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MULTIPLICITY AND STABILITY OF THE POHOZAEV
OBSTRUCTION FOR HARDY-SCHRODINGER EQUATIONS
WITH BOUNDARY SINGULARITY

NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FREDERIC ROBERT

ABSTRACT. Let Q be a smooth bounded domain in R™ (n > 3) such that
0 € 092. We consider issues of non-existence, existence, and multiplicity of
variational solutions in H12,O(Q) for the borderline Dirichlet problem,
w . ‘u‘z*(s)72u .
—Au — T — h(z)u = e in Q, B
u = 0 on 00\ {0},
where 0 < s < 2, 2%(s) := %, v € R and h € CO(Q). We use sharp blow-
up analysis on —possibly high energy— solutions of corresponding subcritical
n

problems to establish, for example, that if v < 72 — 1 and the principal
curvatures of 92 at 0 are non-positive but not all of them vanishing, then
Equation (E) has an infinite number of high energy (possibly sign-changing)

solutions in H? ;(£2). This complements results of the first and third authors,

who showed in [20] that if v < "72 - i and the mean curvature of 9 at 0 is
negative, then (E) has a positive least energy solution.

On the other hand, the sharp blow-up analysis also allows us to show that if
the mean curvature at 0 is nonzero and the mass, when defined, is also nonzero,
then there is a surprising stability of regimes where there are no variational
positive solutions under C!-perturbations of the potential h. In particular,
and in sharp contrast with the non-singular case (i.e., when v = s = 0), we
prove non-existence of such solutions for (E) in any dimension, whenever Q is
star-shaped and h is close to 0, which include situations not covered by the
classical Pohozaev obstruction.
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1. INTRODUCTION

This manuscript is the continuation of a long-time project initiated by the first
and the third author in [18] about nonlinear critical equations involving the Hardy
potential when the singularity is located on the boundary of the domain under
study. Let €2 be such a smooth bounded domain in R™, n > 3, with 0 € 9Q). We
fix s € (0,2) and define the critical Sobolev exponent 2*(s) := % For vy e R
and hy € C1(Q), we consider in the sequel issues of non-existence, existence, and
multiplicity of variational solutions in H? ;(€) for the borderline Dirichlet problem,

u = 0 on 002\ {0}.

By solutions, we mean here functions u € H? ;(Q), i.e., the completion of CZ°(£2) for
the Lo-norm of the gradient ||Vu||2. This problem has by now a long history starting
with the fact that when v = s = 0 and hg is a constant, it is the counterpart of the

Yamabe problem [1,25,31] in Euclidian space, as initiated by Brezis-Nirenberg [5],
with important contributions in the critical dimension n = 3, by Druet [8], and for
multiplicity results for n > 7, by Devillanova-Solimini [7], among many others.

The case dealing with least energy solutions for s > 0 but v = 0, when the sin-
gularity 0 is on the boundary of the domain was initiated by Kang-Ghoussoub [17]
and developed by Ghoussoub-Robert [18]. The case involving the Hardy potential,
i.e., when v > 0, was introduced by Lin-Wadade [26] with a follow-up contribution
by Ghoussoub-Robert [20]. This paper addresses remaining issues about the mul-
tiplicity of solutions, but also about obstructions to the existence of solutions and
their stability under small perturbations.

The existence of solutions is related to the coercivity of the operator—A — # —

ho(z). Tt is clear that the operator —A — # is coercive on H7 () whenever

v < vu (), where v (£2) is the Hardy constant associated to the domain {2, that
is

|Vul? dx
(2) ’YH(Q) = 5 fQ ) ;
weH? o @\0} [ i da
which has been extensively studied (see for example [16] and [20]). We recall that
if 0 € 2, then
n n — 2)?
®) () = (&) = 22
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When 0 € 09, the situation is extremely different. For non-smooth domains mod-
eled on cones, we refer to Egnell [12], and the more recent | works of Cheikh-Ali
[22,23]. If Q is smooth, then, around 0, the domain is modeled on the half-space
R™ := {z € R"; 21 < 0}. We then get that (see [20])
n—2)? " n?

() 2 (@) < R =

Note that when hy = 0, (1) is the Euler-Lagrange equation for the following
Hardy-Sobolev variational problem: For v < vy () and 0 < s < 2, there exists
fy,s(£2) > 0 such that

2
Jo IVul?dz —~ [, ropz da

o\
(fg EE df”)

Note that when s = 2 and v = 0, this is the Hardy inequality mentioned above,
while if s = 0 and v = 0, it is the Sobolev inequality. If Q = R", s € [0,2]

and v € (—o0, ("12)2), (5) contains — after a suitable change of variables — the

Caffarelli-Kohn-Nirenberg inequalities [6]. The latter state that there is a constant
C := C(a,b,n) > 0 such that,

(5) fiy,s(€2) = inf s u € Hi () \ {0}

2
(6) </ |x|_bqu|q> ' < C/ |z| 24| Vu|2dz for all u € C°(R™),
R" R"
where
n—2 2n
- Pt 9g<b-a<1, and g= —— 2
(7) oo <a< 5 , 0< a<1, and ¢ R S

The first difficulty in these problems is due to the fact that 2*(s) is critical from
the viewpoint of the Sobolev embeddings, in such a way that if €2 is bounded, then
H3 () is embedded in the weighted space LP(Q,|z|~*) for 1 < p < 2*(s), and the
embedding is compact if and only if p < 2*(s). This lack of compactness defeats
the classical minimization strategy to get extremals for (5). In fact, when s = 0 and
~v = 0, this is the setting of the critical case in the classical Sobolev inequalities,
which started this whole line of inquiry, due to its connection with the Yamabe
problem on compact Riemannian manifolds [1], [31][25]. Another complicating

feature of the problem is that the term # is as critical as ¥ 27"

ER " in the sense that
they have the same homogeneity as the Laplacian. These difficulties are summarized
by the invariance of the problem under conformal transformation. Indeed, for a

function u : Q@ — R and r > 0, let
(8) Uy :xHranzu(%x)
and note that Equation (1) is then ”essentially” invariant under the transformation

u — U, in the sense that

N
|u,. |27 ()2,

9) —Au, — 'yﬁ —12ho(ra)u, = T in r1Q,
u. = 0 on 7190\ {0}.

This ”invariance” is behind the lack of compactness in the embeddings associated
to the variational formulation of (1), which prohibits the use of general abstract
topological or variational methods. However, as one notices, the invariance is not
complete, since the potential h has changed, and the domain itself was transformed.



4 NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FREDERIC ROBERT

As we shall see, both the geometry of the domain and -to a lesser extent- the
potential h break the invariance enough that one will be able to recover compactness
for (1).

Another important aspect of this problem is the singularity at 0 and its location
within the domain since the Hardy potential does not belong to the Kato class.
Elliptic problems with singular potential arise in quantum mechanics, astrophysics,
as well as in Riemannian geometry, in particular in the study of the scalar curvature
problem on the sphere S™. Indeed, if the latter is equipped with its standard
metric whose scalar curvature is singular at the north and south poles, then by
considering its stereographic projection of R™, the problem of finding a conformal
metric with prescribed scalar curvature K (z) leads to finding solutions of the form
—Au—ypE = K(z)u® ~! on R". The latter is a simplified version of the nonlinear

Wheeler-DeWitt equation, which appears in quantum cosmology (see [2, 3,27, 33]
and the references cited therein).

This paper deals specifically with the case where 0 belongs to the boundary of a
smooth domain 2. We shall see that the boundary at 0 play an important role, and
our starting point is the following existence result for least energy solutions, first

established by Ghoussoub-Robert [18] when v = 0, then by Lin-Wadade [26] when

2
0 <y < @ under the assumption that the mean curvature at 0 is negative.

”2471 in [20], but more importantly, it

The result was extended to the range v <
was shown there that in the remaining range (”24_1, %2), the curvature condition
does not suffice anymore and a more global condition is needed: the boundary mass

m~,1(€2) of a domain associated to v and h, that we now recall.

1.1. The models and the definition of the mass. Letting formally » — 0 in
(9), we get that u should behave like solutions to

_ _ L ‘U|2*(s)72U . .
(10) AU-YLE = ~FF in RZ,
U =0 on OR"™.

To the best of our knowledge, no explicit positive solution of (10) is known. This
was the reason why a specific blowup analysis was carried out in [18], which relied
on the symmetry properties and a precise description of the asymptotic behavior
of such solutions —also established in [18]. On the other hand, since the asymptotic
behavior of such nonlinear problems is governed by the solutions to the linear
problem

U _ : n
(11) {—AU—’YIIQ =0 in R™,

U = 0 ondR",

One can then easily see that a function of the form u(x) = z;|z|~? is a solution to
(11) if and only if 8 € {B8-(7), 5+(7)}, where

n n? n?

12 = —F3/— = f —.

(12) Be(1) = 3 L 0 forr<

The following was established in [20].

Theorem-Definition 1 ([20]). Let  be a smooth bounded domain of R™ (n > 3)
such that 0 € 9). Suppose v < %2 and let h € CY(Q) be such that the operator
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A —v|z|=2 — h is coercive. Assuming that
n?—1
4 b
then there exists H € C*(Q\ {0}) such that
—AH — #’H +h(x)H=0 1inQ
H>0 inQ
H=0 onoQ\{0}.

Then, there exist constants c1,co € R with ¢; > 0 such that

Hx) = d(zx,00) d(z,90) (d(m,@Q))

v >

PR N PRRIC) |-
as x — 0. In the spirit of Schoen-Yau [32], we define the boundary mass as
c
m%h(Q) = l,
C1

which is independent of the choice of H.

The problem of existence of least energy solutions can now be summarized in
the following theorem, whose proof can also be deduced from the refined blow-up
techniques developed in this paper.

Theorem 1. [20] Let Q be a smooth bounded domain in R™ (n > 3) such that
the singularity 0 belongs to the boundary 9. Suppose that 0 < s < 2 and fix
ho € CY(Q) such that —A — ~y|x|~2 — hq is coercive. Assume one of the following
two conditions:

e v < "24_1 and the mean curvature of 02 at 0 is negative.

o "2471 <y < %2 and the boundary mass m p,(2) is positive.

Then, there is a positive solution to (1) that is a minimizer for the associated
variational problem,

Jo IVul?de — v [, % dx — [, ho(z)u® dx

2
[u|2* () 2% (s)
(fg e de

Our focus in this project, is to investigate the extent to which the above local cur-
vature condition at 0 and the global (mass) condition on the domain are necessary
for the existence of positive solutions. Most importantly, we give results pertaining
to the persistence of the lack of positive solutions for (1) under C*-perturbations of
the potential h. We will also show that, under suitable curvature conditions, this
equation has an infinite number of non-necessarily positive solutions.

Both existence and non-existence results will follow from a sharp blow-up analysis
of solutions to perturbations of Equation (1). More precisely, we consider for each
€ > 0, subcritical exponents

(14) pe € [0,2*(s) — 2) such that lim,_,¢ pe = 0,
and a family (h¢)eso € C1(Q) such that

(13)  inf

pu € Hi () \ {0}

(15) lim h, = hp in C*(Q) and — A — - ho is coercive in €.
e—0 ||
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We then perform a blow-up analysis, as € go to zero, on a sequence of functions
(ue)eso in HE o(2) such that u, is a solution to the subcritical Dirichlet boundary
value problems:

w . 2% (s)—2—pe . .
_AUE — 'yﬁ — heue = ‘ullmilsu mn Hio(Q), (Ee)
ue = 0 on 0N).

The novelty and delicacy of our analysis stem from the fact that the sequence
(te)es>o might blow up along excited states, as opposed to a unique ground state in
[18]. Moreover, the sequence (u¢)e>o is not assumed to have a fixed sign.

1.2. Non-existence: stability of the Pohozaev obstruction. Starting with
issues of non-existence of solutions, we shall prove the following surprising stability
of regimes where variational positive solutions do not exist.

Theorem 2. Let ) be a smooth bounded domain in R™ (n > 3) such that the
singularity 0 belongs to the boundary 0. Assume that 0 < s < 2 and v < n?/4.
Fiz hg € CY(Q) such that —A —~|z| =2 — hg is coercive, and assume that one of the
following conditions hold:

n?—1

o v <

and the mean curvature at 0 is non-zero;

2
e v > =L and the boundary mass m. () is non-zero.

If there is no positive variational solution to (1) with h = hg, then for all A > 0,
there exists € := (A, hg) > 0 such that for any h € C*(Q) with ||h — hocr(a) < €,
there is no positive solution to (1) such that |Vuls < A.

The above result is surprising for the following reason: Assuming 2 is starshaped
with respect to 0, then the classical Pohozaev obstruction (see Section 11) yields
that (1) has no positive variational solution whenever

(16) ho(z) + 2 (Vho(z),z) <0 for all z € €.
We then get the following result.
Corollary 1. Let Q be a smooth bounded domain in R™ (n > 3) such that 0 € 0.

Assume Q is starshaped with respect to 0, 0 < s <2 and v < yug(Q). If v < "2;1,
we shall also assume that the mean curvature at 0 is non-vanishing. If hg is a
potential satisfying (16), then for all A > 0, there exists (A, hg) > 0 such that for
all h € CH(Q) satisfying ||h — hollc1(a) < €(A, ho), there is no positive solution to
(1) such that |[Vull2 < A.

The non-vanishing condition of the mean curvature at 0 is only needed below when
v S ni:l .

We contrast this with the non-singular case, i.e., when v = s = 0, where such an
obstruction is not stable under C'—perturbations of hg when n > 4 as shown in
a celebrated result of Brezis-Nirenberg [5]. Indeed, by choosing hg = X € R as a
constant, the Pohozaev condition (16) then yields the absence of positive solutions
to the problem whenever A < 0. A consequence of the analysis of Theorem 2 is

that there is also non-existence for small positive values of A:

Corollary 2. Let Q be a smooth bounded domain in R™ (n > 3), such that 0 € 0.
We fix 0 < s <2 and v < vy (), the Hardy constant defined in (2). Assume that

Q is starshaped with respect to 0.
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When v < "24_1, we assume that the mean curvature at 0 is positive. Then for all
A > 0, there exists e(A) > 0 such that for all X € [0,€e(A)), there is no positive
solution to

u2*(s)—1

(17) u >0 in Q
u=0 on 90\ {0}

with ||Vulls < A.

It is worth comparing these results to what happens in the nonsingular case,
that is when v = s = 0. Indeed, in contrast to the singular case, a celebrated
result of Brezis-Nirenberg [5] shows that a variational solution to (17) always exist
whenever n > 4 and 0 < A < A\ (2), with the geometry of the domain playing
no role whatsoever [5]. On the other hand, Druet-Laurain [10] showed that the
geometry plays a role in dimension n = 3, still for v = s = 0, by proving that when
() is star-shaped, then there is no solution to (17) for all small values of A > 0.
This is in stark contrast with the situation here, i.e. when 0 € 92 and s > 0. In
this case, for both the existence and non-existence results, the geometry seems to
play a role in all dimensions: it is either the local geometry at 0 (i.e., depending
on whether the mean curvature at 0 is vanishing or not) in high dimensions, or the
global geometry of the domain (i.e., depending on whether the mass is positive or
the domain is star-shaped) in low dimensions. In the forthcoming paper [15], we
tackle the case of the interior singularity 0 € €2, where the results are much more
in the spirit of Brezis-Nirenberg and Druet-Laurain.

The proof of Theorem 2 and Corollary 2 rely on blow-up analysis. Namely, arguing
by contradiction, we assume the existence of solutions (u¢)e to (17) with A :=€ >0
with a control on the Dirichlet energy. Due to the ”invariance” under the conformal
transformation (8), the wu.’s might concentrate on some peaks at 0. A delicate
analysis of the formation of these peaks yields compactness theorems in the spirit
of Theorem 4 below.

1.3. Multiplicity of sign-changing solutions. As to the question of multiplicity,
we shall prove the following result, which uses that in the subcritical case, i.e., when
pe > 0, there is an infinite number of higher energy solutions for such e. Again, the
core of the proof is a sharp blow-up analysis of such solutions as p. — 0.

Theorem 3 (The general case). Let Q be a smooth bounded domain in R™, n > 3,
such that 0 € 9Q and assume that 0 < s < 2. Let hg € C1(Q) and (he)e=o € CH(Q)
be such that (15) holds, and let (pe)eso be subcritical exponents satisfying (14).
Consider a sequence of functions (ue)eso that is uniformly bounded in Hf 4(€) such
that for each € > 0, u. satisfies Equation (E.). Then,

(1) If v < %2 — 1 and the principal curvatures of 02 at 0 are non-positive but
not all of them vanish, then the sequence (uc)eso is pre-compact in Hf o(Q).

