki, |x| n-2 2 u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 1-p 2 (s)-2 = 0.
(A9) For any i ∈ {1, ..., N }, there exists t i ∈ (0, 1] such that lim →0 µ p i, = t i .

The proof of this proposition is inspired by [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] and proceeds in five steps.

Since s > 0, the subcriticality 2 (s) < 2 (s) of equations (E ) along with [START_REF] Cheikh | Hardy Sobolev inequalities with singularities on non smooth boundary: Hardy constant and extremals. Part I: Influence of local geometry[END_REF] yields that u → u 0 in C 2 loc (Ω \ {0}). So the only blow-up point is the origin.

Step 4.1: The construction of the µ i, 's proceeds by induction. This step is the initiation.

By the regularity Theorem 6 and the definition of τ in [START_REF]Hardy-Sobolev inequalities with singularities on non smooth boundary. Part 2: Influence of the global geometry in small dimensions[END_REF] it follows that for any > 0 there exists

x 1, ∈ Ω \ {0} such that sup x∈Ω |x| τ |u (x)| = |x 1, | τ |u (x 1, )|. ( 45 
)
We define µ 1, and k 1, > 0 as follows

µ -n-2 2 
1,

:= |u (x 1, )| and k 1, := µ 1-p 2 (s)-2 1, . (46) 
Since blow-up occurs, that is (26) holds and since u → u 0 in C 2 loc (Ω \ {0}), we have that lim

→0

x 1, = 0 ∈ ∂Ω and lim

→0 µ 1, = 0.
It follows that u satisfies the hypothesis (29) of Lemma 1 with y

= x 1, , ν = µ 1, . Therefore |x 1, | = O (k 1, ) as → 0.
In fact, we claim that there exists c 1 > 0 such that lim

→0 |x 1, | k 1, = c 1 . (47) 
We argue by contradiction and we assume that

|x 1, | = o(k 1, ) as → 0. Let x1, := T -1 (x 1, ) ∈ R n -. Since |x 1, | = o(k 1, ) as → 0, so also |x 1, | = o(k 1, ) as → 0.
We define for > 0 ṽ

(x) := µ n-2 2 1, u (T (|x 1, | x)) for x ∈ U |x 1, | ∩ R n -\ {0}
Using (E ) we obtain that ṽ satisfies the equation

-∆ṽ - γ T (|x1, |x) |x1, | 2 ṽ + |x 1, | 2 h • T (|x 1, |x) ṽ = |x 1, | k 1, 2-s-p |ṽ | 2 (s)-2-p ṽ T (|x1, |x) |x1, | s 
The definition (45) yields as → 0, |x| τ |ṽ (x)| ≤ 2 for all x ∈ R n -. Standard elliptic theory then yields the existence of ṽ ∈ C 2 (R n -\ {0}) such that ṽ → ṽ in C 2 loc (R n -\ {0}) where -∆ṽ -γ |x| 2 ṽ = 0 in R n ṽ = 0 on ∂R n -\ {0}. In addition, we have that ṽ |x 1, | -1 x1, = 1 and so ṽ ≡ 0. Also since |x| τ |ṽ(x)| ≤ 2 in R n -\ {0}, we have the bound that

|x| τ +1 |ṽ(x)| ≤ 2|x 1 | for all x = (x 1 , x) in R n -, (48) 
which implies that

|ṽ(x)| < 4 |x 1 | |x| β+(γ) + 4 |x 1 | |x| β-(γ) for all x = (x 1 , x) in R n -. Therefore x → Ṽ (x) := 4 |x1| |x| β + (γ) + 4 |x1| |x| β -(γ) -ṽ(x) is a positive solution to -∆ Ṽ - γ |x| 2 Ṽ = 0 in R n -. Proposition 9 yields the existence of A, B ∈ R such that ṽ(x) = A |x 1 | |x| β+(γ) + B |x 1 | |x| β-(γ)
for all x in R n -.

But the pointwise control (48) then implies A = B = 0 by letting |x| → 0 and → ∞. This contradicts ṽ ≡ 0. This proves Claim (47).

We rescale and define for all > 0 ũ1, (x 45) and (47) that ũ1, satisfies the hypothesis (40) of Lemma 2 with y = x 1, , ν = µ 1, . Then using Lemma 2 we get that there exists ũ1 ∈ H 2 1,0 (R n -) ∩ C 1 (R n -\ {0}) weakly satisfying the equation:

) := µ n-2 2 1, u (T (k 1, x)) for x ∈ k -1 1, U ∩ R n -\ {0} It follows from (
-∆ũ 1 -γ |x| 2 ũ1 = |ũ1| 2 (s)-2 ũi |x| s in R n - ũ1 = 0 on ∂R n -\ {0}. and ũ1, -→ ũ1 in C 1 loc (R n -\ {0}) as → 0, ũ1, ũ1 weakly in H 2 1,0 (R n -) as → 0.
It follows from the definition that ũio, x1, k1, = 1. From (47) we therefore have that ũ1 ≡ 0. And hence again from Lemma 2 we get that

R n - |ũ 1 | 2 (s) |x| s ≥ µ γ,s (R n -) 2 (s) 2 (s)-2 .
Moreover, there exists t 1 ∈ (0, 1] such that lim

→0 µ p 1, = t 1 . Since |x| β -(γ) |x1| ũ1 ∈ C 0 (R n ), we get as → 0 |y | n-2 2 µ -n-2 2 1, ũ1 T -1 (y ) k 1, 1-p 2 (s)-2 = O (|ỹ |) n 2 -β-(γ) = o(1), and 
lim δ→0 lim →0 sup B δk 1, (0)∩Ω |x| n-2 2 u (x) -µ -n-2 2 1, ũ1 T -1 (x) k 1, 1-p 2 (s)-2 = 0.
Step 4.2: We claim that there exists C > 0 such that

|x| n-2 2 |u (x)| 1-p 2 (s)-2 ≤ C for all > 0 and all x ∈ Ω. ( 49 
)
We argue by contradiction and let (y ) >0 ∈ Ω be such that sup

x∈Ω |x| n-2 2 |u (x)| 1-p 2 (s)-2 = |y | n-2 2 |u (y )| 1-p 2 (s)-2 → +∞ as → 0. ( 50 
)
By the regularity Theorem 6, it follows that the sequence (y ) >0 is well-defined and moreover lim

→0 y = 0, since u → u 0 in C 2 loc (Ω \ {0}).
For > 0 we let

ν := |u (y )| -2 n-2 , := ν 1-p 2 (s)-2 and κ := |y | s/2 2-s 2 .
Then it follows from (50) that lim

→0 ν = 0, lim →0 |y | = +∞ and lim →0 κ |y | = 0. (51) 
Let R > 0 and let x ∈ B R (0) be such that y + κ x ∈ Ω. It follows from the definition (50) of y that for all > 0

|y + κ x| n-2 2 |u (y + κ x)| 1-p 2 (s)-2 ≤ |y | n-2 2 |u (y )| 1-p 2 (s)-2
and then, for all > 0

|u (y + κ x)| |u (y )| 1-p 2 (s)-2 ≤ 1 1 -κ |y | R n-2 2 
for all x ∈ B R (0) such that y + κ x ∈ Ω. Using (51), we get that there exists C(R) > 0 such that the hypothesis (29) of Lemma 1 is satisfied and therefore one has |y | = O( ) when → 0, contradiction to (51). This proves (49).

Let I ∈ N . We consider the following assertions:

(B1) 0 < µ 1, < ... < µ I, .
(B2) lim →0 µ ,I = 0 and lim →0 µi+1, µi,

= +∞ for all 1 ≤ i ≤ I -1

(B3) For all 1 ≤ i ≤ I, there exists ũi ∈ H 2 1,0 (R n -) ∩ C 2 (R n -\ {0}
) such that ũi weakly solves the equation

-∆ũ i -γ |x| 2 ũi = |ũi| 2 (s)-2 ũi |x| s in R n - ũi = 0 on ∂R n -\ {0}, with R n - |ũ i | 2 (s) |x| s ≥ µ γ,s (R n -) and ũi, -→ ũi in C 1 loc (R n -\ {0}) as → 0, ũi, ũi weakly in H 2 1,0 (R n -) as → 0,
where for > 0, we have set k i, = µ 1, u (T (k i, x))

for x ∈ k -1 i, U ∩ R n -\ {0}. (B4) For all 1 ≤ i ≤ I, there exists t i ∈ (0, 1] such that lim →0 µ p i, = t i .
We shall then say that (H I ) holds if there exists I sequences (µ i, ) >0 , i = 1, ..., I such that items (B1), (B2) (B3) and (B4) holds. Note that it follows from Step 4.1 that (H 1 ) holds. Next we show the following:

Step 4. 

2 |u (y ) -u 0 (y )| 1-p 2 (s)-2 = a > 0. (52) 
Since u → u 0 in C 2 loc (Ω \ {0}) it follows that lim .

As a consequence we have lim →0 µ I+1, = 0 and lim

→0 |y | k I+1, = a > 0. ( 54 
)
We rescale and define ũI+1, (x

) := µ n-2 2 
I+1, u (T (k I+1, x)) for x ∈ k -1 I+1, U ∩ R n -\ {0}. It follows from (49) that for all > 0 T (k I+1, x) k I+1, n-2 2 |ũ I+1, (x)| 1-p 2 (s)-2 ≤ C for x ∈ k -1 I+1, Ω \ {0},
and so hypothesis (40) of Lemma 2 is satisfied. Using Lemma 2, we then get that there exists ũI+1

∈ H 2 1,0 (R n -) ∩ C 1 (R n -\ {0}
) that satisfies weakly the equation:

-∆ũ I+1 - γ |x| 2 ũI+1 = |ũ I+1 | 2 (s)-2 ũI+1 |x| s in R n -. while ũI+1, ũI+1 weakly in H 2 1,0 (R n -) and ũI+1, → ũI+1 in C 1 loc (R n -\ {0}), as → 0. We denote ỹ := T -1 (y ) k I+1, ∈ R n -.
From (54) it follows that that lim

→0 |ỹ | := |ỹ 0 | > a/2 = 0. Therefore |ũ I+1 (ỹ 0 )| = lim →0 |ũ I+1, (ỹ )| = 1.
Since ũI+1 ≡ 0 on ∂R n -\ {0} so ỹ / ∈ ∂R n -and hence ũI+1 ≡ 0. Hence again from Lemma 2, we get 

R n - |ũ I+1 | 2 (s) |x| s ≥ µ γ,s (R n -) 2 
|x| n-2 2 u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 1-p 2 (s)-2 = 0
or (H I+1 ) holds.

Proof of Step 4.4: We assume that there exist an i ≤ I -1 and δ > 0 such that lim

R→+∞ lim →0 sup Ω∩B δk i+1, (0)\B Rk i, (0) |x| n-2 2 u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 1-p 2 (s)-2 > 0.
It then follows that there exists a sequence (y

) >0 ∈ Ω such that lim →0 |y | k i, = +∞, |y | ≤ δk i+1, for all > 0 (55) |y | n-2 2 u (y ) -µ -n-2 2 i+1, ũi+1 T -1 (y ) k i+1, 1-p 2 (s)-2 = a > 0, (56) 
for some positive constant a. Note that a < +∞ since

|x| n-2 2 u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 1-p 2 (s)-2 is uniformly bounded for all x ∈ Ω ∩ B δki+1, (0) \ B Rki, (0). Let ỹ * ∈ R n -be such that T -1 (y ) = k i+1, ỹ * . It follows that |ỹ * | ≤ δ for all > 0. We rewrite (56) as lim →0 |ỹ * | n-2 2 |ũ i+1, (ỹ * ) -ũi+1 (ỹ * )| 1-p 2 (s)-2 = a > 0.
Then from point (B3) of H I it follows that ỹ * → 0 as → 0. Since

|x| β -(γ) |x1| ũi+1 ∈ C 0 (R n ), we get as → 0 |y | n-2 2 µ -n-2 2 i+1, ũi+1 y k i+1, 1-p 2 (s)-2 = O |y | k i+1, n 2 -β-(γ) = o(1)
Then (56) becomes

lim →0 |y | n-2 2 |u (y )| 1-p 2 (s)-2 = a > 0. ( 57 
)
In particular, lim →0 |u (y )| = +∞. We let

ν := |u (y )| -2 n-2 and := ν 1-p 2 (s)-2 .
Then we have lim →0 ν = 0 and lim

→0 |y | = a > 0. ( 58 
)
We rescale and define

ũ (x) := ν n-2 2 u (T ( x)) for x ∈ -1 U ∩ R n -\ {0}. It follows from (49) that for all > 0 |x| n-2 2 |ũ (x)| 1-p 2 (s)-2 ≤ C for x ∈ -1 U ∩ R n -\ {0}
, so that hypothesis (40) of Lemma 2 is satisfied. We can then use it to get that there exists ũ

∈ D 1.2 (R n -) ∩ C 1 (R n -\ {0}
) that satisfies weakly the equation:

-∆ũ - γ |x| 2 ũ = |ũ| 2 (s)-2 ũ |x| s in R n -, while ũ ũ weakly in H 2 1,0 (R n -) as → 0 ũ → ũ in C 1 loc (R n -\ {0}) as → 0.
We denote ỹ := T -1 (y ) ∈ R n -. From (57) it follows that that lim

→0 |ỹ | := |ỹ 0 | > a/2 = 0. Therefore |ũ(ỹ 0 )| = lim →0 |ũ (ỹ )| = 1.
Since ũ ≡ 0 on ∂R n -\ {0} so ỹ / ∈ ∂R n -and hence ũ ≡ 0. Hence again from Lemma 2 we get

R n - |ũ| 2 (s) |x| s ≥ µ γ,s (R n -) 2 (s) 2 (s)-2 ,
and there exists t ∈ (0, 1] such that lim Hence the families (µ 1, ),..., (µ i, ), (ν ), (µ i+1, ),..., (µ I, ) satisfy (H I+1 ).

The last step tells us that the process of constructing {H I } stops after a finite number of steps.

Step 4.5: Let N 0 = max{I : (H I ) holds }. Then N 0 < +∞ and the conclusion of Proposition 2 holds with N = N 0 .

Proof of Step 4.5: Indeed, assume that (H I ) holds. Since µ i, = o(µ i+1, ) for all 1 ≤ i ≤ N -1, we get with a change of variable and the definition of ũi, that for any R > δ > 0

Ω |u | 2 (s)-p |x| s dx ≥ I i=1 T (BRk i, (0)\B δk i, (0)∩R n -) |u | 2 (s)-p |x| s dx ≥ I i=1 B Rk i, (0)\B δk i, (0)∩R n - |ũ i, | 2 (s)-p |x| s dv gi, .
Here g i, is the metric such that (g ,i ) qr = (∂ q T (k i, x), ∂ r T (k i, x)) for all q, r ∈ {1, ..., n}. Then from [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] we have

Λ ≥ I i=1 B Rk i, (0)\B δk i, (0)∩R n - |ũ i, | 2 (s)-p |x| s dv gi, . (59) 
Passing to the limit → 0 and then δ → 0, R → +∞ we obtain using point (B3) of H I , that

Λ ≥ Iµ γ,s (R n -) 2 (s) 2 (s)-2 ,
from which it follows that N 0 < +∞.

To complete the proof, we let families (µ 1, ) >0 ,..., (µ N0, ) >0 be such that H N0 holds. We argue by contradiction and assume that the conclusion of Proposition 2 does not hold with N = N 0 . Assertions (A1), (A2), (A3),(A4), (A5) , (A7) and (A9) hold. Assume that (A6) or (A8) does not hold. It then follows from Steps 4.3, 4.4 and 4.5 that H N +1 holds. A contradiction with the choice of N = N 0 . Hence the proposition is proved.

Strong pointwise estimates

The objective of this section is to obtain pointwise controls on u and ∇u . The core is the proof of the following proposition in the spirit of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF]:

Proposition 3.
Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and [START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] holds. Assume that blow-up occurs, that is

lim →0 |x| τ u L ∞ (Ω) = +∞ where β -(γ) -1 < τ < n -2 2 .
Consider µ 1, , ..., µ N, from Proposition 2. Then, there exists C > 0 such that for all > 0

|u (x)| ≤ C   N i=1 µ β + (γ)-β -(γ) 2 i, |x| µ β+(γ)-β-(γ) i, |x| β-(γ) + |x| β+(γ) + |x| β-(γ)-1 u 0 L ∞ (Ω) |x| β-(γ) |x|   . ( 60 
)
for all x ∈ Ω.

The proof of this estimate, inspired by the methodology of [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF], proceeds in seven steps.

Step 5.1: We claim that for any α > 0 small and any R > 0, there exists C(α, R) > 0 such that for all > 0 sufficiently small, we have for all x ∈ Ω \ B Rk N, (0),

|u (x)| ≤ C(α, R)    µ β + (γ)-β -(γ) 2 -α N, |x| |x| β+(γ)-α + |x| β-(γ)-1 u 0 L ∞ (Ω) |x| β-(γ)+α |x|    . ( 61 
) Proof of Step 5.1: We fix γ such that γ < γ < n 2 4 . Since the operator -∆ -γ |x| 2 - h 0 (x) is coercive, taking γ close to γ it follows that the operator -∆ -γ |x| 2 -h 0 is also coercive in Ω. From Theorem 7, there exists H ∈ C 2 (Ω \ {0}) such that    -∆H -γ |x| 2 H -h 0 (x)H = 0 in Ω H > 0 in Ω H = 0 on ∂Ω \ {0}. (62) 
And we have the following bound on H, that there exists

C 1 > 0 such that 1 C 1 d(x, ∂Ω) |x| β+(γ ) ≤ H(x) ≤ C 1 d(x, ∂Ω) |x| β+(γ ) for all x ∈ Ω. ( 63 
)
We let λ γ 1 > 0 be the first eigenvalue of the coercive operator -∆ -γ |x| 2 -h 0 on Ω and we let ϕ ∈ C 2 (Ω \ {0}) ∩ H 2 1,0 (Ω) be the unique eigenfunction such that

   -∆ϕ -γ |x| 2 ϕ -h 0 (x)ϕ = λ γ 1 ϕ in Ω ϕ > 0 in Ω ϕ = 0 on ∂Ω \ {0}. (64) 
It follows from the regularity result, Theorem 6 that there exists

C 2 > 0 such that 1 C 2 d(x, ∂Ω) |x| β-(γ ) ≤ ϕ(x) ≤ C 2 d(x, ∂Ω) |x| β-(γ ) for all x ∈ Ω. ( 65 
)
We define the operator

L := -∆ - γ |x| 2 + h - |u | 2 (s)-2-p |x| s . ( 66 
)
Step 5.1.1: We claim that given any γ < γ < n 2 4 there exist δ 0 > 0 and R 0 > 0 such that for any 0 < δ < δ 0 and R > R 0 , we have for > 0 sufficiently small

L H(x) > 0 and L ϕ(x) > 0 for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω. L H(x) > 0 for all x ∈ Ω \ B Rk N, (0), if u 0 ≡ 0. ( 67 
)
We prove the claim. As one checks for all > 0 and x ∈ Ω

L H(x) H(x) = γ -γ |x| 2 + (h 0 -h ) - |u | 2 (s)-2-p |x| s . and L ϕ(x) ϕ(x) = γ -γ |x| 2 + (h 0 -h ) - |u | 2 (s)-2-p |x| s + λ γ 1 .
One has for > 0 sufficiently small

h 0 -h ∞ ≤ γ -γ 4(1+sup Ω |x| 2 ) and we choose 0 < δ 0 < 1 such that δ (2 (s)-2)( n 2 -β-(γ)) 0 |x| β-(γ)-1 u 0 || 2 (s)-2 L ∞ (Ω) ≤ γ -γ 2 2 (s)+3 . ( 68 
)
This choice is possible thanks to [START_REF] Ghoussoub | Duality and Perturbation Methods in Critical Point Theory[END_REF] and the regularity Theorem 6 respectively. It follows from point (A6) of Proposition 2 that, there exists R 0 > 0 such that for any R > R 0 , we have for all > 0 sufficiently small

|x| n-2 2 |u (x) -u 0 (x)| 1-p 2 (s)-2 ≤ γ -γ 2 2 (s)+2 1 2 (s)-2 for all x ∈ Ω \ B Rk N, (0)
With this choice of δ 0 and R 0 we get that for any 0 < δ < δ 0 and R > R 0 , we have for > 0 small enough

|x| 2-s |u (x)| 2 (s)-2-p ≤ 2 2 (s)-1-p |x| 2-s |u (x) -u 0 (x)| 2 (s)-2-p + 2 2 (s)-1-p |x| 2-s |u 0 (x)| 2 (s)-2-p ≤ 2 -p γ -γ 4 ≤ γ -γ 4 for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω, if u 0 ≡ 0, and 
|x| 2-s |u (x)| 2 (s)-2-p ≤ γ -γ 4 for all x ∈ Ω \ B Rk N, (0), if u 0 ≡ 0.
Hence we obtain that for > 0 small enough

L H(x) H(x) = γ -γ |x| 2 + h 0 -h - |u | 2 (s)-2-p |x| s ≥ γ -γ |x| 2 + h 0 -h - γ -γ 4|x| 2 ≥ γ -γ |x| 2 - γ -γ 4|x| 2 - γ -γ 4|x| 2 = γ -γ 2|x| 2 > 0 for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω if u 0 ≡ 0 and L H(x) H(x) > 0 for all x ∈ Ω \ B Rk N, (0), if u 0 ≡ 0.
Similarly we have

L ϕ(x) ϕ(x) > 0 for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω.
Step 5.1.2: It follows from point (A4) of Proposition 2 that there exists C 1 (R) > 0 such that for all > 0 small

|u (x)| ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 N, d(x, ∂Ω) |x| β+(γ ) for all x ∈ Ω ∩ ∂B Rk N, (0). 
By estimate (63) on H, we then have for some constant

C 1 (R) > 0 |u (x)| ≤ C 1 (R)µ β + (γ )-β -(γ ) 2 N, H(x) for all x ∈ Ω ∩ ∂B Rk N, (0). ( 69 
)
It follows from point (A1) of Proposition 2 and the regularity Theorem 6, that there exists C 2 (δ) > 0 such that for all > 0 small

|u (x)| ≤ C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) d(x, ∂Ω) |x| β-(γ ) for all x ∈ Ω ∩ ∂B δ (0), if u 0 ≡ 0. ( 70 
)
And then by the estimate (65) on ϕ we have for some constant

C 2 (δ) > 0 |u (x)| ≤ C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) ϕ(x) for all x ∈ Ω ∩ ∂B δ (0), if u 0 ≡ 0. (71) 
We now let for all > 0

Ψ (x) := C 1 (R)µ β + (γ )-β -(γ ) 2 N, H(x) + C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) ϕ(x) for x ∈ Ω.
Then (70) and (69) imply that for all > 0 small

|u (x)| ≤ Ψ (x) for all x ∈ ∂ B δ (0) \ B Rk N, (0) ∩ Ω , if u 0 ≡ 0 (72) and |u (x)| ≤ Ψ (x) for all x ∈ ∂(Ω \ B Rk N, (0)), if u 0 ≡ 0. ( 73 
)
Therefore when u 0 ≡ 0 it follows from (67) and ( 72) that for all > 0 sufficiently small

       L Ψ ≥ 0 = L u in B δ (0) \ B Rk N, (0) ∩ Ω Ψ ≥ u on ∂ B δ (0) \ B Rk N, (0) ∩ Ω L Ψ ≥ 0 = -L u in B δ (0) \ B Rk N, (0) ∩ Ω Ψ ≥ -u on ∂ B δ (0) \ B Rk N, (0) ∩ Ω .
and from ( 67) and (73), in case u 0 ≡ 0, we have for > 0 sufficiently small

       L Ψ ≥ 0 = L u in Ω \ B Rk N, (0) Ψ ≥ u on ∂(Ω \ B Rk N, (0)) L Ψ ≥ 0 = -L u in Ω \ B Rk N, (0) Ψ ≥ -u on ∂(Ω \ B Rk N, (0)).
Since Ψ > 0 and L Ψ > 0, it follows from the comparison principle of Berestycki-Nirenberg-Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] that the operator L satisfies the comparison principle on

B δ (0) \ B Rk N, (0) ∩ Ω. Therefore |u (x)| ≤ Ψ (x) for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω, and |u (x)| ≤ Ψ (x) for all x ∈ Ω \ B Rk N, (0) if u 0 ≡ 0.
Therefore when u 0 ≡ 0 we have for for all > 0 small

|u (x)| ≤ C 1 (R)µ β + (γ )-β -(γ ) 2 N, H(x) + C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) ϕ(x)
for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω, for R large and δ small.

Then, when u 0 ≡ 0, using the estimates ( 63) and (65), we have or all > 0 small

|u (x)| ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 N, d (x, ∂Ω) |x| β+(γ ) + C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) d (x, ∂Ω) |x| β-(γ ) ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 N, |x| |x| β+(γ ) + C 2 (δ) |x| β-(γ)-1 u 0 L ∞ (Ω) |x| β-(γ ) |x|.
for all x ∈ B δ (0) \ B Rk N, (0) ∩ Ω, for R large and δ small.

Similarly if u 0 ≡ 0, then all > 0 small and R > 0 large

|u (x)| ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 N, |x| |x| β+(γ ) for all x ∈ Ω \ B Rk N, (0). 
Taking γ close to γ, along with points (A1) and (A4) of Proposition 2, it then follows that estimate (61) holds on Ω \ B Rk ,N (0) for all R > 0.

Step 5.2: Let 1 ≤ i ≤ N -1. We claim that for any α > 0 small and any R, ρ > 0, there exists C(α, R, ρ) > 0 such that all > 0.

|u (x)| ≤ C(α, R, ρ)   µ β + (γ)-β -(γ) 2 -α i, |x| |x| β+(γ)-α + |x| µ β + (γ)-β -(γ) 2 -α i+1, |x| β-(γ)+α   (74) for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω.
Proof of Step 5.2: We let i ∈ {1, ..., N -1}. We emulate the proof of Step 5.1. Fix γ such that γ < γ < n 2 4 . Consider the functions H and ϕ defined in Step 5.1 satisfying (62) and (62) respectively.

Step 5.2.1: We claim that given any γ < γ < n 2 4 there exist ρ 0 > 0 and R 0 > 0 such that for any 0 < ρ < ρ 0 and R > R 0 , we have for > 0 sufficiently small

L H(x) > 0 and L ϕ(x) > 0 for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω ( 75 
)
where L is as in (66).

We prove the claim. As one checks for all > 0 and x ∈ Ω

L H(x) H(x) = γ -γ |x| 2 + h 0 -h - |u | 2 (s)-2-p |x| s , L ϕ(x) ϕ(x) ≥ γ -γ |x| 2 + h 0 -h - |u | 2 (s)-2-p |x| s .
We choose 0 < ρ 0 < 1 such that

ρ 2 0 sup Ω |h 0 -h | ≤ γ -γ 4 
for all > 0 small and

ρ (2 (s)-2)( n 2 -β-(γ)) 0 |x| β-(γ)-1 ũi+1 || 2 (s)-2 L ∞ (B2(0)∩R n -) ≤ γ -γ 2 2 (s)+3 (76) 
It follows from point (A8) of Proposition 2 that there exists R 0 > 0 such that for any R > R 0 and any 0 < ρ < ρ 0 , we have for all > 0 sufficiently small

|x| n-2 2 u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 1-p 2 (s)-2 ≤ γ -γ 2 2 (s)+2 1 2 (s)-2 for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω.
With this choice of ρ 0 and R 0 we get that for any 0 < ρ < ρ 0 and R > R 0 , we have for > 0 small enough

|x| 2-s |u (x)| 2 (s)-2-p ≤ 2 2 (s)-1-p |x| 2-s u (x) -µ -n-2 2 i+1, ũi+1 T -1 (x) k i+1, 2 (s)-2-p + 2 2 (s)-1-p |x| k i+1, 2-s ũi+1 T -1 (x) k i+1, 2 (s)-2-p ≤ γ -γ 4 for all x ∈ B ρki+1, (0) \ B Rki, (0). 
Hence as in Step 5.1 we have that for > 0 small enough

L H(x) H(x) > 0 and L ϕ(x) ϕ(x) > 0 for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω.
Step 5.2.2: Let i ∈ {1, ..., N -1}. It follows from point (A4) of Proposition 2 that there exists C 1 (R) > 0 such that for all > 0 small

|u (x)| ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 i, d(x, ∂Ω) |x| β+(γ ) for all x ∈ Ω ∩ ∂B Rki, (0),
And then by the estimate (63) on H we have for some constant

C 1 (R) > 0 |u (x)| ≤ C 1 (R)µ β + (γ )-β -(γ ) 2 i, H(x) for all x ∈ Ω ∩ ∂B Rki, (0). ( 77 
)
Again from point (A4) of Proposition 2 it follows that there exists C 2 (ρ) > 0 such that for all > 0 small

|u (x)| ≤ C 2 (ρ) d(x, ∂Ω) µ β + (γ )-β -(γ ) 2 i+1, |x| β-(γ )
for all x ∈ Ω ∩ ∂B ρki+1, (0), and then by the estimate (65) on ϕ we have for some constant

C 2 (δ) > 0 |u (x)| ≤ C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 i+1, for all x ∈ Ω ∩ ∂B ρki+1, (0). ( 78 
)
We let for all > 0

Ψ (x) := C 1 (R)µ β + (γ )-β -(γ ) 2 i, H(x) + C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 i+1, for x ∈ Ω.
Then (77) and ( 78) implies that for all > 0 small

|u (x)| ≤ Ψ (x) for all x ∈ ∂ B ρki+1, (0) \ B Rki, (0) ∩ Ω . ( 79 
)
Therefore it follows from ( 75) and ( 79) that > 0 sufficiently small

       L Ψ ≥ 0 = L u in B ρki+1, (0) \ B Rki, (0) ∩ Ω Ψ ≥ u on ∂ B ρki+1, (0) \ B Rki, (0) ∩ Ω L Ψ ≥ 0 = -L u in B ρki+1, (0) \ B Rki, (0) ∩ Ω Ψ ≥ -u on ∂ B ρki+1, (0) \ B Rki, (0) ∩ Ω .
Since Ψ > 0 and L Ψ > 0, it follows from the comparison principle of Berestycki-Nirenberg-Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] that the operator L satisfies the comparison principle on

B ρki+1, (0) \ B Rki, (0) ∩ Ω. Therefore |u (x)| ≤ Ψ (x) for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω.
So for all > 0 small

|u (x)| ≤ C 1 (R)µ β + (γ )-β -(γ ) 2 i, H(x) + C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 i+1,
for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω, for R large and ρ small. Then using the estimates (63) and (65) we have or all > 0 small

|u (x)| ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 i, d (x, ∂Ω) |x| β+(γ ) + C 2 (ρ) d(x, ∂Ω) µ β + (γ )-β -(γ ) 2 i+1, |x| β-(γ ) ≤ C 1 (R) µ β + (γ )-β -(γ ) 2 i, |x| |x| β+(γ ) + C 2 (ρ) |x| µ β + (γ )-β -(γ ) 2 i+1, |x| β-(γ )
. for all x ∈ B ρki+1, (0) \ B Rki, (0) ∩ Ω, for R large and ρ small. Taking γ close to γ, along with point (A4) of Proposition 2 it then follows that estimate (74) holds on B ρki+1, (0) \ B Rki, (0) ∩ Ω, for all Rρ > 0.