(2) In particular, Equation (1) has an infinite number of (possibly sign-changing)
solutions in H7 ().

The above result was established by Ghoussoub-Robert [19] in the case when
v = 0. The main challenge here is to prove the compactness of the subcritical
solutions at high energy levels, as the nonlinearities approach the critical exponent.
The multiplicity result then follows from standard min-max methods . The proof
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relies heavily on pointwise blow-up analysis techniques in the spirit of Druet-Hebey-
Robert [11] and Druet [9], though our situation adds considerable difficulties to
carrying out the program.

1.4. Compactness Theorems and blow-up analysis. As mentioned above, the
central tool is an analysis of the formation of peaks on families (u¢). of solutions
to equations like (1) when blow-up occurs. This long analysis yields Propositions
5 and 6 that describe the blow-up rate. When blowup does not occur, there is
compactness. The following theorems are immediate consequences of these propo-
sitions.

We note that the restrictions on both v and on the curvature at 0 are more strin-
gent than for the existence of a ground state solution in Theorem 1. The stronger
assumptions turned out to be due to the potentially sign-changing approximate
solutions -actually solutions of subcritical problems- and not because they are not
necessarily minimizing. Indeed, the following theorem does not assume any small-
ness of the energy bound as long as the approximate solutions are positive. It
therefore yields another proof for Theorem 1, which does not rely on the existence
of minimizing sequence below the energy level of a single bubble.

Theorem 4 (The non-changing sign case). Assume in addition to the hypothesis
of Theorem 3, that the subcritical solutions (ue)eso satisfy for all € > 0,

(18) ue >0 on S

Then, the sequence (ue)eso 18 pre-compact in Hf,O(Q), provided one of the following
conditions is satisfied:

o v < "2;1 and the mean curvature of 9 at 0 is negative.

n?—1

o =< y< %2 and the boundary mass m~ p, (1) is positive.

Our method also shows that if the —possibly sign-changing— sequence is weakly

null, then the compactness result in Theorem 3 will still hold for v up to "72 — i,

but only under the stronger condition on the principal curvatures at zero.

Theorem 5 (The case of a weak null limit). Assume in addition to the hypothesis
of Theorem 3, that the subcritical solutions (ue)eso satisfy,

(19) lim ||| = 0.
e—0

If v < ”24_1 and the principal curvatures of 00 at 0 are non-positive but not all of
them vanishing, then the sequence (u¢)eso converges strongly to 0 in H1270(Q).

1.5. Structure of the manuscript. This paper is organized as follows. Section 2
consists in preliminary material in order to introduce the sequence of functions that
will be thoroughly analyzed in Sections 3 to 8 in the case where they ”blow-up”.
Section 9 contains the proof of the multiplicity result and Section 10 will have the
applications to non-existence regimes and their stability under perturbations. We
then have five relevant appendices. The first (Appendix A, Section 11) introduces
the Pohozaev identity in our setting. The second (Appendix B, Section 12) contains
a technical lemma on the continuity of the first eigenvalue A (A + V') with respect
to variations of the potential V. Appendix C (Section 13) recalls regularity results
established in [20] about the regularity and behavior at 0 of solutions of equations
involving the Hardy-Schrédinger operator on bounded domains having 0 on their
boundary. In Appendix D (Section 14), we construct the Green functions associated
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to the operators —A — ﬁ —h on such domains, and exhibit some of their properties

needed throughout the memoir. The last Appendix E (Section 15) does the same

but for the Hardy-Schrédinger operator —A — # on R™.

2. SETTING UP THE BLOW-UP

Throughout this paper, 2 will always be a smooth bounded domain of R™,

n > 3, such that 0 € 9. We will always assume that v < "4—2 and s € (0,2). We
set 2*(s) = 2("7_25) When v < y5(£2), then the following Hardy-Sobolev inequality

n—

holds on : there exists C' > 0 such that

o (s) N\ 220
(20) C( ful dac)
Q

|z[*

) 2
S/ |Vu|2dgcf’y/ U—Qd:c for all u € H{ ().
Q Q |$| '

For each € > 0, we consider p, € [0,2*(s) — 2) such that
(21) lim p. = 0.
e—0

Let hg € C*(Q) and consider a family (h¢)eso € C1(Q) such that (15) holds.
Consider a sequence of functions (uc)eso in Hf () such that for all € > 0 the
function u. is a solution to the Dirichlet boundary value problem:

|u‘|2*(5)727p5u€

—Aue — fy‘zﬁ — heue = S in DY2(Q),
u = 0 on 0f).
By the regularity result Theorem 6 in Appendix B, we have u. € C?(Q\ {0}) and
there exists K. € R such that lim,_,q % = K.. In addition, we assume
that the sequence (uc)e>o is bounded in H%’O(Q) and we let A > 0 be such that

(Ee)

|| (5)=Pe
(22) /7dx <A for all € > 0.

It then follows from the weak compactness of the unit ball of Hf () that there
exists ug € Hf ¢(Q) such that as € — 0

(23) Ue — U weakly in H12,0(Q)~
Note that ug is a solution to the Dirichlet boundary value problem:
—Au — 'yﬁ —hou = M# in Q,
u = 0 on 00\ {0}.

From the regularity Theorem 6 we have ug € C?(2\ {0}) and lim M =
& Y 0 =0 d(z,00)

\x|ﬁ—(7)uo(x)

Ky € R. Tt then follows that sup and hence |||x|ﬁ—(7)_1u0(x)||Loo(Q)
Q

d(x,00)
is finite.
We fix 7 € R such that
—2
(24) B_(’y)—1<7<nT.

The following proposition shows that the sequence (uc)e is pre-compact in Hf ,(2)
if (|#|"ue), is uniformly bounded in L*>(£2).
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Proposition 1. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 0N
and assume that 0 < s < 2, v < %2. We let (ue), (he) and (pe) be such that (E.),
(15) and (21) holds. Suppose that there exists C' > 0 such that |z|"|u.(z)| < C for
all € Q and for all e > 0. Then up to a subsequence, ggl(l) Ue = Ug N Hio(Q),

where ug is as in (23).

Proof of Proposition 1: We have assumed that |z|"|uc.(z)| < C for all z € Q
and for all € > 0. So the sequence (u.) is uniformly bounded in L% (') for any
' cc Q\ {0}. Then by standard elliptic estimates and from (23) it follows that
ue = ug in CF _(Q\ {0}).

Now since |z|"|ue(z)| < C for all z € Q and for all € > 0, and since 7 < %52, we
have

L |ue |2 (=)= L |ue|?
(25) lim lim dr =0 and lim lim dr =0.
§—0e—0 |$|5 §—0€e—0 :E|2
QﬁB(s(O) QﬂBg(O)
Therefore
2% (s)—pe 2%(s) 2 2
lim Ldm: &dx and lim/ [uc| dm:/luol dx.
=0 |z|® || 0/ |z[? |z [?
Q Q

From (E.) and (23) we then obtain
lim |Vue* — v ue — heu? ) dx = / |Vug|* — 'yu—% — houd | dx
=0 ‘ E |z[? ’
Q Q

so then lim/|Vu€\2 = 1im/|Vu0|2.
e—0 e—0
Q Q

And hence lin(l) ue = ug in HZ 4(€2). ]
€e— ’

From now on, we assume that

(26) tim |27t £ ) = 0.

We shall say that blow-up occurs whenever (26) holds.

3. SCALING LEMMAS

In this section we state and prove two scaling lemmas which we shall use many
times in our analysis. We start by describing a parametrization around a point of
the boundary 992. Let p € 9. Then there exists U,V open in R™, there exists
I C R an open interval, there exists U’ C R™~! an open subset, and there exist a
smooth diffeomorphism 7 : U — V and Ty € C°°(U’), such that upto a rotation
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of coordinates if necessary

0ecU=1IxU andpeV.

7(0)=p.

TUN{z; <0 =VNQ and T (UN{zy =0}) =V NoQ.

DyT =Ign. Here D, T denotes the differential of 7 at the point x

and Ign~ is the identity map on R”.

(27) o T.(0) (e1) = v, where v, denotes the outer unit normal vector to
0N at the point p.

o {7.(0)(e2), -, T«(0)(en)} forms an orthonormal basis of
1,02

o T(z1,y)=p+ (z1+To(y),y) for all (z1,y) e I xU' =U

e 75(0) =0 and VT(0) =0.

This boundary parametrization will be throughout useful during our analysis. An

important remark is that

(28) (T (x1,9),00) = (1 + o(1))|x1] for all (z1,y) € I x U' =U close to 0.

Lemma 1. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 9}

and assume that 0 < s < 2, v < "72. Let (ue), (he) and (pc) be such that (E.), (15),
(21) and (22) holds. Let (yc)e € Q2 and let

—n;2 l-E5= s/2 352
ve 2 = luc(yl)], lei=ve T and ke = |y Tl fore>0
Suppose lirr(l)y€ = 0 and lir% ve = 0. Assume that for any R > 0 there exists
€E— €—>
C(R) > 0 such that for all e > 0
(29) lue(z)| <C(R) ||3§|T luc(ye)]  for all ¢ € By (yc) N Q.
Then

lye] = O(¢e) as € — 0.

Proof of Lemma 1: We proceed by contradiction and assume that

(30) tim 2 = o

e—0 £

Then it follows from the definition of k. that

Fe 0.

(31) lim k. = 0, lim e _ 400 and lim
e—0 e—0 L¢ e—0 |ye|

Case 1: We assume that there exists p > 0 such for all € > 0 that
d(ye, 00
AWy 99) - 5,
Re
We define for all € > 0

n—2
V() 1= Ve  Ue(Ye + Ke) for z € By,(0)

Note that this is well defined for € > 0 small enough. It follows from (29) that there
exists C(p) > 0 such that all e > 0

(32) [0(@)] < Clp) ———— Vo € B (0)

Ye Ke
T T
‘ [Yel + [yel
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using (31) we then get as € — 0
[ve(2)| < Cp) (1 +0(1)) Vo€ Byy(0).

From equation (E.) we obtain that v, satisfies

*
A /‘05 0 9 h _ |UE|2 (S) 2 peve
—AVe — 2 2 Ueine e(ys+/{ex) Uef—s
Yel? | ye Fe o Ye | Ke g
lyel T Tyel lyel 7 lyel

weakly in B, (0) for all € > 0. With the help of (31) and standard elliptic theory
it then follows that there exists v € C*(Bs,(0)) such that

lim ve = v in C*(B,(0)).

e—0

In particular,

(33) [0(0)] = lim [u(0)] = 1

and therefore v # 0.

On the other hand, a change of variables and the definition of k. yields

2% (s)—pe 2% (8)—pe . 2% (s)—pe
/ |ue| de — ue(ye) Ke / |ve| _dx

Bore(ye) =l el B,(0) \§Z| + \Z:Ix
_ éZ(H%) (|y€|)5("52) |v€|2*(s)*pf i
e B.(0) ’@J + 1%
> (yel)s("f’ J e,
fe g0y | T ?

Using the equation (E.), (22), (30), (31) and passing to the limit € — 0 we get that

/ |v|2*(s) dr=20
B, (0)

and so then v = 0 in B,(0), a contradiction with (33). Thus (30) cannot hold in
that case.
Case 2: We assume that, up to a subsequence,

d(Ye, 00
(34) lim 9009

e—0 Ke

=0.

Note that lin% ye = 0. Consider the boundary map 7 : U — V as in (27), where
e—
U,V are both open neighbourhoods of 0. We let 4. = wu o T, which is defined
in UNR?. For any ¢,j = 1,...,n, we let g;; = (0;7,90;T), where (-,-) denotes
the Euclidean scalar product on R”, and we consider g as a metric on R". We
let Ay = divy(V) the Laplace-Beltrami operator with respect to the metric g. As
easily checked, using (E.) we get that for all e > 0
i v N A
—Aytie — ———5Ue — heoT(z) 1l = ———~—
T (@))? T ()]
weakly in U NR™. We let z. € 9f) be such that

(35) |ze — ye| = d(ye, 00).
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We let g, Z. € U such that

(36) T(Qe) =y and T (Zc) = ze.

It follows from the properties (27) of the boundary map 7 that
(37) 6lgr(l)yE = 6lgr(l)zE =0, (Je)1 <0and ()1 =0

We rescale and define for all € > 0

n—2 U -2
Ue(Ze + Ke) for x € Ze

NRY.
Re

With 37), we get that 0. is defined on Br(0) N{z1 < 0} for all R > 0, for € is small
enough. Then for all € > 0 the functions o, satisfies the equation:

2 ~ 2% (8)—2—pe
~ K Y 2 . ~ |0e| Ve
YN —k2hooT S .

geVe e |? )T(ie-i-nea:) 7 = fiche o T (e + Ke)Be ‘T(z}-!—mr) ®
\

Yel [yel

weakly in Br(0) N {z1 < 0}. In this expression, g. = g(Z + k.x) and Ay _is the
Laplace-Beltrami operator with respect to the metric g.. With (34), (35) and (36),
we get for all e > 0

T (Ze + kex) = ye + Or(1)ke for all z € Br(0) N {z1 <0}

where, there exists Cr > 0 such that |Og(1)| < Cg for all z € Bg(0) N {z1 < 0}.
With (31), we then get that

m [T (Ze + Kker)]

li =1 in C°(Bgr(0) N {z; <0}).

e—0 |y€|
It follows from (29) that there exists C'(R) > 0 such that all e > 0
1

[Yel

Using (31) and the propoerties of the boundary map 7 we then get as e — 0
[0e(z)] < C(R) (1+0(1)) Vz € Br(0) N {z1 <0}.

With the help of (31) and standard elliptic theory it then follows that there exists
v € CY(Bg(0) N {x1 < 0}) such that

. ~ — ~ . 0 < .
213%1)6 0] in C*(Bgr/2(0) N {z1 <0})
Since ¥, vanishes on Br(0) N {z1 = 0} and (38) holds, it follows that
(39) ¥ =0 on Bg/2(0) N {zx; = 0}.
Moreover, from (34), (35) and (36) we have that
Ve (ye—ze)‘ —1and lim 22— % — .

Re e—0 Ke

In particular, 9(0) = 1, contradiction with (39). Thus (30) cannot hold in Case 2
also.

In both cases, we have contradicted (30) . This proves that y. = O({,) when € — 0,
which proves the Lemma. [
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Lemma 2. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € OS2
and assume that 0 < s < 2, v < %2. Let (ue), (he) and (pe) such that (E¢), (15),
(21) and (22) holds. Let (ye)e € 2 and let

Ve 2

= |uc(ye)| and L. := 1/6172*(;)’2 fore>0
Suppose ve — 0 and |ye| = O(¢e) as e — 0.

Since 0 € 9, we let T : U — V as in (27) with yo = 0, where U,V are open
neighborhoods of 0. For € > 0 we rescale and define

We(x) := V:%u6 oT (bex) for x € (71U NR™ \ {0}.
Assume that for any R > § > 0 there exists C(R, ) > 0 such that for all e > 0

(40) |We ()] <C(R,9) for all x € Br(0) \ Bs(0) NR™.

Then there exists w € DV2(R™) N CY(R™ \ {0}) such that
We — W weakly in DY*(R™)  as e — 0
we — W in CL.(R™ \ {0}) ase—0
And W satisfies weakly the equation
~ Yoo~
—AW — —=w =
|| |z[®
Moreover if w # 0, then
|@‘2*(S) 2* (s)
B 2 (R
/ R

and there exists t € (0,1] such that liH(l) vPe =t, where
e—

2 u? 2
[Vul|* — WW —hu® | dx

— Q
(41) Mv,s,h(Q) = uelgff;) 2/2°(5)
“ "

|z[*

Proof of Lemma 2: The proof proceeds in four steps.

Step 2.1: Let n € C2°(R"). One has that g, € H}(R™) for € > 0 sufficiently
small. We claim that there exists w, € D'?(R™) such that upto a subsequence
NWe — Wy, weakly in DL2(R™) as € — 0,
NWe — Wy (z) a.e in R™ ase— 0.