Step 5.3: We claim that for any α > 0 small and any ρ > 0, there exists C(α, ρ) > 0 such that all > 0.

|u (x)| ≤ C(α, ρ) |x| µ β + (γ)-β -(γ) 2 -α 1, |x| β-(γ)+α for all x ∈ B ρk1, (0) ∩ Ω. (80) Proof of Step 5.3: Fix γ such that γ < γ < n 2
4 . Consider the function ϕ defined in Step 5.1 satisfying (62).

Step 5.3.1: We claim that given any γ < γ < n 2 4 there exist ρ 0 > 0 such that for any 0 < ρ < ρ 0 we have for > 0 sufficiently small

L ϕ(x) > 0 for all x ∈ B ρk1, (0) ∩ Ω, ( 81 
)
where L is as in (66). Indeed, for all > 0 and x ∈ Ω

L ϕ(x) ϕ(x) ≥ γ -γ |x| 2 -h - |u | 2 (s)-2-p |x| s .
We choose 0 < ρ 0 < 1 such that

ρ 2 0 sup Ω |h | ≤ γ -γ 4 
for all > 0 small and

ρ (2 (s)-2)( n 2 -β-(γ)) 0 |x| β-(γ)-1 ũ1 || 2 (s)-2 L ∞ (B2(0)∩R n -) ≤ γ -γ 2 2 (s)+3
It follows from point (A7) of Proposition 2 that for any 0 < ρ < ρ 0 , we have for all > 0 sufficiently small

|x| n-2 2 u (x) -µ -n-2 2 1, ũ1 T -1 (x) k 1, 1-p 2 (s)-2 ≤ γ -γ 2 2 (s)+2 1 2 (s)-2 for all x ∈ B ρk1, (0) ∩ Ω.
With this choice of ρ 0 we get that for any 0 < ρ < ρ 0 we have for > 0 small enough

|x| 2-s |u (x)| 2 (s)-2-p ≤ 2 2 (s)-1-p |x| 2-s u (x) -µ -n-2 2 1, ũ1 T -1 (x) k 1, 2 (s)-2-p + 2 2 (s)-1-p |x| k 1, 2-s ũ1 T -1 (x) k 1, 2 (s)-2-p ≤ γ -γ 4 for all x ∈ B ρk1, (0) ∩ Ω.
Hence as in Step 5.1 we have that for > 0 small enough L ϕ(x) ϕ(x) > 0 for all x ∈ B ρk1, (0) ∩ Ω.

Step 5.3.2: It follows from point (A4) of Proposition 2 that there exists C 2 (ρ) > 0 such that for all > 0 small

|u (x)| ≤ C 2 (ρ) d(x, ∂Ω) µ β + (γ )-β -(γ ) 2 1, |x| β-(γ )
for all x ∈ ∂B ρk1, (0) ∩ Ω and then by the estimate (65) on ϕ we have for some constant

C 2 (δ) > 0 |u (x)| ≤ C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 1, for all x ∈ ∂B ρk1, (0) ∩ Ω. ( 82 
)
We let for all > 0

Ψ 0 (x) := C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 1, for x ∈ Ω.
Then (82) implies that for all > 0 small

|u (x)| ≤ Ψ 0 (x) for all x ∈ ∂ B ρk1, (0) ∩ Ω \ {0} . ( 83 
)
Therefore it follows from (81) and ( 83) that > 0 sufficiently small

       L Ψ 0 ≥ 0 = L u in B ρk1, (0) ∩ Ω Ψ 0 ≥ u on ∂ B ρk1, (0) ∩ Ω \ {0} L Ψ 0 ≥ 0 = -L u in B ρk1, (0) ∩ Ω Ψ 0 ≥ -u on ∂ B ρk1, (0) ∩ Ω \ {0} .
Since the operator L satisfies the comparison principle on B ρk1, (0). Therefore

|u (x)| ≤ Ψ 0 (x) for all x ∈ B ρk1, (0) ∩ Ω.
And so for all > 0 small

|u (x)| ≤ C 2 (ρ) ϕ(x) µ β + (γ )-β -(γ ) 2 1,
for all x ∈ B ρk1, (0) ∩ Ω.

for ρ small. Using the estimate (65) we have or all > 0 small

|u (x)| ≤ C 2 (ρ) d(x, ∂Ω) µ β + (γ )-β -(γ ) 2 1, |x| β-(γ ) ≤ C 2 (ρ) |x| µ β + (γ )-β -(γ ) 2 1, |x| β-(γ )
.

for ρ small. It then follows from point (A4) of Proposition 2 that estimate (80) holds on x ∈ B ρk1, (0) ∩ Ω for all ρ > 0.

Step 5.4: Combining the previous three steps, it follows from (61), ( 74), (80) and Proposition 2 that for any α > 0 small, there exists C(α) > 0 such that for all > 0 we have for all x ∈ Ω,

|u (x)| ≤ C(α)   N i=1 µ β + (γ)-β -(γ) 2 -α i, |x| µ (β+(γ)-β-(γ))-2α i, |x| β-(γ)+α + |x| β+(γ)-α + |x| β-(γ)-1 u 0 || L ∞ (Ω) |x| β-(γ)+α |x| . ( 84 
)
Next we improve the above estimate and show that one can take α = 0 in (84).

We let G be the Green's function for the coercive operator -∆ -γ |x| 2 -h on Ω with Dirichlet boundary condition. Green's representation formula, the pointwise bounds on the Green's function (207) and the regularity Theorem 6, yields for any z ∈ Ω,

u (z) = Ω G (z, x) |u (x)| 2 (s)-2-p u (x) |x| s dx,
and therefore,

|u (z)| ≤ Ω G (z, x) |u (x)| 2 (s)-1-p |x| s dx ≤ C Ω max{|z|, |x|} min{|z|, |x|} β-(γ) d(x, ∂Ω)d(z, ∂Ω) |x -z| n |u (x)| 2 (s)-1-p |x| s dx. ( 85 
)
To estimate the above integral we break it into three parts.

Step 5.5: There exist C > 0 such that for any sequence (z ) with z ∈ Ω\B k N, (0), we have

Ω G (z , x) |u (x)| 2 (s)-1-p |x| s dx ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || L ∞ (Ω) |z | β-(γ) |z |    . ( 86 
)
Proof of Step 5.5: To estimate the right-hand-side of (85) in this case, we split Ω into four subdomains as: Ω =

4 i=1 D N i,
where

• D N 1, := B k N, (0) ∩ Ω, D N 2, := {k N, < |x| < 1 2 |z |} ∩ Ω, • D N 3, := { 1 2 |z | < |x| < 2|z |} ∩ Ω, D N 4, := {2|z | < |x|} ∩ Ω.
Note that one has

1 2 |z | < |x -z | in D N 2, and 1 2 |x| < |x -z | in D N 4,
. Using point (A5) of Proposition 2 and a change of variable, we get

I N 1 := C D N 1, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) D N 1, |z | β-(γ) |x| β-(γ)-1 |x -z | -n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β+(γ) D N 1, |u (x)| 2 (s)-1-p |x| β-(γ)-1+s dx ≤ C d(z , ∂Ω) |z | β+(γ) B k N, (0) 1 |x| β-(γ)-1+s+(2 (s)-1-p ) n-2 2 dx ≤ C µ β + (γ)-β -(γ) 2 N, d(z , ∂Ω) |z | β+(γ) B1(0) 1 |x| n-β + (γ)-β -(γ) 2 -p n-2 2 dx ≤ C µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) . ( 87 
)
Now we estimate

I N 2 := C D N 2, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) |z | n D N 2, |u (x)| 2 (s)-1-p |x| β-(γ)-1+s dx.
Using (61) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I N 2 ≤ C d(z , ∂Ω) |z | β+(γ) D N 2, |u (x)| 2 (s)-1-p |x| β-(γ)-1+s dx ≤ C d(z , ∂Ω) |z | β+(γ) µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, D N 2, |x| -β-(γ)+1-s |x| (2 (s)-1-p )(β+(γ)-1-α) dx + C d(z , ∂Ω) |z | β+(γ) D N 2, |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |x| (2 (s)-1-p )(β-(γ)-1+α)+β-(γ)-1+s dx ≤ C d(z , ∂Ω) |z | β+(γ) µ β + (γ)-β -(γ) 2 N, 1≤|x| 1 |x| n+(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) dx + C d(z , ∂Ω) |z | β+(γ) |x|≤ 1 2 |z | |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |x| (2 (s)-p )(β-(γ)-1)+s+α(2 (s)-1-p ) dx ≤ C µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) 1≤|x| 1 |x| n+(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) dx + C |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |z | β-(γ) |z | ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |z | β-(γ) |z |    . ( 88 
)
For the next integral

I N 3 := C D N 3, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) D N 3, |x| |x -z | n |u (x)| 2 (s)-1-p |x| s dx.
From (61) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I N 3 ≤ C d(z , ∂Ω)µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, D N 3, |x| 1-s |x -z | -n |x| (β+(γ)-1-α)(2 (s)-1-p ) dx + Cd(z , ∂Ω) D N 3, |x| 1-s |x -z | -n |x| (β-(γ)-1+α)(2 (s)-1-p ) |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) dx ≤ C µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, d(z , ∂Ω) |z | (β+(γ)-1-α)(2 (s)-1-p )+s-1 D N 3, |x -z | -n dx + C |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) d(z , ∂Ω) |z | (β-(γ)-1+α)(2 (s)-1-p )+s-1 D N 3, |x -z | -n dx ≤ C µ β + (γ)-β -(γ) 2 N, d(z , ∂Ω) |z | β+(γ) µ N, |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) d(z , ∂Ω) |z | β-(γ) |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |z | β-(γ)-1 |z |    . ( 89 
)
Finally we estimate

I N 4 := C D N 4, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |x| β-(γ)+1-n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |u (x)| 2 (s)-1-p |x| β+(γ)+s-1 dx.
Then from (61) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I N 4 ≤ C µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |x| α(2 (s)-1-p ) |x| (2 (s)-p )(β+(γ)-1)+s dx + C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |x| β+(γ)+s+β-(γ)(2 (s)-1-p )+α(2 (s)-1-p ) dx ≤ C µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |x| α(2 (s)-1-p ) |x| n+(2 (s)-p ) β + (γ)-β -(γ) 2 dx + C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x| |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |x| n-(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) dx ≤ C µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) N, |z | β-(γ) d(z , ∂Ω) |z | (2 (s)-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) d(z , ∂Ω) |z | β-(γ) ≤ C µ β + (γ)-β -(γ) 2 N, d(z , ∂Ω) |z | β+(γ) µ N, |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) d(z , ∂Ω) |z | β-(γ) ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |z | β-(γ) |z |    . (90) 
Combining ( 87), ( 88), ( 89) and (90), we then obtain for some constant

C > 0 Ω G (z , x) |u (x)| 2 (s)-1-p |x| s dx ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || 2 (s)-1-p L ∞ (Ω) |z | β-(γ) |z |   ,
which we write as

Ω G (z , x) |u (x)| 2 (s)-1-p |x| s dx ≤ C    µ β + (γ)-β -(γ) 2 N, |z | |z | β+(γ) + |x| β-(γ)-1 u 0 || L ∞ (Ω) |z | β-(γ) |z |   
for some C > 0. This proves (86).

Step 5.6: There exists C > 0 such that for sequence of points (z ) in B k1, (0) ∩ Ω we have

Ω G (z , x) |u (x)| 2 (s)-1-p |x| s dx ≤ C |z | µ β + (γ)-β -(γ) 2 1, |z | β-(γ) . ( 91 
)
Proof of Step 5.6: Here again, to estimate the right-hand-side of (85) in this case, we split Ω into four subdomains as: Ω =

4 i=1 D 1 i, (R)
where

• D 1 1, := {|x| < 1 2 |z |} ∩ Ω, • D 1 2, := { 1 2 |z | < |x| < 2|z |} ∩ Ω, • D 1 3, := {2|z | < |x| ≤ k 1, } ∩ Ω, • D 1 4, := {k 1, < |x|} ∩ Ω. Note that one has 1 2 |z | < |x -z | in D 1 1, and 1 2 |x| < |x -z | in D 1 3, .
We then have

I 1 1 := C D 1 1, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ Cd(z , ∂Ω) |z | β-(γ) |z | n-2 D 1 1, |u (x)| 2 (s)-1-p |x| β-(γ)+s-1 dx.
Using (80) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I 1 1 ≤ C d(z , ∂Ω) |z | β+(γ) D 1 1, |u (x)| 2 (s)-1-p |x| β-(γ)+s-1 dx ≤ C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) 1, d(z , ∂Ω) |z | β+(γ) D 1 1, |x| -β-(γ)-s+1 |x| (2 (s)-1-p )(β-(γ)-1+α) dx ≤ C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) 1, d(z , ∂Ω) |z | β+(γ) |x|≤ 1 2 |z | |x| -α(2 (s)-1-p ) |x| (2 (s)-p )(β-(γ)-1)+s dx ≤ C |z | µ 1, (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) d(z , ∂Ω) µ β + (γ)-β -(γ) 2 1, |z | β-(γ) ≤ C |z | µ β + (γ)-β -(γ) 2 1, |z | β-(γ) . ( 92 
)
Next we have

I 1 2 := C D 1 2, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) D 1 2, d(x, ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx.
From (80) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I 1 2 ≤ C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) 1, d(z , ∂Ω) D 1 2, |x| -s+1 |x -z | -n |x| (β-(γ)-1+α)(2 (s)-1-p ) dx ≤ C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) 1, d(z , ∂Ω) |z | (β-(γ)-1+α)(2 (s)-1-p )+s-1 D 1 2, |x| -n dx ≤ C |z | µ 1, (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) d(z , ∂Ω) µ β + (γ)-β -(γ) 2 1, |z | β-(γ) ≤ C |z | µ β + (γ)-β -(γ) 2 1, |z | β-(γ) . (93) 
For

I 1 3 := C D 1 3, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x|≤k1, |x| β-(γ)+1-n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x|≤k1, |u (x)| 2 (s)-1-p |x| β+(γ)+s-1 dx.
Then from (80) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I 1 3 ≤ C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) 1, d(z , ∂Ω) |z | β-(γ) A A := 2|z |≤|x|≤k1, 1 |x| β+(γ)+s-1+(β-(γ)-1-p )(2 (s)-1)+α(2 (s)-1-p ) dx
With a change of variable, we get that

A ≤ 2|z |≤|x|≤k1, dx |x| n-(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) ≤ µ β + (γ)-β -(γ) 2 (2 (s)-2-p )-α(2 (s)-1-p ) 1, B1(0) |x| -α(2 (s)-1-p ) dx |x| n-(2 (s)-2) β + (γ)-β -(γ) 2 ≤ Cµ β + (γ)-β -(γ) 2 (2 (s)-2-p )-α(2 (s)-1-p ) 1,
and then

I 1 3 ≤ C d(z , ∂Ω) µ β + (γ)-β -(γ) 2 1, |z | β-(γ) ≤ C |z | µ β + (γ)-β -(γ) 2 1, |z | β-(γ) . ( 94 
)
For the last integral, we use point (A5) of Proposition 2 and a change of variable to get

I 1 4 := C D 1 4, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) |x|≥k1, |u (x)| 2 (s)-1-p |x| β+(γ)+s-1 dx ≤ C d(z , ∂Ω) |z | β-(γ) |x|≥k1, 1 |x| β+(γ)+s-1+ n-2 2 (2 (s)-1-p ) dx (95) ≤ C d(z , ∂Ω) µ β + (γ)-β -(γ) 2 1, |z | β-(γ) |x|≥1 d |x| n+ β + (γ)-β -(γ) 2 ≤ C |z | µ β + (γ)-β -(γ) 2 1, |z | β-(γ)
.

Combining (92), ( 93), ( 94) and (95), we then obtain (91).

Step 5.7: Let 1 ≤ i ≤ N -1. There exists C > 0 such that for sequence of points (z ) in B ki+1, (0) \ B ki, (0) ∩ Ω we have

Ω G (z , x) |u (x)| 2 (s)-1-p |x| s dx ≤ C   µ β + (γ)-β -(γ) 2 i, |z | |z | β+(γ) + |z | µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ)   . ( 96 
)
Proof of Step 5.7: To estimate the right-hand-side of (85) in this case, we split Ω into five subdomains as: Ω = 5 j=1 D i j, where

• D i 1, := B ki, (0) ∩ Ω, • D i 2, := {k i, < |x| < 1 2 |z |} ∩ Ω, • D i 3, := { 1 2 |z | < |x| < 2|z |} ∩ Ω, • D i 4, := {2|z | < |x| < k i+1, } ∩ Ω, • D i 5, := {k i+1, < |x|} ∩ Ω.
Note that one has

1 2 |z | < |x -z | in D i 2, and 1 2 |x| < |x -z | in D i 4, .
First we have using point (A5) of Proposition 2 and a change of variable

I i 1 := C D i 1, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) D i 1, |z | β-(γ) |x| β-(γ)-1 |x -z | -n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β+(γ) D i 1, |u (x)| 2 (s)-1-p |x| β-(γ)-1+s dx ≤ C d(z , ∂Ω) |z | β+(γ) B k i, (0) 1 |x| β-(γ)-1+s+(2 (s)-1-p ) n-2 2 dx ≤ C µ β + (γ)-β -(γ) 2 i, d(z , ∂Ω) |z | β+(γ) B1(0) 1 |x| n-β + (γ)-β -(γ) 2 dx ≤ C µ β + (γ)-β -(γ) 2 i, |z | |z | β+(γ) . (97) 
Now we estimate

I i 2 := C D i 2, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) |z | n D i 2, |u (x)| 2 (s)-1-p |x| β-(γ)-1+s dx.
Using (74) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I i 2 ≤ C d(z , ∂Ω) |z | β+(γ) D i 2, |u (x)| 2 (s)-1-p |x| β-(γ)+s dx ≤ C d(z , ∂Ω) |z | β+(γ) µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i, D i 2, |x| -β-(γ)+1-s dx |x| (2 (s)-1-p )(β+(γ)-1-α) + C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i+1, d(z , ∂Ω) |z | β+(γ) D i 2, |x| -β-(γ)+1-s dx |x| (2 (s)-1-p )(β-(γ)-1+α) ≤ C d(z , ∂Ω) |z | β+(γ) µ β + (γ)-β -(γ) 2 i, 1≤|x| dx |x| n+(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i+1, d(z , ∂Ω) |z | β+(γ) |x|≤ 1 2 |z | |x| -α(2 (s)-1-p ) dx |x| 2 (s)(β-(γ)-1)+s ≤ C µ β + (γ)-β -(γ) 2 i, d(z , ∂Ω) |z | β+(γ) 1≤|x| dx |x| n+(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C |z | µ i+1, (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) d(z , ∂Ω) µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ) ≤ C   µ β + (γ)-β -(γ) 2 i, |z | |z | β+(γ) + |z | µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ)   . (98) 
And next

I i 3 := C D i 3, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) D i 3, |x| |x -z | n |u (x)| 2 (s)-1-p |x| s dx.
From (74) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I i 3 ≤ C d(z , ∂Ω)µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i, D i 3, |x| 1-s |x -z | -n dx |x| (β+(γ)-1-α)(2 (s)-1-p ) + C d(z , ∂Ω)µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i+1, D i 3, |x| 1-s |x -z | -n dx |x| (β-(γ)-1+α)(2 (s)-1-p ) ≤ C µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i, d(z , ∂Ω) |z | (β+(γ)-1-α)(2 (s)-1-p )+s-1 D i 3, |x -z | -n dx + C µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i+1, d(z , ∂Ω) |z | (β-(γ)-1+α)(2 (s)-1-p )+s-1 D i 3, |x -z | -n dx ≤ C µ β + (γ)-β -(γ) 2 i, d(z , ∂Ω) |z | β+(γ) µ i, |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) + C |z | µ i+1, (2 (s 
)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) d(z , ∂Ω) |z | β-(γ) ≤ C   µ β + (γ)-β -(γ) 2 i, |z | |z | β+(γ) + |z | µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ)   . ( 99 
)
The next integral becomes

I i 4 := C D i 4, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x|<ki+1, |x| β-(γ)+1-n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) 2|z |≤|x|<ki+1, |u (x)| 2 (s)-1-p |x| β+(γ)+s-1 dx.
Then from (74) we get for 0 < α < 2 (s)-2 2 (s)-1

β+(γ)-β-(γ) 2 I i 4 ≤ C d(z , ∂Ω) |z | β-(γ) µ β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i, A +µ - β + (γ)-β -(γ) 2 -α (2 (s)-1-p ) i+1, B with 
A := 2|z |≤|x|<ki+1, |x| α(2 (s)-1-p ) dx |x| (2 (s)-p )(β+(γ)-1)+s ≤ 2|z |≤|x|<ki+1, |x| α(2 (s)-1-p ) dx |x| n+(2 (s)-p ) β + (γ)-β -(γ) 2 dx B := 2|z |≤|x|<ki+1, dx |x| β+(γ)+s+β-(γ)(2 (s)-1-p )+α(2 (s)-1-p ) ≤ 2|z |≤|x|<ki+1, dx |x| n-(2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p )
Arguing as in the case i = 1, with a change of variable we get that

I i 4 ≤ C µ β + (γ)-β -(γ) 2 i, d(z , ∂Ω) |z | β+(γ) µ i, |z | (2 (s)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) +C |z | µ i+1, (2 (s 
)-2-p ) β + (γ)-β -(γ) 2 -α(2 (s)-1-p ) d(z , ∂Ω) |z | β-(γ) ≤ C   µ β + (γ)-β -(γ) 2 i, |z | |z | β+(γ) + |z | µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ)   . ( 100 
)
Finally we get for the last integral from point (A5) of Proposition 2 and a change of variable

I i 5 := C D i 5, max{|z |, |x|} min{|z |, |x|} β-(γ) d(x, ∂Ω)d(z , ∂Ω) |x -z | n |u (x)| 2 (s)-1-p |x| s dx ≤ C d(z , ∂Ω) |z | β-(γ) |x|≥ki+1, |u (x)| 2 (s)-1-p |x| β+(γ)+s-1 dx ≤ C d(z , ∂Ω) |z | β-(γ) |x|≥ki+1, 1 |x| β+(γ)+s-1+ n-2 2 (2 (s)-1-p ) dx ≤ C d(z , ∂Ω) µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ) |x|≥1 1 |x| n+ β + (γ)-β -(γ) 2 ≤ C |z | µ β + (γ)-β -(γ) 2 i+1, |z | β-(γ) . ( 101 
)
Then from (97), ( 98), (99), ( 100) and (101) we get the estimate (96).

Combining the estimates (85), ( 86), ( 91) and (96) we get that, there exists a constant C > 0 such that for any sequence of points (z ) in Ω we have

|u (z )| ≤ C   N i=1 µ β + (γ)-β -(γ) 2 i, |z | µ β+(γ)-β-(γ) i, |z | β-(γ) + |z | β+(γ) + |x| β-(γ) u 0 || L ∞ (Ω) |z | β-(γ) |z |   .
This completes the proof of Proposition 3.

In our next result we obtain a pointwise control on the gradient.

Proposition 4.
Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) holds. Assume that blow-up occurs, that is

lim →0 |x| τ u L ∞ (Ω) = +∞ where β -(γ) -1 < τ < n -2 2 .
Consider the µ 1, , ..., µ N, from Proposition 2. Then there exists C > 0 such that for all > 0

|∇u (x)| ≤ C   N i=1 µ β + (γ)-β -(γ) 2 i, µ β+(γ)-β-(γ) i, |x| β-(γ) + |x| β+(γ) + |x| β-(γ)-1 u 0 L ∞ (Ω) |x| β-(γ)   (102) 
for all x ∈ Ω \ {0}.

Proof of Proposition 4: We let G be the Green's function of the coercive operator -∆ -γ |x| 2 -h on Ω with Dirichlet boundary condition. Differentiating the Green's representation formula, and then using the pointwise bounds on the gradient Green's function (209) and the regularity result Theorem 6 yields for any

z ∈ Ω u (z) = Ω G (z, x) |u (x)| 2 (s)-2-p u (x) |x| s dx |∇u (z)| ≤ C Ω |∇ z G (z, x)| |u (x)| 2 (s)-1-p |x| s dx ≤ C Ω |∇ z G (z, x)| |u (x)| 2 (s)-1-p |x| s dx ≤ Ω max{|z|, |x|} min{|z|, |x|} β-(γ) d(x, ∂Ω) |x -z| n |u (x)| 2 (s)-1-p |x| s dx.
Then using the pointwise estimates (60) the proof goes exactly as in Proposition 3.

Sharp blow-up rates and the proof of Compactness

The proof of compactness rely on the following two key propositions.

Proposition 5. Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) holds. Assume that blow-up occurs, that is

lim →0 |x| τ u L ∞ (Ω) = +∞ for some β -(γ) -1 < τ < n -2 2 . ( 103 
)
Consider the µ 1, , ..., µ N, and t 1 , ..., t N from Proposition 2. Suppose that

either { β + (γ) -β -(γ) > 2 } or {β + (γ) -β -(γ) > 1 and u 0 ≡ 0}. ( 104 
)
Then, we have following blow-up rates:

lim →0 p µ N, = c n,s,t N ∂R n - II 0 (x, x)|∇ũ N | 2 dσ N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s) |x| s dx . ( 105 
)
Here II 0 denotes the second fundamental form of ∂Ω at 0 ∈ ∂Ω and

c n,s,t N := n -s (n -2) 2 1 t n-1 2 (s)-2 N .
Proposition 6 (The positive case). Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω and assume that 0 < s < 2, γ < n 2 4 . Let (u ), (h ) and (p ) be as in Proposition 5 and let H(0) denote the mean curvature of ∂Ω at 0. Assume that blow-up occurs as in (103). Consider the µ 1, , ..., µ N, and t 1 , ..., t N from Proposition 2. Suppose in addition that

u > 0 for all > 0. ( 106 
)
We define

C n,s,(ti),(ũ)i := c n,s,t N ∂R n - |x| 2 |∇ũ N | 2 dσ (n -1) N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s) |x| s dx (107)
Then, we have the following blow-up rates:

1) When β + (γ) -β -(γ) ≥ 2, then lim →0 p µ N, = C n,s,(ti),(ũ)i • H(0) if β + (γ) -β -(γ) > 2 or β + (γ) -β -(γ) = 2 and u 0 ≡ 0 . lim →0 p µ N, = C n,s,(ti),(ũ)i • H(0) -K if β + (γ) -β -(γ) = 2 and u 0 > 0.
for some K > 0.

2) When β + (γ) -β -(γ) < 2, then u 0 ≡ 0 and lim →0 p µ N, = C n,s,(ti),(ũ)i • H(0) if β + (γ) -β -(γ) > 1. lim →0 p µ N, ln 1 µ ,N = C n,s,(ti),(ũ)i • H(0) if β + (γ) -β -(γ) = 1 (108) lim →0 p µ β+(γ)-β-(γ) N, = -χ • m γ,h (Ω) if β + (γ) -β -(γ) < 1 ( 109 
)
where

C n,s,(ti),(ũ)i := n -s (n -2) 2 K 2 ω n-2 (n -1) N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s)
|x| s dx , the constant K is as in (169), χ > 0 is a constant and m γ,h (Ω) is the boundary mass defined in Theorem 1.