We prove the claim. Let z € R | then

V (i) (z) = we(x)Vn(x) + ve 2 L. (@) Doy T [Vue (T (Lex))]
In this expression, D, 7T is the differential of the function 7 at x.
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Now for any 6 > 0, there exists C'(6) > 0 such that for any a,b > 0
(a+b)? < C0)a® + (1+6)b>
With this inequality we then obtain
n—2
/ IV (nio)? de < C(6) / a2 de+ (1+ 00T L, / 72 | Doy T [V (T(6ex)))| dr
RZ R™ R

Since DyT = Iz~ we have as € = 0

/|V(nu~)€)\2 dng(G)/Wnow dz
R™ Rn

+(1+0) (1+0(€e))1/:%2€e/772|Vue (T(Cc))” (1 + 0(1)) da
R™

With Hélder inequality and a change of variables this becomes

n—2
/|V(771715)‘2 dx < C(0) ||V77H2Ln (?) /|u6|2*(s) dx
R € J

(42) +(146) (ZG)H_Q/VuJQ de
Q

Since Hu6||H12’O(Q) = 0(1), so for € > 0 small enough

Hn@ellpu(m) <Gy

Where C), is a constant depending on the function 7. The claim then follows from
the reflexivity of DY2(R™).

Step 2.2: Let 3 € C°(R™), 0 <7y < 1 be a smooth cut-off function, such that

| 1 for ze By(1)
(43) o { 0 for ze€R"\By(2)

For any R > 0 we let ng = n1(x/R). Then with a diagonal argument we can assume
that upto a subsequence for any R > 0 there exists wg € DV?(R™) such that

NRWe — WR weakly in DV2(R™) as e — 0
NRWe () — Wr(x) aex inR" ase—0

Since HVURHZ = HVme1 for all R > 0, letting € — 0 in (42) we obtain that

/ Vwg|*de <C  forall R>0
R™

where C is a constant independent of R. So there exists w € D'?(R") such that

WR — W weakly in DV2(R™) as R — +o0
wgr(x) — w(x) aex inR™ as R — +oo
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Step 2.3: We claim that @ € C1(R™ \ {0}) and it satisfies weakly the equation

~ ~ ~12%(s)—2 ~ .
{Awnw _ @ 7w in R™

|] ElE

0 on OR™ \ {0}.

We prove the claim. For any i,j = 1,...,n, we let (§c)i; = (0;T (bex), 0; T (Le)),
where (-, ) denotes the Euclidean scalar product on R™. We consider g, as a metric
on R". We let Ay, = divy(V) the Laplace-Beltrami operator with respect to the

metric g. From (FE.) it follows that for any € > 0 and R > 0, nrw, satisfies weakly
the equation

(44)

I}

5 ) [27(s)—2—pe 7]
T 2 (nR'J)e) - é? he o T(Esm) (ane) = | (ane) | g (anE) .
’ T () ‘ T(fez)
L e

and note that nrw. = 0 on Bgr(0) \ {0} N OR™. From (27), (40) and using the
standard elliptic estimates it follows that wr € C* (Bg(0) \ {0} NOR™) and that
up to a subsequence

lim npie = g in CJ,, (Bry2(0)\ {0} NOR™).
Letting ¢ — 0 in eqn (44) gives that wg satisfies weakly the equation

|7],R|2*(S)*2*peﬁ)R

~ vy~
“Alp — ——1hp =
YR T R EE

Again we have that [wg(z)| < C(R,0) for all 2 € Bg/2(0) \ B2s(0) and then again
from standard elliptic estimates it follows that @ € C*(R™\{0}) and thf WR =W
— 400

in C}(R™\{0}), up to a subsequence. Letting R — 0o we obtain that 1 satisfies
weakly the equation

{ —Ab -

This proves our claim.

~12%(s)—2 ~ .
[ 77w in R™
|z]*

0 on OR” \ {0}.

S &
|

Step 2.4: Coming back to equation (42) we have for R > 0

*

/ ¥V (rdd)? dx < C(6) / (nerie)? de
R™ {z€R™ :R<|z|<2R}

(45) +(1+0) (Z)nz/wuéﬁ da.
Q

Since the sequence (u.) is bounded in H7 ;(Q), letting e — 0 and then R — 400
we obtain for some constant C'

n—2
/|V@|2 de < C (hm (”)) :
e—0 ée
R"
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Now if w # 0 weakly satisfies the equation

NG i = IOy e
e ||
w = 0 on OR™ \ {0}.
using the definition of p 50(R”) it then follows that
|w|2" (=)

2% (s)
o 2 o ()T
R"

Hence lim (ZE) > 0 which implies that

e—0 €
t := lim v?< > 0.
e—0

Since hr% ve = 0, therefore we have that 0 < t < 1. This completes the lemma. [I
€—

4. CONSTRUCTION AND EXHAUSTION OF THE BLOW-UP SCALES

In this section we prove the following proposition in the spirit of Druet-Hebey-
Robert [11]:

Proposition 2. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 99

and assume that 0 < s < 2, v < "72. Let (ue), (he) and (p) be such that (E.), (15),
(21) and (22) holds. Assume that blow-up occurs, that is

. , B 3 n
6113(1) 2] uel| oo () = +00 where B_(y) =1 <71 < —
Then there exists N € N* families of scales (1 ¢)e>0 such that we have:
(A1) lir% ue = ug in C2.(Q\ {0}) where ug is as in(23).
e—
(A2) 0 < p1e < ... < pun,, for all e > 0.
(A3) lim pn. =0 and lim 2= = 400 for all 1 <i < N — 1.
e—0 ’ e—0 Hise
(A4) For any 1 <i < N and for e >0 we rescale and define
n—2 R
Ui () = pu; 2 ue(T (kiex)) forx e k;gU NR™ \ {0},

_ Pe
2% (s)—2

1 _
where ki o = pu; . . Then there exists 4; € DV?(R™) N CH(R™ \ {0}),
u; Z 0 such that u; weakly solves the equation
Ay - g = OO gy e
U on OR™ \ {0}.

%

and
Uje — Uj in CL.(R™\ {0}) as € = 0,
Uje — Uy weakly in D¥*(R™)  as e — 0.

(A5) There exists C > 0 such that

n—

7 |u5(:r)|1_2*<i€3—2 <C foralle >0 and all x € Q.

|z
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n—2 —_Pe
A6) lim lim sup 2“7 Jue(x) — up(z)]' " FH=2 = 0.
(A6) lm lim Q\BMN:E(O)l |7 ue(@) = uo()]

—ng2 i)\ |
uc(@) — pn,” i (T2 = 0.

(A7) lim lim sup  |z|"T T

§—0€e—0 Bo(ékl,e)mﬂ

(A8) For any é >0 and any 1 <i < N — 1, we have

_n—2 ~ T_l
ue(w) — Ni+1?e Uj+1 ( (x))

. _ n=2
lim lim sup |z| 2
Rotoo =05, >|z|>Rk; .

(A9) For anyic {1,...,N}, there exists t; € (0,1] such that ime o i}, = t;.

The proof of this proposition is inspired by [11] and proceeds in five steps.

Since s > 0, the subcriticality 2*(s) < 2*(s) of equations (E) along with (23) yields
that ue — ug in CZ (2 \ {0}). So the only blow-up point is the origin.

Step 4.1: The construction of the y;.’s proceeds by induction. This step is the
initiation.

By the regularity Theorem 6 and the definition of 7 in (24) it follows that for any
€ > 0 there exists z1, € Q\ {0} such that

(46) sup |z[Tue(@)] = 21, ue(z1e)]

We define yi; . and k¢ > 0 as follows

n—2 — __Pe
F(s)—2

— 1
(47) u17€ P o= |u6(x17€)| and kLE = :ul,e

Since blow-up occurs, that is (26) holds and since u, — ug in C2,,(2\{0}), we have
that

lim z; . =0 € 002 and lim p; e = 0.
e—0 e—0

It follows that u. satisfies the hypothesis (29) of Lemma 1 with y. = 21, #= p1..
Therefore

|z1,e] = O (k1) ase— 0.
In fact, we claim that there exists ¢; > 0 such that

. |331,5| _
(48) 0 . ¢
We argue by contradiction and we assume that |21, = o(k1.) as € — 0. Let

T, = T_l(ajl’e) € R™. Since |z1,¢| = o(k1,c) as € — 0, so also |Z1.| = o(k1,e) as
e — 0.

We define for € > 0

. n—2 ~ v —
Ve() i= g 7 ue(T(|71,| 2)) for z € T NR™\ {0}
l,e
Using (E.) we obtain that o, satisfies the equation
5 2=8=Pec |~ 12%(s)—2—p.
. Y ~ 2 ~ ~ |x1,e| 'Ue| Ve
—AV — ———= 0+ |T1,[ he o T (|Z1,¢|x) Te = _
C | TEd [P 1l he o T([1.elz) e <k1> T(Freln) |
‘il,e‘ |i1,e
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The definition (46) yields as € — 0, |z|™ |0c(z)| < 2 for all z € R™.
Standard elliptic theory then yields the existence of & € C?(R™ \ {0}) such that
9 — 0 in C3(R™ \ {0}) where

—AD — #f} = 0 inR”

o = 0 ondR™\{0}.

In addition, we have that |3 (|Z1,(|7'#1.c)| = 1 and so & # 0. Also since |z|7[5(z)| <
2 in R” \ {0}, we have the bound that
(49) 2| " (x)| < 2)a | for all z = (z1,%) in R”,
which implies that

|1 L4 |1

Pl <4 mm HgEe

for all = = (z1,%) in R”.

Therefore x +— V(z) := 4 ‘zl';fi'm + 4‘36",";_”“) — #(z) is a positive solution to —AV —

1V =0 in R™. Proposition 9 yields the existence of A, B € R such that

<[

|24
|$‘57(7)

|1

@) = A Em

+ B for all z in R™.

But the pointwise control (49) then implies A = B = 0 by letting || — 0 and
— o0. This contradicts © # 0. This proves Claim (48).

We rescale and define for all € > 0
Uy,e(x) == u?ue(T(kLE x)) for x € kfelU NR" \ {0}

It follows from (46) and (48) that @ . satisfies the hypothesis (40) of Lemma 2
with ye = #1,, #= p1,. Then using lemma (2) we get that there exists 41 €
DYM2(R™) N CH(R™ \ {0}) weakly satisfying the equation:

{ Ay - iy = WPy e
u = 0 on OR™ \ {0}.
and
e —> a1 in Cp(R™\ {0}) as € =0,
Uy, — U weakly in DV2(R™) as e — 0.

Z1,e

It follows from the definition that |, . (?)’ = 1. From (48) we therefore have

that 47 #Z 0. And hence again from Lemma 2 we get that

127 (s) *(s
& > M%&O(Rﬁ)zf(;)i?.

B (v
Moreover, there exists ¢; € (0, 1] such that lin%) plc. = t1. Since =g, e CO(R™),
e— ’

[z1]
—nz2 Tﬁl(ye)
,ul,ez ui <k1 . >

)

we get as e = 0

1- 2*(17;)—2

n=2 ~ 5 —B-
lye| 2 =0 (lg])F " = o(1),
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and
1- 2*(26)—2

=0.

. _n-2 T—l
lim lim sup |x|TQ Ue(T) — py 2 W ( (a:))
6—0€e—0 Bo(8k1.0)NS ) kl,e

Step 4.2: We claim that there exists C' > 0 such that

(50) | = Jue (2)]!

~ (5 < C foralle>0andall xe.

We argue by contradiction and let (ye)eso € © be such that

(51) sup \$|%4|Ue(x)\1_2*(p5*2 = |ye|nT_2|ue(ye)|l_2*(€’€>*2 — 400 as e — 0.
x€Q

By the regularity Theorem 6, it follows that the sequence (Ye)eso is well-defined
and moreover lir% ye = 0, since ue — ug in C2 (2 \ {0}). For € > 0 we let
e—

Pe 2=s
#:= \ue(y€)|_£, Le ::#km and k. 1= |y5\s/2 £,
Then it follows from (51) that

: _ : ‘y6| _ . Re
(52) lgr(l) #=0, eh—% .= +o00 and lim =0.

€ e—0 |ye‘

Let R > 0 and let x € Bgr(0) be such that y. + xkex € . It follows from the
definition (51) of y, that for all e > 0

e + K] “T uc(ye + rea)|' T < Jyo| T Jue(yo)| T

and then, for all € > 0

n—2

(|ue<ye+nex>|>1‘2*@“ (L)
e (ye)| B 1_|Z*:\R

for all x € Bg(0) such that y. + K.z € Q. Using (52), we get that there exists
C(R) > 0 such that the hypothesis (29) of Lemma 1 is satisfied and therefore one
has |y.| = O(¢.) when € — 0, contradiction to (52). This proves (50). O

Let Z € N*. We consider the following assertions:
(B1) 0< piy,e <. < pigpe.

(B2) lim. g pte,z =0 and lim._o “L*_l’e =+ocoforalll1<i<ZT-1

(B3) For all 1 <i < Z, there exists 4; € DV2(R™) N C?(R™ \ {0}) such that ;
weakly solves the equation

mi|2*(s)—2~

= 0 on OR™ \ {0},
with

|ﬁA|2*(S) 2% (s)
/ Zla:|s > fhy,s,0(R2)ZEI=2,
R"
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and
Uje — Us in CL_(R™ \ {0}) as € — 0,
Uje — Uy weakly in DV2(R™) ase — 0,
w2

1
where for € > 0, we have set k; . = p, and

n—2 R
Use(x) := ,ul,Tue(T(ki,€ x)) for r € k;elU NR™ \ {0}.
(B4) For all 1 <i <7, there exists t; € (0,1] such that lim¢ o pf = t;.
We shall then say that (#Hz) holds if there exists Z sequences (y;¢)es0, ¢ = 1,...,7

such that items (B1), (B2) (B3) and (B4) holds. Note that it follows from Step 4.1
that (#H1) holds. Next we show the following:

Step 4.3 Let I > 1. We assume that (Hz) holds. Then, either

. . n—=2 1— - Pe
lim lim  sup  |z| 7 |ue(z) —uo(z)| =2 =0,
R—+00 e—=0 Q\BO(RkI,E)

or Hz41 holds.

/ . 3 ] n-2 1— *p;,
Proof of Step 4.3: Suppose RHI—EOO 251(1)supQ\BO(RkI’E) 2|77 Jue(z)—up(x)| T2 £

0. Then, there exists a sequence of points (y.)e=o € 2 such that

(63)  tim 12— oo and tim [y () — wolu) | T = a > 0.
€E—>

e—0 T,e
Since u. — ug in C2,(Q2\ {0}) it follows that lim ye = 0. Then by the regularity
e—
Theorem 6 and since B_(7) < 252, we get
(54) lim ] = Jue(ye) |~ T = 0> 0
e—0
for some positive constant a. In particular, lir% |ue(ye)] = +o0. Let
€E—>

__2 1- 5=
PT41,e = |ue(ye)|” =2 and kzyq,e:= Mzﬁje( "

As a consequence we have

. . . lyel
(55) }1_r>1(1) HTt1,e =0 and ggr(l) R =a>0.

We rescale and define

Uzy1,e(x) := uf;’eue(T(kHLe x)) for x € k;il’EU NR" \ {0}.
It follows from (50) that for all € > 0

‘T(kIJrl,e )

kI+1,e

fizp1e(@)]' = <O for @ € kpfy 2\ {0},

and so hypothesis (40) of Lemma 2 is satisfied. Using Lemma 2, we then get that
there exists az41 € DV2(R™) N CHR™ \ {0}) that satisfies weakly the equation:

*
~ v - iz 1?2
—Alry — WUIJA = EE in R”
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while
Gr41e — Uzy1 weakly in DV2(R™)  and  dizi1. — Gry1  in CL (R™\ {0}),

as € — 0.

-1
We denote . := T ) € R™. From (55) it follows that that lin(lJ [Te| == |7o| >
e—

kI+1,e
a/2 # 0. Therefore

Uz +1(%0)| = elg% Uiz 41,e(Fe)| = 1.
Since @iz = 0 on IR™ \ {0} so g ¢ OR™ and hence @z Z 0. Hence again from
Lemma 2, we get

liiz1]? ) )

[ 2 o)
R™

and there exists tz1; € (0,1] such that 213(1) 'y . = tz41. Moreover, it follows

from (53) and (55) that

lim Bztle _ +o00 and lim pr41 . = 0.
e—0 /U‘I,E e—0 ’
Hence the families (t45,¢)es0, 1 <1 < Z + 1 satisfy Hzyq. ]

The next step is equivalent to step 4.3 at intermediate scales.

Step 4.4 Let I > 1. We assume that (#{z) holds. Then, for any 1 <i¢ <Z —1 and

for any § > 0, either
Cna T-1z)\ | T2
Ue(T) = Py i7e Uit (M)‘ =0
i+1,€e

n—2
lim lim sup || 2
R— —0 =
Fooe QNBsk; 1 (O\Brk, . (0)

or (Hz+1) holds.