Proof of Theorems 3, 5 and 4: We argue by contradiction and assume that the family is not pre-compact. Then, up to a subsequence, it blows up. We then apply Propositions 5 and 6 to get the blow-up rate (that is nonegative). However, the hypothesis of Theorems 3, 5 and 4 yield exactly negative blow-up rates. This is a contradiction, and therefore the family is pre-compact. This proves the Theorems.

We now establish Propositions 5 and 6. The proof is divided in 13 steps in Sections 7 to 8. These steps are numbered Steps P1, P2, etc.

Estimates on the localized Pohozaev identity

In the sequel, we let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. Note that

γ < n 2 4 -1 ⇔ β + (γ) -β -(γ) > 2,
and

γ < n 2 -1 4 ⇔ β + (γ) -β -(γ) > 1.
In the sequel, we will permanently use the following consequence of (A9) of Proposition 2: for all i = 1, ..., N , there exists

c i > 1 such that c -1 i µ ,i ≤ k ,i ≤ c i µ ,i . (110) 
Step P1 (Pohozaev identity). We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and (22) hold. We assume that blow-up occurs. We define

F (x) := (x, ν) |∇u | 2 2 - γ 2 u 2 |x| 2 - h (x) 2 u 2 - 1 2 (s) -p |u | 2 (s)-p |x| s -x i ∂ i u + n -2 2 u ∂ ν u (111) 
We let T be a chart at 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]. We define r := √ µ N, . Then

T R n -∩Br (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx + p 2 (s) n -s 2 (s) -p T R n -∩Br (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = - T (R n -∩∂Br (0)) F (x) dσ + T R n -∩∂B k 3 1, (0) 
F (x) dσ

+ T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ (112)
and, for δ 0 > 0 small enough,

T R n -∩B δ 0 (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx + p 2 (s) n -s 2 (s) -p T R n -∩B δ 0 (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = - T (R n -∩∂B δ 0 (0)) F (x) dσ + T R n -∩∂B k 3 1, (0) 
F (x) dσ

+ T ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ (113) 
Proof of Step P1: We apply the Pohozaev identity (196) with y 0 = 0 and

U = T R n -∩ B r (0) \ B k 3 1, (0) ⊂ Ω.
This yields

- U h (x) + (∇h , x) 2 u 2 dx - p 2 (s) n -s 2 (s) -p U |u | 2 (s)-p |x| s dx = ∂U F (x) dσ. ( 114 
)
It follows from the properties of the boundary map that

∂U = ∂ T R n -∩ B r (0) \ B k 3 1, (0) = T R n -∩ ∂B r (0) ∪ T R n -∩ ∂B k 3 1, (0) ∪ T ∂R n -∩ B r (0) \ B k 3 1, (0) 
Since for all > 0, u ≡ 0 on ∂Ω, identity (114) yields (112). Concerning (113), we apply the Pohozaev identity (196) with y 0 = 0 and

V = T R n -∩ B δ0 (0) \ B k 3 1, (0) ⊂ Ω.
The argument is similar. This ends the proof of Step P1.

We will estimate each of the terms in the above integral identities and calculate the limit as → 0.

7.1. Estimates of the L 2 (s) and L 2 -terms in the localized Pohozaev identity.

Step P2. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold. We assume that blow-up occurs. We claim that, as → 0

T R n -∩Br (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1). ( 115 
)
and

T R n -∩B δ 0 (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1) if u 0 ≡ 0. ( 116 
)
Proof of Step P2: For any R, ρ > 0 we decompose the above integral as

T R n -∩Br (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = T (R n -∩Br (0)\B Rk N, (0)) |u | 2 (s)-p |x| s dx + N i=1 T (R n -∩B Rk i, (0)\B ρk i, (0)) |u | 2 (s)-p |x| s dx + N -1 i=1 T (R n -∩B ρk i+1, (0)\B Rk i, (0)) |u | 2 (s)-p |x| s dx + T R n -∩B ρk 1, (0)\B k 3 1, (0) 
|u | 2 (s)-p |x| s dx.

We will evaluate each of the above terms and calculate the limit lim

R→+∞ lim ρ→0 lim →0 .
From the estimate (60), we get as → 0

T (R n -∩Br (0)\B Rk N, (0)) |u | 2 (s)-p |x| s dx ≤ C T (R n -∩Br (0)\B Rk N, (0))    µ β + (γ)-β -(γ) 2 (2 (s)-p ) N, |x| (β+(γ)-1)(2 (s)-p )+s + 1 |x| (β-(γ)-1)(2 (s)-p )+s    dx ≤ C R n -∩Br (0)\B Rk N, (0) µ β + (γ)-β -(γ) 2 (2 (s)-p ) N, |x| (β+(γ)-1)(2 (s)-p )+s |Jac T (x)| dx + C R n -∩Br (0)\B Rk N, (0) 1 |x| (β-(γ)-1)(2 (s)-p )+s |Jac T (x)| dx ≤ C R n -∩B r k N, (0)\B R (0) 1 |x| n+2 (s) β + (γ)-β -(γ) 2 -p (β+(γ)-1) |Jac T (k N, x)| dx + C R n -∩B1(0)\B Rk N, r (0) 
1 |x| n-2 (s) β + (γ)-β -(γ) 2 -p (β-(γ)-1) |Jac T (r x)| dx ≤C R -2 (s) β + (γ)-β -(γ) 2 -p (β+(γ)-1) + r 2 (s) β + (γ)-β -(γ) 2 +p (β-(γ)-1)
.

Therefore lim R→+∞ lim →0 T (R n -∩Br (0)\B Rk N, (0)) |u | 2 (s)-p |x| s dx = 0. ( 117 
)
It follows from Proposition 2 that for any 1

≤ i ≤ N lim R→+∞ lim ρ→0 lim →0 T (R n -∩B Rk i, (0)\B ρk i, (0)) |u | 2 (s)-p |x| s dx = 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx. ( 118 
) Let 1 ≤ i ≤ N -1.
In Proposition 3, we had obtained the following pointwise estimates: For any R, ρ > 0 and all > 0 we have

|u (x)| ≤ C µ β + (γ)-β -(γ) 2 i, |x| |x| β+(γ) + C |x| µ β + (γ)-β -(γ) 2 i+1, |x| β-(γ)
for all x ∈ B ρki+1, (0) \ B Rki, (0).

Then we have as → 0

T (R n -∩B ρk i+1, (0)\B Rk i, (0)) |u | 2 (s)-p |x| s dx ≤ C T (R n -∩B ρk i+1, (0)\B Rk i, (0))   µ β + (γ)-β -(γ) 2 (2 (s)-p ) i, |x| (β+(γ)-1)(2 (s)-p )+s + µ - β + (γ)-β -(γ) 2 (2 (s)-p ) i+1, |x| (β-(γ)-1)(2 (s)-p )+s   dx ≤ C R n -∩B ρk i+1, (0)\B Rk i, (0)   µ β + (γ)-β -(γ) 2 (2 (s)-p ) i, |x| (β+(γ)-1)(2 (s)-p )+s + µ - β + (γ)-β -(γ) 2 (2 (s)-p ) i+1, |x| (β-(γ)-1)(2 (s)-p )+s   dx ≤ C R n -∩B ρk i+1, k i, (0)\B R (0) 1 |x| n+2 (s) β + (γ)-β -(γ) 2 -p (β+(γ)-1) dx + C R n -∩B2ρ(0)\B Rk i, k i+1, (0) 
1 |x| n-2 (s) β + (γ)-β -(γ) 2 -p (β-(γ)-1) dx ≤C R -2 (s) β + (γ)-β -(γ) 2 -p (β+(γ)-1) + ρ 2 (s) β + (γ)-β -(γ) 2 +p (β-(γ)-1) .
And so

lim R→+∞ lim ρ→0 lim →0 T (R n -∩B ρk i+1, (0)\B Rk i, (0)) |u | 2 (s)-p |x| s dx = 0. ( 119 
)
Again, from the pointwise estimates of Proposition 3, we have as → 0

T R n -∩B ρk 1, (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx ≤ C T R n -∩B ρk 1, (0)\B k 3 1, (0) µ 
- β + (γ)-β -(γ) 2 (2 (s)-p ) 1, |x| (β-(γ)-1)(2 (s)-p )+s dx ≤ C R n -∩B ρk 1, (0)\B k 3 1, (0) µ - β + (γ)-β -(γ) 2 (2 (s)-p ) 1, |x| (β-(γ)-1)(2 (s)-p )+s |Jac T (x)| dx ≤ C R n -∩Bρ(0)\B k 2 1, (0) 1 |x| n-2 (s) β + (γ)-β -(γ) 2 -p (β-(γ)-1) |Jac T (k 1, x)| dx ≤C ρ 2 (s) β + (γ)-β -(γ) 2 +p (β-(γ)-1) . Therefore lim ρ→0 lim →0 T R n -∩B ρk 1, (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = 0. ( 120 
)
Combining ( 117), ( 118), ( 119) and (120) we obtain (115).

We now prove (116) under the assumption that u 0 ≡ 0. We decompose the integral as

T R n -∩B δ 0 (0)\B k 3 1, (0) |u | 2 (s)-p |x| s dx = T (R n -∩B δ 0 (0)\Br (0)) |u | 2 (s)-p |x| s dx + T R n -∩Br (0)\B k 3 1, (0) 
|u | 2 (s)-p |x| s dx,

with r := √ µ N, . From the estimate (60) and u 0 ≡ 0, we get as → 0

T (R n -∩B δ 0 (0)\Br (0)) |u | 2 (s)-p |x| s dx ≤ C R n -∩B δ 0 (0)\Br (0)    µ β + (γ)-β -(γ) 2 (2 (s)-p ) N, |x| (β+(γ)-1)(2 (s)-p )+s    dx
Since (β + (γ) -1)2 (s) + s > n, we then get that

T (R n -∩B δ 0 (0)\Br (0)) |u | 2 (s)-p |x| s dx ≤ C µ N, r 2 (s) 2 (β+(γ)-β-(γ)) = o(1)
as → 0. Therefore, with (117), we get (116). This proves (116).

This ends the proof of Step P2.

Step P3. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. We claim that

T R n -∩Br (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx =      O(µ 2 N, ) if β + (γ) -β -(γ) > 2 O(µ 2 N, ln 1 µ N, ) if β + (γ) -β -(γ) = 2 O(µ 1+ β + (γ)-β -(γ) 2 N, ) if β + (γ) -β -(γ) < 2. ( 121 
)
And if u 0 ≡ 0

T R n -∩B δ 0 (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx =      O(µ 2 N, ) if β + (γ) -β -(γ) > 2 O(µ 2 N, ln 1 µ N, ) if β + (γ) -β -(γ) = 2 O(µ β+(γ)-β-(γ) N, ) if β + (γ) -β -(γ) < 2. ( 122 
)
Proof of Step P3: From estimate (60) and after a change of variables, we get as → 0,

T R n -∩Br (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx ≤ C T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx ≤ C T R n -∩Br (0)\B k 3 1, (0) 
µ

β+(γ)-β-(γ) N, |x| 2(β+(γ)-1) dx + 1 |x| 2(β-(γ)-1) dx (123) ≤ C R n -∩Br (0)\B Rk 3 1, (0) N i=1 µ β+(γ)-β-(γ) i, |x| 2 µ 2(β+(γ)-β-(γ)) i, |x| 2β-(γ) + |x| 2β+(γ) + 1 |x| 2(β-(γ)-1) dx.
Case 1: Assuming that β + (γ)-β -(γ) < 2, we then have the following rough bound from (123),

T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx ≤ C R n -∩Br (0)\B Rk 3 1, (0) 
µ

β+(γ)-β-(γ) N, |x| 2(β+(γ)-1) + 1 |x| 2(β-(γ)-1) dx ≤ Cµ 1+ β + (γ)-β -(γ) 2 N, if β + (γ) -β -(γ) < 2. ( 124 
)
Case 2: Assuming β + (γ) -β -(γ) ≥ 2, then via a change of variable in (123), we get

T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx ≤ C N i=1 µ 2 i, B r µ i, ( 0 
)\B k 3 1, µ i, (0) 
|x| 2 dx |x| 2β-(γ) + |x| 2β+(γ) +C Br (0)\B k 3 1, (0) |x| 2-2β-(γ) dx. Therefore, if β + (γ) -β -(γ) > 2, then T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx ≤ C N i=1 µ 2 i, + Cr n+2-2β-(γ) ≤ Cµ 2 N, . (125) 
When

β + (γ) -β -(γ) = 2, we get that T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx ≤ C N i=1 µ 2 i,   1 + B r µ i, (0)\B1(0) |x| 2-β+(γ) dx   +Cr 2+β+(γ)-β-(γ) ≤ Cµ 2 N, ln 1 µ N, + C N -1 i=1 µ 2 i, ln 1 µ i, .
Since µ N, → 0 and lim →0 µ i, /µ N, is finite for all i = 1, ..., N -1, we get that

T R n -∩Br (0)\B k 3 1, (0) 
u 2 dx = O µ 2 N, ln 1 µ N, , (126) 
since β + (γ) -β -(γ) = 2. Inequality (123) put together with (124), ( 125) and ( 126) yield (121).

When u 0 ≡ 0 we decompose the integral and proceed as in the proof of (116) to obtain (122). This ends Step P3.

7.2. Estimate of the curvature term in the Pohozaev identity when

β + (γ)- β -(γ) > 1.
Step P4. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs and that β + (γ) -β -(γ) > 1. We claim that, as → 0

T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ = µ N, 2    1 t n-1 2 (s)-2 N ∂R n - II 0 (x, x) |∇ũ N | 2 2 dσ + o(1)    . (127) 
Here, see Proposition 5, II 0 denotes the second fundamental form. Moreover, when u 0 ≡ 0, we claim that as → 0,

T ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ = µ N, 2    1 t n-1 2 (s)-2 N ∂R n - II 0 (x, x) |∇ũ N | 2 2 dσ + o(1)    . ( 128 
)
Proof of Step P4: We have for any R, ρ > 0,

T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ (129) = T (∂R n -∩Br (0)\B Rk N, (0)) (x, ν) |∇u | 2 2 dσ + N i=1 T (∂R n -∩B Rk i, (0)\B ρk i, (0)) (x, ν) |∇u | 2 2 dσ + N -1 i=1 T (∂R n
-∩B ρk i+1, (0)\B Rk i, (0))

(x, ν) |∇u | 2 2 dσ + T ∂R n -∩B ρk 1, (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ. ( 130 
)
We consider the second fundamental form associated to ∂Ω, II 0 (x, y) = (dν p x, y) for 0 ∈ ∂Ω and all x, y ∈ T 0 ∂Ω (ν is the outward normal vector at the hypersurface ∂Ω). In the canonical basis of ∂R n -= T 0 ∂Ω, the matrix of the bilinear form II 0 is -D 2 0 T 0 , where D 2 0 T 0 is the Hessian matrix of T 0 at 0. Using the expression of T (see ( 27)), we can write for all

x ∈ U ∩ ∂R n - ν(T (x)) = (1, -∂ 2 T 0 (x), ..., -∂ n T 0 (x)) 1 + n i=2 (∂ i T 0 (x)) 2
.

With the expression of T , we then get that

(ν • T (x), T (x)) = T 0 (x) - n p=2 x p ∂ p T 0 (x) 1 + n p=2 (∂ p T 0 (x)) 2
And so for all x ∈ U ∩ ∂R n -.

|(T (x), ν • T (x))| ≤ C|x| 2 (131) 
Since T 0 (0) = 0 and ∇T 0 (0) = 0 (see ( 27)), we then get as |x| → 0

(ν • T (x), T (x)) = - 1 2 n p,q=2 x p x q ∂ pq T 0 (0) + O(|x| 3 ) (132)
and therefore for all > 0 and all x ∈ B R (0

) ∩ ∂R n - (T (k N, x), ν • T (k N, x)) = - 1 2 k 2 N, n p,q=2 x p x q ∂ pq T 0 (0) + θ ,R (x)k 2 N, = 1 2 k 2 N, II 0 (x, x) + θ ,R (x)k 2 N, (133) 
where lim

→0 sup B R (0)∩{x1=0}
|θ ,R | = 0 for any R > 0.

Step P4.1: Let 1 ≤ i ≤ N -1. In Proposition 4 we have obtained the pointwise estimates, that for any R, ρ > 0 and all > 0 we have for all x ∈ B ρki+1, (0) \ B Rki, (0),

|∇u (x)| ≤ C µ β + (γ)-β -(γ) 2 i, |x| β+(γ) + C 1 µ β + (γ)-β -(γ) 2 i+1, |x| β-(γ)
.

For clearness, we write in this step

D := T ∂R n -∩ B ρki+1, (0) \ B Rki, (0) . As → 0 we have that D (x, ν) |∇u | 2 2 dσ ≤ C D (x, ν) µ β+(γ)-β-(γ) i, |x| 2β+(γ) + 1 µ β+(γ)-β-(γ) i+1, |x| 2β-(γ) dσ ≤ C D |x| 2 µ β+(γ)-β-(γ) i, |x| 2β+(γ) + 1 µ β+(γ)-β-(γ) i+1, |x| 2β-(γ) dσ ≤ C µ i, ∂R n -∩B ρk i+1, k i, (0)\B R (0) dσ |x| (n-1)+(β+(γ)-β-(γ)-1) + C µ i+1, ∂R n -∩Bρ(0)\B Rk i, k i+1, (0) 
dσ |x| (n-1)-(β+(γ)-β-(γ)+1) ≤ C µ i, R -(β+(γ)-β-(γ)-1) + µ i+1, ρ β+(γ)-β-(γ)+1 . So then for all 1 ≤ i ≤ N -1 lim R→+∞ lim ρ→0 lim →0     µ -1 N, T (∂R n -∩B ρk i+1, (0)\B Rk i, (0)) (x, ν) |∇u | 2 2 dσ     = 0. ( 134 
)
This ends Step P4.1.

Step P4.2: Again from the estimates of Proposition 4, we have as → 0

T ∂R n -∩B ρk 1, (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ ≤ C T ∂R n -∩B ρk 1, (0)\B k 3 1, (0) 
|(x, ν)| dσ µ β+(γ)-β-(γ) 1, |x| 2β-(γ) ≤ C ∂R n -∩B ρk 1, (0)\B k 3 1, (0) 
|x| 2 dσ µ β+(γ)-β-(γ) 1, |x| 2β-(γ) ≤ C k 1, ∂R n -∩Bρ(0)\B k 2 1, (0) 
dσ |x| 2β-(γ)-2 ≤ C µ 1, ρ β+(γ)-β-(γ)+1 .
Then, using again (110), we get that lim

R→+∞ lim ρ→0 lim →0       µ -1 N, T ∂R n -∩B ρk 1, (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ       = 0. ( 135 
)
This ends Step P4.2.

Step P4.3: With the pointwise estimates of Proposition 4, we obtain as → 0

T (∂R n -∩Br (0)\B Rk N, (0)) (x, ν) |∇u | 2 2 dσ ≤ C T (∂R n -∩Br (0)\B Rk N, (0)) |x| 2 µ β+(γ)-β-(γ) N, |x| 2β+(γ) + 1 |x| 2β-(γ) dσ ≤ C k N, ∂R n -∩B r k N, (0)\B R (0) 1 |x| 2β+(γ)-2 dσ + C r β+(γ)-β-(γ)+1 ∂R n -∩B1(0)\B Rk N, r (0) 
1 |x| 2β-(γ)-2 dσ ≤ C k N, ∂R n -∩B k N, k N -1, (0)\B R/2 (0)
1 |x| (n-1)+(β+(γ)-β-(γ)-1) dσ, and then

T (∂R n -∩Br (0)\B Rk N, (0)) (x, ν) |∇u | 2 2 dσ + C r β+(γ)-β-(γ)+1 ∂R n -∩B1(0)\B Rk N, 2r (0) 
1 |x| (n-1)-(β+(γ)-β-(γ)+1) dσ ≤ C k N, R -(β+(γ)-β-(γ)-1) + r β+(γ)-β-(γ)-1 dσ. So if β + (γ) -β -(γ) > 1 lim R→+∞ lim ρ→0 lim →0     µ -1 N, T (∂R n -∩Br (0)\B Rk N, (0)) (x, ν) |∇u | 2 2 dσ     = 0. (136) 
This ends Step P4.3.

Step P4.4:

Let 1 ≤ i ≤ N . When β + (γ) -β -(γ) > 1, we have lim R→+∞ lim ρ→0 lim →0     µ -1 i, T (∂R n -∩B Rk i, (0)\B ρk i, (0)) (x, ν) |∇u | 2 2 dσ     = 1 2 1 t n-1 2 (s)-2 i ∂R n - II 0 (x, x) |∇ũ i | 2 2 dσ, (137) 
where II 0 (x, x) is the second fundamental form of the boundary ∂Ω at 0.

Proof of

Step P4.4: Consider ũi obtained in Proposition 2. It follows that for some constant C > 0,

|∇ũ i (x)| ≤ C |x| β-(γ) + |x| β+(γ)
for all x ∈ R n -\ {0}.

So when β

+ (γ) -β -(γ) > 1, the function |x| 2 |∇ũ i | ∈ L 2 (R n-1 ).
With a change of variable and the definition of ũi, we then obtain

µ -1 i, T (∂R n -∩B Rk i, (0)\B ρk i, (0)) (x, ν) |∇u | 2 2 dσ = k n-3 i, µ n-1 i, ∂R n -∩B R (0)\Bρ(0) (T (k N, x), ν • T (k N, x)) |∇ũ i, | 2 2 dσ = - k n-3 i, µ n-1 i,     ∂R n -∩B R (0)\Bρ(0) 1 2 k 2 N, n p,q=2 ∂ pq T 0 (0)x p x q |∇ũ i, | 2 2 dσ + θ ,R (x)k 2 N,     = - k i, µ i, n-1     ∂R n -∩B R (0)\Bρ(0) 1 2 n p,q=2 ∂ pq T 0 (0)x p x q |∇ũ i, | 2 2 dσ + θ ,R (x)     . Since |x| 2 |∇ũ i | ∈ L 2 (R n-1
), passing to the limits it follows from the expression of the second fundamental form in (133), that lim

R→+∞ lim ρ→0 lim →0     µ -1 i, T (∂R n -∩B Rk i, (0)\B ρk i, (0)) (x, ν) |∇u | 2 2 dσ     = - 1 2 1 t n-1 2 (s)-2 ∂R n -∩B R (0)\Bρ(0) n p,q=2 ∂ pq T 0 (0)x p x q |∇ũ i | 2 2 dσ = 1 2 1 t n-1 2 (s)-2 i ∂R n - II 0 (x, x) |∇ũ i | 2 2 dσ.
This ends Step P4.4.

Plugging (136), ( 137), ( 134) and (135) in the integral (129), we get (127). This proves the first identity of Step P4.

Step P4.5: We now assume that u 0 ≡ 0 and

β + (γ) -β -(γ) > 1.
We prove (128). We write

T ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ = T (∂R n -∩B δ (0)\Br (0)) (x, ν) |∇u | 2 2 dσ + T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ (138) 
With the pointwise estimates of Proposition 4 with u 0 ≡ 0, and using that β + (γ)β -(γ) > 1, we obtain as → 0

T (∂R n -∩B δ 0 (0)\Br (0)) (x, ν) |∇u | 2 2 dσ ≤ C ∂R n -∩B δ 0 (0)\Br (0) |x| 2 µ β+(γ)-β-(γ) N, |x| 2β+(γ) dσ ≤ C µ β+(γ)-β-(γ) N, r 2β+(γ)-2-n+1 ≤ Cµ 1+ β + (γ)-β -(γ)-1 2 N, = o(µ N, ), since β + (γ) -β -(γ) > 1.
Then, with (127), we get (128). This ends Step P4.5.

These five substeps prove Step P4.

7.3.

Estimates of the boundary terms.

Step P5. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. We fix a chart T as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] and, for any > 0, we define ṽ (x) := r β-(γ)-1 u (T (r x))

for x ∈ r -1 U ∩ R n -\ {0},
where r := √ µ N, . We claim that there exists ṽ

∈ C 1 (R n -\ {0}) such that lim →0 ṽ (x) = ṽ in C 1 loc (R n -\ {0})
where ṽ is a solution of

-∆ṽ -γ |x| 2 ṽ = 0 in R n - ṽ = 0 on ∂R n -\ {0}. ( 139 
)
Proof of Step P5: For any i, j = 1, ..., n, we let (g

) ij = (T * Eucl)(r x) ij = (∂ i T (r x), ∂ j T (r x))
, where (•, •) denotes the Euclidean scalar product on R n . We consider g as a metric on R n . In the sequel, we let ∆ g = div g (∇) be the Laplace-Beltrami operator with respect to a metric g. From (E ) it follows that for all > 0, the rescaled functions ṽ weakly satisfies the equation

-∆ g ṽ - γ T (r x) r 2 ṽ -r 2 h • T (r x) ṽ = r θ+p β-(γ) |ṽ | 2 (s)-2-p ṽ T (r x) r s . (140) 
with θ := (2 (s) -2) β+(γ)-β-(γ)

2

> 0 and ṽ ≡ 0 on ∂R n -\ {0}.

Using the pointwise estimates (60) we obtain the bound, that as → 0 we have for

x ∈ R n - |ṽ (x)| ≤ C r β-(γ)-1 N i=1 µ β + (γ)-β -(γ) 2 i, |T (r x)| µ β+(γ)-β-(γ) i, |T (r x)| β-(γ) + |T (r x)| β+(γ) + C r β-(γ)-1 |x| β-(γ)-1 u 0 || L ∞ (Ω) |T (r x)| β-(γ) |T (r x)| ≤ C N i=1 µi, µ N, β + (γ)-β -(γ) 2 T (r x) r µi, √ µ N, β+(γ)-β-(γ) T (r x) r β-(γ) + T (r x) r β+(γ) + C |x| β-(γ)-1 u 0 || L ∞ (Ω) T (r x) r β-(γ) T (r x) r ≤ C     N i=1 µi, µ N, β + (γ)-β -(γ) 2 |x| µi, √ µ N, β+(γ)-β-(γ) |x| β-(γ) + |x| β+(γ) + |x| β-(γ)-1 u 0 || L ∞ (Ω) + |x| β-(γ) |x| ≤ C 1 |x| β+(γ)-1 + |x| β-(γ)-1 u 0 || L ∞ (Ω) |x| β-(γ)-1 .
Then passing to limits in the equation (140), standard elliptic theory yields the existence of ṽ ∈ C 2 (R n -\ {0}) such that ṽ → ṽ in C 2 loc (R n -\ {0}) and ṽ satisfies the equation:

-∆ṽ -γ |x| 2 ṽ = 0 in R n ṽ = 0 on ∂R n -\ {0}. and we have the following bound on ṽ

|ṽ(x)| ≤ C |x 1 | |x| β+(γ) + |x| β-(γ)-1 u 0 || L ∞ (Ω) |x| β-(γ) |x 1 | for all x = (x 1 , x) in R n -.
This ends the proof of Step P5.

Step P6. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. We claim that, as → 0,

T (R n -∩∂Br (0)) F (x) dσ = µ β + (γ)-β -(γ) 2 N, (F 0 + o(1)) (141) 
with

F 0 := R n -∩∂B1(0) (x, ν) |∇ṽ| 2 2 - γ 2 ṽ2 |x| 2 -x i ∂ i ṽ + n -2 2 ṽ ∂ ν ṽ dσ (142) 
and

T R n -∩∂B k 3 1, (0) 
F (x) dσ = o µ β+(γ)-β-(γ) N, . (143) 
Proof of Step P6: We keep the notations of Step P5. With a change of variable and the definition of ṽ , and θ := (2 (s) -2) β+(γ)-β-(γ)

2

> 0, we get

T (R n -∩∂Br (0)) F (x) dσ = r β+(γ)-β-(γ) R n -∩∂B1(0) (x, ν) g |∇ g ṽ | 2 2 - γ 2 ṽ2 |x| 2 g -x i ∂ i ṽ + n -2 2 ṽ ∂ ν ṽ dσ g -r β+(γ)-β-(γ) R n -∩∂B1(0) r 2 h (T (r x)) 2 ṽ2 - r θ+(β-(γ)-1)p 2 (s) -p |ṽ | 2 (s)-p |x| s g dσ g .
From the convergence result of Step P5, we then get (141).

For the next boundary term, from the estimates (60) and ( 102) we obtain

T R n -∩∂B k 3 1, (0) 
F (x) dσ ≤ C µ β+(γ)-β-(γ) 1, T R n -∩∂B k 3 1, (0) |x| 1 |x| 2β-(γ) + |x| 2 |x| 2β-(γ) dx +C T R n -∩∂B k 3 1, (0) 
|x| µ -2 (s)

β + (γ)-β -(γ) 2 +p β + (γ)-β -(γ) 2 1, |x| (β-(γ)-1)(2 (s)-p )+s dx ≤ C µ β+(γ)-β-(γ) 1, R n -∩∂B k 3 1, (0) 
|x| 1 |x| 2β-(γ) + |x| 2 |x| 2β-(γ) dx +C R n -∩∂B k 3 1, (0) |x| µ -2 (s) β + (γ)-β -(γ) 2 +p β + (γ)-β -(γ) 2 1, |x| (β-(γ)-1)(2 (s)-p )+s dx ≤ Cµ β+(γ)-β-(γ) 1, µ β+(γ)-β-(γ) 1, + µ (β+(γ)-β-(γ))( 2-s n-2 )+p ( n-2 2 ) 1,
.

And so

T R n -∩∂B k 2 1, (0) 
F (x) dσ = o µ β+(γ)-β-(γ) N, . (144) 
This ends Step P6.