Proof of Step 4.4: We assume that there exist an i <Z — 1 and ¢ > 0 such that
—ns2 Tz

ue () — M'L—Q—l?e Ui+1 ( ( ))

ki-{—l,e

D
1- 2*(;)72

lim lim sup |z] = > 0.

R— —0 -
o070 anBsi,,,  (0\Brx, . (0)

It then follows that there exists a sequence (y¢)eso € Q such that

(56) lim el

e—0 kji,e

= 400, |ye| < dk;y1,e foralle >0

—nx2 Tﬁl(yé)
Ue(Ye) — /~Lz‘+1?e Ui+1 <I<;+1

1-5i§=2
=a >0,

n—2
2

(57) |Ye

for some positive constant a. Note that a < 400 since

—n=2 T Y=
ue () — ,Ui+1?e Ui+l - (@)
kz—i—l,e

1— *Pe
n—2 2% (s)—2

|| 2

is uniformly bounded for all z € QN Bsy, ., . (0) \ Brs,. (0).

Let g € R™ be such that 7! (y.) = ki+1, g7 It follows that |§7| < & for all € > 0.
We rewrite (57) as

. g =2 . ~ - - _ __Pe
i (57 %7 figs1,e(5) = T ()] 76 =0 > 0,
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B_(7)
Then from point (B3) of Hz it follows that §* — 0 as € — 0. Since |w|‘z1| Uiyl €
C°(R™), we get as € — 0
1- 85— T=B-(7)
B Yo el \ 2
e e ~o( = o)
kiJrl,e ki+1,e
Then (57) becomes
i 2 1_2*{;6)*2 =
(58) B fye ™= fue(ye)| a>0.

In particular, liné [ue ()| = +o00. We let
e—
#i= |U€(ye)‘7"32 and £, ::fl_wﬁﬁ .
Then we have

(59) limv, =0 and lim

e—0 e=0 L

We rescale and define
te(z) == I/:%?UE(T(& x)) for x € (7'UNR™ \ {0}.
It follows from (50) that for all e > 0
2|2 | (2)| " FE < 0 for z €€ £71U NRE \ {0},

so that hypothesis (40) of Lemma 2 is satisfied. We can then use it to get that
there exists @ € D1-2(R™) N CH(R™ \ {0}) that satisfies weakly the equation:

~12% (s)—2,7
nie L= R
|z ||

while

Ue — @ weakly in D*2(R") ase—0

G — @ in C}(R™\ {0}) as € — 0.

T W) on . ) -
We denote j. := — € R™. From (58) it follows that that hr% |Te| == |70| >
€ €E—>

a/2 # 0. Therefore
(o) = lim [ (50| = 1.
Since @ = 0 on IR™ \ {0} so g. ¢ OR™ and hence @ # 0. Hence again from Lemma
2 we get
|27 (s) (s
x|* 8,

]Rn
and there exists ¢ € (0,1] such that 1111(1) vPe = t. Moreover, from(58), (56), and
e—

since lir% % =0, it follows that
€e—> e

Ve

. . i+1,
lim = +o0o and lim Hit1e
e—0 Mie e—=0 Ve

= +o00.

Hence the families (p1,¢),..., (fie)s (#), (Bit1,e)sees (piz,e) satisfy (Hzy1). O
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The last step tells us that the process of constructing {Hz} stops after a finite
number of steps.

Step 4.5: Let Ny = max{Z : (Hz) holds }. Then Ny < +oo and the conclusion of
Proposition 2 holds with N = Nj.

Proof of Step 4.5: Indeed, assume that (Hz) holds. Since u; . = o(ui41,e) for all
1 <4< N —1, we get with a change of variable and the definition of ;. that for
any R>46>0

* T *

\Ue|2 (8)—pe / ‘Ue|2 (s)—pe

——dx > —d
EOEaEPS ER

. T(BRki,e (())\Eal%6 (O)r‘n]Rj)

T ~
|Ui,5
Z Z / Tdvfh,e'

Bri,; . (0\Bs,; . (0)NR™

—

ﬁ
Il
-

Here g; . is the metric such that (gei)gr = (04T (kicx), 0T (kicx)) for all g,r €
{1,...,n}. Then from (22) we have

z ;|27 (s)—pe
(60) A>Y / Ldvgm.
=1

Bre, (0)\§Mi7€ (0)NR™

Passing to the limit ¢ — 0 and then § — 0, R — 400 we obtain using point (B3)
of Hz, that
2* (s)

A>Ty s o(R)T7E-2,

from which it follows that Ny < +o0. (Il

To complete the proof, we let families ((1 ¢)es05--s (Ng,e)e>0 be such that H,
holds. We argue by contradiction and assume that the conclusion of Proposition
2 does not hold with N = Ny. Assertions (Al), (A2), (A3),(A4), (A5), (A7) and
(A9) hold. Assume that (A6) or (A8) does not hold. It then follows from Steps
(4.3), (4.4) and (4.5) that Hy1 holds. A contradiction with the choice of N = Ny.
Hence the proposition is proved. ([

5. STRONG POINTWISE ESTIMATES

The objective of this section is to obtain pointwise controls on u. and Vu.. The
core is the proof of the following proposition in the spirit of Druet-hebey-Robert

[11]:

Proposition 3. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 9N

and assume that 0 < s < 2, v < %2. Let (ue), (he) and (pe) be such that (Ee), (15),
(21) and (22) holds. Assume that blow-up occurs, that is

- T — _ n—=
ll_r{(l) 2] || oo () = +00 where f_(y) =1 <7 < 5
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Consider the i1, ..., fin,e from Proposition 2. Then, there exists C > 0 such that
foralle >0

(61)
B (N=B_(7)
N S — B_(v)—1
x T up|| 1,00

luc(z)| < C Z - )_51,(5) || || . (O)”L () || for all z € Q.

s T 2P O) |2 ) |- O
The proof of this estimate, inspired by the methodology of [11], proceeds in seven
steps.

Step 5.1: We claim that for any @ > 0 small and any R > 0, there exists C(a, R) >

0 such that for all € > 0 sufficiently small, we have for all € Q\ Brg, . (0),
BB _

e * el el O Ml

©) )| < Cla ) | e

Proof of Step 5.1: We fix 7/ such that v < v/ < "72. Since the operator —A — ﬁ —
ho(x) is coercive, taking 4" close to v it follows that the operator —A — % — hg is
also coercive in Q. From Theorem 7, there exists H € C*°(Q2\ {0}) such that
~AH — 2z H — ho(z)H =0 in Q
(63) H>0 inQ
H=0 onoQ\{0}.

And we have the following bound on H, that there exists C; > 0 such that

1 d(xz,090) d(x,00)

C Jzlfr 0 = for all z € Q.

We let /\1*/ > 0 be the first eigenvalue of the coercive operator —A — ﬁ — hg on )
and we let ¢ € C?(€2) be the unique eigenfunction such that
—Ap—dme—ho(z)p =X ¢ nQ
(65) © >0 inQ
¢ =0 onoQ \{0}.
It follows from the regularity result, Theorem 6 that there exists Cy > 0 such that

1 d(x,00) d(z,00)
We define the operator
e =—A—-|+Ft+th | ——77—.
|| |z[*

Step 5.1.1: We claim that given any v < v < "72 there exist g > 0 and Ry > 0
such that for any 0 < < §p and R > Ry, we have for € > 0 sufficiently small

LH(z)>0and Lep(z) >0 for all 2 € B;(0) \ Bpky.. (0) N
(68) LH(x) >0 for all z € Q\ Bgiy . (0), if ug = 0.
We prove the claim. As one checks for all ¢ > 0 and =z € Q
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LH(z) + —7~ |u€|2 (s)—2—pe
= ho — he) —
i) P e h PE
and
Lep(x) v = |u€|2 (8)=2=pe !
= + (ho — he) +A
p(z) |22 0 |z]* !

One has for € > 0 sufficiently small ||ho — helloo < and we choose

v~y
4(1+sup |z|?)
Q
0 < dg < 1 such that

(2*(s)-2) (5B (7) 1 2 e-2 _ Y =
(69) s TET O g e < LT

This choice is possible thanks to (15) and the regularity result (6) respectively. It
follows from point (A6) of Proposition 2 that, there exists Ry > 0 such that for any
R > Ry, we have for all € > 0 sufficiently small

_a 1— _ Pe ,}/ - 2*(;)72 _
T |ue(z) —up(z)| T2 < CYROES] for all z € Q\ Brgy..(0)

n

|z

With this choice of §y and Ry we get that for any 0 < § < dg and R > Ry, we have
for € > 0 small enough

‘x|2—s ‘/LLE (.’E) |2*(s)—2—p5 < 22*(3)—1—175 |2* (s)—2—pe

w7 |ue () — uo(w)

|2*(S)—2—pe

+ 22*(8)—1—1)5 .’I]|2_S|UO((E)

<2_pﬂ’—7 <Y =
= 4 4

for all z € B5(0) \ Briy..(0) N, if ug # 0, and

/ —
|25 ue ()2 (D —2Pe < T

for all z € Q\ Bpiy . (0), if ug = 0.

Hence we obtain that for € > 0 small enough

L H(x v = |2 (5)=2=pe
7 (2) = — +ho— he — His
(z) || ||
v = v -
el + hO - he -
|z]? 4]z |?
! ! / !
Y=y A=y Y=y A =7
|[2 dlzf2 4]z)? 2(z[?

>0 for all 2 € B5(0) \ Briy., (0)) NQ if ug # 0
L.H(x)

and Hx)

>0  forallz € Q\ Bgiy, (0), if ug=0.

Similarly we have

LEQO(CE)
o(z)

>0 for all z € B5(0) \ Briy..(0)) N Q.



MULTIPLICITY AND POHOZEV STABILITY FOR HARDY-SCHRODINGER EQUATIONS 27

Step 5.1.2: Tt follows from point (A4) of Proposition 2 that there exists Cf(R) > 0
such that for all € > 0 small
BL(H=B_(v")

Py ° d(z,00)
[ue@)| < CHR) =5

for all 2 € QN OBRrpy..(0).

By estimate (64) on H, we then have for some constant C1(R) > 0

Br(v)-B_(+")

(70) lue(z)| < Ci(R)py, ° H(zx) for all 2 € QN OBRrpy..(0).

It follows from point (A1) of Proposition 2 and the regularity Theorem 6, that there
exists C5(0) > 0 such that for all € > 0 small

(71)
Q
lue(z)| < CHO)||2|P~ ) ug | oo Q)m for all z € QN IBs(0), if ug Z 0.
And then by the estimate (66) on ¢ we have for some constant C2(6) > 0
(72)
ue(z)] < Co(8) |2~ | oo () () for all 2 € QN AB;(0), if ug # 0.

We now let for all € > 0

Br(v)—-B_(+")
V(o) = Ci(R)uy, 7 H(@)+ Co(0)|||2]* D ug|| (@) p(x) for € Q.

Then (71) and (70) imply that for all € > 0 small

(73) |ue(z)| < ¥e(x) for all 2 € 0 (Bs(0) \ Briy..(0)NQ), if ug #0
and

(74) [ue(z)] < U (x) for all € O(Q\ Briy..(0)), if ug = 0.

Therefore when ug # 0 it follows from (68)) and (73) that for all e > 0 sufficiently
small
LY, >0=L.u. in 35(0)\ Rst( )ﬂQ
U, > u, Ona(Bg( \BRkNE(O)ﬁQ)
LVY:>0=—Lu in Bs(0)\ Briy,(0)NQ
U, > —u, Ona(Bg()\BRkN ()ﬁQ)
and from (68) and (74), in case ug = 0, we have for € > 0 sufficiently small

Ee\I/s >0= ﬁsue in \ERkN,e (0)

\I/e > Ue on a(Q \FRICN,E(O)>
Ee\I/e >0= 7‘£Eu6 in O \ERkN,e(O)
\Ije 2 —Ue on a(Q \ERkN,e(O))'

Since ¥, > 0 and L. P, > 0, it follows from the comparison principle of Berestycki-
Nirenberg-Varadhan [4] that the operator L. satisfies the comparison principle on
Bs(0) \ Briy.. (0) N €. Therefore

lue(2)] < Ue(x) for all z € B5(0) \ Bgriy . (0) N,
and |uc(z)| < U (x) for all z € @\ Bpiy, (0) if ug = 0.
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Therefore when ug # 0 we have for for all € > 0 small

By (v)—B_(+")

ue(@)| < LRy, = H(z) + Ca(@)ll|2)*= 0 uoll L o) ()
for all 2 € B5(0) \ Briy.. (0) N, for R large and ¢ small.

Then, when uy # 0, using the estimates (64) and (66), we have or all € > 0 small

B+()-B_("

Bne ° d(x,00)
‘$|B+('Y/)

d(z,00)
|x|ﬂf(7/)

uc(z)| < CL(R) + Co(0)|”~ P g L~ (o)

Br(vH=B_(v)
)MN,E :
|x‘5+(V’)

x J;ﬁ—('Y)_l
LN

Uol| Lo (0)
= Gi(R ||~ () 2]

for all z € B5(0) \ Briy.,(0) NQ, for R large and § small.

Similarly if ug = 0, then all € > 0 small and R > 0 large

B1(H—B_(v)
/J/N7E : |J}|

ue@)] € O A=

for all z € Q\ Briy . (0).
Taking 7" close to 7, along with points (A1) and (A4) of Proposition 2 it then
follows that estimate (62) holds on Q\ Bgs, ,(0) for all R > 0. O

Step 5.2: Let 1 <7 < N —1. We claim that for any a > 0 small and any R, p > 0,
there exists C(«, R, p) > 0 such that all € > 0.

By(M—B_()
2
:ui,e
|x‘5+ (v)—a

[e%
|z Ed
+ Bi(M—B_()

2
Hit1,e

(75)  Jue(@)] < Cle, R, p)

T | B- (N +e

for all z € By, .(0) \ER;%E(O) N Q.
Proof of Step 5.2: We let i € {1,...,N —1}. We emulate the proof of Step 5.1.

Fix " such that v < ' < %2. Consider the functions H and ¢ defined in Step 5.1
satisfying (63) and (63) respectively.

Step 5.2.1: We claim that given any v < v < %2 there exist pg > 0 and Ry > 0
such that for any 0 < p < pg and R > Ry, we have for € > 0 sufficiently small

(76)  LH(x) > 0and Lep(x) >0 for all z € By, ,, .(0) \ Bgg,.(0)NQ

where Le is as in (67).

We prove the claim. As one checks for all € > 0 and x €

L H(z) v =y |ue|2*(s)727p€
= +ho—he = ——7—,
H(x) || |z[°
Lep(x) 7~ O

o(x)
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We choose 0 < pp < 1 such that

/ J—
L for all € > 0 small and

p%sgplho—hel <

2*(s)—2 v -

(2" ()-2)(3-6-(7) _(y)—-1- (
(77) P ’ [t Ui+1||Loo(32(o)m]Rg) = 527 (5)+3

0

It follows from point (A8) of Proposition 2 that there exists Ry > 0 such that for
any R > Ry and any 0 < p < pg, we have for all € > 0 sufficiently small

Pe 1
o _n=2 T Ya) -5 N =~ \ T2
2|7 |ue(z) — Big1’e Uit1 ( < 527 ()12
(0) \ERJCLE (0) N Q.

kit1,e
With this choice of py and Ry we get that for any 0 < p < pg and R > Ry, we have
for € > 0 small enough

for all z € By, ., .

. . - —1 2% (s)—2—p.
\z|275\u6(x)|2 (s)—2—pe < 92" (s)—1-pc z|27s ue(z) _'ui+12€ i1 <T (I))
’ ki+1,e
2—s _ 2%(s)—2—pc
. T Y(x)
+22 (s)—1—pe ( |£L" > ﬂ’L (
Kit1,e i Kit1,e
plllel -
< 1 for all z € Bl)ki+1,e(0) \BRki,e(O)'
Hence as in Step 5.1 we have that for € > 0 small enough
0 and ———= >0 for all B, 0)\ Bgrr. (0)N Q.
H(.’E) > an (p(x) > orall v € sz+1,e( ) \ Rkt,e( )

Step 5.2.2: Let i € {1,..., N — 1}. Tt follows from point (A4) of Proposition 2 that
there exists C7(R) > 0 such that for all € > 0 small

Br(xH-B_(")

l’[’i,e : d(.l?, 89)
|z|ﬂ+(7,)

lue(z)| < C1(R) for all 2 € QN OBy, . (0),

And then by the estimate (64) on H we have for some constant Cy(R) > 0

Br()=B_(2")

(78) lue(z)| < Cr(R)p; . * H(z) for all 2 € QN OBgy, . (0).

Again from point (A4) of Proposition 2 it follows that there exists C%(p) > 0 such
that for all € > 0 small
d(zx, 00
lue(x)] < Ch(p) ﬂ+<w')—z(a,<w’) ) for all z € QN OBy, . (0),
|x|,37 )

iy e :
and then by the estimate (66) on ¢ we have for some constant Cy(d) > 0

(79) lue(x)] < Cg(p)& for all x € QN OB,

BL(H—B_ (1)

0).

i+1,e<

2
Hit1,e
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We let for all € > 0

N Byr(v)—B_(v") (p(l‘)
\Ile(l‘) = Ol (R)u’z,e 2 H($) + Cg(p)m for z € Q.
Pip1,e
Then (78) and (79) implies that for all € > 0 small
(80) luc(z)| < V() for all z € 0 (Byg,,,..(0) \ Bry, . (0)NQ).

Therefore it follows from (76) and (80) that € > 0 sufficiently small
gﬂszozzwe in Byy,,,.(0)\ Bgy,.(0)NQ

itl,e ki,
v, ~Z Ue on 0 (Bpki+1,e (0)7\ BR’%,E (0) N Q)
ée\lle >0=—-Leue in Bpki+1,e (0) \ BRki,e (0) na

Ve > —u on 9 (Byk,,,.(0)\ Brr, .(0)N Q).

Since ¥, > 0 and L. ¥, > 0, it follows from the comparison principle of Berestycki-
Nirenberg—VaLadhan [1] that the operator L. satisfies the comparison principle on
Bok,i1..(0)\ Brg, . (0) N Q. Therefore

@) < Be(a)  for all & € Boy,,, (0)\ B, (0)) N
So for all € > 0 small

5+('Y/);57(’Y/) SO(‘/L.)
lue(z)] < CL(R)p, H(x) + Co(p)—on=aom
Hit1e :

for all © € Byy,,,.(0) \ Bgs,.(0) N Q, for R large and p small. Then using the
estimates (64) and (66) we have or all € > 0 small
Byr(vH)—-B_(2") ( 5 )
Pie d(z, 00 d(z,00)
P ) + G0 oy
Hig1,e :

ue(z)] < C1(R)
|x‘ﬂ— )
Byr(vH)—B_(2")

Pie ° || ||
+Ca(0) ooy

Hit1e ?
for all z € By, . (0) \ Bgg,.(0) N Q, for R large and p small.

Taking ' close to v, along with point (A4) of Proposition 2 it then follows that
estimate (75) holds on By, ., . (0) \ Bgs, . (0) N, for all Rp > 0. O

= A= 20"
2[5

Step 5.3: We claim that for any o > 0 small and any p > 0, there exists C'(a, p) > 0
such that all € > 0.

]
Pr(N—F-( _
My e : ‘$|B,(7)+a

(81)  |ue(z)] < C(a, p) for all z € By, . (0) N €.

Proof of Step 5.3: Fix ~' such that v < 7/ < %2. Consider the function ¢ defined
in Step 5.1 satistying (63).

Step 5.3.1: We claim that given any v < 7/ < %2 there exist pg > 0 such that for
any 0 < p < pg we have for € > 0 sufficiently small

(82) Lep(x) >0 for all x € B, . (0) N,
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where Le is as in (67).
Indeed, for all ¢ > 0 and = € Q

Lep(r) (7' =y, |uf 7277

pla)  — 2? jz]?
We choose 0 < pg < 1 such that
/ J—
pesup |he| < 2 1 T for all € > 0 small and
Q

2% (s)—2 v =

(2*(5)-2)(2-B-(7)) (=1~
Po |H1‘|ﬁ ™) u1||L°<>(Bg(O)ﬂR’j) < 922*(s)+3

It follows from point (A7) of Proposition 2 that for any 0 < p < pg, we have for all

€ > 0 sufficiently small
1- 5= _ N — MO
— \ 22*(s)+2

n— _n—=2 -1
|x‘ 22 Ue(a?) _ /-1/175 2 17/1 (7-(:1;)>
With this choice of pg we get that for any 0 < p < py we have for € > 0 small

kl,e
for all 2 € By, . (0) N2

enough
ne2 -1 2% (s)—2—pe
‘$|2—s‘ué(x)ly(s)—Q—pE < 22*(3)_1_pe $|2_5 ue(x) _Ml—,eTal (Tk (33))
1l,e
2—s _ 2*(s)—2—pe
oy | (T )
L 92 (- 1-p. () p (
kl,e ! kl,e
/ j—
< 7 1 2 for all 2 € B, (0) NS
Hence as in Step 5.1 we have that for € > 0 small enough
Lep()
>0 for all x € By, .(0) N
<,0(Z) PR, ( )
O

Step 5.3.2: Tt follows from point (A4) of Proposition 2 that there exists C%(p) > 0
such that for all € > 0 small

d(x, 00
lue(z)| < Cy(p) Mw,)_fﬁfw) ) for all z € 0Bk, .(0) NQ

lu“l,e : |1,|IB_(7’)

and then by the estimate (66) on ¢ we have for some constant C5(5) > 0

x
(83) lue(z)] < Cg(p)% for all 2 € 0B, . (0) N Q.
Ml,e ?

We let for all € > 0
V() = Cg(p)& for z € Q.

Fr(H—B_()
Ml,e :
Then (83) implies that for all € > 0 small

(84) luc(z)| < ©(x) for all z € O (B, . (0) N2\ {0}) .
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Therefore it follows from (82) and (84) that € > 0 sufficiently small
LV >0=L.u, in By, (0)NQ

WY > on 0 (B, . (0) N2\ {0})
LVY>0=—Lau in By, (0)NQ
UY > on 0 (B, . (0) N2\ {0})).

Since the operator L. satisfies the comparison principle on B, ,(0). Therefore
lue ()] < U0(z) for all z € By, . (0) N €.

And so for all € > 0 small

o(x)
"Z,Lé(l')| S CQ(p)m for all z € BPkl,e (0) N Q.
/”Ll,e :
for p small. Using the estimate (66) we have or all € > 0 small
d(z,00)
ue(@)| < Co(p) —rmr—sman
.“1 e 2 ‘x|ﬁ— (’Y/)
|z
< Ca(p) BN =)
Ml,f ‘x|5 ('Y)

for p small. It then follows from point (A4) of Proposition 2 that estimate (81)
holds on = € By, .(0) N Q for all p > 0. O

Step 5.4: Combining the previous three steps, it follows from (62), (75), (81) and
Proposition 2 that for any o > 0 small, there exists C'(a) > 0 such that for all € > 0
we have for all z € (2,
(85)

N ﬁ+('¥)—ft(v)7a | | 5 (-1

Hie x [z]"= " || L= ()

u(z)| < Cla :
‘ ( )l ( ) z:zl N(BJr(’Y)*Bf(’Y))*QQ|x‘ﬁ,(~/)+a + ‘x|B+('\/)—a |x\57( )+ | |

i€

Next we improve the above estimate and show that one can take o = 0 in (85).

We let G, be the Green’s function for the coercive operator —A — B |2 — he on
with Dirichlet boundary condition. Green’s representation formula, the pointwise
bounds on the Green’s function (212) and the regularity Theorem 6, yields for any

z €Q, "
o= [ 6o (1@ O @)
(=) JG( ) )a

Ed

and therefore,

w ()27 (8)—1—pc
e (2)] g/G (2, ) @ 27

|z[*

dx.

B-() N
(86) < c/ (maX{IZI lzl}) d(z, 9Q)d(z, 09) ue(z)]>©

min{|z], |z[} |z — 2" ]
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To estimate the above integral we break it into three parts.

Step 5.5: There exist C' > 0 such that for any sequence (z.) with z. € Q\ By, (0),
we have

By ()=B_(v) L
Go(z |u€ (z)[* ()L < C Pne * |ze|  |z|?-(~ up|| Lo ()
ot || - |2 B+ |2|B- )

A

Proof of Step 5.5: To estimate the right-hand-side of (86) in this case, we split

into four subdomains as: 2 = U Dl where

i=1

€

o D{Y.:= By, . (0)NQ,

o DY i={kne<|z| < 3lz[} NQ,
o DY :={3|z| < |z] < 2|z[} N,
o DY :={2]z| < |z} nQ.

Note that one has %|z| < |z — z| in D}, and %|z| < |z — z| in Dy..

,€

Using point (A5) of Proposition 2 and a change of variable, we get

B-(7) 2% (s)—1—pe
_c / <max{|z€ |a:|}> d(z, 0Q)d(ze, OQ) |ue ()| da

min{]z[, [} |z — 2| ks

B-(v) 2" (s)—1—p.
< C d(ze,090) L|x—ze| Jue()|” 770 dx
||~ |z[*
Dyl
d(ze, 08) |ue(z)]?"(5)—1=Pe
SC T PN
Te
d(ze, 08) 1
<C —— d
=¢ |z¢] B+ (V) / || B- (D= 1Hs+(24 ()= 1—po) 252 !
kN, e
Bi()N=B_ () (2., 60)
luN,e : dZ€7 Q 1
<C B () / e .z W
‘ZE| ‘J;|” 2 Pe 3
B1(0)
Bi(N=B_ (1)
9 <oty

|Z€ ‘B+ (v)
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Now we estimate

ﬂ (7) 2*(3)_1_1)6
. / (max{|zg| |x|}) d(, 02)d (=, 02) |u,(x) .

min{]z[, [} |z =z |z[*

< C d(z,09) 2" [ Jue()
= e PR

. 8)=2 (Br(V)—B-(7)
Using (62) we get for 0 < a < 2= (*72 7)

PHOR
N Ze,aQ |u |2 (s)—1—pe
<
L'<C PAEER / |- ()1t dx
o Uz 09) (M—a)@*(s)—l—pe) 1
IR P D Hn.e |2](2* (5)=1=p) (B+ (V) —1=)+B- (1)~ 1+s
Dévf
2 1—p.
ze,m (LB i T [P ]
IzE|5+ | Tl OG- 0)-THa)+3- () -1 *
(26,39) B+(w)26,(w> / 1 J
— X
- |ZE‘5+(“/) Fn.e n+(2*(s)—2—p‘)(M) (2*(s)=1—p.)
1<|z| 2|
2% (s)—1—pe
d(z.,09) =)L [ S, ;
2P+ () |2]@ G =PI (B —DFsta( (&-1-p) 7
|z <3 |z]
By ()=B_ ()

2 ZE
<cC P B )l | / 5 (wl)fs ™ dx
|ze|P+ (Y 2 |x|n+(2*(s)—2—p€)(%)—Q(Q*(s)—l—pe)
<|z

* By (M=B_(7) * *
‘Ze|(2 (S)—Q—Pe)<%>—0¢(2 (S)—l—Pe)mx‘ﬁ,( )71u0‘|20£5)—1—1)e
+C L0 |
PALES ¢
(89)
By(M—B_(v) 2*(s)—1—p.
I i T ity
- |ZE‘5+(7) |ZE|B €

For the next integral

- 2% (s)—1—pe
Ve / (sl |x|}> (s, 09)d (20, 99) Ju(2) N

min{]ze|, [z[} |z = ze[" j]°

e ) )1

EE dx.

< C d(ze,00) / . _xz g

Dy

€
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From (62) we get for 0 < a < 2*53 2 (6+(v);57(v))

By (M=B_(7) * —-n
N (= 0) @7 (s)-1-p0) |z — 2|
I3 < C d(ze, 00y 2] (Br 1= @ ()~ T=poTs—1 dz
DY,
|z — 2| 7" B (7)—1 —1—pe
+ Clze 00 / |2[(B- ()= 1+a) @ ()~ 1-po)+s-1 el ol g
DY,
ByrMN—=B_() 2% (8)—1—pe
M](Vi)e 2 a) @ (5)-1-p 40, 00 L
= 2| (B (N —T-a) (2 (s)~T-pe)+s—1 / [ =z da

N
D3e

ol o]}y dze, 09 "
| 2] (B-()—1+a) (2 (5)—1—pc)+s—1 /|$—z6| x

PrMN-F-) “(g)—a_ BeO=B D\ _ 9% (s) 1
o tme Pz 09) () ()
= 2P~ X
2*(s)—1—pe
1217~ g |7 o pd(zeaaQ)‘ |27 (@) =2=p0) () a2 (o) -1-p0)
|Z€|B (v Ze
(90)
Byr(M=8B_(7) 8 —1—p.
B 7 2 O | i Yol |7 %, P| |
= 2P+ [2e[P-(—1 “e

Finally we estimate

B-(v) 2 (5)—1—p.
= c / <m><{|z||x|}> d(w, 0Q)d(z., 99) |u. ()] N

min{|z|, [z[} |z — 2| ||*
D4,E
2%(s)—1—pe
<C d(ze,09) / |z |ﬁ V)+1— n|u€( ) de
PIE e

2|ze|<|=|

d(zc, 09) [uc(@)[" "1
[P~ fafPr et
2|ze|<|=|

<C
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Then from (62) we get for 0 < o < :E ; (ﬁ+(7);ﬁ’(W))

(D220 o) 2+ (5)-1-p.)
2 “d(z, 00 1

2|~ (2] =P (- DFs—a( (5)-1-p)
2/z]<lo]
2% 5 —1—pe
o A 00) (e R A e .
O™ 2P Vst M@ T pata () 1-p)
22| <ol
BB _ (9% (s)—1p,
<CM1(VE z a) (2" (s) Pz 560 ) d
: X
- A NG —pe) (=) —a2r (5)-1-p0)
s)—1—pe
d(z.,00) / )= =Luo | 7.5, N
|- [ (5)—2—p) (2D o 1,
|| oo leial 121 [t () =2—po) (=22 ) a2t (9)-1-p.)]
(6+(7);ﬁ7(7)7&)(2*(5)7171%)
<C e (Ze,aQ)
B IZGVL(’Y) E |(2*(5 P)(M) —a(2*(s)—1—p.)