Step P7. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. We assume that u 0 ≡ 0. We define

ū := u µ β + (γ)-β -(γ) 2 N, . (145) 
We claim that there exists ū ∈ C 2 (Ω \ {0}) such that

lim →0 ū = ū in C 2 loc (Ω \ {0}) with -∆ū -γ |x| 2 + h 0 ū = 0 in Ω ū = 0 in ∂Ω \ {0} (146) 
Proof of Step P7: Since u 0 ≡ 0, it follows from (60) that there exists C > 0 such that |ū (x)| ≤ C|x| 1-β+(γ) for all x ∈ Ω and > 0.

(147)

Moreover, equation (E ) rewrites

-∆ū - γ |x| 2 + h ū = µ β + (γ)-β -(γ) 2 (2 (s)-2-p ) N, |ū | 2 (s)-2-p ū |x| s in Ω,
and ū = 0 on ∂Ω. It then follows from standard elliptic theory that the claim holds. This ends Step P7.

Step P8. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and (22) hold.

We assume that blow-up occurs. We assume that u 0 ≡ 0. We claim that

T (R n -∩∂B δ 0 (0)) F (x) dσ = (F δ0 + o(1)) µ β+(γ)-β-(γ) N, , (148) 
and

T R n -∩∂B k 3 1, (0) 
F (x) dσ = o µ β+(γ)-β-(γ) N, , (149) 
where

F δ0 := T (R n -∩∂B δ 0 (0)) (x, ν) |∇ū| 2 2 - γ |x| 2 + h 0 ū2 2 -x i ∂ i ū + n -2 2 ū ∂ ν ū dσ. (150) 
Proof of Step P8: The second term has already been estimated in (143). We are left with the first term. With a change of variable, the definition of ū and the convergence (146), we get

T (R n -∩∂B δ 0 (0)) F (x) dσ (151) = µ β+(γ)-β-(γ) N, T (R n -∩∂B δ 0 (0)) (x, ν) |∇ū | 2 2 - γ |x| 2 + h ū2 2 dσ -µ β + (γ)-β -(γ) 2 (2 (s)-2-) N, T (R n -∩∂B δ 0 (0)) |ū | 2 (s)-2-ū |x| 2 dσ - T (R n -∩∂B δ 0 (0)) x i ∂ i ū + n -2 2 ū ∂ ν ū dσ = µ β+(γ)-β-(γ) N, (F δ0 + o(1)) . ( 152 
)
where F δ0 is as above. Arguing as in the proof of (144), we get that

T R n -∩∂B k 3 1, (0) 
F (x) dσ = o µ β+(γ)-β-(γ) N, as → 0. (153) 
This ends Step P8.

Step P9. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and (22) hold.

We assume that blow-up occurs. We assume that u > 0 for all > 0. Then F 0 ≥ 0 and

F 0 > 0 ⇔ u 0 > 0.
where F 0 is as in (142).

Proof of

Step P9: We let ṽ be defined as in Step P5. It follows from Step P5 that ṽ satisfies (139) and we have the following bound on ṽ

|ṽ(x)| ≤ C |x 1 | |x| β+(γ) + |x| β-(γ)-1 u 0 || L ∞ (Ω) |x| β-(γ) |x 1 | for all x = (x 1 , x) in R n -.
(154) Given α ∈ R, we define v α (x) := x 1 |x| -α for all x ∈ R n -. Since ṽ ≥ 0, it follows from Proposition 6.4 in Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that there exists A, B ≥ 0 such that ṽ := Av β+(γ) + Bv β-(γ) .

(155)

Step P9.1: We claim that B = 0 when u 0 ≡ 0. This is a direct consequence of controling (155) with (154) when u 0 ≡ 0 and letting |x| → ∞.

Step P9.2: We claim that B > 0 when u 0 > 0.

We prove the claim. We fix x ∈ R n -. Green's representation formula yields ṽ

(x) = Ω r β-(γ)-1 G (T (r x), y) u 2 (s)-1 (y)
|y| s dy.

We fix ω ⊂⊂ Ω. Then there exists c(ω) > 0 such that |y| ≥ d(y, ∂Ω) ≥ c(ω) for all y ∈ ω. Moreover, the control (207) of the Green's function yields

ṽ (x) ≥ c ω r β-(γ)-1 r x 1 r β-(γ) |x| β-(γ) |c(ω) -r |x|| -n u 2 (s)-1 (y) |y| s dy,
and then, passing to the limit → 0, we get that ṽ

(x) ≥ cx 1 |x| β-(γ) ω u 2 (s)-1 0 (y) |y| s dy,
for all x ∈ R n -. As one checks, this yields B ≥ c ω u 2 (s)-1 0

(y) |y| s dy > 0 when u 0 > 0. This ends Step P9.2.

Step P9.3: We claim that A > 0. The proof is similar to Step P9.2. We fix x ∈ R n -and ω ⊂⊂ R n -. Green's representation formula and the pointwise control (207) yield ṽ (x) ≥

T (µ N, ω) r β-(γ)-1 G (T (r x), y) u 2 (s)-1 (y) |y| s dy ≥ ω r β-(γ)-1 G (T (r x), T (µ N, y))µ n N, u (T (µ N, y)) 2 (s)-1 |µ N, y| s dy ≥ ω r β-(γ)-1 r |x| µ N, |y| β-(γ) K (x, y)µ n-2 2 N, ũi, (y) 2 (s)-1 |y| s dy ≥ ω r 2β-(γ)-n |x| β-(γ) x - µ N, r y -n x 1 y 1 µ n 2 -β-(γ) N,
ũi, (y) 2 (s)-1 |y| s dy with

K (x, y) = |r x -µ N, y| 2-n min 1, µ N, r x 1 y 1 |x - µ N,
r y| 2 Since r := √ µ N, , letting → 0, we get with the convergence (A4) of Proposition

2 that ṽ (x) ≥ ω r 2β-(γ)-n |x| β-(γ) x - µ N, r y -n x 1 y 1 µ n 2 -β-(γ) N, ũi, (y) 2 (s)-1 |y| s dy ≥ x 1 |x| β+(γ) ω ũi (y) 2 (s)-1
|y| s dy for all x ∈ R n -. Therefore, as one checks, A ≥ ω ũi(y)

2 (s)-1
|y| s dy > 0. This ends Step P9.3.

Step P9.4: We claim that

F 0 = ω n-1 n n 2 4 -γ • AB. (156) 
We prove the claim. The definition (142) reads

F 0 := R n -∩∂B1(0) (x, ν) |∇ṽ| 2 2 - γ 2 ṽ2 |x| 2 -x i ∂ i ṽ + n -2 2 ṽ ∂ ν ṽ dσ (157) 
For simplicity, we define the bilinear form

H δ (u, v) = R n -∩∂B δ (0) (x, ν) (∇u, ∇v) -γ uv |x| 2 -x i ∂ i u + n -2 2 u ∂ ν v -x i ∂ i v + n -2 2 v ∂ ν u dσ
As one checks,

F 0 = 1 2 H 1 (Av β+(γ) + Bv β-(γ) , Av β+(γ) + Bv β-(γ) ) = A 2 2 H 1 (v β+(γ) , v β+(γ) ) + ABH 1 (v β+(γ) , v β-(γ) ) + B 2 2 H 1 (v β-(γ) , v β-(γ) )
In full generality, we compute H δ (v α , v β ) for all α, β ∈ R and all δ > 0. As one checks, for any i = 1, ..., n, we have that

∂ i v α = δ i,1 -α x1xi |x| 2
|x| -α for all

x ∈ R n -. Moreover, for x ∈ ∂B δ (0), we have that

∂ ν v α = x |x| ∂ i v α .
Consequently, straightforward computations yield

x i ∂ i v α + n -2 2 v α ∂ ν v β = -(β -1) n 2 -α v α v β |x| and (x, ν) (∇v α , ∇v β ) - γ |x| 2 v α v β = |x| 1-α-β + (αβ -α -β -γ) v α v β |x|
and then

H δ (v α , v β ) = R n -∩∂B δ (0) |x| 1-α-β + n 2 (α + β) -n -αβ -γ v α v β |x| dσ
We have that

R n -∩∂B δ (0) |x| 1-α-β dσ = 1 2 B δ (0) |x| 1-α-β dσ = ω n-1 2 δ n-α-β and R n -∩∂B δ (0) v α v β |x| dσ = 1 2 B δ (0) x 2 1 |x| -α-β-1 dσ = 1 2n B δ (0) |x| -α-β+1 dσ = ω n-1 2n δ n-α-β
Plugging all these identities together yields

H δ (v α , v β ) = ω n-1 2n δ n-α-β n 2 (α + β) -αβ -γ .
Since β + (γ), β -(γ) are solutions to X 2 -nX + γ = 0, we get that

H δ (v β-(γ) , v β-(γ) ) = H δ (v β+(γ) , v β+(γ) ) = 0. Since β + (γ) + β -(γ) = n and β + (γ)β -(γ) = γ, we get that H δ (v β-(γ) , v β+(γ) ) = ω n-1 n n 2 4 -γ .
Plugging all these results together yields (156). This ends Step P9.4.

These substeps end the proof of Step P9.

Step P10. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

We assume that blow-up occurs. We assume that β + (γ) -β -(γ) < 2 and u > 0 for all > 0. Then u 0 ≡ 0.

Proof of

Step P10: We claim that, as → 0, 131) and the control (102) yield that

T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ = o µ β + (γ)-β -(γ) 2 N, when β + (γ)-β -(γ) < 2 (158) Indeed, if β + (γ) -β -(γ) > 1, the claim follows from (127) and 1 > β+(γ)-β-(γ) 2 . If now β + (γ) -β -(γ) < 1, then (
T ∂R n -∩Br (0)\B k 2 1, (0) 
(x, ν) |∇u | 2 2 dσ ≤ C ∂R n -∩Br (0) |x| 2 N i=1 µ β+(γ)-β-(γ) i, |x| 2β+(γ) dx + dx |x| 2β-(γ) dσ ≤ C N i=1 µ β+(γ)-β-(γ) i, r n-1-2(β+(γ)-1) + Cr β+(γ)-β-(γ)+1 = o(µ β + (γ)-β -(γ) 2 N,
) as → 0. The limit case β + (γ) -β -(γ) = 1 is similar. This proves the claim.

Plugging (115), ( 121), (141), ( 143) and (158) into the Pohozaev identity (112), we get

p 2 (s) n -s 2 (s)    N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1)    = -(F 0 + o(1)) µ β + (γ)-β -(γ) 2 N, (159) 
as → 0, where F 0 is as in (157). Therefore F 0 ≤ 0. Since u > 0, it then follows from (156) of Step P9 that u 0 ≡ 0. This proves Step P10.

Proof of the sharp blow-up rates

We now prove the sharp blow-up rates claimed in Propositions 5 and 6. We start with the case when β + (γ) -β -(γ) = 1. As a preliminary estimate, we claim that

p 2 (s) n -s 2 (s) -p    N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1)    = T ∂R n -∩Br (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ -(F 0 + o(1)) µ β + (γ)-β -(γ) 2 N, (160) 
as → 0, where F 0 is as in (142); and, when u 0 ≡ 0, we claim that

p 2 (s) n -s 2 (s) -p    N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1)    = T ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ -(F δ0 + o(1)) µ β+(γ)-β-(γ) N, + o(µ N, ) when β+(γ) -β-(γ) ≥ 2 + O(µ β+(γ)-β-(γ) N,
)

when β+(γ) -β-(γ) < 2 , (161) 
where F δ0 is as in (150). We prove the claim. Collecting the first estimate of Step P2, (121), ( 141) and (143) of the terms of the Pohozaev identity (112) gives (160). Similarly, the second estimate of Step P2, (122), ( 148) and (149) of the terms of the Pohozaev identity (113) gives (161).

8.1. Proof of the sharp blow-up rates when β + (γ) -β -(γ) = 1. We first assume u > 0 and β + (γ) -β -(γ) < 1.

Step P11. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and (22) hold.

We assume that blow-up occurs. We assume that u > 0 and β + (γ) -β -(γ) < 1.

Then (109) holds, that is

lim →0 p µ β+(γ)-β-(γ) N, = - ωn-12 (s) 2 n n 2 4 -γ A 2 (n -s) N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s) |x| s dx • m γ,h (Ω) (162) 
for some A > 0, where m γ,h (Ω) is the boundary mass.

Proof of Step P11: It follows from

Step P10 that u 0 ≡ 0.

Step P11:1: We now claim that

p 2 (s) n -s 2 (s)    N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1)    = µ β+(γ)-β-(γ) N, (M δ0 + o(1))
where

M δ0 := - T (R n -∩B δ 0 (0)) h 0 (x) + (∇h 0 , x) 2 ū2 dx -F δ0 + T (∂R n -∩B δ 0 (0)) (x, ν) |∇ū| 2 2 dσ, (163) 
and F δ0 is as in (150) and ū is as in (146). Indeed, the Pohozaev identity (112), the convergence (145), ( 147), ( 146) and

β + (γ)- β -(γ) < 1 yield T R n -∩B δ 0 (0)\B k 3 1, (0) 
h (x) + (∇h , x) 2 u 2 dx (164) = µ β+(γ)-β-(γ) N, T (R n -∩B δ 0 (0)) h 0 (x) + (∇h 0 , x) 2 ū2 dx + o(1)
With u 0 ≡ 0 and the control (102), we get that |∇u (x)| ≤ Cµ

β + (γ)-β -(γ) 2 N,
|x| -β+(γ) for all > 0 and x ∈ Ω. Therefore, with (145) and ( 146), we get that

T ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
(x, ν) |∇u | 2 2 dσ = µ β+(γ)-β-(γ) N, T (∂R n -∩B δ 0 (0)) (x, ν) |∇ū| 2 2 dσ + o(1) (165) 
as → 0. Plugging (143), ( 164) and ( 165) into (113), we get (163). This proves the claim and ends Step P11.1. We fix δ < δ . Taking U := T (R n -∩ B δ (0) \ B δ (0)), K = 0 and u = ū in (196), and using (146), we get that M δ is independent of the choice of δ > 0 small enough.

Step P11.2: We claim that ū > 0. We prove the claim. Since ū ≥ 0 is a solution to (146), it is enough to prove that ū ≡ 0. We argue as in the proof of Step P9. We fix x ∈ Ω. Green's identity andu > 0 yield

u (x) = µ -(β+(γ)-β-(γ))/2 N, Ω G (x, y) u (y) 2 (s)-1-p |y| s dy ≥ µ -(β+(γ)-β-(γ))/2 N, A G (x, y) u (y) 2 (s)-1-p |y| s dy ≥ Cµ n-s-(β+(γ)-β-(γ))/2 N, A G (x, T (µ N, y)) u (T (µ N, y)) 2 (s)-1-p |y| s dy,
where

A := T (R n -∩ B 2µ N, (0) \ B µ N, (0)), A := R n -∩ B 2 (0) \ B 1 (0)
. With the pointwise control (207), we get

u (x) ≥ C A |x| |y| β-(γ) |x -T (µ N, y)| 2-n d(x, ∂Ω)|y 1 | |x -T (µ N, y)| 2 u ,i (y) 2 (s)-1-p |y| s dy
where u ,i is as in Proposition 2. Letting → 0 and using the convergence (A4) of Proposition 2, we get that ū(x) ≥ C d(x, ∂Ω) |x| β+(γ) for all x ∈ Ω.

And then ū > 0 in Ω. This proves the claim and Step P11.2.

We fix r 0 > 0 and η ∈ C ∞ (R n ) such that η(x) = 1 in B r0 (0) and η(x) = 0 in R n \ B 2r0 (0). It then follows from [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF][START_REF]Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions[END_REF] that, for r 0 > 0 small enough, there exists

A > 0 and β ∈ H 1 0 (Ω) such that ū(x) = A η(x)d(x, ∂Ω) |x| β+(γ) + β(x) for all x ∈ Ω with β(x) = m γ,h (Ω) η(x)d(x, ∂Ω) |x| β-(γ) + o η(x)d(x, ∂Ω) |x| β-(γ) as → 0.
Here, m γ,h (Ω) is the boundary mass.

Step P11.3: We claim that

lim δ→0 M δ = - ω n-1 n n 2 4 -γ A 2 • m γ,h (Ω) (166) 
We prove the claim. Since ū is a solution to (146), it follows from standard elliptic theory that there exists C > 0 such that ū(x) + |x||∇ū(x)| ≤ C|x| 1-β+(γ) for all x ∈ Ω. Therefore, since

β + (γ) -β -(γ) < 1, we get that lim δ→0 T (R n -∩B δ (0)) ū2 dx + T (R n -∩∂B δ (0)) ū2 dσ + T (∂R n -∩B δ (0)) |x| 2 |∇ū| 2 dσ = 0.
Therefore,

M δ = - A 2 2 Hδ (v β+(γ) + vβ-(γ) , vβ+(γ) + vβ-(γ) ) + o(1)
as δ → 0, where

Hδ (u, v) := T (R n -∩∂B δ 0 (0)) (x, ν) (∇u, ∇v) - γ |x| 2 uv -x i ∂ i u + n -2 2 u ∂ ν v -x i ∂ i v + n -2 2 v ∂ ν u dσ and vβ+(γ) (x) := η(x)d(x, ∂Ω) |x| β+(γ)
and vβ-(γ) (x) = β(x) for all x ∈ Ω.

We then get that

M δ = - A 2 2 Hδ (v β+(γ) , vβ+(γ) ) -A 2 Hδ (v β+(γ) , vβ-(γ) ) - A 2 2 Hδ (v β-(γ) , vβ-(γ) ) + o(1)
as δ → 0. For any x ∈ R n -∩ B δ (0), with the chart T and the definition of β, we get

vβ+(γ) (T (x)) := |x 1 | |x| β+(γ) + O(|x| 2-β+(γ) ) = v β+(γ) + O(|x| 2-β+(γ) ) and vβ-(γ) (T (x)) = m γ,h (Ω) |x 1 | |x| β-(γ) + O(|x| 2-β-(γ) ) = m • v β-(γ) + O(|x| 2-β-(γ) ).
Moreover, elliptic theory yields

∇(v β+(γ) • T (x)) := ∇v β+(γ) + O(|x| 1-β+(γ) ). and ∇(v β-(γ) • T (x)) = m γ,h (Ω) • ∇v β-(γ) + O(|x| 1-β-(γ) ) for all x ∈ R n -∩ B δ (0), where v β is defined in the proof of Step P9. Since β + (γ) -β -(γ) < 1 and β + (γ) + β -(γ) = n,
we get with a change of variable that as δ → 0,

Hδ (v β+(γ) , vβ+(γ) ) = H δ (v β+(γ) , v β+(γ) ) + O(δ 1-(β+(γ)-β-(γ)) ) Hδ (v β+(γ) , vβ-(γ) ) = m γ,h (Ω) • H δ (v β+(γ) , v β-(γ) ) + O(δ 1-(β+(γ)-β-(γ)) ) Hδ (v β-(γ) , vβ-(γ) ) = O(δ n-2β-(γ) ).
Using the computations performed in the proof of Step P9, we then get (166). This proves the claim and ends Step P11.3.

End of the proof of

Step P11: Since M δ is independent of δ small, we then get that

M δ0 = -ωn-1 n n 2
4 -γ A 2 m γ,h (Ω). Putting this estimate in (163), we then get (162). This end Step P11.

Proof of Proposition 5 when β + (γ) -β -(γ) > 2: Plugging (127) into (160) and using that β

+ (γ) -β -(γ) > 2, we obtain lim →0 p µ N, = n -s (n -2) 2 1 t n-1 2 (s)-2 N ∂R n - II 0 (x, x)|∇ũ N | 2 dσ N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s) |x| s dx .
This yields (105) when

β + (γ) -β -(γ) > 2.
Proof of Proposition 5 when β + (γ) -β -(γ) > 1 and u 0 ≡ 0. Plugging (128) into (161) and using that β + (γ) -β -(γ) > 1, we obtain also (105).

Proof of Proposition 6 when β + (γ) -β -(γ) > 1. Since u > 0, we get that ũN > 0. Therefore, it follows from Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that ūN ( Step P12. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold.

x 1 , x ) = ŪN (x 1 , |x |) for all (x 1 , x ) ∈ (0, +∞) × R n-1 . Due to this symmetry, when β + (γ) -β -(γ) > 1, we get that ∂R n - II 0 (x, x)|∇ũ N | 2 dσ = n-1 i,j=1 ∂R n - II 0,ij x i x j |∇ũ N | 2 dσ (167) = n-1 i=1 II 0,ii n -1 ∂R n - |x| 2 |∇ũ N | 2 dσ = ∂R n - |x| 2 |∇ũ N | 2 dσ n -1 H(0). When β + (γ) -β -(γ) > 2 or {β + (γ) -β -(γ) =
We assume that blow-up occurs. We assume that u > 0 and u 0 ≡ 0. We fix a family of parameters (λ ) >0 ∈ (0, +∞) such that

lim →0 λ = 0 and lim →0 µ N, λ = 0. ( 168 
)
Then, for all x ∈ R n -, x = 0, we have that

lim →0 λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, u (T (λ x)) = K • |x 1 | |x| β+(γ) ,
where T is as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF],

K := t - β + (γ)-1 2 (s)-2 N L γ,Ω R n - |y 1 | |y| β-(γ) ũ2 (s)-1 N (y) |y| s dy > 0 ( 169 
)
and L γ,Ω > 0 is given by (210). Moreover, this limit holds in

C 2 loc (R n -\ {0}). Proof of Step P12: We define w (x) := λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, u (T (λ x))
for all x ∈ R n -∩ λ -1 U . As in the proof of (141), for any i, j = 1, ..., n, we let (g ) ij = (∂ i T (r x), ∂ j T (r x)), where (•, •) denotes the Euclidean scalar product on R n . We consider g as a metric on R n . We let ∆ g = div g (∇), the Laplace-Beltrami operator with respect to the metric g. From (E ) it follows that for all > 0, we have that

     -∆ g w - γ | T (λ x) λ | 2 w -λ 2 h • T (λ x)w = s w 2 (s)-1-p | T (λ x) λ | s in R n -∩ λ -1 U w > 0 in R n -∩ λ -1 U w = 0 on (∂R n -\ {0}) ∩ λ -1 U. With s :=    µ β + (γ)-β -(γ) 2 N, λ β+(γ)-1    2 (s)-2-p λ 2-s .
Since µ p N, → t N > 0 (see (A9) of Proposition 2) and

(β + (γ) -1)(2 (s) -2) -(2 -s) = (2 (s) -2) β + (γ) -β -(γ) 2 ,
then using the hypothesis (168), we get that

   µ β + (γ)-β -(γ) 2 N, λ β+(γ)-1    2 (s)-2-p λ 2-s ≤ C µ N, λ (β+(γ)-1)(2 (s)-2-p )-(2-s) = o(1)
as → 0. Since u 0 ≡ 0, it follows from the pointwise control (60) that there exists [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] (see also Pinchover-Tintarev [START_REF] Pinchover | Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality[END_REF]) that there exists Λ ≥ 0 such that w(x) = Λ|x 1 | • |x| -β+(γ) for all x ∈ R n -. We are left with proving that Λ = K defined in (169). We fix x ∈ R n -. Green's representation formula yields

C > 0 such that 0 < w (x) ≤ C|x 1 | • |x| -β+(γ) for all x ∈ R n -∩ λ -1 U . It then follows from standard elliptic theory that there exists w ∈ C 2 (R n -\ {0}) such that lim →0 w = w in C 2 loc (R n -\ {0}) (170) with    -∆w -γ |x| 2 w = 0 in R n - 0 ≤ w(x) ≤ C|x 1 | • |x| -β+(γ) in R n - w = 0 on ∂R n -\ {0}. It follows from Lemma 4.2 in Ghoussoub-Robert
w (x) = Ω λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, G (T (λ x), y) u (y) 2 (s)-1-p |y| s dy = T (R n -∩(B Rk N, (0)\B δk N, (0)) + Ω\T (R n -∩(B Rk N, (0)\B δk N, (0)) (171) 
Step P12.1: We estimate the first term of the right-hand-side. Since D 0 T = I R n , a change of variable yields

T (R n -∩(B Rk N, (0)\B δk N, (0)) λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, G (T (λ x), y) u (y) 2 (s)-1-p |y| s dy = s (1) R n -∩(B R (0)\B δ (0)) G (T (λ x), T (k N, z)) ũN, (z) 2 (s)-1-p |z| s (1 + o(1)) dz with s (1) := λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, k n-s N, µ -n-2 2 (2 (s)-1-p ) N,
It follows from (210) that for any z ∈ R n -, we have that

G (T (λ x), T (k N, z)) = (L γ,Ω + o(1)) λ |x 1 | λ β+(γ) |x| β+(γ) • k N, |y 1 | k β-(γ) N, |z| β-(γ)
, and that the convergence is uniform with repect to z ∈ R n -∩ (B R (0) \ B δ (0)). Plugging this estimate in the above equality, using that k N, = µ 1-p /(2 (s)-2) N, , µ p N, → t N > 0 and the convergence of ũN, to ũN (see Proposition 2), we get that

T (R n -∩(B Rk N, (0)\B δk N, (0)) λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, G (T (λ x), y) u (y) 2 (s)-1-p |y| s dy = L γ,Ω |x 1 | |x| β+(γ) t - β + (γ)-1 2 (s)-2 N R n -∩(B R (0)\B δ (0)) |y 1 | |y| β-(γ) ũN (z) 2 (s)-1 |z| s dz + o(1) as → 0. Therefore, lim R→+∞,δ→0 lim →0 T (R n -∩(B Rk N, (0)\B δk N, (0)) λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, G (T (λ x), y) u (y) 2 (s)-1 |y| s dy = K |x 1 | |x| β+(γ) ( 172 
)
where K is as in (169).

Step P12.2: With the control (207) on the Green's function and the pointwise control (60) on u , we get that

Ω\T (R n -∩(B Rk N, (0)\B δk N, (0)) λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, G (T (λ x), y) u (y) 2 (s)-1-p |y| s dy ≤ N -1 i=1 A i, + B (R) + C (δ) ( 173 
)
where

A i, := C λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, B R 0 (0) (x, y) β-(γ) r (x, y) |T (λ x) -y| n-2 |y| s   µ β + (γ)-β -(γ) 2 i, |y| µ β+(γ)-β-(γ) i, |y| β-(γ) + |y| β+(γ)   2 (s)-1 dy B (R) := C λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, B R 0 (0)\B Rk N, (0) (x, y) β-(γ) r (x, y) |T (λ x) -y| n-2 µ β + (γ)-β -(γ) 2
(2 (s)-1) N, |y| (β+(γ)-1)(2 (s)-1)+s dy C (δ) := C(x) λ

β+(γ)-1+2-n+β-(γ)-1 µ β + (γ)-β -(γ) 2 •2 (s) N, B δk N, (0) dy |y| (β-(γ)-1)(2 (s)-1)+s+β-(γ)-1
where (x, y) := max{λ |x|,|y|} min{λ |x|,|y|} , and r (x, y) = min 1,

λ |x1|•|y| |T (λ x)-y| 2 .
Step P12.3. We first estimate C (δ). Since

n > s + 2 (s)(β -(γ) -1) (this is a consequence of β -(γ) < n/2), straightforward computations yield C (δ) ≤ C(x)δ 2 (s) 2 (β+(γ)-β-(γ)) ,
and therefore lim

δ→0 lim →0 C (δ) = 0. ( 174 
)
Step P12.4. We estimate B (R). We split the integral as 

B (R) = Rk ,N <|y|<
+ (γ) -1)(2 (s) -1) + β -(γ) -1) = - 2 (s) -2 2 (β + (γ) -β -(γ)) < 0, straightforward computations yield Rk N, <|y|< λ |x| 2 I (y) dy ≤ C(x) λ β+(γ)-1+β-(γ)-1+2-n µ β + (γ)-β -(γ) 2 N, Rk N, <|y|< λ |x| 2 µ β + (γ)-β -(γ) 2 (2 (s)-1) N, |y| (β+(γ)-1)(2 (s)-1)+s+β-(γ)-1 dy ≤ C(x)R -2 (s)-2 2 (β+(γ)-β-(γ)) ,
For the next term, a change of variable yields

λ |x| 2 <|y|<2λ |x| I (y) dy ≤ C(x) λ β+(γ)-1 µ β + (γ)-β -(γ) 2 N, λ |x| 2 <|y|<2λ |x| |T (λ x) -y| 2-n µ β + (γ)-β -(γ) 2 (2 (s)-1) N, |y| (β+(γ)-1)(2 (s)-1)+s dy ≤ C(x) µ N, λ 2 (s)-2 2 (β+(γ)-β-(γ)) |x| 2 <|z|<2|x| |x -z| 2-n = o(1) as → 0. Finally, since β + (γ) + β -(γ) = n and n -s -(β + (γ) -1)2 (s) = 2 (s) 2 (β + (γ) -β -(γ))
, we estimate the last term

|y|>2λ |x| I (y) dy ≤ C(x)µ 2 (s)-2 2 (β+(γ)-β-(γ)) N, λ β+(γ)-β-(γ) |y|>2λ |x| |y| β-(γ)+1-n-s dy |y| (β+(γ)-1)(2 (s)-1) ≤ C(x) µ N, λ 2 (s)-2 2 (β+(γ)-β-(γ)) = o(1)
as → 0. All these inequalities yield lim

R→+∞ lim →0 B (R) = 0. ( 175 
)
Step P12.5. We fix i ∈ {1, ..., N -1} and estimate A i, . As above, we split the integral as

A i, = |y|< λ |x| 2 J i, (y) dy + λ |x| 2 <|y|<2λ |x| J i, (y) dy + |y|>2λ |x| J i, (y) dy,
where J i, is the integrand. Since µ i, ≤ µ N, , as one checks, the second and the third integral of the right-hand-side are controled from above respectively by J i, (y) dy

≤ C(x) λ β+(γ)-1+β-(γ)+2-n-1 µ β + (γ)-β -(γ) 2 N, × |y|< λ |x| 2   µ β + (γ)-β -(γ) 2 i, |y| µ β+(γ)-β-(γ) i, |y| β-(γ) + |y| β+(γ)   2 (s)-1 dy |y| s+β-(γ)-1 ≤ C(x) µ 1+n-s-β-(γ)-n-2 2 (2 (s)-1) i, µ β + (γ)-β -(γ) 2 N, × |z|< λ |x| 2µ i, 1 |z| (β-(γ)-1)+s |z| |z| β-(γ) + |z| β+(γ) 2 (s)-1 dz ≤ C(x) µ i, µ N, β + (γ)-β -(γ) 2 since n > s + (2 (s)(β -(γ) -1)) and n < (β -(γ) -1) + s + (2 (s) -1)(β + (γ) -1). Since µ i, = o(µ N, ) as → 0, we get that lim →0 A i, = 0. ( 176 
)
Step P12.6: Plugging (172), ( 174), ( 175) and ( 176) into ( 171) and (173) yields lim →0 w (x) = K |x1| |x| β + (γ) for all x ∈ R n -. With (170), we then get that Λ = K. This proves Step P12. Now we can prove Proposition 6 when β + (γ) -β -(γ) = 1 in the case when u > 0.