1-pe
]2~ 0 Y|y P (2, D)
|ZE|B )

B (=B ()

e = d(z,09Q) [y (2" (s)—2—pe) (BEZZE=0) —a 27 (5) - 1-p0)
O S€ ’ ( ,€
|ze] )

- |Z€|/8+('Y)
_ 2% (8)—1—p.
5= O Laug |7 L5, P d (2, 092)
| z¢|B- ()
(91)
Br(M—B_(M $)—1—p.
co [P T Mot el
- |Z6‘ﬁ+(7) |Z€|ﬁ— Ze

Combining (88), (89), (90) and (91), we then obtain for some constant C' > 0

Br(M—B_(7)
)—1— e B_(7)-1 (8)~1-pe
|u5(:c)\2 (8)=1—pe BN e : |Ze| |||$| uOH[,oo Q)
/GE(ZC’Q:) FE dz< C |2¢[B+ (M) * |28~ [zl |
which can be written as
2*() . ﬁ+(’Y);ﬁf(’Y)| | ||| |B (’y) 1 ||
lue(x)[* 171 7Pe N Ze x|V g || Lo ()
l -7 < 2
[ Gt T o < € | B el

for some C' > 0. This proves (87). O



MULTIPLICITY AND POHOZEV STABILITY FOR HARDY-SCHRODINGER EQUATIONS 37

Step 5.6: There exists C' > 0 such that for sequence of points (z) in By, . (0) N Q2
we have

2*(s)—1—pe
(92) /G (oo, gy @ 7 &2

z|s B+(w> B_(v)
‘ | uLe |Z€|6 ("/)

Proof of Step 5.6: Here again, to estimate the right-hand-side of (86) in this case,
we split € into four subdomains as: Q = U Dj (R) where

o Di = {lz] < |z} N,

o Dj = {3z <|z| < 22|} N €Y,

o Db, = {2z < [a| k1 } OO

o Dj = {k1e <|z|} N

Note that one has 3|zc| < |z —z| in Di , and §|z| < |z —z| in D} .. We then have

B-(v) 2% (s)—1—pe
_ C/ (max{ze| |90}> d(z, 0)d(ze, 09) |ue()| de

min{]z|, ||} |z — ze|” |[*

b0 [ lute )P O-1or
< Cd(z, 09) o

.5

Using (81) we get for 0 < a < g E ; f <B+(v)gﬁ—(v))

L d(56,09) [ fue(x)|F )1
L =C |2¢|B+ () / |- (s =1 e
M_(M_a)@*(s)—l—m (20,00 1
» €
<C 2|+ / |2 (&) 1=p)(B- (1)~ 1) +A-(7)+s-1 dx

_(/3+(“/)7B_(v)_a)(?(s)_l_p )

P €

d(ze, 092

< C Ml,e (Z ) / 1 dx

2P+ 2] ©) =P B- (M= DFs+a@ (&) -1-p0)
|JL|S%|ZE‘
. By ()=B_(v) *
2\ @ (8)=2=pe) (P ) —a(2 () 1) d(ze, 0)
<o (0 By A1)
’ Ty 3 |Ze‘ﬁ—(’Y)
(93)
<C o

13+('y) B_(v)
Ml,e |Z€|B (’Y)
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Next we have

dzx

max{ |z, |21} \ =7 d(x, 09)d(z., Q) u, ()] =1
C/( )

min{|z|, |z|} |z — 2z|" EE

2% (s)—1-pe
< C d(z,09) / (2, 00) Juc ()] .
|z = 2" |[®
D2
From (81) we get for 0 < a < Esg 2 (m(’v)g/i(v))
Br(M=B_(" Y
1 (7 )(2 (s)—1— pﬁ) |z — 2|
IQ § C l’l’l,e ZE,@Q |x|(ﬁ =1t (2 (5)—1—p)Fs—1 dx
(BB (9% (s)—1—p.
<C Nl,e( ’ )( © P d(ze, 09Q) " g
- |z |(B (v)—1+a)(2*(s)—1—pe)+s—1 / |z| ™" dx
* By (M—B_(7) *
e @ (2 (s)fzfpe)(%)fa(z (8)—1—pe) d(z., 00)
B H1,e M
7 1h1,e EAL
(94)
|2
=C [FECIRCN]
L 2ol

For

I—c / <W{Zel’lx}>“” d(, ) d (2., 0) [u (x)[2 (-1

d
min{=. o1} FET o
3,e
2*(s)—1—p.
¢ 4z 2 g (1n @O
|ZG|B*(V) ‘xls

2|ze|<|z|<k1,c

d(ze,00) |ue(2)]?" (5) 1P
SO Lo / o=
2|ze|<|w|<k1,e



MULTIPLICITY AND POHOZEV STABILITY FOR HARDY-SCHRODINGER EQUATIONS 39

Then from (81) we get for 0 < a < 3:8:? (mh);ﬁ’(ﬂ'))

— (BN 0 2 (9)-1-p0)

1 Ml,e d(zeyag) 1
I3<C |Ze"87( ) |x|ﬂ+(7)+sf1+(57(7)7171)5)(2*(3)71)+a(2*(s)717p€) dx

2|ze| <|w|<k1,e

(BB Y 2% (s)—1—p.

p (BT a) 2%(s) p)d(ze,ﬁQ) X

<0 == / FL()-B_() dx
|z€‘/3—(’Y) |n_[(2*(8)_2_p6)(++)_a(2*(8)_1_p6)}

o)z |<lz|<kr,. |T

<c d(z.,00) / 1 de

= BL(D-B_(M

R B () —B_ () N
pre ° |2l pg l2" [ @)= (B ) et 010
(95)
2]
<C FL—F_() :
e 2 |2;6|B—(’Y)

And for the last integral we get using point (A5) of Proposition 2 and a change of
variable

B-(v) 2% (s)—1—pe
e / <max{ze| |x}> (e, 0)d(z, 00) |uc ()| o

min{|z|, [z[} |z = 2| |z[*

(26789) e () ()1 e
=C AR |z [Ar () +s—1 dx
[z|>k1,e
d(z.,00) 1
<C —— d
I P C)) / || B+ () +s = 14252 (27 (5) = 1-pc) o
|z|>k1,e
d(ze,09) 1
S ¢ By(v)—B_() / n+ By (M—=B_(7)
My e : ‘Z€| \a:|>1 |.13‘ ?
|ze|
(96) <C By (M—=B_(7) :
/j‘l,e : ‘Z6|/87(7)
Combining (93), (94), (95) and (96), we then obtain (92). O
Step 5.7: Let 1 <i < N — 1. There exists C' > 0 such that for sequence of points
(2¢) in By, . (0)\ By, .(0) N we have
(97)
“(s) /3+(7)76_(w)| |
|ue (@) [ ()71 7Pe fie * Fe |ze|
Ge(me) |J3‘g —— dx <C |Z€|B+(’Y) By (MN=B_(7)

Pig1e” | z¢|B- ()
Proof of Step 5.7: To estimate the right-hand-side of (86) in this case, we split 2

5
into five subdomains as: Q = (J D} . where
Jj=1
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Dig = By, (0)NQ,

Dé’é ={kie <|z| < %|z€|} NQ,

Dg’e = {%|z€\ < |z| < 2|z|} NN,

. Die ={2|ze| < |z| < kig1.}NQ,

o Di = {kit1,e <lz]} N

Note that one has 3|zc| < | — z| in D}, and 3|z| < |z — z| in Dj .

First we have using point (A5) of Proposition 2 and a change of variable

- 2% (s)—1—pc
f o / (et el |x|}> (e, 09)d(z¢, 09) |uc(x)| .

min{]z|, [z[} |z = 2" jz]°

|| B-(v)
| |-

*
N
|x—z€| "ST dz

< C d(z, aQ)

d(z.,00) |ue (2 |2 (8)=1-pe d
= |26‘5+(’Y |z[A- =1+ v

(z6,8Q) 1
< e 7t
¢ | ze| P+ (V) |z|B- (M= 1ts+(2* () —1-po) 25 dr
By, (0)
Br(M=8B_(7)
/’Li’g : d(Ze,aQ) / 1

=~ |Z€|,B+(’Y) ﬂ+(7);5_("/)

dzx

ﬁ+(7)*5,(7)| |
Hie ° Ze
< 5
(98) - O ‘Ze|ﬁ+(7)

Now we estimate

= C / <max{|ze|,|x|}>"-<” d(w, 09)d(z, 0Q) uc(@)[* 7177
2 3 n s
) \min{|z].[«]} [ — =] E

|Ze|5 () uc(z |2 (8)=1-pc
< C d(2e,09) PG / PEEOEES dx.
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Using (75) we get for 0 < o < gig:;j (B+(v)gﬁf(v))

. Q 2()1p6
L<c d(z,0 /IU z)| de

2B+ ||~ +s
< o Uz 09) (ww)@*(sm—pe) 1 -
= | ze|B+(0) Toe || (2" (8)=1=pe) (B4 (v) —1—a)+B-(7)—1+s
D;,s
_ B+(7)*/37(’Y)_a 2% (8)—1—pe
c Mi+(1,e ’ )( (tmeo (ze,00) 1 d
+ | ze|B+ () / || (2% (8)=1=pe) (B (v) = 14a)+B- (v) ~1+s v
é,e
d(2,090) Fre=p-0) / 1
<(C —2q. 2 d
- |ZE|5+("/) Hie n(2* () —2—pe )(w)*a(?‘(s)flfpe) z
1<|z] 7|
_ B.,.('v)fﬁ_("r)_a 2* (s)—1—p.
C Mi+(1,e ’ )( * 3 )d(zﬂag) 1 d
+ | ze |8+ () / | [2* ($)(B- (V) =1)+sta(2* (s)—1-pe) v

2| < 3]zl

BL(M—-B_()

cotie T 400 / 1 dz
S |z€|ﬂ+(7) D ‘:1;|n+ (2% (s)—2— p)(M) —a(2*(s)—1—pe)
* By (M—=B_() %
|2 (2" (5)=2=p) (=2 ) —al2 ()= 1-p0) d(ze,00)
+C Lit1.e BL(D—B_ (M
' Pitt,e” ALY
(99)
6+(w)fﬂ_(w)| |
Mz"g 2 Ze |Zé|
<C 2 |B+ ) t o
Biti,e” |ze] -0
And next

e O 0 2 (s)~1-p.

Hec / (mexlzlsl |x|}> iz, 020 09 Juca) O
min{[=), |21} [z — 2" 7]

e ()P e

I
|z = 2z[" jz]°
Dj .

dx.

< C d(ze,090)
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From (75) we get for 0 < a < 2*53 2 (M(A’);ﬁ*m)

|z — 2| ™"

) (B+(’Y)_ﬁ7(7)7a)(2*(8)71*p)
1 2 €
I3 < C d(ze, )y, / 2] B - 1-a)@* ()~ T-poyts—1 dx

B+(w) B_(1)
( (2 (8)—1—pe) |.’I,‘ — Ze|l
+C d(ze, 0D, \x| (B (N —1+a) (2" (5)—1-p) 51

BB _ Y (34 (5) 1.
<c“£€ ; ) (2" ()~ 1-p) den00) 5
- |Z€|(ﬂ+(7) 1- Ot)(2*(s) 1— P5)+S 1 / |$ — Z€| x

(/‘3«#(7);[‘37(7) 7&) (2*(5)717p6)d(z aQ)
- / |z — z¢|™" dx

:U“'Hrle
+C 2| P~ THa) @ () T-poTs-1
Dj .
s F A 09) (g, \ @2 () e o)1)
<C 1,€ € 1,€
B |z¢ P+ (M) (|Ze|>
R BL(M—B_() .
(| o
Hit1,e |ze|A- (1)
(100)
B+<w)—ﬁ,(w>| |
Mi,e : Ze |ZE|
S C |ZS|B+(’Y) ﬁ+(7);ﬁ7(‘ﬁ
Hig1e |z|B-()

The next integral becomes

() 2*(s)—1—pe
i O/ (maX{lzel |w|}> d(x,fxﬁzdsizaﬂ) UE(I)|$|S da

min{]z|, [z[}

<cC (Ze’m), Im\/t(wmfnIue(w)\ms)*l*pe dz
- Ze ﬁ—(')’) x|

=l 2|ze|<|z|<kiti,e i

d(z¢, 00) |u€(x)\2*(s)_1_p€
SO L FIEOrE=——

2|ze|<|x|<kiyi1,e
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Then from (75) we get for 0 < a < :E ; (mh);ﬁ’(ﬂ'))

(w,a) (2% (s)—1—p.)

4= 2P~ 2@ =P (B (D +s—a(Z (&-1-p) "
2‘Z6|§|I‘<ki+l,e
(B =B_(M) —a)(2*(s)—1—p.
. i O o) ! )
* [P+ Fs - (M@ () —T—p)Fa@ ()—1-p) ¥

|Z€|Bf(7)
2|ze|<|z|<kit1,e

BB _ ) (2% (s)=1—p.)
u( - )@ (s)=1-p Az, 09) 1
| dx

<C
- EALSS n+(27(s)—pe) (E 2= ) —a2e (5)— 1-p0)
2|z |< || <Kit1,e |z
_ B+(’Y)*57(7)_a (2* (s)—1—p.)
+C M”(Le 2 ) d(zc, 6%) 1 da
Ze B-(7) 1— | (2% (s)—2—pe) M —a(2%(s)—1—pc)
o 20z |< x| <Kiy1,e || [ ? ( ) ? }
(V-=B_() _
u%d(z 9Q) /1, \ @ ©-2p0) (D) a2t (9)-1-p0)
<C i,€ € Hie
- |Z€|,3+(’Y) |Ze|
. Br(M=B_(7) .
+ C (|Z€| )(2 (S)_2_pﬁ)(%)_a(2 (S)_l_pe) d(zeaag)
Hi+1,e |Ze|67(7)
(101)
By(M—B_(7) o
,ui’e 2 Ze |Zel
<C 2P B —B_(M
Pig,e” |ze|A- ()

And and finally we get for the last integral from point (A5) of Proposition 2 and a
change of variable

B-(7) 2% (s)—1—p.
C/ (max{|z€ |x|}) d(z, 0Q)d(ze, OQ) |ue ()| i

min{]z[, [} |z — 2| |[*

(Zeﬁﬂ) |ue () [P
SC L ® PR
|z|>kit1,e
d(z, 00) 1
<C +—F%7 d
=¢ 2|~ / [P LR (2 )= 1p)
|z|>kit1,e
< d(zc, 00) 1
> Byr(M—=B_() nt BL(v)—B_(7)
Pitie” |2~ 151 ] 2
|z
(102)  <C AL () —B_( :
Hit1e’ | ze |- (1)

Then from(98), (99), (100), (101) and (102) we get the estimate (97). O
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Combining the estimates (86), (87), (92) and (97) we get that, there exists a con-
stant C' > 0 such that for any sequence of points (z.) in {2 we have

B ()=B_(7) 5
) 2 Ze - o
IRSTRCY Dy e et vellemay,,
— me) B (7)|26‘[3_(a/)+‘z€|[5+(7) | 2] 8- (V)
This completes the proof of Proposition 3. O

In our next result we obtain a pointwise control on the gradient.

Proposition 4. Let () be a smooth bounded domain of R™, n > 3, such that 0 € 0N
and assume that 0 < s < 2, v < %-. Let (u¢), (he) and (pe) be such that (E.), (15),
(21) and (22) holds. Assume that blow up occurs, that is

. ., B —2
!1_r>r(1)|||x\ Ue| oo () = +00 where B_(y) —1<7< T

Consider the (u1,¢, ..., tn,e from Proposition 2. Then there exists C > 0 such that
foralle >0

(103)

ﬁ+('¥) B_(v)

u’bé
[Vue(z)| < € Z By (M) —B_
=1

ZG

2]~ g || Lo (o)

O |2[6-() 4 |]f+ @) =)

for all z € Q\ {0}.

We use the bound on the gradient of the Green’s function and then the proof of
Proposition 4 is similar to Proposition 3.

We let G, be the Green’s function of the coercive operator —A — B ‘2 —he on Q with
Dirichlet boundary condition. Differentiating the Green’s representation formula,
and then using the pointwise bounds on the gradient Green’s function (214) and
the regularity result Theorem 6 yields for any z € Q

Jue (@) 27277 uc(2)

ks

dx

ule) = [ Glea)

Q
2*(5)_1_175
Vu()] < € / 9G(ev) o
() 9117
< c/|v Gele) e da

dx.

< /(max{lzzl}> O 4, 09) Ju, ()2 ()1

min{|z|, |2[} [z — 2" jz]°

Then using the pointwise estimates(61) the proof goes exactly as in Proposition 3.
O
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6. SHARP BLOW-UP RATES AND THE PROOF OF COMPACTNESS
The proof of compactness rely on the following two key propositions.

Proposition 5. Let ) be a smooth bounded domain of R™, n > 3, such that 0 € 02
and assume that 0 < s < 2, v < 2. Let (u¢), (he) and (pe) be such that (E.), (15),
(21) and (22) holds. Assume that blow up occurs, that is

-2
(104) lim ||[2]"uc|| Lo () = +00  for some B_(y) —1<T< n-s
e—0 2

Consider the fi1,¢, ..., in,e and t1,...,tn from Proposition 2. Suppose that
(105) either { B4(v) = B-(v) > 2} or {B+(v) — B-(7) > 1 and ug = 0}.

Then, we the have following blow-up rates:

[ 1Iy(z,2)|Viy|? do
oR™
(106) lim L2 = ¢ oin
=0 [IN N PRENS)
Ik |
ETN

i= 1 tz*( ) 2 gn
Here 11y denotes the second fundamental form of 02 at 0 € 9 and
n—s 1
(n—2)2 tiglz;lﬂ ’
N

Cn,s,itn ~—

Proposition 6 (The positive case). Let Q be a smooth bounded domain of R™,

n > 3, such that 0 € 0Q and assume that 0 < s < 2, v < "72. Let (u.), (he) and
(pe) be as in Proposition 5 and let H(0) denote the mean curvature of OQ at 0.
Assume that blow-up occurs as in (104). Consider the pie,..., pin,e and t1,....,tn
from Proposition 2. Suppose in addition that

(107) ue >0 for all e > 0.
Then, we have the following blow-up rates:
1) When By (v) — B-(7) = 2, then

Crositn f |z||Viy|? do

OR™ _
liﬂ% If;\; - N i [2% () HO) i { BOJFT(%Z(’Y?_—(;Z(?)Q: 2 and ugp =0 } '
i=1 2 (*) 2 R™
|5L“2‘V’l~l,N|2 do
lim Lo — Sty O ~Hm%4?f5()—5()—2 dug >0
E%MN,E T a_1 N Y P+ —\v) =4 ana ug .

f |u1‘2 (s)
|[*

i: 2*() 2 gn

for some K > 0.
2) When B1(y) — () < 2, then ug =0 and
[ |z|*|Viy|? do

lim Lo = Gty O CH(0)  if B (7) = B-(7) > L.

e—0 fIN n—1 1 f @@ g
—2

i=142"()=2 gn B
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(108) 2
. Pe n—s K w,_ )
fim n——  (n—2)2 : " H(0)  if Br(v)—B-(7) =1
HN,e I n-1% —L, |u1|L|§( )4
i=1 tm R™
where K is as in (168).
(109)
wn—12*(s)? (%2 —’Y) A2
i pe = — i . ) —
Himy =B T N o My () if Br(v)—B-(7) <1
Ne (n=5)> —a= [ e dw
i=1 ;7 (-2 gn

for some A > 0, where m, () is the boundary mass defined in Theorem 8.