Step P13. We let (u ), (h ) and (p ) be such that (E ), ( 15), ( 21) and ( 22) hold. We assume that blow-up occurs. We assume that u > 0 and

β + (γ) -β -(γ) = 1. Then u 0 ≡ 0 and p 2 (s) n -s 2 (s)    N i=1 1 t n-2 2 (s)-2 i R n - |ũ i | 2 (s) |x| s dx + o(1)    = K 2 ω n-2 H(0) 4(n -1) µ N, ln 1 µ N, + o µ N, ln 1 µ N, . (177) 
The case β + (γ) -β -(γ) = 1 of Proposition 6 is a consequence of Step P13.

Proof of

Step P13: First remark that since β + (γ) + β -(γ) = n, we then have that

β + (γ) = n + 1 2 and β -(γ) = n -1 2 .

It follows from

Step P10 that u 0 ≡ 0. We use (161) that writes

p 2 (s) n -s 2 (s) -p    N i=1 1 t n-2 2 (s)-2 i R n - |ũi| 2 (s) |x| s dx + o(1)    = T (x, ν) |∇u | 2 2 dσ+O (µN, ) . ( 178 
)
where

T := T ∂R n -∩ B δ0 (0) \ B k 3 1, (0) . It follows from (132) that T (x, ν) |∇u | 2 2 dσ = - 1 4 T n p,q=2 x p x q ∂ pq T 0 (0)|∇(u • T )| 2 T Eucl (1 + O(|x|) dσ +O    ∂R n -∩B δ 0 (0) |x| 3 |∇(u • T )| 2 T Eucl dσ    = - 1 4 ∂R n -∩B δ 0 (0)\B k 3 1, (0) 
n p,q=2

x p x q ∂ pq T 0 (0)|∇(u • T )| 2 dσ +O    ∂R n -∩B δ 0 (0) |x| 3 |∇(u • T )| 2 dσ    . (179) 
With the control (102) and

β + (γ) -β -(γ) = 1, we get that ∂R n -∩B δ 0 (0) |x| 3 |∇(u • T )| 2 dσ ≤ C N i=1 ∂R n -∩B δ 0 (0) |x| 3 µ β+(γ)-β-(γ) i, |x| 2β+(γ) dσ ≤ Cµ β+(γ)-β-(γ) N, = Cµ N, (180) 
We need an intermediate result. We let (s ) , (t ) ∈ [0, +∞) such that 0 ≤ s ≤ t , and µ ,N = o(t ) as → 0. We claim that

∂R n -∩(Bt (0)\Bs (0)) |x| 2 |∇(u • T )| 2 dσ ≤ C i µ i, ln t max{s , µ i, } (181) 
Indeed, with the pointwise control (102), u 0 ≡ 0 and 2β + (γ) = n + 1, we get that

∂R n -∩(Bt (0)\Bs (0)) |x| 2 |∇(u • T )| 2 dσ ≤ C i=1,...,N µ β+(γ)-β-(γ) i, t s r 2+(n-1)-1 dr µ 2(β+(γ)-β-(γ)) i, r 2β-(γ) + r 2β+(γ) ≤ C i=1,...,N µ i, t µ i, s µ i, r 2β+(γ)-1 dr r 2β-(γ) + r 2β+(γ)
Distinguishing the cases s ≤ µ i, and s ≥ µ i, , we get (181). This proves the claim.

We define θ :=

1 √ | ln µ N, |
, α := µ θ N, and β := µ 1-θ N, . As one checks, we have that

µ ,N = o(β ) β = o(α ) α = o(1)
ln α β ln 1 µ N, ln β µ N, = o ln 1 µ N, ln α = o(ln µ N, ) (182) 
as → 0. It then follows from (181) and the properties (182) that

             ∂R n -∩(B δ 0 (0)\Bα (0)) |x| 2 |∇(u • T )| 2 = o µ N, ln 1 µ N, ; ∂R n -∩B β (0) |x| 2 |∇(u • T )| 2 = o µ N, ln 1 µ N,              (183) Since µ N, = o(β ) and α = o(1) as → 0, it follows from Proposition P12 that lim →0 sup x∈∂R n -∩Bα (0)\B β (0) |x| 2β+(γ) |∇(u • T )| 2 (x) µ β+(γ)-β-(γ) N, -K 2 = 0 ( 184 
)
We fix i, j ∈ {2, ..., n}. It follows from (184) and

β + (γ) -β -(γ) = 1 that ∂R n -∩Bα (0)\B β (0) x i x j ∂ ij T 0 (0)|∇(u • T )| 2 dx = ∂R n -∩Bα (0)\B β (0) µ N, x i x j ∂ ij T 0 (0) |x| 2β+(γ) K 2 dx + ∂R n -∩Bα (0)\B β (0) µ N, x i x j ∂ ij T 0 (0) |x| 2β+(γ) |x| 2β+(γ) |∇(u • T )| 2 µ N, -K 2 dx = ∂R n -∩Bα (0)\B β (0) µ N, x i x j ∂ ij T 0 (0) |x| 2β+(γ) K 2 dx +o ∂R n -∩Bα (0)\B β (0) µ N, |x| 2 |x| 2β+(γ) dx (185)
Independently, with a change of variable and 2β + (γ) = n + 1, we get that

∂R n -∩Bα (0)\B β (0) x i x j ∂ ij T 0 (0) |x| 2β+(γ) dx = ∂ ij T 0 (0) α β dr r S n-2 σ i σ j dσ = δ ij ∂ ij T 0 (0) ω n-2 n -1 ln α β ,
where ω n-2 is the volume of the round (n -2)-unit sphere. This equality, (185) and the properties (182) yield

∂R n -∩Bα (0)\B β (0) x i x j δ ij ∂ ij T 0 (0)|∇(u • T )| 2 dx = δ ij ∂ ij T 0 (0) K 2 ω n-2 n -1 µ N, ln 1 µ N, + o µ N, ln 1 µ N, . (186) 
Therefore, plugging (180), ( 183) and ( 186) into (179) yields

T ∂R n -∩B δ 0 (0)\B k 3 1, (0) (x, ν) |∇u | 2 2 dσ = - K 2 ω n-2 n i=2 ∂ ii T 0 (0) 4(n -1) µ N, ln 1 µ N, + o µ N, ln 1 µ N, = K 2 ω n-2 n i=2 II 0,ii 4(n -1) µ N, ln 1 µ N, + o µ N, ln 1 µ N, = K 2 ω n-2 H(0) 4(n -1) µ N, ln 1 µ N, + o µ N, ln 1 µ N, .
Plugging this latest estimate into (178) yields (177). This ends the proof of Step P13.

Proof of multiplicity

Proof of Theorem 3: We fix γ < n 2 /4 and h ∈ C 1 (Ω) such that -∆ -γ|x| -2 -h is coercive. For each 2 < p ≤ 2 (s), we consider the C 2 -functional

I p,γ (u) = 1 2 Ω |∇u| 2 dx - γ 2 |u| 2 |x| 2 -hu 2 dx - 1 p Ω |u| p |x| s dx on H 2 1,0 ( 
Ω), whose critical points are the weak solutions of

-∆u -γ |x| 2 u -hu = |u| p-2 u |x| s on Ω u = 0 on ∂Ω. ( 187 
)
For a fixed u ∈ H 2 1,0 (Ω), u ≡ 0, we have that

I p,γ (λu) = λ 2 2 Ω |∇u| 2 dx - γλ 2 2 Ω |u| 2 |x| 2 dx -λ 2 Ω hu 2 dx - λ p p Ω |u| p |x| s dx
Then, since coercivity holds, we have that that lim λ→∞ I p,γ (λu) = -∞, which means that for each finite dimensional subspace

E k ⊂ E := H 2 1,0 (Ω), there exists R k > 0 such that sup{I p,γ (u); u ∈ E k , u H 2 1 > R k } < 0 (188) when p → 2 (s)(s). Let (E k ) ∞ k=1 be an increasing sequence of subspaces of H 2 1,0 (Ω) such that dim E k = k and ∪ ∞ k=1 E k = E := H 2 1,0 ( 
Ω) and define the min-max values:

c p,k = inf g∈H k sup x∈E k I p,γ (g(x)),
where Proof: (1) Coercivity yields the existence of a 0 > 0 such that

H k = {g ∈ C(E, E); g is odd and g(v) = v for v > R k for some R k > 0}.
Ω |∇u| 2 - γ |x| 2 u 2 -hu 2 dx ≥ a 0 Ω |∇u| 2 dx for all u ∈ H 2 1,0 (Ω). ( 189 
)
With (189), the Hardy and the Hardy-Sobolev inequality [START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF], there exists C > 0 and α > 0 such that

I p,γ (u) ≥ a 0 2 ∇u 2 2 -C ∇u p 2 = ∇u 2 2 a 0 2 -C ∇u p-2 2 ≥ α > 0
for all u ∈ H 2 1,0 (Ω) such that provided ∇u 2 = ρ for some ρ > 0 small enough. Then the sphere S ρ = {u ∈ E; u H 2 1,0 (Ω) = ρ} intersects every image g(E k ) by an odd continuous function g. It follows that

c p,k ≥ inf{I p,γ (u); u ∈ S ρ } ≥ α > 0.
In view of (188), it follows that for each g ∈ H k , we have that sup

x∈E k I pi,γ (g(x)) = sup x∈D k I p,γ (g(x))
where D k denotes the ball in E k of radius R k . Consider now a sequence p i → 2 (s) and note first that for each u ∈ E, we have that I pi,γ (u) → I 2 (s),γ (u). Since g(D k ) is compact and the family of functionals (I p,γ ) p is equicontinuous, it follows that sup On the other hand, the function f (r) = 1 p r p -1 2 (s) r 2 (s) attains its maximum on [0, +∞) at r = 1 and therefore f (r) ≤ 1 p -1 2 (s) for all r > 0. It follows

x∈E k I p,γ (g(x)) → sup
I 2 (s),γ (u) = I p,γ (u) + Ω 1 |x| s 1 p |u(x)| p - 1 2 (s) |u(x)| 2 (s) dx ≤ I p,γ (u) + Ω 1 |x| s 1 p - 1 2 (s) dx from which follows that c k ≤ lim inf i∈N c pi,k
, and claim (1) is proved.

If now p < 2 (s), we are in the subcritical case, that is we have compactness in the Sobolev embedding H 2 1,0 (Ω) → L p (Ω; |x| -s dx) and therefore I p,γ has the Palais-Smale condition. It is then standard to find critical points u p,k for I p,γ at each level c p,k (see for example the book [START_REF] Ghoussoub | Duality and Perturbation Methods in Critical Point Theory[END_REF]). Consider now the functional

I p,0 (u) = 1 2 Ω |∇u| 2 dx - 1 p Ω |u| p |x| s dx
and its critical values

c 0 p,k = inf g∈H k sup x∈E k I p,0 (g(x)).
It has been shown in [START_REF]Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] that (1), ( 2) and ( 3) of Proposition 7 hold, with c 0 p,k and c 0 k replacing c p,k and c k respectively. In particular, lim

k→∞ c 0 k = lim k→∞ c 0 2 (s),k = +∞.
On the other hand, with the coercivity (189), we have that

I p,γ (u) ≥ a p p-2 0 I p,0 (v) for every u ∈ H 2 1,0 (Ω),
where v = a To complete the proof of Theorem 3, notice that since for each k, we have lim pi→2 (s)

I pi,γ (u pi,k ) = lim pi→2 (s) c pi,k = c k ,
it follows that the sequence (u pi,k ) i is uniformly bounded in H 2 1,0 (Ω). Moreover, since I pi (u pi,k ) = 0, it follows from the compactness result that by letting p i → 2 (s), we get a solution u k of (187) in such a way that

I 2 (s)(s),γ (u k ) = lim p→2 (s) I p,γ (u p,k ) = lim p→2 (s) c p,k = c k .
Since the latter sequence goes to infinity, it follows that (187) has an infinite number of critical levels.

Proof of the non-existence result

Proof of Theorem 2: We argue by contradiction. We fix γ < γ H (Ω) ≤ n 2 4 and Λ > 0. We assume that there is a family (u

) >0 ∈ H 2 1,0 (Ω) of solutions to      -∆u -γ u |x| 2 -h u = u 2 (s)-1 |x| s in Ω, u > 0 in Ω u = 0 on ∂Ω \ {0} (190) 
with ∇u 2 ≤ Λ and lim →0 h = h 0 in C 1 (Ω).

We claim that (u ) >0 is not pre-compact in H 2 1,0 (Ω). Otherwise, up to extraction, there would be u 0 ∈ H 2 1,0 (Ω), u 0 ≥ 0, such that u → u 0 in H 2 1,0 (Ω) as → 0. Passing to the limit in the equation, we get that u 0 ≥ 0 and

     -∆u 0 -γ u0 |x| 2 -h 0 u 0 = u 2 (s)-1 0 |x| s in Ω, u 0 ≥ 0 in Ω u 0 = 0 on ∂Ω \ {0}. (191) 
The coercivity of -∆u 0 -γ|x| -2 -h 0 and the convergence of (h ) yield

C Ω u 2 (s) |x| s dx 2/2 (s) ≤ Ω |∇u | 2 dx - Ω γ |x| 2 + h u 2 dx ≤ Ω u 2 (s)
|x| s dx, for small > 0, and then, since u > 0, there exists c 0 > 0 such that

Ω u 2 (s)
|x| s dx ≥ c 0 for all > 0. Passing to the limit yields u 0 ≡ 0. Therefore, u 0 > 0 is a solution to (190) with = 0. This is not possible simply by the hypothesis.

The family (u ) is not pre-compact and it therefore blows-up with bounded energy. Let u 0 ∈ H 2 1,0 (Ω) be its weak limit, which is necessarily a solution to (191), and hence must be the trivial solution u 0 ≡ 0. Proposition 6 then yields that either

β + (γ) -β -(γ) ≥ 1 and therefore H(0) = 0, ( 192 
) or β + (γ) -β -(γ) < 1 and therefore m γ,h0 (Ω) = 0. ( 193 
)
It now suffices to note that when γ ≤ (n 2 -1)/4 then β + (γ) -β -(γ) ≥ 1 and the above contradicts our assumption that H(0) = 0. Similarly, if γ > (n 2 -1)/4, then β + (γ) -β -(γ) < 1 and the above contradicts our assumption that the mass is non-zero. In either case, this means that no such a family of positive solutions (u ) >0 exist.

Proof of Corollary 1: First note that if h 0 satisfies

h 0 (x) + 1 2 (∇h 0 (x), x) ≤ 0 for all x ∈ Ω, (194) 
then by differentiating for any x ∈ Ω, the function t → t 2 h 0 (tx) (which is well defined for t ∈ [0, 1] since Ω is starshaped), we get that h 0 ≤ 0. Therefore -∆ -γ|x| -2 -h 0 is coercive. Assume now there is a positive variational solution u 0 corresponding to h 0 , the Pohozaev identity (196) then gives

∂Ω (x, ν) (∂ ν u 0 ) 2 2 dσ - Ω h 0 + 1 2 (∇h 0 , x) u 2 0 dx = 0.
Hopf's strong comparison principle yields ∂ ν u 0 < 0. Since Ω is starshaped with respect to 0, we get that (x, ν) ≥ 0 on ∂Ω. Therefore, with (194), we get that (x, ν) = 0 for all x ∈ Ω, which is a contradiction since Ω is smooth and bounded.

If now γ ≤ (n 2 -1)/4, the result follows from Theorem 2 since we have assumed that H(0) = 0. If γ > (n 2 -1)/4, we use Theorem 7.1 in Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] to find K ∈ C 2 (Ω \ {0}) and A > 0 such that

   -∆K -γ |x| 2 K -h 0 K = 0 in Ω K > 0 in Ω K = 0 on ∂Ω \ {0}.
and such that

K(x) = A η(x)d(x, ∂Ω) |x| β+(γ) + β(x) for all x ∈ Ω, where η ∈ C ∞ c (R n ) and β ∈ H 2 1,0 ( 
Ω) are as in Step P11. We now apply the Pohozaev identity (196) to K on the domain U := Ω \ T (B δ (0)) for T as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]:

using that K 2 ∈ L 1 (Ω) and (•, ν)(∂ ν K) 2 ∈ L 1 (∂Ω) when β + (γ) -β -(γ) < 1, we get that ∂Ω (x, ν) (∂ ν K) 2 2 dσ - Ω h 0 + 1 2 (∇h 0 , x) K 2 dx = M δ
where M δ is defined in (163). With (166), we then get

∂Ω (x, ν) (∂ ν K) 2 2 dσ- Ω h 0 + 1 2 (∇h 0 , x) K 2 dx = - ω n-1 n n 2 4 -γ A 2 •m γ,h0 (Ω).
Since Ω is star-shaped and h 0 satisfies (194), it follows that m γ,h0 (Ω) < 0 and Theorem 2 then applies to complete our corollary.

11. Appendix A: The Pohozaev identity Proposition 8. Let U ⊂ R n be a smooth bounded domain and let u ∈ C 2 (U ) be a solution of

-∆u -γ u |x| 2 -hu = K |u| 2 (s)-2-p |x| s u on U . (195) 
Then, we have

- U h(x) + (∇h, x) 2 u 2 dx - p 2 (s) n -s 2 (s) -p U K |u| 2 (s)-p |x| s dx = ∂U F (x) dσ,
where

F (x) := (x, ν) |∇u| 2 2 - γ 2 
u 2 |x| 2 - h(x) 2 u 2 - K 2 (s) -p |u| 2 (s)-p |x| s -x i ∂ i u + n -2 2 u ∂ ν u.
Proof: For any y 0 ∈ R n , the classical Pohozaev identity yields

- U (x -y 0 ) i ∂ i u + n -2 2 u ∆u dx = ∂U (x -y 0 , ν) |∇u| 2 2 -(x -y 0 ) i ∂ i u + n -2 2 u ∂ ν u dσ,
where ν is the outer normal to the boundary ∂U .

One has for 1

≤ j ≤ n ∂ j |u| 2 (s)-p |x| s = -s x j |x| s+2 |u| 2 (s)-p + (2 (s) -p) |u| 2 (s)-2-p |x| s u∂ j u So (x -y 0 , ∇u) |u| 2 (s)-2-p |x| s u = 1 2 (s) -p (x -y 0 ) j ∂ j |u| 2 (s)-p |x| s + s 2 (s) -p |u| 2 (s)-p |x| s - s 2 (s) -p (x, y 0 ) |x| s+2 |u| 2 (s)-p .
Then integration by parts yields

U (x -y 0 , ∇u) |u| 2 (s)-2-p |x| s u dx = 1 2 (s) -p U (x -y 0 ) j ∂ j |u| 2 (s)-p |x| s dx + s 2 (s) -p U |u| 2 (s)-p |x| s dx - s 2 (s) -p U (x, y 0 ) |x| s+2 |u| 2 (s)-p dx = - n -s 2 (s) -p U |u| 2 (s)-p |x| s dx - s 2 (s) -p U (x, y 0 ) |x| s+2 |u| 2 (s)-p dx + 1 2 (s) -p ∂U (x -y 0 , ν) |u| 2 (s)-p |x| s dσ.
Similarly,

(x -y 0 , ∇u) u |x| 2 = 1 2 (x -y 0 ) j ∂ j u 2 |x| 2 + u 2 |x| 2 - (x, y 0 ) |x| 4 u 2 U (x -y 0 , ∇u) u |x| 2 dx = - n -2 2 U u 2 |x| 2 dx - U (x, y 0 ) |x| 4 u 2 dx + 1 2 ∂U (x -y 0 , ν) u 2 |x| 2 dσ and U (x -y 0 , ∇u) h(x)u dx = - n 2 U h(x)u 2 dx - 1 2 U (∇h, x -y 0 ) u 2 dx + 1 2 ∂U (x -y 0 , ν)h(x)u 2 dσ
Combining the above, we obtain for any K and any

y 0 ∈ R n , U (x -y 0 ) i ∂ i u + n -2 2 u -∆u -γ u |x| 2 -hu -K |u| 2 (s)-2-p |x| s u dx - U h(x)u 2 dx - 1 2 U (∇h, x -y 0 ) u 2 dx - p 2 (s) n -s 2 (s) -p U K |u| 2 (s)-p |x| s dx -γ U (x, y 0 ) |x| 4 u 2 dx - s 2 (s) -p U (x, y 0 ) |x| s+2 K|u| 2 (s)-p dx = ∂U (x -y 0 , ν) |∇u| 2 2 - γ 2 
u 2 |x| 2 - h(x) 2 u 2 - K 2 (s) -p |u| 2 (s)-p |x| s dσ - ∂U (x -y 0 ) i ∂ i u + n -2 2 u ∂ ν u dσ. (196) 
We conclude by taking y 0 = 0 and using that u satisfies (195) on U .

12. Appendix B: A continuity property of the first eigenvalue of Schrödinger operators

Lemma 3. Let Ω ⊂ R n , n ≥ 3, be a smooth bounded domain. Let (V k ) k : Ω → R
and V ∞ : Ω → R be measurable functions and let (x k ) k ∈ Ω be a sequence of points. We assume that i)

lim k→+∞ V k (x) = V ∞ (x) for a.e. x ∈ Ω, ii) There exists C > 0 such that |V k (x)| ≤ C|x -x k | -2 for all k ∈ N and x ∈ Ω. iii) lim k→+∞ x k = 0 ∈ ∂Ω.
iv) For some γ 0 < n 2 /4, there exists δ > 0 such that

|V k (x)| ≤ γ 0 |x -x k | -2 for all k ∈ N and x ∈ B δ (0) ∩ Ω. v) The first eigenvalue λ 1 (-∆ + V k ) is achieved for all k ∈ N. Then, lim k→+∞ λ 1 (-∆ + V k ) = λ 1 (-∆ + V ∞ ). (197) 
Proof: We first claim that (λ 1 (-∆+V k )) k is bounded. Indeed, fix ϕ ∈ H 2 1,0 (Ω)\{0} and use the Hardy inequality to write for all k ∈ N,

λ 1 (-∆+V k ) ≤ Ω (|∇ϕ| 2 + V k ϕ 2 ) dx Ω ϕ 2 dx ≤ Ω (|∇ϕ| 2 + C|x -x k | -2 ϕ 2 ) dx Ω ϕ 2 dx := M < +∞
For the lower bound, we have for any ϕ ∈ H 2 1,0 (Ω),

Ω (|∇ϕ| 2 + V k ϕ 2 ) dx = Ω |∇ϕ| 2 dx + B δ (0) V k ϕ 2 dx + Ω\B δ (0) V k ϕ 2 dx ≥ Ω |∇ϕ| 2 dx -γ 0 B δ (0) |x -x k | -2 ϕ 2 dx -4Cδ -2 Ω\B δ (0) ϕ 2 dx ≥ 1 -4γ 0 /n 2 Ω |∇ϕ| 2 dx -4Cδ -2 Ω ϕ 2 dx. ( 198 
)
Since γ 0 < n 2 /4, we then get that λ 1 (-∆+V k ) ≥ -4Cδ -2 for large k, which proves the lower bound. Up to a subsequence, we can now assume that (λ 1 (-∆ + V k )) k converges as k → +∞. We now show that lim inf

k→+∞ λ 1 (-∆ + V k ) ≥ λ 1 (-∆ + V ∞ ). (199) 
For k ∈ N, we let

ϕ k ∈ H 2 1,0 (Ω) be a minimizer of λ 1 (-∆+V k ) such that Ω ϕ 2 k dx = 1. In particular, -∆ϕ k + V k ϕ k = λ 1 (-∆ + V k )ϕ k weakly in H 2 1,0 (Ω). (200) 
Inequality (198) above yields the boundedness of (

ϕ k ) k in H 2 1,0 (Ω). Up to a sub- sequence, we let ϕ ∈ H 2 1,0 (Ω) such that, as k → +∞, ϕ k ϕ weakly in H 2 1,0 (Ω), ϕ k → ϕ strongly in L 2 (Ω) (then Ω ϕ 2 dx = 1) and ϕ k (x) → ϕ(x) for a.e. x ∈ Ω. Letting k → +∞ in (200), the hypothesis on (V k ) allow us to conclude that -∆ϕ + V ∞ ϕ = lim k→+∞ λ 1 (-∆ + V k )ϕ weakly in H 2 1,0 (Ω).
Since Ω ϕ 2 dx = 1 and we have extracted subsequences, we then get (199).

Finally, we prove the reverse inequality. For > 0, let ϕ ∈ H 2 1,0 (Ω) be such that

Ω (|∇ϕ| 2 + V ∞ ϕ 2 ) dx Ω ϕ 2 dx ≤ λ 1 (-∆ + V ∞ ) + .
We have

λ 1 (-∆ + V k ) ≤ λ 1 (-∆ + V ∞ ) + + Ω |V k -V ∞ |ϕ 2 dx Ω ϕ 2 dx
.

The hypothesis of Lemma 3 allow us to conclude that

Ω |V k -V ∞ |ϕ 2 dx → 0 as k → +∞. Therefore lim sup k→+∞ λ 1 (-∆ + V k ) ≤ λ 1 (-∆ + V ∞ ) + for all > 0.
Letting → 0, we get the reverse inequality and the conclusion of Lemma 3.

13. Appendix C: Regularity and the Hardy-Schrödinger operator on R n

-

In this section, we collect some important results from the paper [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] used in the proof of the compactness theorems. First we state the following regularity result: Theorem 6 ( [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF], see also [START_REF] Felli | Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations[END_REF] ). Let Ω be a smooth bounded domain of R n (n ≥ 3) such that 0 ∈ ∂Ω. We fix γ < n 2 4 and f

: Ω × R → R is a Caratheodory function such that |f (x, v)| ≤ C|v| 1 + |v| 2 (s)-2 |x| s for all x ∈ Ω and v ∈ R. Let u ∈ H 2 1,0 (Ω) be a weak solution of -∆u - γ + O(|x| θ ) |x| 2 u = f (x, u) in H 2 1,0 (Ω) (201) 
for some θ > 0. Then there exists K ∈ R such that

lim x→0 u(x) d(x, ∂Ω)|x| -β-(γ) = K. (202) 
Moreover, if u ≥ 0 and u ≡ 0, we have that K > 0.

The following result characterizes the positive solution to the singular global equation

Proposition 9 ([21]). Let γ < n 2 4 and let u ∈ C 2 (R n \ {0}) be a nonnegative function such that -∆u -γ |x| 2 u = 0 in R n - u = 0 on ∂R n -\ {0}. Then there exist C -, C + ≥ 0 such that u(x) = C - |x 1 | |x| β+(γ) + C + |x 1 | |x| β-(γ)
for all x ∈ R n -.

Next, we recall the existence and behaviour of the singular solution to the homogeneous equation.

Theorem 7 ([21]).

Let Ω be a smooth bounded domain of R n (n ≥ 3) such that 0 ∈ ∂Ω. Fix γ < n 2 4 and h ∈ C 1 (Ω) be such that the operator ∆ -γ|x| -2 -h is coercive. There exists then

H ∈ C 2 (Ω \ {0}) such that    -∆H -γ |x| 2 H + h(x)H = 0 in Ω H > 0 in Ω H = 0 on ∂Ω \ {0}.
These solutions are unique up to a positive multiplicative constant, and there exists c > 0 such that H(x) x→0 c d(x,∂Ω) |x| β + (γ) .

14. Appendix D: Green's function for the Hardy-Schrödinger operator with boundary singularity on a bounded domain

Definition 1. Let Ω be a smooth bounded domain of R n , n ≥ 3, such that 0 ∈ ∂Ω. We fix γ < n 2 /4 and h ∈ C 0,θ (Ω), θ ∈ (0, 1) such that -∆-(γ|x| -2 +h) is coercive. We say that G : Ω × Ω \ {(x, x)/ x ∈ Ω} is a Green's function for -∆ -γ|x| -2 -h if • For any p ∈ Ω, G p := G(p, •) ∈ L 1 (Ω). • For all f ∈ C ∞ c (Ω) and all p ∈ Ω, then ϕ(p) = Ω G p (x)f (x) dx.
where

ϕ ∈ H 2 1,0 (Ω) ∩ C 0 (Ω) is the unique solution to -∆ϕ - γ |x| 2 + h(x) ϕ = f in Ω ; ϕ |∂Ω = 0.
This appendix is devoted to the proof of the following result. Theorem 8. Let Ω be a smooth bounded domain of R n such that 0 ∈ ∂Ω. We fix γ < n 2 4 . We let h ∈ C 0,θ (Ω) be such that -∆ -γ|x| -2 -h is coercive. Then there exists a unique Green's function G for -∆ -γ|x| -2 -h. Moreover: I. Properties of G. The Green's function G is such that (a) G p ∈ C 2,θ (Ω \ {0, p}) and G p > 0 for all p ∈ Ω. (b) For all p ∈ Ω and all η ∈ C ∞ c (R n \ {p}), we have that ηG p ∈ H 2 1,0 (Ω). (c) For all f ∈ L 2n n+2 (Ω) ∩ L q (Ω \ B δ (0)), for all δ > 0 and some q > n/2, we have for any p ∈ Ω

ϕ(p) = Ω G p (x)f (x) dx. ( 203 
)
where ϕ ∈ H 2 1,0 (Ω) ∩ C 0 (Ω) is the unique solution to -∆ϕ - γ |x| 2 + h(x) ϕ = f in Ω ; ϕ |∂Ω = 0, (204) 
In particular,

     -∆G p -γ |x| 2 + h(x) G p = 0 in Ω \ {p}, G p > 0 in Ω \ {p}, G p = 0 in ∂Ω \ {0}. (205) 
II. Asymptotics. G satisfies the following properties:

(d) For all p ∈ Ω \ {0}, there exists c 0 (p) > 0 such that

G p (x) ∼ x→0 c 0 (p) d(x, ∂Ω) |x| β-(γ) and G p (x) ∼ x→p 1 (n -2)ω n-1 |x -p| n-2 (206) 
where

β -(γ) := n 2 - n 2 4 -γ and β + (γ) := n 2 + n 2 4 -γ.
(e) There exists c > 0 depending only on γ, the coercivity constant and an upperbound for h C 0,θ such that

c -1 H p (x) < G p (x) < cH p (x) for x ∈ Ω -{0, p}, (207) 
where

H p (x) := max{|p|, |x|} min{|p|, |x|} β-(γ) |x -p| 2-n min 1, d(x, ∂Ω)d(p, ∂Ω) |x -p| 2 . ( 208 
)
And

|∇G p (x)| ≤ c max{|p|, |x|} min{|p|, |x|} β-(γ) |x-p| 1-n min 1, d(p, ∂Ω) |x -p| for x ∈ Ω-{0, p}.
(209) (f ) There exists L γ,Ω > 0 such that for any

(h i ) i ∈ C 0,θ (Ω) such that lim i→+∞ h i = h in C 0,θ , then for any sequences (x i ) i , (y i ) i ∈ Ω such that y i = o(|x i |) and x i = o(1) as i → +∞, then, as i → +∞ we have that G hi (x i , y i ) = (L γ,Ω + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(y i , ∂Ω) |y i | β-(γ) (210) 
Notations: In order to simplify notations, we will often drop the dependence in the domain Ω and the dimension n ≥ 3. If F : A × B → R is a function, then for any x ∈ A, we define F x : B → R by F x (y) := F (x, y) for all y ∈ B. Finally, we will write Diag(A) := {(x, x)/ x ∈ A} for any set A.

We split the proof into several parts.

14.1. Proof of existence and uniqueness of the Green function. We let η (x) := η( -1 |x|) for all x ∈ R n and > 0, where η ∈ C ∞ (R) is nondecreasing and such that η(t) = 0 for t < 1 and η(t) = 1 for t > 1. It follows from Lemma 3 (see Appendix B) and the coercivity of -∆ -γ|x| -2 + h that there exists 0 > 0 and c > 0 such that such that for all ϕ ∈ H 2 1,0 (Ω) and ∈ (0, 0 ),

Ω |∇ϕ| 2 - γη |x| 2 + h(x) ϕ 2 dx ≥ c Ω ϕ 2 dx.
As a consequence, there exists c > 0 such that for all ϕ ∈ H 2 1,0 (Ω) and ∈ (0, 0 ),

Ω |∇ϕ| 2 - γη |x| 2 + h(x) ϕ 2 dx ≥ c ϕ 2 H 2 1 . (211) 
Let G > 0 be the Green's function of -∆ -γη |x| -2 + h on Ω with Dirichlet boundary condition. The existence follows from the coercivity and the C 0,θ regularity of the potential for any > 0 (see Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]). In particular, we have that

-∆G (x, •) -γη |•| 2 + h G (x, •) = 0 in Ω \ {x} G (x, •) = 0 on ∂Ω (212) 
Step 14.1: Integral bounds for G . We claim that for all δ > 0 and 1 < q < n n-2 and δ ∈ (0, δ), there exists C(δ, q) > 0 and C(δ, δ ) > 0 such that

G (x, •) L q (Ω) ≤ C(δ, q) and G (x, •) L 2n n-2 (Ω\B δ (x)) ≤ C(δ, δ ) (213) 
for all x ∈ Ω, |x| > δ. We prove the claim. We fix f ∈ C ∞ c (Ω) and let ϕ ∈ C 2,θ (Ω) be the solution to the boundary value problem

-∆ϕ -γη |x| 2 + h(x) ϕ = f in Ω ϕ = 0 on ∂Ω (214) 
Multiplying the equation by ϕ , integrating by parts on Ω, using (211) and Hölder's inequality, we get that

Ω |∇ϕ | 2 dx ≤ C f 2n n+2 ϕ 2n n-2
where C > 0 is independent of , f and ϕ . The Sobolev inequality

ϕ 2n n-2 ≤ C ∇ϕ 2 for ϕ ∈ H 2 1,0 (Ω) then yields ϕ 2n n-2 ≤ C f 2n n+2
where C > 0 is independent of , f and ϕ . Fix p > n/2 and δ ∈ (0, δ 0 ) and δ 1 , δ 2 > 0 such that δ 1 + δ 2 < δ, and x ∈ Ω such that |x| > δ. It follows from standard elliptic theory that

|ϕ (x)| ≤ ϕ C 0 (B δ 1 (x)) ≤ C ϕ L 2n n-2 (B δ 1 +δ 2 (x)) + f L p (B δ 1 +δ 2 (x)) ≤ C f L 2n n+2 (Ω) + f L p (B δ 1 +δ 2 (x))
where C > 0 depends on p, δ, δ 1 , δ 2 , γ and h ∞ . Therefore, Green's representation formula yields

Ω G (x, •)f dy ≤ C f L 2n n+2 (Ω) + f L p (B δ 1 +δ 2 (x)) (215) 
for all f ∈ C ∞ c (Ω). It follows from (215) that Ω G (x, •)f dy ≤ C • f L p (Ω)
for all f ∈ C ∞ c (Ω) where p > n/2. It then follows from duality arguments that for any q ∈ (1, n/(n -2)) and any δ > 0, there exists C(δ, q) > 0 such that

G (x, •) L q (Ω) ≤ C(δ, q) for all < 0 and x ∈ Ω \ B δ (0). Let δ ∈ (0, δ) and δ 1 , δ 2 > 0 such that δ 1 + δ 2 < δ . We get from (215) that Ω G (x, •)f dy ≤ C f L 2n n+2 (Ω\B δ (x)) (216) for all f ∈ C ∞ c (Ω \ B δ (x)).
Here again, a duality argument yields (213), which proves the claim in Step 14.1. Using the same method, we can get an improvement of the control, the cost being the integrability exponent q. When q ∈ (1, n/(n -1)), we get that p > n. Then,

ϕ C 1 (B δ 1 (x)∩Ω) is controled by the L p and L 2n n+2 norms. Moreover, |ϕ (x)| ≤ ϕ C 0 (B δ 1 (x)∩Ω) d(x, ∂Ω). The argument above then yields G (x, •) L q (Ω) ≤ C(δ, q)d(x, ∂Ω) for q ∈ 1, n n -1 . ( 217 
)
Step 14.2: Convergence of

G . Fix x ∈ Ω \ {0}. For 0 < < , since G (x, •), G (x, •) are C 2 outside x, (212) yields -∆(G (x, •) -G (x, •)) - γη | • | 2 + h (G (x, •) -G (x, •)) = γ(η -η ) | • | 2 G (x, •)
in the strong sense. The coercivity (211) then yields G (x, •) ≥ G (x, •) for 0 < < if γ ≥ 0, and the reverse inequality if γ < 0. It then follows from the integral bound (213) and elliptic regularity that there exists G(x,

•) ∈ C 2,θ (Ω \ {0, x}) such that lim →0 G (x, •) = G(x, •) ≥ 0 in C 2,θ loc (Ω -{0, x}). (218) 
In particular, G is symmetric and

-∆G(x, •) - γ | • | 2 + h G(x, •) = 0 in Ω \ {x} and G(x, •) = 0 on ∂Ω. (219)
Moreover, passing to the limit → 0 in (213), (217) and using elliptic regularity, we get that for all δ > 0, 1 < q < n n-2 and δ ∈ (0, δ), there exist C(δ, q) > 0 and

C(δ, δ ) > 0 such that for all x ∈ Ω, |x| > δ, G(x, •) L q (Ω) ≤ C(δ, q) and G(x, •) L 2n n-2 (Ω\B δ (x)) ≤ C(δ, δ ) (220) 
and

G(x, •) L q (Ω) ≤ C(δ, q)d(x, ∂Ω) for q ∈ 1, n n -1 . (221) 
In particular, for any

x ∈ Ω \ {0}, G(x, •) ∈ L k (Ω) for all 1 < k < n/(n -2) and G(x, •) ∈ L 2n/(n-2) (Ω \ B δ (x)
) for all δ > 0. Moreover, for any f ∈ L 2n n+2 (Ω) ∩ L q (Ω \ B δ (0)) for all δ > 0 with q > n/2, let ϕ ∈ H 2 1,0 (Ω) be such that (214) holds. It follows from elliptic theory that ϕ ∈ C 0,τ (Ω \ {0}) for some τ ∈ (0, 1) and that for all δ 1 > 0, there exists C(δ 1 ) > 0 such that ϕ C 0,τ (Ω\B δ 1 (0)) ≤ C(δ 1 ). We fix x ∈ Ω\{0}. Passing to the limit → 0 in the Green identity ϕ

(x) = Ω G (x, •)f dy yields ϕ(x) = Ω G(x, •)f dy for all x ∈ Ω \ {0} (222) 
where ϕ ∈ H 2 1,0 (Ω) ∩ C 0 (Ω \ {0}) is the only weak solution to

-∆ϕ -γ |x| 2 + h(x) ϕ = f in Ω ϕ = 0 on ∂Ω Since G(x, •) ≥ 0, ( 219 
) and the strong comparison principle yield G(x, •) > 0. These points prove that G is a Green's function for the operator and that (c) holds. We now prove point (b). We fix

η ∈ C ∞ c (R n -{x}) such that η(y) = 1 when y ∈ B δ (0) for some δ > 0. Then ηG (x, •) ∈ C 2,θ (Ω) ∩ H 2 1,0 (Ω). It follows from (212) and (218) that -∆(ηG (x, •)) - γη | • | 2 + h (ηG (x, •)) = 1 B δ (0) c f in Ω
where f C 0 (Ω) ≤ C for some C > 0 and all > 0. Therefore, with the coercivity (211) and the convergence (218), we get that

c ηG (x, •) 2 H 2 1 ≤ Ω\B δ (0) f ηG (x, •) dy ≤ C
for all > 0. Reflexivity yields convergence of (ηG (x, •)) in H 2 1,0 (Ω) ∩ L 2 (Ω) as → 0 up to extraction. The convergence in C 2 and uniqueness then yields ηG(x, •) ∈ H 2 1,0 (Ω) and ηG (x, •) → ηG(x, •) in H 2 1,0 (Ω) as → 0. The case of a general η is a direct consequence. This proves point (b). For the uniqueness, we suppose G be another Green's function. We fix x ∈ Ω and we define H x := G x -G x . Then H x ∈ L 1 (Ω) and for any f ∈ C ∞ c (Ω), we have that Ω H x f dy = 0. Approximating a compactly supported function by smooth fonctions with compact support, we get that this equality holds for all f ∈ C 0 c (Ω). Integration theory then yields H x ≡ 0, and then G x ≡ G x . This proves uniqueness. This finishes the proof of (a). This proves existence and uniqueness of the Green's function in Theorem 8(I). 14.2. Proof of the upper bound. behavior ( 206) is a consequence of the classification of solutions to harmonic equations and Theorem 4.1 in Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]. In the proof, we will often use sub-and super-solutions to the linear problem. The following existence result is contained in Proposition 4.3 of [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]:

Proposition 10.
Let Ω be a smooth domain and h ∈ C 0 (Ω) be a continuous fonction. We fix γ < n 2 4 and β ∈ {β -(γ), β + (γ)}. Then, there exist r > 0, and

u β , u β ∈ C ∞ (Ω \ {0}) such that        u β , u β = 0 on ∂Ω ∩ B r (0) -∆u β -γ |x| 2 + h u β > 0 in Ω ∩ B r (0) -∆u β -γ |x| 2 + h u β < 0 in Ω ∩ B r (0). ( 223 
)
Moreover, for some τ > 0, we have that, as x → 0, x ∈ Ω,

u β (x) = u β (x)(1 + O(|x| τ )) = d(x, ∂Ω) |x| β (1 + O(|x| τ )). ( 224 
)
Step 14.3: Upper bound for G(x, y) when one variable is far from 0.

Step 14. (226) Indeed, with no loss of generality, we can assume that δ ∈ (0, δ 0 ). Let Ω δ be a smooth domain of R n be such that Ω \ B 3δ/4 (0) ⊂ Ω δ ⊂ Ω \ B δ/2 (0). We fix x ∈ Ω such that |x| > δ. Let H x be the Green's function for -∆ -γ |x| 2 + h(x) in Ω δ with Dirichlet boundary condition. Classical estimates (see [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]) yield the existence of C(δ) > 0 such that |x -y| n-2 H x (y) ≤ C(δ) min 1, d(x, ∂Ω)d(y, ∂Ω) |x -y| 2 for all x, y ∈ Ω δ .

It is easy to check that

     -∆(G x -H x ) -γ |•| 2 + h (G x -H x ) = 0 weakly in Ω δ G x -H x = 0 on (∂Ω δ ) \ B 3δ/4 (0) G x -H x = G x on (∂Ω δ ) ∩ B 3δ/4 (0).
Regularity theory then yields that G Step 14.3.3: We now claim that for any 0 < δ < δ, there exists C(δ, δ ) > 0 such that

|y| β-(γ) G(x, y) ≤ C(δ, δ )d(y, ∂Ω)d(x, ∂Ω) for x, y ∈ Ω s.t. |x| > δ > δ > |y|.
(227) We let δ 1 ∈ (0, δ ) that will be fixed later. We use (225) to deduce that G x (y) ≤ C(δ, δ 1 )d(x, ∂Ω)d(y, ∂Ω) for all x ∈ Ω \ B δ (0) and y ∈ ∂B δ1 (0) ∩ Ω. Since δ 1 < |x|, we have that (228)

-∆G x -γ |x| 2 + h G x = 0 in Ω ∩ B δ1 (0) 0 ≤ G x ≤ C(δ, δ 1 )d(y, ∂Ω)d(x, ∂Ω) on ∂(Ω ∩ B δ1 (0)) \ {0}.
Step 14.4: Upper bound for G(x, y) when both variables approach 0.

We claim first that for all c 1 , c 2 , c 3 > 0, there exists C(c 1 , c 2 , c 3 ) > 0 such that for x, y ∈ Ω such that c 1 |x| < |y| < c 2 |x| and |x -y| > c 3 |x|, we have

|x -y| n-2 G(x, y) ≤ C(c 1 , c 2 , c 3 ) d(x, ∂Ω)d(y, ∂Ω) |x| 2 . ( 229 
)
When one of the variables stays far from 0, (229) is a consequence of (225). We now consider a chart T at 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]. In particular, there is δ 0 > 0, 0 ∈ V ⊂ R n and T : B 2δ0 (0) → V a smooth diffeomorphism such that T (0) = 0 and

T (B 2δ0 (0) ∩ R n -) = T (U ) ∩ Ω and T (B 2δ0 (0) ∩ ∂R n -) = T (U ) ∩ ∂Ω. (230) 
Moreover, D 0 T = I R n and

|T (X)| = (1 + O(|X|))|X| for all X ∈ B 3δ0/2 (0). ( 231 
)
We fix X ∈ R n -such that 0 < |X| < 3δ 0 /2. We define

H(z) := G T (X) (T (|X|z)) for z ∈ B δ0/|X| (0) \ 0, X |X| , so that -∆ g X H -    γ |T (|X|z|) |X| 2 + |X| 2 h(T (|X|z))    H = 0 in B δ0/|X| (0) \ 0, X |X| .
where g X := (T Eucl) X is the pulled-back metric of the Euclidean metric Eucl via the chart T at the point X. Since H > 0, it follows from the Harnack inequality on the boundary (see Proposition 6.3 in Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF]) that for all R > 0 large enough and r > 0 small enough, there exist δ 1 > 0 and C > 0 independent of |X| < 3δ 0 /2 such that

H(z) |z 1 | ≤ C H(z ) |z 1 | for all z, z ∈ (B R (0) ∩ R n -) \ B r (0) ∪ B r X |X| , which, via the chart T , yields G x (y) d(y, ∂Ω) ≤ C G x (y ) d(y , ∂Ω) for all y, y ∈ Ω ∩ B R|x|/2 (0) \ B 2r|x| (0) ∪ B 2r|x| (x) .
(232) for all x ∈ Ω such that |x| < δ 0 . We let W be a smooth domain of R n such that for some λ > 0 small enough, we have

B λ (0) ∩ Ω ⊂ W ⊂ B 2λ (0) ∩ Ω and B λ (0) ∩ ∂W = B λ (0) ∩ ∂Ω. (233) 
We choose a subsolution u β+(γ) as in (223) of Proposition 10. It follows from ( 224) and ( 225) that for |x| < δ 2 small

G x (z) ≥ C(R)|x| β+(γ) inf y∈Ω∩∂B R|x| (0)
G x (y) d(y, ∂Ω) u β+(γ) (z) for all z ∈ W ∩∂B R|x|/3 (0).

Since -∆G x -(γ| • | -2 + h)G x = 0 outside 0, it follows from coercivity and the comparison principle that

G x (z) ≥ c|x| β+(γ) inf y∈Ω∩∂B R|x| (0) G x (y) d(y, ∂Ω) u β+(γ) (z) for all z ∈ W \ B R|x|/3 (0).
We fix z 0 ∈ W \ {0}. Then for δ 3 small enough, when |x| < δ 3 , it follows from (228) and the Harnack inequality (232) that there exists C > 0 independent of x such that

G x (y) ≤ C|x| -β+(γ)-β-(γ) d(x, ∂Ω)d(y, ∂Ω) for all y ∈ B R|x| (0)\ B r|x| (0) ∪ B r|x| (x)
Taking r > 0 small enough and R > 0 large enough, we then get (229) for |x| < δ 3 . The general case for arbitrary x ∈ Ω \ {0} then follows from (226). This completes the proof of (229).

Step 14.4.2: We claim that for all c 1 , c 2 > 0, there exists This ends the proof of (234) in Case 1.

C(c 1 , c 2 ) > 0 such that |x -y| n-2 G(x, y) ≤ C(c 1 , c 2 )
Case 2: By symmetry, (234) also holds when |y| ≤ C 1 d(y, ∂Ω).

Case 3: We assume that d(x, ∂Ω) ≤ C -1 1 |x| and d(y, ∂Ω) ≤ C -1 1 |y|. We consider a chart at 0, that is δ 0 > 0, 0 ∈ V ⊂ R n and T : B 2δ0 (0) → V a smooth diffeomorphism such that T (0) = 0 and that (230) and (231) hold. We fix x ∈ R n-1 such that 0 < |x | < 3δ 0 /2.

We assume that r ≤ c 0 |x |. We define H y (z) := r n-2 G T ((0,x )+ry) (T ((0, x ) + rz)) for y, z ∈ B δ0/(2r) (0) ∩ R n -\ {0}.

We then have that

H y ∈ C 2 (B R0 (0) ∩ R n -\ {0, y}) and -∆ gr H y -    γ |T ((0,x )+rz) r 2 + r 2 h(T ((0, x ) + rz))    H y = δ y weakly in B R0 (0)∩R n -,
where g r := (T Eucl) (0,x )+rz is the pulled-back metric of the Euclidean metric Eucl via the chart T at the point (0, x ) + rz. We now argue as in the proof of (226). From (178), we have that |H y (z)| ≤ C for all z ∈ ∂B R0 (0) ∩ R n -where C is independent of y ∈ B R0/2 (0) and r ∈ (0, δ 0 /4). Let Γ y be the Green's function of -∆ gr -

γ |T ((0,x )+rz) r 2 + r 2 h(T ((0, x ) + rz)) at y on B c0/2 (0) ∩ R n -with
Dirichlet boundary condition. Therefore, H y -Γ y ∈ C 2 (B c0/2 (0) ∩ R n -) and, via the comparison principle, it is bounded by its supremum on the boundary. It follows from (178) and elliptic estimates for Γ y (see for instance [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF] Therefore, (236) applies and we get (234) in Case 3.

) that |H y -Γ y |(z) ≤ C|y 1 | • |z 1 | for z ∈ ∂(B c0/2 (0) ∩ R n -)
We are now in position to conclude. Inequality (234) is a consequence of Cases 1, 2, 3, (226) and (178). This ends the proof of (234).

Step 14. (237) The proof goes essentially as in (227). For |x| < δ with δ > 0 small, we have that

-∆G x - γ | • | 2 + h G x = 0 in H 1 (Ω ∩ B |x|/3 (0)) ∩ C 2 (Ω ∩ B |x|/3 (0) \ {0}).
It follows from (178) that G x (y) ≤ C|x| -n d(x, ∂Ω)d(y, ∂Ω) in Ω ∩ ∂B |x|/3 (0). We choose a supersolution u β-(γ) as in (223) of Proposition 10. It follows from ( 224) and (178) that there exists C > 0 such that

G x (y) ≤ C|x| -β+(γ) d(x, ∂Ω)u β-(γ) (y) for all y ∈ Ω ∩ ∂B |x|/3 (0).
The comparison principle yields that this inequality holds on Ω ∩ B |x|/3 (0).

Step 14.4.4: By symmetry, we conclude that there exists C > 0 such that

|x| β-(γ) |y| β+(γ) G(x, y) ≤ Cd(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω s.t. |x| < 1 2 |y|. ( 238 
)
Step 14.5: Finally, it follows from (237), ( 238) and (234) that there exists c > 0 such that

G(x, y) ≤ c max{|y|, |x|} min{|y|, |x|} β-(γ) |x -y| 2-n min 1, d(x, ∂Ω)d(y, ∂Ω) |x -y| 2 (239) 
for all x, y ∈ Ω, x = y. This proves the upper bound in (207) of Theorem 8. The lower-bound and the control of the gradient will be proved in Section 14.4.

14.

3. Behavior at infinitesimal scale. We prove three convergence results to get a comprehensive behavior of the Green's function. Throughout this subsection, we assume Ω is a smooth bounded domain of R n such that 0 ∈ ∂Ω. We fix γ < n and let h ∈ C 0,θ (Ω) be such that -∆ -γ|x| -2 -h is coercive. We consider G to be the Green's function of -∆ -γ|x| -2 -h with Dirichlet boundary condition on ∂Ω.

Lemma 4. Let (x i ) i ∈ Ω and (r i ) i ∈ (0, +∞) be such that

lim i→+∞ r i = 0 and lim i→+∞ d(x i , ∂Ω) r i = +∞.
Then, for all X, Y ∈ R n such that X = Y , we have that

lim i→+∞ r n-2 i G(x i + r i X, x i + r i Y ) = 1 (n -2)ω n-1 |X -Y | 2-n
Moreover, the convergence holds in

C 2 loc ((R n ) 2 \ Diag(R n )).
To deal with the case when the points approach the boundary, we consider a chart T as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]. In particular, D 0 T = I R n . Lemma 5. Let (x i ) i ∈ ∂Ω and (r i ) i ∈ (0, +∞) and x 0 ∈ ∂Ω be such that

lim i→+∞ r i = 0, lim i→+∞ x i = x 0 ∈ ∂Ω and lim i→+∞ |x i | r i = +∞.
We let T be a chart at x 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]. We define x i ∈ R n-1 such that x i = T (0, x i ).

Then, for all X, Y ∈ R n -such that X = Y , we have that

lim i→+∞ r n-2 i G(T ((0, x i ) + r i X) , T ((0, x i ) + r i Y )) = 1 (n -2)ω n-1 |X -Y | 2-n -|X -Y * | 2-n where (Y 1 , Y ) * = (-Y 1 , Y ) for (Y 1 , Y ) ∈ R × R n-1 . Moreover, the convergence holds in C 2 loc ((R n -) 2 \ Diag(R n -)}).
Lemma 6. Let (r i ) i ∈ (0, +∞) be such that lim i→+∞ r i = 0. We let T be a chart at 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF]. Then, for all X, Y ∈ R n -\ {0} such that X = Y , we have that

lim i→+∞ r n-2 i G(T (r i X) , T (r i Y )) = G(X, Y )
where G(X, Y ) = G X (Y ) is the Green's function for -∆ -γ|x| -2 on R n -with Dirichlet boundary condition. Moreover, the convergence holds in

C 2 loc ((R n -\{0}) 2 \ Diag(R n -\ {0})).
Proof of Lemma 4: We let (r i ) i ∈ (0, +∞) and (x i ) i ∈ Ω as in the statement of the lemma. For any X, Y ∈ R n , X = Y , we define

G i (X, Y ) := r n-2 i G(x i + r i X, x i + r i Y )
for all i ∈ N. Since r i = o(d(x i , ∂Ω)) as i → +∞, for any R > 0, there exists i 0 ∈ N such that this definition makes sense for any X, Y ∈ B R (0). Equation (205) yields

-∆G i (X, •) -    γ xi ri + • 2 + r 2 i h(x i + r i •)    G i (X, •) = 0 in B R (0) \ {X}. ( 240 
)
The pointwise control (239) writes

0 < G i (X, Y ) ≤ c max{|x i + r i X|, |x i + r i Y |} min{|x i + r i X|, |x i + r i Y |} β-(γ) |X -Y | 2-n (241) 
for all X, Y ∈ B R (0) such that X = Y . Since 0 ∈ ∂Ω, we have that d(x i , ∂Ω) ≤ |x i |, and therefore r i = o(|x i |) as i → +∞. Equation (240) and inequality (241) yield

-∆G i (X, •) + θ i (X, •)G i (X, •) = 0 in B R (0) \ {X}.
where

θ i → 0 uniformly in C 0 loc ((R n ) 2 ) and 0 < G i (X, Y ) ≤ c|X -Y | 2-n
for all X, Y ∈ B R (0) such that X = Y . It then follows from standard elliptic theory that, up to a subsequence, there exists G ∞ (X,

•) ∈ C 2 (R n \ {X}) such that G i (X, •) → G ∞ (X, •) ≥ 0 in C 2 loc (R n \ {X}) and -∆G ∞ (X, •) = 0 in R n \{X} and G ∞ (X, Y ) ≤ c|X-Y | 2-n for X, Y ∈ R n , X = Y.
It then follows from the classification of positive harmonic functions that there

exists λ > 0 such that G ∞ (X, Y ) = λ|X -Y | 2-n for all X, Y ∈ R n , X = Y . We fix ϕ ∈ C ∞ c (R n ).
We define ϕ i (x) := ϕ(r -1 i (x -x i )) for x ∈ Ω (this makes sense for i large enough). It follows from (204) that

ϕ i (x i + r i X) = Ω G(x i + r i X, y) -∆ϕ i (y) - γ |y| 2 + h(y) ϕ i (y) dy.
Via a change of variable, and passing to the limit, we get that

ϕ(X) = R n G ∞ (X, Y ) (-∆ϕ(Y )) dy. Since G ∞ (X, Y ) = λ|X -Y | 2-n ,
we get that λ = 1/((n-2)ω n-1 ). Since the limit is unique, the convergence holds without extracting a subsequence. The convergence in C 2 loc ((R n ) 2 \ Diag(R n )) follows from the symmetry of G and elliptic theory. Proof of Lemma 5: The proof goes as in the proof of lemma 4, except that we have to take a chart due to the closeness of the boundary. We let (r i ) i ∈ (0, +∞), (x i ) i ∈ ∂Ω and x 0 ∈ ∂Ω as in the statement of the lemma. We let T be a chart at x 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] (in particular D 0 T = I R n ) and we set x i ∈ R n such that x i = T (0, x i ). In particular, lim i→+∞ x i = 0. For any

X, Y ∈ R n -, X = Y , we define G i (X, Y ) := r n-2 i G(T ((0, x i ) + r i X) , T ((0, x i ) + r i Y ))
for all i ∈ N. Here again, provided X, Y remain in a given compact set, the definition of G i makes sense for large i. Equation (205) then rewrites

-∆ gi G i (X, •) -θi G i (X, •) = 0 in B R (0) ∩ R n -\ {X} ; G i (X, •) ≡ 0 on ∂R n -∩ B R (0) (242) where θi (Y ) := γ T ((0,x i )+riY ) ri 2 + r 2 i h(T ((0, x i ) + r i Y ))
and g i = T Eucl((0, x i )+r i •) is the pull-back of the Euclidean metric. In particular, since D 0 T = I R n , we get that g i → Eucl in C 2 loc (R n ). Since r i = o(|x i |), we get that r i = o(|x i |) as i → +∞, and, using again that D 0 T = I R n , we get that θi → 0 uniformly in B R (0

) ∩ R n -. The pointwise control (239) rewrite G i (X, Y ) ≤ c|X -Y | 2-n for all X, Y ∈ R n -, X = Y .
With the same arguments as above, we get that for any X ∈ R n -, there exists G ∞ (X,

•) ∈ C 2 (R n -\ {X}) such that lim i→+∞ G i (X, •) = G ∞ (X, •) in C 2 loc (R n -\ {X}) with    -∆G ∞ (X, •) = 0 in R n -\ {X} G ∞ (X, •) ≥ 0 G ∞ (X, •) ≡ 0 on ∂R n -\ {X} and ϕ(X) = R n - G ∞ (X, •)(-∆ϕ) dY for all ϕ ∈ C ∞ c (R n -). with 0 ≤ G ∞ (X, Y ) ≤ c|X -Y | 2-n for all X, Y ∈ R n -, X = Y . Define Γ R n -(X, Y ) = 1 (n -2)ω n-1 |X -Y | 2-n -|X -Y * | 2-n .
As one checks (see for instance [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]), Γ R n -satisfies the same properties as G ∞ . We set

f := G ∞ (X, •) -Γ R n -(X, •). As one checks, f ∈ C ∞ (R n -\ {X}), -∆f = 0 in the distribution sense in R n -, |f | ≤ C|X -•| 2-n in R n -\ {X} and f ∂R n -= 0. Hypoellipticity yields f ∈ C ∞ (R n -).
Multiplying -∆f by f and integrating by parts, we get that f ≡ 0, and then G ∞ (X, •) = Γ R n -(X, •). As above, this proves the convergence without any extraction. The convergence in C 2 loc ((R n -) 2 \ Diag(R n -)) follows from the symmetry of G and elliptic theory.