Proof of Theorems 3, 5 and 4: We argue by contradiction and assume that the
family is not pre-compact. Then, up to a subsequence, it blows up. We then apply
Propositions 5 and 6 to get the blow-up rate (that is nonegative). However, the
hypothesis of Theorems 3, 5 and 4 yield exactly negative blow-up rates. This is a
contradiction, and therefore the family is pre-compact. This proves the Theorems.

O

We now establish Propositions 5 and 6. The proof is divided in 13 steps in Sections
7 to 8. These steps are numbered Steps P1, P2, etc.

7. ESTIMATES ON THE LOCALIZED POHOZAEV IDENTITY

In the sequel, we let (ue), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. Note that

TL2
<y le Br(v) = B-(7) > 2,
and
2

4

y< & Bi(v) —B-(v) > 1L

Step P1 (Pohozaev identity). We let (ue), (he) and (p.) be such that (E.), (15),
(21) and (22) hold. We assume that blow-up occurs. We define

|vue|2 Y u? he() 2 1 |u6|2*(s)7p€
F.(z) := (x, - ——=
0= (M5 -G g

(110) — (x’ﬁiue + i ; 2u6> Oy e
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We let T be a chart at 0 as in (27). We define r. := \/fin.e. Then

/ (he(w) + (v;;,@) u? da
7(RenB O\By ©)
e n—s / |u6|2*(s)—pe
+ — dx
2%(s) (2*(3) —pe> |z|®

T(Rszre (ONByg (0)>

_ / F.(«) do + / F.(x) do

T(R" N8B, (0)) T<Rg NoB,; (0))
2
(111) -~ / <x7u>% do

7(orenB, O\By ©)

and, for 69 > 0 small enough,

/ (he(x) + W) uf da
7(R2nBs,0\B,y )
e s / |u6‘2*(s)—pe
+ _— d.’E
2*(s) (2*(3) —p€> ||®

T(Rz NBsg (0\Byg (0)>

- [ Rwae+ [ R

T(R™NBs, (0)) T(Rg NOBys (0))

(112)  + / (z,v)

T(aRg NBs, (0)\Bk‘i’,e (0))

2
Vul®

Proof of Step P1: We apply the Pohozaev identity (201) with yo = 0 and
U=T (Rz N B,.(0) \Bkh(o)) c Q.

This yields

(Vhe,x)> ) Pe ( n—s ) |2 ()P
_ he(x) + ——= U, dr — dx
/( (z) 5 2(s) \2(s) =/ J jz[*

. €

(113) = /Fe(x) do.
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It follows from the properties of the boundary map that
U =0 (T (R2 N B..(0)\ By _(0)))
=T (R N0B, (0)UT (R’l NOBy (0)) T (aRE N B..(0)\ By (0))

Since for all € > 0, ue = 0 on 912, identity (113) yields (111). Concerning (112), we
apply the Pohozaev identity (201) with yo = 0 and

V=T (Rz N B, (0) \ Bys 6(0)) cQ.
The argument is similar. This ends the proof of Step P1. O
We will estimate each of the terms in the above integral identities and calculate the
limit as € — 0.
7.1. Estimates of the L?'(*) and L?—terms in the localized Pohozaev iden-
tity.

Step P2. We let (u.), (he) and (pe) be such that (E¢), (15), (21) and (22) hold.
We assume that blow-up occurs. We claim that, as € — 0

(114) / ij)p dr = XN: — / |ﬁi|ac2|;(8) dz + o(1).
3 2% (s)—2
T(REQB%(O)\B%E(O)) P ORI
and
(115)
[ dz = 3 nlfz / i dx +o(1) if up = 0.
e =PrEEr A

T(R’i ﬁBgo (())\Bk;iE (0))

Proof of Step P2: For any R, p > 0 we decompose the above integral as

|uc|? ()P / |ue|?" (5)—Pe
e dx= - d
/ FE FE

T(RZﬁBre (O\Bys (0)) T(R"NB,. (0\Brx ., (0))
N .
|2 (5)=Pe
+Y / b s
Z:lT(JRz MBri, . (0\Bp, , (0))
N-1

|ue|?" (5) =P
£y / e o

T (R2 Bk, (0\Brx, . (0))

i=1
2" (s)—pe
|z

7(R2nB  O\By (©)

We will evaluate each of the above terms and calculate the limit lim lim lim.
R—+o00 p—0e—=0
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From the estimate (61), we get as ¢ — 0

2%(8)—pe
/ uel* 7P . dz
B 7]
T(R"NBy (0\Brky. . (0)

By (M—=B_(7)
%(2*(5)_1,5)

MN,e 1
=0C / L D E @ | [ -m D@ @pats |

T (R NB, (0\B iy, (0))

By(M=B_()
%(2*(5),175)

:LLN,E
=¢ / oD@ s ac Tl do
R™NB, (O)\ERkNYS (0)
1
e / - DE ot Pac T@)l
R™NB:, (0)\Brky . (0)
1
<c / ; Jac T(ky.cx)| do
— . +(M=B_(M _ _ ’
R"NB_re_ (0)\Br(0) " e
kN, e
1
+ C / — Jac T (rex)| dx
T G O | (7o)

R”NB1(0)\B Rrky . (0)

Te

=B (v w (o) (B =B- 3
<C (R—?(s)(ﬂ*(%‘*”)—pe(mm—l)Mj @) (=) 4pe (- () 1>>.

Therefore

2*(5)7}76
(116) lim lim / Jue P P dz = 0.

R—+400 €0 |£17|S
T(R"NB, (0\Brky . (0))

It follows from Proposition 2 that for any 1 <i < N

(117)
2% (s)—pe 1 .12 (s)
lim lim lim / [uc| dr = —— / ] d.
R—+o00 p—0e—0 |J?|S PEOR |£C|s
T(R™NBrk, . (O\B,k, . (0)) i RZ

Let 1 < ¢ < N — 1. In Proposition 3, we had obtained the following pointwise
estimates: For any R, p > 0 and all € > 0 we have

By ()—B_(v)

Hie ° |zl |z|
ue(z)] < C —= +C B (n—B_(1

2
Hit1,e

‘xlﬁ—('Y)

for all z € By, .(0) \ER;%)‘(O).
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Then we have as ¢ — 0

/ |uc|?" ()P p
— 0 ax
|z]°

T(Rf NBok; i1 . (0)\§Rk7¢,g (0))

e O R e CHORT S
1,€ i+1,€
<C / |2 (B~ (=D (&) -po) s + 2] (B-( =D &) =pe)+s de
T(R™ By, (O0\Brx,  (0))
o e O e R
1,6 i+1,¢
=¢ / || B+ (=D (5)=pe)+s * |z|(B-(=D (2" (5)=pe)+s Hac T(@)| dv
R™NB,k; 1. (O\Brs, . (0)
1
< C J T ki € d
- / n+2*(s)(w)*pe(ﬁ+(v)*l) e 7iks, )] do
R™NB iy y 1 (D\BR(0) ]
ki,e
+ C / ! |[Jac T (kit1,ex)| dx
ez () () 5 ()-1) e

R” (B2, (O\B g, (0) 2]

Fit1,e

<c <R—2*(8)(W)—pe(6+(v)—1) +p2*(8)(W)+pe(ﬁ('v)—1)> .

And so

2 (3)_]76
118 im  lim lim fuel™ =72 o,
lim lim 1 |

R—+00 p—0e—0
T(Rﬁmeki_',lye (O\Brr, (0))

Again, from the pointwise estimates of Proposition 3, we have as ¢ — 0

/ |u6|2*(8)—pe p
—  dz
|z|®

T(RﬁﬁBpkl,e ONBys (0)>

Byr(M=8B_(7)
— T (25 () —pe)

,ul,e
¢ / 2] B- (=D () =po)+s dr

T(Rz By,  (0\Byg (0))

M_ B+(7);37(7) (2*(s)—pe)
1,e
=¢ / |- ot Pac T@)l do

R NBpky . (0\Bys (0)

1
<C / — Jac T (ki ex)| dx
B | |nf2*(s)(ﬁ+(7)2ﬁ*('y)>7p5(57(7),1) I ( 1 )I
ENB,(0\B,; (0) ¥

* By (v)—=B_(7)
SC ,02 (S)(%)"!‘Pe(ﬂ—(’”_l).
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Therefore

|ue|? (5)—P

(119) lim lim / - dz = 0.

p—0€e—0 |x|5

7(RenB  O\By (©)

Combining (116), (117), (118) and (119) we obtain (114).

We now prove (115) under the assumption that ug = 0. We decompose the integral

as
/ |Ue‘2 (8)—pe J / |u€|2*(s)—;ﬂe J
—— dz = —— dz
||® |z|*

T(RﬁmBso (0)\Bk~13 5(0)> T(RZOBSO (0)\§7‘e (0))

2% (s)—pe
+ / 7|u6| dx,
7(RenB, O\By ©)

with r. := \/lin . From the estimate (61) and uy =0, we get as e — 0
B (M—B_(v) (2*(s)—pe)

2" (5)-p. = :
/ fud™ 7 < o / e dz

2| B+ =D @ (5)=pe)+s

T(R™NBs, (0\Br, (0)) R™ NBs, (0)\Br. (0)

Since (B4 (y) — 1)2*(s) + s > n, we then get that

2* (s)—pe 2 (B4 (1) =B (7))
/ e P 7 dx<C<MN’€> =o(1)

|z Te

T (R™NBs, (0)\B- (0))
as € — 0. Therefore, with (116), we get (115). This proves (115).
This ends the proof of Step P2. O

Step P3. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We claim that

/ (120) (he(oz) + (Vh;’x)) u? dp = 8251 ::lfm ﬁ)m Zﬂgf( )) 5 (Zw)) 2
7(22 0B, 005y @) Olun. 7 ) B —B-(<2
And if uo =0
O(ui.c) ifB+(y) — B-(7) > 2
/ (121) (hs(x) + w> ul do = O(qu,e(lr)l ﬁ)) ff Bi(v) = B-(7v) =
7 (=208, <O)\Bki€<o>) Ount ") i () = B-(0) <
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Proof of Step P3: From estimate (61) and after a change of variables, we get as

e —0,
/ (hé(x) + (Vl1233)) u? dx

T<Rﬁ NBre (0\Bys (O)>

<C / u? dz

T(Rz NBre(O\Byz (0))

?;(’7)—5—(’7) 1
<C / [x{z(m(w)—n de + TR D dm]
T(R’jﬁBr‘ (0)\Bk%5(0)>
N B+ (V) =B=(V),.12
< (122 ’ + da.
q122) / (; Z27(6/3+(v)7/>’7(7))|x|25,(7)Jr‘x|2ﬂ+(~,) |m|2(3(7)1)>

R2NB, (0\B gy (0)

Case 1: Assuming that 84 (v)— 8- (y) < 2, we then have the following rough bound
from (122),

M}ﬁ\;(v)fﬁ—(v) 1

2 ,€

dr < C d

/T<R” B O\, (0)> Ue AT = / <x|2(ﬁ+(v)—1) * |x|2(ﬁ_(v)—1)> o
N ‘ kl’e R™ nBTE (0)\§Rk§’ . (0)

1+ Br(M=B_()

(123) Cune ° if B4 () — B-(7) <2.

IA

Case 2: Assuming B4 () — S_(y) > 2, then via a change of variable in (122), we
get

2 Y 2 |x|2 dz
Ue dr S C Mg e/
/ ; ) B&(O)\E,@? ) ‘x|2,6’7(v) + |$‘25+(7)

i€

T(RZOBTE (0)\Bk? . (0)) Aie
JrC'/ |x|2726*(A’) dx.
By, (O)\Bk?,e(o)

Therefore, if 81 (v) — B- () > 2, then

N

(124) / ulde <CY pd 4 CrptT0 < opg
=1

T(Rz NBr (0\Bys (o))
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When 54 (y) — B-(7) = 2, we get that

N
/ 2dr <032, 1+/ 22+ dg | 4 Cp2HBeM=B-()
-1 B r. (0\B1(0)
T(RZOBTE (0)\B,€%6(0)>
N-1
1
< Cu?\,,eln +C Z u?’g In—.
,€ i=1 1,€

Since pn e — 0 and lime_,o pi.e /1 e is finite for all ¢ = 1,..., N — 1, we get that
)
,LLN,E ’

since B4 (y) — B-(7y) = 2. Inequality (122) put together with (123), (124) and (125)
yield (120).

(125) / u?dx =0 (,u?\,’6 In

7 (205, 00\By )

When ugp = 0 we decompose the integral and proceed as in the proof of (115) to
obtain (121). This ends Step P3. O

7.2. Estimate of the curvature term in the Pohozaev identity when 5, (y)—
B-(v) > 1.

Step P4. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs and that B4 (y) — B-(y) > 1. We claim that, as
e—0

(126)

62 € 1 u 2
(2, )Yl gy = B /IIo(x,:U)|qu| do + o(1)
2 2 tm 2

T(aRz NB,, (0)\Bk§)é (0))

Moreover, when ug = 0, we claim that as € — 0,

(127)

€ 2 € 1 |2
/ (x,y)‘vu | do = KN, — / II()(%,CE)M d0—+0(1)
2 2 tm 2

N

T(@Rﬁ NBsg (0\Bys (0))
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Proof of Step P4: We have for any R, p > 0,

2 2
/ (x,y)w;‘E' do = / (x,u)%do

T(aRz NB. (0\B,s (o)) T(OR™NBr (0\Brky . (0))

N 2
+ Z / (z,v) \V;L€| do
i=1

T (OR™NBrk, . (0\Bpk, . (0))
N-1

2
n / (2,) IVZel

=1 —
T T(oR" Bk, (0\Bra, , (0))

(128) + / (z,)

T(aRz NBpky (0\Bys (o)>

|Vue|?

do.

We consider the second fundamental form associated to 9Q, IIy(z,y) = (dvpz,y)
for 0 € 9 and all 2,y € THO (v is the outward normal vector at the hypersurface
09). In the canonical basis of OR"™ = Tp0f2, the matrix of the bilinear form Iy is
—D2Ty, where D37, is the Hessian matrix of 7y at 0. Using the expression of T
(see (27)), we can write for all z € U N OR™

(17 _827—0('T)7 s _8n76(x))
VI+YX0T@)?

With the expression of T, we then get that
- To(@) = 32,5 370, To ()
V1 Cpa(0,To()?

v(T(z)) =

(voT(z),T(x))

And so for all z € U N OR”.
(129) (T (x),v 0 T(x))] < Claf?
Since T9(0) = 0 and VT,(0) = 0 (see (27)), we then get as |z| — 0

(130) (0o T(@).Ta) = —3 3 aa0,,To(0) + O(af’)

P,q=2

and therefore for all € > 0 and all x € Bg(0) N OR™

1 n
(T(kw.ex),v oT(knex)) = =5k Y 22905 To(0) + e r(x)ki

P,q=2
1
(131) = 51@]2\,&.7[0(96, ) + Ocr(2)kY o
where lim sup |8e.r| = 0 for any R > 0.

=0 BL(0)N{z1=0}

Step P4.1: Let 1 <4 < N — 1. In Proposition 4 we have obtained the pointwise
estimates, that for any R,p > 0 and all € > 0 we have for all x € B, .(0) \

do
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ERki,e (O)’

Br(M=B_(7

I 2 1
Vu@)l<C =Tmem— +¢ momro :
Pivie’ |-
Then we have as € — 0 we get
Vu,|?
/ @)V gy
(E}R’_L NBok .. (0)\§Rki’5 (0))
B+ (V)=B-(7)
Mi,e 1
<C / (z,v) l |z[28+() + ‘u{u(v)—ﬁ—('y)ﬂzﬁ(w)]
T(aREﬂBP’wJA,e (0)\§Rkhs(0)) i+1,e
B+(V)=B-(7)
2 /“‘Li,e 1
<C / || [ :v|25+(“/) + u{3+(7)*ﬂ—(7)|$|2ﬁ,(7) do
T(aRﬁmBPkt+1,s (0)\§Rkiy€(0)) i+1,e
1
< C pie / || (=D +(B+ (1) =B-(1)-1) do
OR™NB Pkit1,e (0)\§R(0)
ki e
1
+ C it / |x|(n—1)—(,8+(7)—ﬂ7(’v)+1) do
OR™ NB,(O\B rk, . (0)
ki+1’,e
<C (Mi ROFOTE O gy e/’ﬁ+(7)_ﬂ7(v)+l) '
Sothen forall1<i< N —1
) ) ) _ \Vu€|2 _
(132) RLHEOO ;13% lg% PN e / (z,v) do | =0.