Proof of Lemma 6: Here again, the proof is similar to the two preceding proofs. We let (r i ) i ∈ (0, +∞) such that lim i→+∞ r i = 0. We let T be a chart at 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] 

(in particular D 0 T = I R n ). For any X, Y ∈ R n -\ {0}, we define G i (X, Y ) := r n-2 i G(T (r i X) , T (r i Y )) for all i ∈ N. Equation (205) rewrites -∆ gi G i (X, •) -    γ T (ri•) ri 2 + r 2 i h(T (r i •))    G i (X, •) = 0 in B R (0) ∩ R n -\ {0, X}. with G i (X, •) ≡ 0 on B R (0) ∩ ∂R n -, where g i = T Eucl(r i •) is the pull-back of the Euclidean metric. In particular, since D 0 T = I R n , we get that g i → Eucl in C 2 loc (R n ). The pointwise control (239) writes 0 ≤ G i (X, Y ) ≤ C max{|X|, |Y |} min{|X|, |Y |} β-(γ) |X -Y | 2-n for X, Y ∈ R n -, X = Y. It then follows from elliptic theory that G i (X, •) → G ∞ (X, •) in C 2 loc (R n -\ {0, X}). In particular, G ∞ (X, •) vanishes on ∂R n -\ {0} and 0 ≤ G ∞ (X, Y ) ≤ C max{|X|, |Y |} min{|X|, |Y |} β-(γ) |X -Y | 2-n for X, Y ∈ R n -, X = Y. (243) 
Moreover, passing to the limit in Green's representation formula, we get that

ϕ(X) = R n - G ∞ (X, Y ) -∆ϕ - γ |Y | 2 ϕ dY for all ϕ ∈ C ∞ c (R n -). Since G(x, •) is locally in H 2 1,0 (Ω) (see (b) in Theorem 8), we get that (ηG i (X, •)) i is uniformly bounded in H 2 1,0 (R n -) for all η ∈ C ∞ c (R n \{X}).
Up to another extraction, we get weak convergence in H 2 1,0 (R n -), and then ηG ∞ (X,

•) ∈ H 2 1,0 (R n -) for all η ∈ C ∞ c (R n \ {X}). It then follows from Theorem 9 and (243) that G ∞ (X, •) = G X is the unique Green's function of -∆ -γ|x| -2 on R n
-with Dirichlet boundary condition. Here again, the convergence in C 2 follows from elliptic theory. 14.4. A lower bound for the Green's function. We let Ω, γ, h be as in Theorem 8. We let G be the Green's function for -∆ -(γ|x| -2 + h) on Ω with Dirichlet boundary condition. We let (x i ), (y i ) i∈N be such that x i , y i ∈ Ω and x i = y i for all i ∈ N. We also assume that there exists x ∞ , y ∞ ∈ Ω such that lim This section is devoted to proving (244). We distinguish several cases:

i→+∞ x i = x ∞ and lim i→+∞ y i = y ∞ and that there exists c 1 , c 2 such that lim i→+∞ G(x i , y i ) H(x i , y i ) = c 1 ∈ [0, +∞] and lim i→+∞ |∇G xi (y i )| Γ(x i , y i ) = c 2 ∈ [0, +∞]
Case 1: x ∞ = y ∞ , x ∞ , y ∞ ∈ Ω.
As one checks, we then have that

lim i→+∞ G(x i , y i ) = G(x ∞ , y ∞ ) > 0.
Therefore, we get that c 1 ∈ (0, +∞ for all y ∈ Ω ∩ B r0 (0). This yields c 1 > 0.

We deal with the gradient. We let T be a chart at 0 as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF] and we define

G i (y) := r β-(γ)-1 i G xi (T (r i y)) for y ∈ R n -∩ B 2 (0) with r i → 0. It follows from (239) that G i (y) ≤ C|y 1 | • |y| -β-(γ) for all y ∈ R n -∩B 2 (0). It follows from (205) that -∆ gi G i -γ| • | 2 + o(1) G i = 0 in R n -∩B 2 (0) where g i := T Eucl(r i •) and o(1) → 0 in L ∞ loc (R n ). Elliptic regularity then yields |∇G i (y)| ≤ C for y ∈ R n -∩ B 3/2 ( 
0). We now let r i := |ỹ i | where y i := T (ỹ i ), so that r i → 0. We then have that γ) . By estimating Γ(x i , y i ), we then get that c 2 < +∞. This proves (244) in Case 3.

|∇G i ( ỹi /r i )| ≤ C, which rewrites |∇G xi (y i )| ≤ C|y i | -β-(
Case 4: x ∞ = y ∞ , x ∞ , y ∞ ∈ ∂Ω \ {0}. Since x ∞ , y ∞ are distinct and far from 0, we have that G(x i , y i ) = d(y i , ∂Ω)d(x i , ∂Ω) ∂ νx ∂ νy G x∞ (y ∞ ) + o(1) as i → +∞,
where ∂ νx is the normal derivative along the first coordinate, and ∂ νy is the normal derivative along the second coordinate. Since y → G x (y) is positive for x, y ∈ Ω, x = y, and solves (205), Hopf's maximum principle yields -∂ νy G(x, y ∞ ) > 0 for x ∈ Ω. Moreover, it follows from the symmetry of G that -∂ νy G(x, y ∞ ) > 0 solves also (205). Another application of Hopf's principle yields ∂ νx ∂ νy G x∞ (y ∞ ) > 0. Estimating independently H(x i , y i ), we get that 0 < c 1 < +∞. We deal with the gradient. We have that

|∇ y G xi (y i )| = |∇ y (G xi -G xi )(y i )| where xi ∈ ∂Ω is the projection of x i on ∂Ω. The C 2 -control then yields |∇ y G xi (y i )| ≤ Cd(x i , ∂Ω
). Estimating independently Γ(x i , y i ), we get that c 2 < +∞. This proves (244) in Case 4. For the gradient estimate, we choose a chart T around y ∞ = 0 as in ( 27), and we let

r i := |ỹ i | → 0 where y i = T (ỹ i )we define G i (y) := r β-(γ)-1 i G xi (T (r i y))/d(x i , ∂Ω) for y ∈ R n -∩ B 2 ( 
0) where r i → 0 . The pointwise control (239) and equation (205) yields the convergence of (

G i ) in C 1 loc (R n -∩ B 2 (0) \ {0}) as i → +∞. The boundedness of |∇G i | yields c 2 < +∞. This proves (244) in Case 5.
Since G is symmetric, it follows from Cases 1 to 5 that (244) holds when x ∞ = y ∞ .

We now deal with the case x ∞ = y ∞ , which rewrites lim i→+∞ |x i -y i | = 0. Via a rescaling, we are essentially back to the case x ∞ = y ∞ via the convergence Theorems 4, 5 and 6.

Case 6: |x

i -y i | = o(d(x i , ∂Ω)) as i → +∞. We set r i := |x i -y i | → 0 as i → +∞ and we define G i (Y ) := r n-2 i G(x i , x i + r i Y ) for Y ∈ Ω -x i r i \ {0}. It follows from Theorem 4 that G i → c n | • | 2-n in C 2 loc (R n \ {0}) as i → +∞, with c n := ((n -2)ω n-1 ) -1 . We define Y i := yi-xi
|yi-xi| , and we then get that |y i -

x i | n-2 G(x i , y i ) = G i (Y i ) → c n as i → +∞. Estimating H(x i , y i ) (and noting that d(x i , ∂Ω) ≤ |x i -0| = |x i |), we get that 0 < c 1 < +∞.
The convergence of the gradient yields |∇G i (Y i )| ≤ C for all i. With the original function G and points x i , y i , this yields c 2 < +∞. This proves (244) in Case 6. 

7: d(x i , ∂Ω) = O(|x i -y i |) and |x i -y i | = o(|x i |) as i → +∞. Then lim i→+∞ x i = x ∞ ∈ ∂Ω.
We let T be a chart at x ∞ as in [START_REF] Lin | Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary[END_REF], in particular D 0 T = I R n . We let x i = T (x i,1 , x i ) and y i = T (y i,1 , y i ) where (x i,1 , x i ), (y i,1 , y i ) ∈ (-∞, 0) × R n-1 are going to 0 as i → +∞. In particular d(x i , ∂Ω) = ( 1

+ o(1))|x i,1 | and d(y i , ∂Ω) = (1 + o(1))|y i,1 | as i → +∞. We define r i := |(y i,1 , y i ) -(x i,1 , x i )|.
In particular r i = (1 + o(1))|x i -y i | as i → +∞. The hypothesis of Case 7 rewrite x i,1 = O(r i ) and r i = o(|(x i,1 , x i )|). Consequently, we have that y i,1 = O(r i ) and

r i = o(|x i |) as i → +∞. We define G i (X, Y ) := r n-2 i G(T ((0, x i ) + r i X) , T ((0, x i ) + r i Y )) for X, Y ∈ R n -such that X = Y . It follows from Theorem 5 that lim i→+∞ G i (X, Y ) = c n |X -Y | 2-n -|X -Y * | 2-n := Ψ(X, Y )
for all X, Y ∈ R n -, X = Y , and this convergence holds in C 2 loc . We define

X i := (r -1 i x i,1 , 0) and Y i := (r -1 i y i,1 , r -1 i (y i -x i )): the definition of r i yields X i → X ∞ ∈ R n -and Y i → Y ∞ ∈ R n -as i → +∞. Therefore, we get that |x i -y i | n-2 G(x i , y i ) = (1 + o(1))G i (X i , Y i ) → Ψ(X ∞ , Y ∞ )
as i → +∞, and

|X ∞,1 | = lim i→+∞ |x i,1 | r i = lim i→+∞ d(x i , ∂Ω) r i . (245) 
Case 7.1: X ∞,1 = 0 and Y ∞,1 = 0. We then get that lim 

i→+∞ |x i -y i | n-2 G(x i , y i ) = Ψ(X ∞ , Y ∞ ) > 0.
) i ∈ (0, 1) such that G i (X i , Y i ) = Y i,1 ∂ Y1 G i (X i , (τ i Y i,1 , Y i ))
. Letting i → +∞ and using the convergence of G i in C 1 , we get that

|x i -y i | n-2 G(x i , y i ) = (1 + o(1))G i (X i , Y i ) = Y i,1 ∂ Y1 G i (X i , τ i Y i ) = d(y i , ∂Ω) |x i -y i | (-∂ Y1 Ψ(X ∞ , Y ∞ ) + o(1)) as i → +∞. As one checks, ∂ Y1 Ψ(X ∞ , Y ∞ ) < 0. Arguing as in Case 7.1, we get that 0 < c 1 < +∞. Case 7.3: X ∞,1 = Y ∞,1 = 0. As in Case 7.2, there exists (τ i ) i , (σ i ) i ∈ (0, 1) such that G i (X i , Y i ) = Y i,1 X i,1 ∂ Y1 ∂ X1 G i ((σ i X i,1 , X i )X i , (τ i Y i,1 , Y i )). We conclude as above, noting that ∂ Y1 ∂ X1 Ψ(X ∞ , Y ∞ ) > 0. Then 0 < c 1 < +∞.
The gradient estimate is proved as in Cases 1 to 6. This proves (244) in Case 7.

Case 8:

d(x i , ∂Ω) = O(|x i -y i |), |x i | = O(|x i -y i |) and |y i | = O(|x i -y i |)
as i → +∞. In particular, x ∞ = y ∞ = 0. We take a chart at 0 as in Case 7, and we define (x i,1 , x i ), (y i,1 , y i ) similarly. We define r

i := |(y i,1 , y i ) -(x i,1 , x i )| = (1 + o(1))|x i -y i | as i → +∞. We define G i (X, Y ) := r n-2 i G(T (r i X) , T (r i Y )) for X, Y ∈ R n -. It follows from Theorem 6 that G i → G in C 2 loc ((R n -\ {0}) 2 \ Diag(R n -\ {0})), where G is the Green's function for -∆ -γ| • | -2 in R n -. Then |x i -y i | n-2 G(x i , y i ) = (1 + o(1))G i (X i , Y i ) = G(X ∞ , Y ∞ ) + o(1)
as i → +∞.

Case 8.1: We assume that X ∞,1 = 0 and Y ∞,1 = 0. Then we get 0 < c 1 < +∞ as in Case 7.1.

Case 8.2: We assume that X ∞ ∈ R n -and Y ∞ ∈ ∂R n -\ {0} or X ∞ , Y ∞ ∈ ∂R n -\ {0}.
Then we argue as in Cases 7.2 and 7.3 to get 0

< c 1 < +∞ provided {∂ Y1 G(X ∞ , Y ∞ ) < 0 if X ∞ ∈ R n -and Y ∞ ∈ ∂R n -} and {∂ Y1 ∂ X1 G(X ∞ , Y ∞ ) > 0 if X ∞ , Y ∞ ∈ ∂R n
-}. So we are just left with proving these two inequalities. We assume that

X ∞ ∈ R n -. It follows from Theorem 9 below that G(X ∞ , •) > 0 is a solution to (-∆ -γ| • | -2 )G(X ∞ , •) = 0 in R n --{X ∞ }, vanishing on ∂R n -\ {0}. Hopf's maximum principle then yields -∂ Y1 G(X ∞ , Y ∞ ) > 0 for Y ∞ ∈ ∂R n -\ {0}. We fix Y ∞ ∈ ∂R n -\ {0}. For X ∈ R n -, we then define H(X) := -∂ Y1 G(X, Y ∞ ) > 0 by the above argument. Moreover, (-∆ -γ| • | -2 )H = 0 in R n -, vanishing on ∂R n -\ {0, Y ∞ }. Hopf's maximum principle yields -∂ X1 H(X ∞ ) = ∂ Y1 ∂ X1 G(X ∞ , Y ∞ ) > 0 for X ∞ , Y ∞ ∈ ∂R n -\ {0} Case 8.3: we assume that X ∞ = 0 or Y ∞ = 0. Since |X ∞ -Y ∞ | = 1,
without loss of generality, we can assume that X ∞ = 0. It follows from Cases 8.1 and 8.2 that there exists C > 0 such that

C -1 d(x i , ∂Ω) |x i | n-β-(γ) d(y, ∂Ω) |y| β-(γ) ≤ G xi (y) ≤ C d(x i , ∂Ω) |x i | n-β-(γ) d(y, ∂Ω) |y| β-(γ) (246) 
for all y ∈ ∂(B |xi|/2 (0) ∩ Ω). We let u β-(γ) be the sub-solution given by Proposition 10. Arguing as in Case 3, it then follows from the comparison principle that (246) holds for y ∈ B |xi|/2 (0) ∩ Ω. Since |y i | = o(|x i |), we then get that (246) holds with y := y i . Estimating H(x i , y i ), we then get that 0 < c 1 < +∞.

The gradient estimate is proved as in Cases 1 to 6. This proves (244) in Case 8.

Since G is symmetric, it follows from Cases 7 and 8 that (244) holds when x ∞ = y ∞ .

In conclusion, we get that (244) holds, which proves the initial claim. As noted previously, both the lower bound in (207) and the upper bound in (209) follow from these results.

We are now left with proving (210). We let (

x i ) i , (ỹ i ) i ∈ Ω be such that ỹi = o(|x i |) and xi = o(1) as i → +∞, and (h i ) i ∈ C 0,θ (Ω) such that lim i→+∞ h i = h in C 0,θ . It follows from (207) that, up
to extraction, there exists l > 0 such that

G hi (x i , ỹi ) = (l + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(ỹ i , ∂Ω) |ỹ i | β-(γ) (247) 
From now on, to avoid unnecessary notations, the extraction is fixed. We define

r i := |x i | ; s i := |ỹ i | ; τ i := s -1 i T -1 (ỹ i ) ∈ R n -and θ i := r -1 i T -1 (x i ) ∈ R n -, and θ ∞ , τ ∞ ∈ R n -such that xi = T (r i θ i ) ; ỹi = T (s i τ i ) ; θ i → θ ∞ = 0 and τ i → τ ∞ = 0 as i → +∞. (248)
Step P14. We fix R > 0. We claim that

G hi (x i , y) = (l + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(y, ∂Ω) |y| β-(γ) as i → +∞ (249) uniformly for y ∈ Ω ∩ T (B Rsi \ B R -1 si ). Proof of Step P14: For z ∈ B 2R \ B (2R) -1 , we define G i (z) := s β-(γ)-1 i |x i | β+(γ) d(x i , ∂Ω) G hi (x i , T (s i z)).
As one checks, (249) is equivalent to prove that

G i (y) = (l + o(1)) |y 1 | |y| β-(γ) uniformly for y ∈ B R (0) \ B R -1 (0) (250) 
Since s i = o(|x i |) and ( 28) holds, it follows from the control (207) that there exists

C > 0 such that 1 C • |z 1 | |z| β-(γ) ≤ G i (z) ≤ C • |z 1 | |z| β-(γ) for all z ∈ R n -∩ B 2R (0) \ B (2R) -1 (0). ( 251 
)
As for (242), it follows from (205) that

-∆ gi G i - γs 2 i |T (s i •)| 2 + O(s 2 i ) G i = 0 in B R (0)∩R n -; G i ≡ 0 on ∂R n -∩B R (0)\{0}. ( 252 
) It follows from ( 251), (252) and standard elliptic theory that there exists G ∈ C 2 (R n -\ {0}) such that, up to a subsequence, lim

i→+∞ G i = G in C 2 loc (R n -\ {0}) (253) with -∆G - γ |x| 2 G = 0 in R n -\ {0} ; G = 0 on ∂R n -\ {0} ; 1 C • |z 1 | |z| β-(γ) ≤ G(z) ≤ C • |z 1 | |z| β-(γ) for all z ∈ R n -\ {0}.
It the follows from Proposition 6.4 in [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that there exists λ > 0 such that

G(z) = λ • |z 1 | |z| β-(γ) for all z ∈ R n -. (254) 
We claim that λ = l. We prove the claim. It follows from (247) and the definition (248) of τ i that

G i (τ i ) = (l + o(1)) |τ i,1 | |τ i | β-(γ) and τ i → τ ∞ = 0 as i → +∞. ( 255 
)
Case 1: we assume that τ ∞ ∈ R n -\ {0}, that is τ ∞,1 = 0. Passing to the limit in (255), using the convergence (253) and the explicit form (254), we get that

l |τ ∞,1 | |τ ∞ | β-(γ) = λ |τ ∞,1 | |τ ∞ | β-(γ) ,
and therefore, since τ ∞,1 = 0, we get that λ = l. Case 2: we assume that τ ∞ ∈ ∂R n -\ {0}, that is τ i,1 → 0 as i → +∞. With a Taylor expansion, we get that there exists a sequence (t i ) i∈N ∈ (0, 1) such that

G i (τ i ) = ∂ 1 G i (t i τ i,1 , θ i )τ i,1 for all i ∈ N. With the convergence (253) of G i to G in C 1 , we get that G i (τ i ) = (∂ 1 G(τ ∞ ) + o(1)) • τ i,1 = λ |τ ∞ | β-(γ) + o(1) • |τ i,1 |.
Since τ i,1 = 0 for all i ∈ N, it follows form (255) that λ = l.

Therefore, in both cases, we have proved that λ = l. It follows from this uniqueness that the convergence of G i holds with no extraction.

We now prove (250). We let (z

i ) i ∈ R n -\ {0} be such that z i → z ∞ ∈ R n -\ {0}. Then G i (z i ) → G(z ∞ ) as i → +∞. Therefore, if z ∞,1 = 0, we get that G i (z i ) = (1 + o( 1 
))G(z i ) as i → +∞. We now assume that z ∞,1 = 0, that is z i,1 → 0 as i → +∞. We use the C 1 -convergence of (G i ) and argue as in Case 2 above to get that lim

i→+∞ |z i,1 | -1 G i (z i ) = -∂ 1 G(z ∞ ) = 0. As one checks, this yields also G i (z i ) = (1 + o(1))G(z i ) as i → +∞.
As noticed above, this proves (249) and ends Step P14.

Step P15. We fix R > 0. We claim that

G hi (x i , y) = (l + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(y, ∂Ω) |y| β-(γ) as i → +∞ (256) 
uniformly for y ∈ Ω ∩ T (B Rsi (0)). We now vary the x-variable.

Proof of Step

Step P16. We fix R, R > 0. We claim that It the follows from Proposition 6.4 in [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that there exists µ > 0 such that

G(z) = µ • |z 1 | |z| β+(γ) for all z ∈ R n -. (265) 
We claim that µ = l. We prove the claim. It follows from (256) and the definition (248) of θ i that Gi (θ i ) = (l + o(1)) |θ i,1 | |θ i | β+(γ) and θ i → θ ∞ = 0 as i → +∞.

(266)

Case 1: we assume that θ ∞ ∈ R n -\ {0}, that is θ ∞,1 = 0. Passing to the limit in (266), using the convergence (264) and the explicit form (265), as in Case 1 of Step P14, we get that l|θ γ) , and therefore, since θ ∞,1 = 0, we get that µ = l. Case 2: we assume that θ ∞ ∈ ∂R n -\ {0}, that is θ i,1 → 0 as i → +∞. With a Taylor expansion, we get that there exists a sequence ( ti ) i∈N ∈ (0, 1) such that Gi (θ i ) = ∂ 1 Gi ( ti θ i,1 , θ i )θ i,1 for all i ∈ N. With the convergence (264) of Gi to G in C 1 , we get that

∞,1 | • |θ ∞ | -β-(γ) = µ|θ ∞,1 | • |θ ∞ | -β-(
Gi (θ i ) = ∂ 1 G(θ ∞ ) + o(1) • θ i,1 = µ |θ ∞ | β+(γ) + o(1) • |θ i,1 |.
Since θ i,1 = 0 for all i ∈ N, it follows form (266) that µ = l. Therefore, in both cases, we have proved that µ = l. It follows from this uniqueness that the convergence of Gi holds with no extraction. As for Step P14, we get (249). This ends Step P16.

Step P17. We fix R, R > 0. We claim that 

Proof of

Step P17: The differs from Step P15 since one works on domains exteriors to the ball of radius r i . Here again, we choose (y i ) i such that y i ∈ T (B Rsi (0)). For r > 0 small, we choose ūβ+(γ) ∈ C 2 (Ω ∩ B r (0)) a supersolution to -∆ū β+(γ) -(γ|x| -2 + h i )ū β+(γ) > 0 as in ( 223) and (224). Note that, due to the convergence of (h i ) to h in C 0 , the choice of ūβ-(γ) can be made independently of i. We fix > 0. 

-∆w i - γ |x| 2 + h i w i ≥ 0 in Ω ∩ T (B δ (0) \ B (R ) -1 ri (0)).
Since -∆ -γ|x| -2 + h i is coercive, the maximum principle holds and (270) holds on Ω ∩ T (B δ (0) \ B (R ) -1 ri (0)). With (224), we get that there exists i 2 ∈ N such that 

for all x ∈ Ω ∩ T (B δ (0) \ B (R ) -1 ri (0)) for all i ≥ i 3 . The inequalities (271) and (272) put together yield (267). This ends Step P17.

Step P18. We let (X i ) i , (Y i ) i ∈ Ω such that |Y i | = o(|X i |) and X i = o(1) as i → +∞. We assume that there exists l > 0 such that Therefore, we get that l = l. This ends Step P18.

G hi (X i , Y i ) = (l + o( 1 
Step P19. We let (X i ) i , (Y i ) i ∈ Ω such that |Y 

Proof of

Step P19: We argue by contradiction and we assume that there exists 0 > 0 and a subsequences (ϕ(i)) i such that |U ϕ(i) -l| ≥ 0 for all i ∈ N where

U i := G hi (X i , Y i )|Y i | β-(γ) |X i | β+(γ)
d(X i , ∂Ω)d(Y i , ∂Ω) .

Since (U ϕ(i)

) is bounded, up to another extraction, there exists l > 0 such that U ϕ(i) → l as i → +∞. Therefore, |l -l | ≥ 0 and l = l. Since (247) holds for the subfamily (ϕ(i)), it then follows from Step P18 that l = l, contradicting l = l. This ends Step P19.

We are now in position to prove (210), that is the convergence with no extraction of subsequence. It follows from (247) and Step P18 applied to (h i ) i and to the null function that there exists a subsequence (h ϕ(i) ) and l, L γ,Ω > 0 such that for any (x i ) i , (y i ) i ∈ Ω such that |y d(y i , ∂Ω)

|y i | β-(γ) (274) 
as i → +∞. We fix a sequence (x i ) i ∈ Ω such that x i → 0 and d(x i , ∂Ω) ≥ |x i |/2 as i → +∞. In the distribution sense, we have that -∆(G h ϕ(i) (x i , •)-G 0 (x i , •))+h ϕ(i) (G h ϕ(i) (x i , •)-G 0 (x i , •)) = (0-h ϕ(i) )G 0 (x i , •) in Ω in the distribution sense and G h ϕ(i) (x i , •) -G 0 (x i , •) = 0 on ∂Ω. It follows from (207) that for any 1 < p < n n-2 , we have that G 0 (x i , •) p ≤ C(p) for all i ∈ N. It then follows from elliptic theory that G h ϕ(i) (x i , •) -G h (x i , •) ∈ W 2,p (Ω) and that

G h ϕ(i) (x i , •) -G 0 (x i , •) W 2,p ≤ C h ϕ(i) ∞
For 1 < p < min{n/2; n/(n -2)}, we define q := np n-2p . Sobolev embeddings then yield G h ϕ(i) (x i , •) -G 0 (x i , •) L q (Ω) ≤ C h ϕ(i) ∞ . We let ( i ) > 0 such that i → 0 as i → +∞. We define α i := i |x i | so that α i = o(|x i |) as i → +∞. We have that

Bα i (0) G h ϕ(i) (x i , y) -G 0 (x i , y) q dy ≤ C h ϕ(i) q ∞ .
It then follows from (273), (274) and the boundedness of (h i ) in C 0 that ≤ C.

If n ≤ q(1 -β -(γ)), then the integral is infinite. This is a contradiction. Therefore n > q(1 -β -(γ)). Estimating the integral and using that |x i | ≤ 2d(x i , ∂Ω), we get that |x i | 1-β+(γ) α 1-β-(γ)+ n q i ≤ C. With α i = i |x| i , β -(γ) + β + (γ) = n and the definition of q, we get that

|x i | -n(1-1 p ) 1-β-(γ)+ n q i ≤ C.
Since |x i | → 0, with a suitable choice of i → 0, we get a contradiction. Therefore l = L γ,Ω that is independent of the choice of the sequence (h i ). This proves (210) and ends the proof of Theorem 8. We then say that G is the Green's function for -∆ -γ|x| -2 on R n -with Dirichlet boundary condition.

In addition, G satisfies the following properties: (280) Indeed, let η ∈ C ∞ (R) be a nondecreasing function such that 0 ≤ η ≤ 1, η(t) = 0 for all t ≤ 1 and η(t) = 1 for all t ≥ 2. For > 0, set η (x) := η |x| for all x ∈ R n .

We let Ω 1 be a smooth bounded domain of R n such that R n -∩ B 1 (0

) ⊂ Ω 1 ⊂ R n -∩ B 3 (0). We define Ω R := R • Ω 1 so that R n -∩ B R (0) ⊂ Ω R ⊂ R n -∩ B 3R ( 
0). We argue as in the proof of (211) to deduce that the operator -∆ -γη |x| 2 is coercive on Ω R and that there exists c > 0 independent of R, > 0 such that

Ω R |∇ϕ| 2 - γη |x| 2 ϕ 2 dx ≥ c Ω R |∇ϕ| 2 dx for all ϕ ∈ C ∞ c (Ω R ).
Consider R, > 0 such that R > 2|p 0 | and < |p0| 6 , and let G R, be the Green's function of -∆ -γη |x| 2 in Ω R with Dirichlet boundary condition. We have that G R, > 0 since the operator is coercive.

Fix R 0 > 0 and q ∈ (1, n n-2 ), then by arguing as in the proof of (213), we get that there exists C = C(γ, p 0 , q , R 0 ) such that G R, (p 0 , •) L q (B R 0 (0)∩R n -) ≤ C for all R > R 0 and 0 < < ≤ C for all R > R 0 and 0 < <

|p 0 | 6 , (281) 
|p 0 | 6 , (282) 
where δ := |p 0 |/4. Arguing again as in Step 14.2 of the proof of Theorem 8, there exists

G p0 ∈ C 2 (R n -\ {0, p 0 }) such that        G R, (p 0 , •) → G p0 ≥ 0 in C 2 loc (R n -\ {0, p 0 }) as R → +∞, → 0 -∆G p0 -γ |x| 2 G p0 = 0 in R n -\ {0, p 0 } G p0 ≡ 0 on ∂R n -\ {0} G p0 ∈ L 2n n-2 (B δ (0) ∩ R n -) (283) 
and ηG p0 ∈ H 2 1,0 (R n -) for all η ∈ C ∞ c (R n \{p 0 }). Fix ϕ ∈ C ∞ c (R n -). For R > 0 large enough, we have that ϕ(p 0 ) = R n -G R, (p 0 , •)(-∆ϕ -γη |x| -2 ϕ) dx. The integral bounds above yield x → G p0 (x)|x| -2 ∈ L 1 loc (R n -). Therefore, we get

ϕ(p 0 ) = R n - G p0 (x) -∆ϕ - γ |x| 2 ϕ dx for all ϕ ∈ C ∞ c (R n -). ( 284 
)
As a consequence, G p0 > 0.

Step 15.2: Asymptotic behavior at 0 and p 0 for solutions to (280). It follows from Theorem 6.1 in Ghoussoub-Robert [START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that either G p0 behaves like As one checks, G p > 0 satisfies (i), (ii), (iii), ( 276), ( 277) and (278). The definition of G p is independent of the choice of ρ p . Indeed, for any linear isometry ρ p0 : R n -→ R n -fixing p 0 and R n -, G p0 • ρ -1 p0 satisfies (i), (ii), (iii), and therefore G p0 • ρ -1 p0 = G p0 . The argument goes similarly of any isometry fixing p.

-ν = 0 .

 0 ) holds. Let (y ) ∈ Ω and let ν Assume that for any R > 0 there exists C(R) > 0 such that for all > 0 |u (x)| ≤C(R) |y | τ |x| τ |u (y )| for all x ∈ B Rκ (y ) ∩ Ω. (

-n- 2 2:

 2 ) holds. Let (y ) ∈ Ω and let ν = |u (y )| and := ν Suppose ν → 0 and |y | = O( ) as → 0.

→0 y = 0 .2

 0 Then by the regularity Theorem 6 and since β -(γ) < n-|u (y )| 1-p 2 (s)-2 = a > 0 (53) for some positive constant a. In particular, lim →0 |u (y )| = +∞. Let µ I+1, := |u (y )| -2 n-2 and k I+1, := µ

2 and u 0 ≡ 8 . 2 .

 082 0}, Proposition 6 follows from (105) and (167). When {β + (γ)-β -(γ) = 2 and u 0 > 0}, Proposition 6 follows from (160), (156) of Step P9, (127) and (167). When 1 < β + (γ) -β -(γ) < 2, Proposition 6 follows from Step P10, (161), (128) and (167).Proof of Proposition 6 when β + (γ) -β -(γ) < 1: This is a direct consequence of Steps P10 and P11. Proof of the sharp blow-up rates when β + (γ) -β -(γ) = 1. We start with the following refined asymptotics when u > 0, β + (γ) -β -(γ) = 1 and u 0 ≡ 0.

λ |x| 2 II

 2 (y) dy where I (y) is the integrand. Since n -(s + (β

λ |x| 2 <|y|<2λ

 2 |x| I (y) dy and |y|>2λ |x| I (y) dy that have been computed just above and go to 0 as → 0. We are then left with the first term. With a change of variables, we have that |y|< λ |x| 2

Proposition 7 .( 2 ) 1 2n

 721 With the above notation and assuming n ≥ 3, we have: (1) For each k ∈ N, c p,k > 0 and lim p→2 (s) c p,k = c 2 (s),k := c k . If 2 < p < 2 (s), there exists for each k, functions u p,k ∈ H 2 1,0 (Ω) such that I p,γ (u p,k ) = 0, and I p,γ (u p,k ) = c p,k . (3) For each 2 < p < 2 (s), we have c p,k ≥ D n,p k p+1 p-where D n,p > 0 is such that lim p→2 (s) D n,p = 0.

( 4 )

 4 lim k→∞ c k = lim k→∞ c 2 (s),k = +∞.

  x∈E k I 2 (s),γ (g(x)), from which follows that lim sup i∈N c pi,k ≤ sup x∈E k I 2 (s),γ (g(x)). Since this holds for any g ∈ H k , it follows that lim sup i∈N c pi,k ≤ c 2 (s),k = c k .

  It then follows that lim k→∞ c k = lim k→∞ c 2 (s),k = +∞.

3 . 1 :

 31 It follows from (219), elliptic theory, (221) and (220) that for any δ > 0, there exists C(δ) > 0 such that 0 < G(x, y) ≤ C(δ)d(y, ∂Ω)d(x, ∂Ω) for x, y ∈ Ω s.t. |x|, |y| > δ, |x -y| > δ. (225) Step 14.3.2: We claim that for any δ > 0, there exists C(δ) > 0 such that |x -y| n-2 G(x, y) ≤ C(δ) min 1, d(x, ∂Ω)d(y, ∂Ω) |x -y| 2 for x, y ∈ Ω s.t. |x|, |y| > δ.

  x -H x ∈ C 2,θ (Ω δ ). It follows from (225) that G x (y) ≤ C 1 (δ)d(y, ∂Ω)d(x, ∂Ω) on (∂Ω δ ) ∩ B 3δ/4 (0) for |x| > δ.The comparison then yields G x (y)-H x (y) ≤ C 1 (δ)d(y, ∂Ω)d(x, ∂Ω) for y ∈ Ω δ and |x| > δ. The above bound for H x and (225) then yields (226).

  We choose a supersolution u β-(γ) as in (223) of Proposition 10. It follows from (224) and (225) that for δ 1 > 0, there existsC(δ, δ 1 ) > 0 such that G x (z) ≤ C(δ, δ 1 )d(x, ∂Ω)u β-(z) for all z ∈ ∂(Ω ∩ B δ1 (0)).It then follows from the comparison principle that G x (y) ≤ C(δ, δ 1 )d(x, ∂Ω)u β-(y) for all y ∈ (Ω ∩ B δ1 (0)) \ {0}. Combining this with (225) and (223), we obtain (227). Note that by symmetry, we also get that for any 0 < δ < δ, there exists C(δ, δ ) > 0 such that |x| β-(γ) G(x, y) ≤ C(δ, δ )d(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω s.t. |y| > δ > δ > |x|.

  and y ∈ B c0/4 (0) ∩ R n -. Applying elliptic estimates, we then get that |H y -Γ y |(z) ≤ C|y 1 | • |z 1 | for z ∈ B c0/2 (0) ∩ R n -and y ∈ B c0/4 (0) ∩ R n -, and since Γ y (z) ≤ C|z -y| 2-n min 1, |y 1 | • |z 1 | |y -z| 2 for all y, z ∈ B c0/2 (0) ∩ R n -(see[START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Existence and optimal asymptotics of the Green's functions of second-order elliptic operators[END_REF]), we get that|z -y| n-2 H y (z) ≤ C min 1, |y 1 | • |z 1 | |y -z| 2 for all y, z ∈ B c0/2 (0) ∩ R n where C is independent of x ∈ B δ0/2 (0) \ {0}. This yields |rz -ry| n-2 G T ((0,x )+ry) (T ((0, x ) + rz)) ≤ C min{1, |y 1 | • |z 1 | |y -z| 2 }(236) for |x | < δ 0 /3, r ≤ c 0 |x | and |y|, |z| ≤ c 0 /4. We now prove (234) in the last case. We fix x ∈ Ω \ {0} such that |x| < δ 0 /3. We assume that d(x, ∂Ω) ≤ C -1 1 |x| , d(y, ∂Ω) ≤ C -1 1 |y| and |x -y| ≤ 0 |x|. We let (x 1 , x ), (y 1 , y ) ∈ B δ0 (0) be such that x = T (x 1 , x ) and y = T (y 1 , y ). Taking the norm |(x 1 , x )| = |x 1 | + |x |, we define r := max{d(x, ∂Ω), |x -y|}. Using that |X|/2 ≤ |T (X)| ≤ 2|X| for X ∈ B δ0 (0), up to taking 0 > 0 small and C 1 , c 0 > 1 large enough, we get that c 0 |x |.

4 . 3 :

 43 We now show that there exists C > 0 such that |y| β-(γ) |x| β+(γ) G(x, y) ≤ Cd(x, ∂Ω)d(y, ∂Ω) for x, y ∈ Ω such that |y| < 1 2 |x|.
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 2 

4

 4 

  where H(x, y) is defined in (208) andΓ(x, y) := max{|x|, |y|} min{|x|, |y|} β-(γ) |x -y| 1-n min 1, d(x, ∂Ω) |x -y|for x, y ∈ Ω, x = y. Note that c 1 < +∞ by (239). We claim that 0 < c 1 and 0 ≤ c 2 < +∞ (244)The lower bound in (207) and the upper bound in (209) both follow from (244).

Case 3 :

 3 x ∞ ∈ Ω and y ∞ = 0 ∈ ∂Ω. It follows from Case 2 above that there exists c > 0 such that G xi (y) ≥ cd(y, ∂Ω)|y| -β-(γ) for all y ∈ ∂(Ω ∩ B r0 (0)). We take the subsolution u β-(γ) defined in Proposition 10. With (224), there exists c > 0 such that G xi (y) ≥ c 1 u β-(γ) (y) for all y ∈ ∂(Ω ∩ B r0 (0)). Since G xi is locally in H 2 1,0 around 0, the comparison principle and (224) yields G xi (y) ≥ c"d(y, ∂Ω)|y| -β-(γ)

Case 5 :

 5 x ∞ = y ∞ , x ∞ ∈ ∂Ω \ {0} and y ∞ = 0. It follows from Cases 2 and 4 that G xi (y) ≥ Cd(x i , ∂Ω)d(y i , ∂Ω) for all y ∈ ∂(B |x∞|/2 (0) ∩ Ω). Using a subsolution as in Case 3, we get that G xi (y) ≥ cd(x i , ∂Ω)d(y, ∂Ω)|y| -β-(γ) for all y ∈ ∂(B |x∞|/2 (0) ∩ Ω). This yields 0 < c 1 .

Case

  

  P15: For r > 0 small, we choose ūβ-(γ) ∈ C 2 (Ω ∩ B r (0)) a supersolution to -∆ū β-(γ) -(γ|x| -2 + h i )ū β-(γ) > 0 as in (223) and (224). Note that, due to the convergence of (h i ) to h in C 0 , the choice of ūβ-(γ) can be made independently of i. We fix > 0. It follows from the convergence (249) of Step P14 and (224) that there exists i 0 ∈ NG hi (x i , y) ≤ (l + ) d(x i , ∂Ω) |x i | β+(γ) ūβ-(γ) (y) for all y ∈ ∂ (Ω ∩ T (B Rsi (0))) for all i ≥ i 0 . (257) Note that G hi (x i , •), ūβ-(γ) ∈ H 2 1 (Ω ∩ T (B Rsi (0))) (these are variational super-or sub-solutions) and that the operator -∆ -(γ|x| -2 + h i ) is coercive. Since G hi (x i , •) is a solution and ūβ-(γ) is a supersolution to -∆u -(γ|x| -2 + h i )u = 0, it follows from the comparison principle that (257) holds for y ∈ Ω∩ T (B Rsi (0)). With (224), we get that there exists i 1 ∈ N such thatG hi (x i , y) ≤ (l + 2 ) d(x i , ∂Ω) |x i | β+(γ) d(y, ∂Ω) |y| β-(γ) for all y ∈ Ω ∩ T (B Rsi (0)) for all i ≥ i 1 .(258) Using a subsolution u β-(γ) as in (223) and (224) and arguing as above, we get thatG hi (x i , y) ≥ (l -2 ) d(x i , ∂Ω) |x i | β+(γ) d(y, ∂Ω) |y| β-(γ) for all y ∈ Ω ∩ T (B Rsi (0)) for all i ≥ i 2 .(259) The inequalities (258) and (259) put together yield (256). This ends Step P15.

G 2 i

 2 hi (x i , y) = (l + o(1)) d(x, ∂Ω) |x| β+(γ) d(y, ∂Ω) |y| β-(γ) as i → +∞ (260)uniformly for y ∈ Ω ∩ T (B Rsi (0)) and x ∈ Ω ∩ T (B R ri (0) \ B (R ) -1 ri (0)).Proof ofStep P16: We fix a sequence (y i ) i ∈ Ω such that y i ∈ T (B Rsi (0)) for all i ∈ N.For z ∈ B 2R \ B (2R ) -1 , we define Gi (z) := |y i | β-(γ) r β+(γ)-1 i d(y i , ∂Ω) G hi (T (s i z), y i ).As one checks, (260) is equivalent to prove thatGi (x) = (l + o(1)) |x 1 | |x| β+(γ) uniformly for x ∈ B R (0) \ B (R ) -1 (0)(261)Since |y i | = o(r i ) as i → +∞ and (28) holds, it follows from the control (207) that there existsC > 0 such that 1 C • |z 1 | |z| β+(γ) ≤ Gi (z) ≤ C • |z 1 | |z| β+(γ) for all z ∈ R n -∩ B 2R \ B (2R ) -1 . (262)As for (242), it follows from (205) that-∆ gi Giγr |T (r i •)| 2 + O(r 2 i ) Gi = 0 in B 2R (0)∩R n -; Gi ≡ 0 on ∂R n -∩B 2R (0)\{0}.(263)It follows from (262), (263) and standard elliptic theory that there exists G ∈ C 2 (R n -\ {0}) such that, up to a subsequence,lim i→+∞ Gi = G in C 2 loc (R n -\ {0}) (264) with -∆ Gγ |x| 2 G = 0 in R n -\ {0} ; G = 0 on ∂R n -\ {0} ; 1 C • |z 1 | |z| β+(γ) ≤ G(z) ≤ C • |z 1 | |z| β+(γ) for all z ∈ R n -\ {0}.

G

  hi (x, y) = (l + o(1) + O(|x| β+(γ)-β-(γ) )) d(x, ∂Ω) |x| β+(γ) d(y, ∂Ω) |y| β-(γ) as i → +∞ (267)uniformly for y ∈ Ω ∩ T (B Rsi (0)) and x ∈ Ω \ T (B (R ) -1 ri (0)).

  It follows from the convergence (260) of Step P16 and (224) that there exists i 0 ∈ NG hi (x, y i ) ≤ (l + ) d(y i , ∂Ω) |y i | β-(γ) ūβ+(γ) (x) for all x ∈ Ω ∩ ∂T (B R ri (0)) for all i ≥ i 0 .(268) We fix δ > 0 such that δ < r. We choose a supersolution ūβ-(γ) as in (223) and (224). It follows from the upper bound (207) that for some i 1 ∈ N, there exists C > 0 such thatG hi (x, y i ) ≤ C d(y i , ∂Ω) |y i | β-(γ) ūβ-(γ) (x) for all x ∈ Ω ∩ ∂B δ (0) for all i ≥ i 1 .(269)Therefore,G hi (x, y i ) ≤ w i (x) for all x ∈ ∂ Ω ∩ T (B δ (0) \ B (R ) -1 ri (0))(270)wherew i := d(y i , ∂Ω) |y i | β-(γ) (l + )ū β+(γ) + C ūβ-(γ) and, since ūβ+(γ) , ūβ-(γ) are supersolution,

G

  hi (x, y i ) ≤ l + 2 + C|x| β+(γ)-β-(γ) d(x, ∂Ω) |x| β+(γ) d(y, ∂Ω) |y| β-(γ) (271) for all x ∈ Ω ∩ T (B δ (0) \ B (R ) -1 ri (0)) for all i ≥ i 2 .Using subsolutions and arguing as above, we get that for somei 3 ∈ N G hi (x, y i ) ≥ l -2 -C|x| β+(γ)-β-(γ) d(x, ∂Ω) |x| β+(γ) d(y, ∂Ω) |y| β-(γ)

  i | = o(|X i |) and X i = o(1) as i → +∞. Then G hi (X i , Y i ) = (l + o(1)) d(X i , ∂Ω) |X i | β+(γ) d(Y i , ∂Ω) |Y i | β-(γ) as i → +∞.

  i | = o(|x i |) and x i = o(1) as i → +∞, then G h ϕ(i) (x i , y i ) = (l + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(y i , ∂Ω) |y i | β-(γ) ,(273)andG 0 (x i , y i ) = (L γ,Ω + o(1)) d(x i , ∂Ω) |x i | β+(γ)

Bα i ( 0 )

 0 (l -L γ,Ω + o(1)) d(x i , ∂Ω) |x i | β+(γ) d(y, ∂Ω) |y| β-(γ) q dy ≤ C.We assume by contradiction that l = L γ,Ω , so thatd(x i , ∂Ω) |x i | β+(γ)Bα i (0)
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 1594 Appendix E: Green's function for the Hardy-Schrödinger operator on R n -In this section, we prove the following:Fix γ < n 2 For all p ∈ R n -\ {0}, there exists G p ∈ L 1 (R n -) such that (i) ηG p ∈ H 2 1,0 (R n -) for all η ∈ C ∞ c (R n -{p}), (ii) For all ϕ ∈ C ∞ c (R n -), we have that ϕ(p) = R n -G p (x) -∆ϕ -γ |x| 2 ϕ dx,(275)Moreover, if G p , G p satisfy (i) and (ii) and are positive, then there existsC ∈ R such that G p (x) -G p (x) = C|x 1 | • |x| -β-(γ) for all x ∈ R n -\ {0,p}. In particular, there exists one and only one function G p = G(p, •) > 0 such that (i) and (ii) hold with G p = G p and (iii) G p (x) = O |x1| |x| β + (γ) as |x| → +∞.

-

  (iv) For all p ∈ R n \ {0}, there exists c 0 (p), c ∞ (p) > 0 such thatG p (x) ∼ x→0 c 0 (p)|x 1 | |x| β-(γ) and G p (x) ∼ x→∞ c ∞ (p)|x 1 | |x| β+(γ)(276)andG p (x) ∼ x→p 1 (n -2)ω n-1 |x -p| n-2 . (277) (v) There exists c > 0 independent of p such that c -1 H p (x) ≤ G p (x) ≤ cH p (x)(278)wherep (x) := max{|p|, |x|} min{|p|, |x|} β-(γ) |x -p| 2-n min 1, |x 1 | • |p 1 | |x -p| 2(279)Proof of Theorem 9: We shall again proceed with several steps.Step 15.1: Construction of a positive kernel at a given point: For a fixed p 0 ∈ R n \ {0}, we show that there existsG p0 ∈ C 2 (R n -\ {0, p 0 }) such that  ∆G p0 -γ |x| 2 G p0 = 0 in R n -\ {0, p 0 } G p0 > 0 G p0 ∈ L 2n n-2 (B δ (0) ∩ R n -)with δ := |p 0 |/4 G p0 satisfies (ii) with p = p 0 .

andG

  R, (p 0 , •)L 2n n-2 (B δ 0 (0)∩R n -)

|x 1 |-H 2 G p0 ρ - 1 p

 121 • |x| -β-(γ) or |x 1 | • |x| -β+(γ) at 0. Since G p0 ∈ L 2n n-2 (B δ (0) ∩ R n -)for some small δ > 0 and β -(γ) < n 2 < β + (γ), we get that there exists c 0 > 0 such thatlim x→0 G p0 (x) |x 1 | • |x| -β-(γ) = c 0 . (285)Since G p0 is positive and smooth in a neighborhood of p 0 , it follows from (284) and the classification of solutions to harmonic equations thatG p0 (x) ∼ x→p0 1 (n -2)ω n-1 |x -p 0 | n-2 . (286)Step 15.3: Asymptotic behavior at ∞ for solutions to (280): We letGp0 (x) := 1 |x| n-2 G p0 x |x| 2 for all x ∈ R n -\ 0, p 0 |p 0 | 2 ,be the Kelvin's transform of G. We have that-∆ Gp0 -γ |x| 2 Gp0 = 0 in R n -\ 0, p 0 |p 0 | 2 ; G ≡ 0 on ∂R n -\ {p 0 }.Since Gp0 > 0, it follows from Theorem 6.1 in[START_REF] Ghoussoub | Hardy-Singular Boundary Mass and Sobolev-Critical Variational Problems[END_REF] that there exists c 1 > 0 such that either Gp0 (x)∼ x→0 c 1 |x 1 | |x| β-(γ) or Gp0 (x) ∼ x→0 c 1 |x 1 | |x| β+(γ) . Coming back to G p0 , we get that either G p0 (x) ∼ |x|→∞ c 1 |x 1 | |x| β+(γ) or G p0 (x) ∼ |x|→∞ c 1 |x 1 | |x| β-(γ) . (287)Assuming we are in the second case, for any c ≤ c 1 , we defineḠc (x) := G p0 (x) -c |x 1 | |x| β-(γ) in R n -\ {0, p 0 }, which satisfy -∆ Ḡcγ |x| 2 Ḡc = 0 in R n -\ {0, p 0 }. It follows from (287) and (286) that for c < c 1 , Ḡc > 0 around p 0 and ∞.Using that η Ḡc ∈ H 2 1,0 (R n -) for all η ∈ C ∞ c (R n \ {p 0 }), it follows from the coercivity of -∆ -γ|x| -2 that Ḡc > 0 in R n -\ {0, p 0 } for c < c 1 . Letting c → c 1 yields Ḡc1 ≥ 0,and then Ḡc1 > 0. Since Ḡc1 (x) = o(|x 1 | • |x| -β-(γ) ) as |x| → ∞, another Kelvin transform and Theorem 6.1 in [21] yield |x 1 | -1 |x| β+(γ) Ḡc1 (x) → c 2 > 0 as |x| → ∞ for some c 2 > 0. Then there exists c 3 > 0 such that lim x→0 Ḡc1 (x)|x 1 | • |x| -β-(γ) = c 3 > 0 and lim x→∞ Ḡc1 (x) |x 1 | • |x| -β+(γ) = c 2 . (288) Since x → |x 1 | • |x| -β-(γ) ∈ H 2 1,loc (R n ), we get that ϕ(p) = R n -Ḡc1 (x) -∆ϕ -γ |x| 2 ϕ dx for all ϕ ∈ C ∞ c (R n -).Step 15.4: Uniqueness: Let G 1 , G 2 > 0 be 2 functions such that (i), (ii) hold for p := p 0 , and setH := G 1 -G 2 .It follows from Steps 2 and 3 that there existsc ∈ R such that H (x) := H(x) -c|x 1 | • |x| -β-(γ) satisfies H (x) = x→0 O |x 1 | • |x| -β-(γ) and H (x) = |x|→∞ O |x 1 | • |x| -β+(γ) .(289)We then have that ηH∈ H 2 1,0 (R n -) for all η ∈ C ∞ c (R n \ {p 0 }) and R n (x) -∆ϕ -γ |x| 2 ϕ dx = 0 for all ϕ ∈ C ∞ c (R n -).The ellipticity of the Laplacian then yields H ∈ C ∞ (R n -\ {0}). The pointwise bounds (289) yield that H ∈ H 2 1,0 (R n -). Multiplying -∆H -γ |x| 2 H = 0 by H , integrating by parts and the coercivity yield H ≡ 0, and therefore, (G 1 -G 2 )(x) = c|x 1 | • |x| -β-(γ) for all x ∈ R n -. This proves uniqueness. Step 15.5: Existence. It follows from Steps 2 and 3 that, up to substracting a multiple of x → |x 1 | • |x| -β-(γ) , there exists a unique function G p0 > 0 satisfying (i), (ii) and the pointwise control (iii). Moreover, (285), (286) and (288) yield (276) and (277). As a consequence, (278) holds with p = p 0 . For p ∈ R n \ {0}, consider ρ p : R n -→ R n -a linear isometry fixing R n -such that ρ p ( p0 |p0| ) = p |p| , and define G p (x) := |p 0 | |p| n-|p 0 | |p| x for all x ∈ R n \ {0, p}.

  Note that this definition makes sense since for such z, x + |x|z ∈ Ω. We then have that H ∈ C 2 (B 1/(2C1) (0) \ {0}) and H -Γ 0 ∈ C 2 (B 1/(2C1) (0)) and, via the comparison principle, it is bounded by its supremum on the boundary. Therefore|z| n-2 H(z) ≤ C for all B 1/(2C1) (0) \ {0} where C is independent of x ∈ Ω \ {0}satisfying (235). Scaling back and using (229), we get |x -y| n-2 G x (y) ≤ C for all x, y ∈ Ω \ {0} such that c 1 |x| < |y| < c 2 |x| and (235) holds. This proves (234) if d(x, ∂Ω)d(y, ∂Ω) ≥ |x -y| 2 . If d(x, ∂Ω)d(y, ∂Ω) < |x -y| 2 , we get that d(x, ∂Ω) < 2|x-y|, and then (235) yields |x| ≤ 2C 1 |x-y|, and (234) is a consequence of (229).

		
	min 1, for all x, y ∈ Ω s.t. c 1 |x| < |y| < c 2 |x|. To prove (234), we distinguish three cases: d(x, ∂Ω)d(y, ∂Ω) |x -y| 2 (234) Case 1: We assume that |x| ≤ C 1 d(x, ∂Ω) with C 1 > 1. (235) We define   γ x |x| + z 2 + |x| 2 h(x + |x|z)   H = δ 0 weakly in B 1/(2C1) (0). We now argue as in the proof of (226). From (229), we have that |H(z)| ≤ C for all z ∈ ∂B 1/(2C1) (0) where C is independent of x ∈ Ω \ {0} satisfying (235). Let Γ 0 be the Green's function of -∆ -γ | x |x| +z| 2 + |x| 2 h(x + |x|z) at 0 on B 1/(2C1) (0) with H(z) := |x| n-2 G -∆H -Dirichlet boundary condition. Therefore,

x (x + |x|z) for z ∈ B 1/C1 (0) \ {0}.

  ). Concerning the gradient, lim i→+∞ |∇G xi (y i )| = |∇G x∞ (y ∞ )| ≥ 0 and this yields c 2 < +∞. This proves (244) in Case 1.Case 2: x ∞ ∈ Ω and y ∞ ∈ ∂Ω \ {0}. Since x ∞ , y ∞ are distinct and far from 0, we have that G(x i , y i ) = d(y i , ∂Ω) (-∂ ν G x∞ (y ∞ ) + o(1)) as i → +∞, where ∂ ν G x∞ (y ∞ ) is the normal derivative of G x∞ > 0 at the boundary point y ∞ . Hopf's Lemma then yields ∂ ν G x∞ (y ∞ ) < 0. As one checks, we have that H(x i , y i ) = (c + o(1))d(y i , ∂Ω) as i → +∞. This then yields 0 < c 1 < +∞.Concerning the gradient, we get that lim i→+∞ |∇G xi (y i )| = |∇G x∞ (y ∞ )| ≥ 0 and lim i→+∞ Γ(x i , y i ) ∈ (0, +∞), which yields c 2 < +∞. This proves (244) in Case 2.

  )) d(X i , ∂Ω) |X i | β+(γ) d(Y i , ∂Ω) |Y i | β-(γ) as i → +∞.Proof ofStep P18: We defineσ i := min{|ỹ i |, |Y i |} and ρ i := max{|x i |, |X i |}. We let (z i ) i , (t i ) i ∈ Ω such that c 1 σ i ≤ |z i | ≤ c 2 σ i and c 1 ρ i ≤ |t i | ≤ c 2 ρ i for all i ∈ N. Since |z i | = O(s i ), r i = O(|t i |) and t i → 0 as i → +∞, it follows from (267) that G hi (z i , t i ) = (l + o(1)) d(z i , ∂Ω) |z i | β-(γ) d(t i , ∂Ω) |t i | β+(γ) as i → +∞. In addition, since |z i | = O(|Y | i ), |X i | = O(|t i |) and t i → 0 as i → +∞, it follows from (267) that G hi (z i , t i ) = (l + o(1)) d(z i , ∂Ω) |z i | β-(γ)

	Then l = l.

d(t i , ∂Ω) |t i | β+(γ) as i → +∞.
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