T(oR™ NBok; 1. (O\Brk; . (0)

This ends Step P4.1.
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Step P4.2: Again from the estimates of Proposition 4, we have as € — 0

2
/ (z,v) |V@266\ do

(aRﬁ NBpk, (0)\3’“?,6 (0)>

(z,v)
<C / Mf+(7)—ﬂf(v) || 26-() do
T(aRz meklye(O)\Bkie(O)> ’

|z

Mf;(v)_& ™) || 26- ()

IN

C

OR" NByp, . (0)\Bk'1g (0)
’ yE

1
C ki / 7”‘25_(7)72 do

IA

OR™NB,(0)\Byz (0)

< C e p5+(7)—57(7)+1.
Then
. . . —1 |vue‘2 o
(133) Rgrfoo ;1_1% ll_r}r(l) H.e / (z,v) — do | =0.

T(B]Rﬁ ﬂBPkl,e (0)\Bk%,e (0)>

This ends Step P4.2.
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Step P4.3: With the pointwise estimates of Proposition 4, we obtain as ¢ — 0

2
/ (z, V)'v%€| do

T (0R™ NB, (0\Brk .. (0))

By (1)=F- () )
2 ,€
<C / 2] [ 228+ ™) + |2[28-0) do
T(OR™ NB (0\Brky. . (0))
1
< Ckne / a2
OR"NB_r. (0)\Br(0)
kN, e
1
B (7)—B-(7)+1 - -
+ C P+ / 2|2P- (-2 do
OR™NB1(0\B Rk, (0)
1
< Clhne / R DB @ A 90
OR"NB &y . (0\Br/2(0)
EN—1,¢
1
B4 (1) =B (M)+1
+ O / B[ D-Gm-A-mrn 90

OR™NB1(0\B gy, (0)

271¢

< C k. (Rm(v)fﬁ—(w)*l + rf+(v)fﬁ—(w)fl) do

Then if B4(y) — B-(y) > 1

(134) lim lim lim | gy ( )M do | =0
Rirfoo pg% egr(l) 'uN’e TV 2 o
T (8R™ NB. (0)\Brxy. . (0))
This ends Step P4.3.
Step P4.4: Let 1 <i < N. When 8. (y) — f-(7) > 1, we have
2
lim lim lim | p;} / (z, 1/)M do
R—+o00 p—0€e—0 ’ 2
T(OR™NBrk, . (0\Bpk, . (0))
1 1 ;%
(135) el T / Ho(f&?c)M do,
2 tm 2
i OR™

where I1y(z,x) is the second fundamental form of the boundary 99 at 0.
Proof of Step P4.4: Consider the u; obtained in Proposition 2. It follows that for
some constant C' > 0,

| < <
|x|/37('v) + |[1;‘6+('Y)

|V, (z) for all z € R™ \ {0}.
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So when B4 (y) — B_(v) > 1, the function |z|?|Va,| € L2(R™"1).
With a change of variable and the definition of %; . we then obtain

2
Mie / (,v) |Vge| do

T(aRﬁ ﬁBRki)6 (0)\§Pkif (0))

g3 ~ 12
—he [ Ty 0Ty T do
e
" OR™NBr(0)\B,(0)
;(7;6_3 1 2 . P q‘vai;€|2 2
=~ SFNe D OpgTo(0)a"a == do + O p(w)k3

— =2
OR" NBR(0)\B,(0) P

ki nt 1 ¢ Ve ’
- (/m) / 3 > O To(0)aPa? 5 4o +0ck(@)

_ =92
oR"NBR(0)\B,(0) "1

Since |x|?|Vi;| € L?(R"™1), passing to the limits it follows from the expression of
the second fundamental form in (131), that

Vu|?
lim lim li 1 [V d
i i [ e
T(9R™NBRry;  (0\Byr, . (0))
11 - Vi, |2
=5 = / Z 8pq76(0)xpxq% do
1272 p,q=2

OR™ NBR(0)\B,(0)

1 1 e
- / (e, ) V5L g
2,702 2

[ OR™

This ends Step P4.4.

Plugging (134), (135), (132) and (133) in the integral (128), we get (126). This
proves the first identity of Step P4.

Step P4.5: We now assume that ug = 0 and 54 (y) — S-(y) > 1. We prove (127).

We write
2 2
/ (z, 1/)7|V12L€‘ do = / (z, V)i‘vgEI do
T(aR’jﬂBao(O)\Bk_? (o)) T(0R™NB5(0)\ B (0))
2
(136) + / (x,u)% do

T(aRﬁ NBr (0\By (0)>



MULTIPLICITY AND POHOZEV STABILITY FOR HARDY-SCHRODINGER EQUATIONS 59

With the pointwise estimates of Proposition 4 with ug = 0, and using that 54 (v) —
B-(v) > 1, we obtain as € — 0

B+ (M)—=B-(7)
Vu|? e
(x,y)% do <C / || [HN] do

|28+ ()
(6R™ NBs, (0\B-, (0)) OR™ NBs, (0)\ B, (0)

B+ (v)=B-(7)

Ky
T N cy e
Te

By (=B (-1

1+ 5

=Cuy, = o(un,e),

since 4 (y) — B-(y) > 1. Then, with (126), we get (127). This ends Step P4.5.

These five substeps prove Step P4. ([l

7.3. Estimates of the boundary terms.

Step P5. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We fix a chart T as in (27) and, for any e > 0,
we define

Oe(z) := P~y (T (rex)) forx € r71U NR™ \ {0},
where re := \/line. We claim that there exists & € C1(R™ \ {0}) such that

lim 9. (x) =9 in C..(R™ \ {0})

e—0

where U is a solution of

(137) {—Afj—ajlgf} = 0 mR"®

| 0 ondR™\{0}.

3
|

Proof of Step P5: For any i,j = 1,...,n, welet (g¢)ij = (0;T (rex),d; T (rex)), where
(+,-) denotes the Euclidean scalar product on R™. We consider g. as a metric on R™.
We let A, = divy(V), the Laplace-Beltrami operator with respect to the metric g.
From (E.) it follows that for all € > 0, the rescaled functions ¢, weakly satisfies the
equation

(138)

~ v ) ~ (2% (s)—2) 22 D=P=) g [ [2 () =2=pe,
—Aj Ve — ———=50.—1C h = 2 —_—
ge Ve T(rez) |2 B —re he o T(rer) B =re T(rex)

Te Te

s

with ¥, = 0 on OR"™ \ {0}.
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Using the pointwise estimates (61) we obtain the bound, that as ¢ — 0 we have for
xeR?

By (MN—=B_(7)

N 1,6 : ‘T(’I“ELUM
()| < Crf-071 Y BB ()|
o1 e T (rex)|P=0) + [T (rew)| P+

1 )P~ 0] o

B— (v ()
+ CrL T(rea)] - [T (rez)]
By (MN—B_(7)

KN, e Te
< ,
=C ; (e >ﬁ+(7)fﬂ—(v) PSR C) R P )

VAN.< Te Te
)%= g | oo () | T (rew)
+ C <
T(T'EJK) ﬁ—(w) 7"6
B (M—B_(v)

Lie ’ || B-(m)—1
<C HN,e + |||x| -\ UO‘|L°°(Q)+‘x|
- , s B+ (v)=B-(7) |z|A- ()

=1 ( m) |2]B=() + ||+
<C 1 n 2%~ ]| oo @)
= || P+ ()1 |z|A- ()1 )

Then passing to limits in the equation (138), standard elliptic theory yields the
existence of o € C?(R™ \ {0}) such that . — @ in C?_(R™ \ {0}) and ¥ satisfies
the equation:

4

—AD — #77 = 0 in R?
0  ondR" \ {0}.

and we have the following bound on v

. |21
ple)l <€ <x|ﬂ+(7)

This ends the proof of Step P5. (]

[z~ | oo ()
|x‘57('\/)

+

|x1|> for all z = (z1,%) in R™.

Step P6. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We claim that, as € — 0,

By(M=B_()
(139) / Fn)do= pn. = (Fo+o(l))
T(R™NdB, (0))

with

_ Vi y @\ (oo ne2),
(140) Fo = / (z,v) < 5 T ' 0;0 + 0 ) 0,0 do

R™ NOB;(0)
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and

(141) F.(z) do =o (M?Vm)*ﬁ*(”).

,€
T(Rg 9By (0))

Proof of Step P6: For any i,j = 1,...,n, we let (ge)ij = (0; T (rex), 0;T (rex)),where
(+,-) denotes the Euclidean scalar product on R™. We consider g, as a metric on R™.
We let Ay = divg(V), the Laplace-Beltrami operator with respect to the metric g.
With a change of variable and the definition of o, we get

/ F.(x) do =

T(R™ N8B, (0))
B (1) ~B- (%) Vg 0> v @2 o on=2_\ ..
re T (z,v); o | — (210, + Be ) 0,0, dog
‘ 2 2 |22 2 .
R™ N9 B (0) .
@ )-2) (=D o ()-1pe e
_ pBr=6-() 2he(Tlrex)) 5 7e o (:) pe .

© 2 ‘ 2%(s) — pe

Ge

R™ NAB1 (0)
From the convergence result of Step P5, we then get (139).

For the next boundary term, from the estimates (61) and (103) we obtain

/ F.(z) do| < ¢ / x|< 1 |z|? ) i
€ O| S —FF—F—F% 7~
T(RﬁﬁaBkie(OO pi =) [Z[26-() T (z[28-()

T(RZOBB,C% e(O))
By (M=B_() By(M—=B_()
72*(8)< +72 ’Y>+pe( +'72 "r)

:u‘l,e
+ C / || |2|(B-(M=D " () =pe)+s dx

T(Rﬁ NOByy (0))

§ c 1 2y
IR 2] 225~ T 22~ )
Le R™ 9B, (0)

M;j*(s)(5+("/);ﬁ_(’7) )erg (5+(’Y);5_(’Y))

dx

e / 2]

R"NOB3 (0)

2| B =D@ ()=pe)+s

_ 2-s n—2
< € -0 (Mf;m—ﬁw) 1 uBr OB )>.

And so
(142) [ R@de=o(u0).
T(Rg NoBy; (o))

This ends Step P6. (]
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Step P7. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that ug = 0. We define

Ue
Byr(M=B_() "
2
:uN,e

(143) Ue =

We claim that there exists w € C?(Q\ {0}) such that

(144)

. _ A | 7 = ;
lim i, = @ in C7,e(\ {0}) with{ At~ +ho)a=0 inQ
€e—

a=0 in 90\ {0}

Proof of Step P7: Since ug = 0, it follows from (61) that there exists C' > 0 such
that

(145) liie(x)| < Clz|* =P+ for all € Q and € > 0.

Moreover, equation (E,) rewrites

_Aue_(v e

=B (9 () _2_p,) |Te ‘2*(5)_2_1)6 e
|z[?

Ue = iy in Q; u. =0 on 0.

It then follows from standard elliptic theory that the claim holds. This ends Step
P7. O

Step P8. We let (u.), (he) and (pe) be such that (E¢), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that ug = 0. We claim that

(146) [ @ = o),
T(R™NOBs, (0))

and

(147) / F(x)do =o (u]’i{sw—ﬁ*m)) ,

T(RﬁmaBk%’E(O))

where
(148)

— Val* _ (v N (vigas "= 2a) o,
Fso 1= / (x,z/)< 5 |x|2+h0 5 z'0;u + 5 U o, u do.

T(R™N8Bs, (0))

Proof of Step P8: The second term has already been estimated in (141). We are
left with the first term. With a change of variable, the definition of @, and the
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convergence (144), we get

5 Vi |? v u?
/ F.(z) do = M?er(v) A-1) / (z,v) (| 5 ®_ <|x|2 +h€) 2) do

T(R"NdBs, (0)) T(R™NdBs, (0))

- * ) D -
B CHORER i[> )2 <q,
N,E |$|2

T (R™N3Bs, (0))
, —2
— / (xlaiug + L 9 Ue) 8uﬂe do
T(R™NBs, (0))
(149) = TN (Fy 4 0(1)
where

— |Vﬂ|2 0 'Ui ig - n—2_ _
Fso 1= / (x,u)( 5 |$|2+h0 5 )~ x'0;u + 5 U 0, do.

T(R™NdBs, (0))

Arguing as in the proof of (142), we get that
(150) / F(x)do=o (pjﬁvfs(v)_ﬂ’(vo as € — 0.
T(Rz OBy (o))
This ends Step P8. ([l

Step P9. We let (u.), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that u. > 0 for alle > 0. Then Fy >0
and

Fo>0 < wug>0.
where Fo is as in (140).

Proof of Step P9: We let ¥ be defined as in Step P5. It follows from Step P5 that
 satisfies (137) and we have the following bound on @
(151)

B—(7)-1
~ X x Uo || L= (S ~\ -
@) < <x:ﬂ+l|(w) + i |x5(w)|L = |$1|> for all z = (21, %) in R”.

Given o € R, we define v, (z) := x1|z|~® for all x € R™. Since & > 0, it follows
from Proposition 6.4 in Ghoussoub-Robert [20] that there exists A, B > 0 such that
(152) 0= Avg, (y) + Bug_(y)-

Step P9.1: We claim that B = 0 when uy = 0.

This is a direct consequence of controling (152) with (151) when ug = 0 and letting
|z| — oo.

Step P9.2: We claim that B > 0 when ug > 0.

We prove the claim. We fix x € R”. Green’s representation formula yields

()
be(e) = / PG (T (), y) ™ dy.
Q

|yl
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We fix w CC Q. In particular, there exists ¢c(w) > 0 such that |y| > d(y, 9Q) > c¢(w)
for all y € w. Moreover, the control (212) of the Green’s function yields

2% (s)—1

e(x) > ¢ phem-1__TM e, —re|z —nle W) (y)d,
@) 2 e [ r el el

and then, passing to the limit e — 0, we get that

cry / ug 7 (y)

5 >
o(z) =2 A7) PE

dy,

2% (s)—1
for all z € R™. As one checks, this yields B > wa Y W)

B v) dy > 0 when ug > 0.
This ends Step P9.2.
Step P9.3: We claim that A > 0.

The proof is similar to Step P9.2. We fix x € R™ and w CC R™. Green’s represen-
tation formula and the pointwise control (212) yield

uf*(s)_l(y)
Ue(z) > / r= TG (rew), y) =———"dy
T(bn,ew) g
— n Ue T ,LLN76y 2*(5)71
. /rf—(” 1G€(T(r6x),T(HN,ey)),UN,e ( (NN ;|)8 dy
B-() ns2 @y (y)* )

> [ e (7"|f”|> rer = iyl min g 10 i e S e dy

/w [N eyl | <Yl Te |m*HrLfy|2 e lvl*

- ~ 2% (s)—1
N 2-p_(7) @
— 0 ,ey) Ty, Eﬁ () Uie(y) - d
Te ' ly|

> / r?ﬁ—(v)—nmﬁ—(v) Y

Since r. := \/fiN.e, letting € — 0, we get with the convergence (A4) of Proposition

2 that
N 1 ai(y)r(s)_l
W) 2 ity |

()2 ()=
for all z € R™. Therefore, as one checks, A > [ %

P9.3.

dy > 0. This ends Step

Step P9.4: We claim that

2

Wn—1 n
1 = — —v)-AB.
(153) Fo =t (5 -4)
We prove the claim. The definition (140) reads

=12 ~2 4 _9
(164)  Fo:= / (x,v) (|V;| — ;;2> — <x18ﬂ7 + = 5 f)) 0,0 do
R™N9B1 (0)

For simplicity, we define the bilinear form

Hs(u,v) = / [(x, v) <(Vu, Vu) — ’yé?) - <xi8iu +Z g 2u) Oyv — <:L’z v+ n g 2v) 5‘Vu} do

R™NOBs(0)
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As one checks,

1
Fo = H1(Avs,(5) + Bug_(y), Avs, () + Bug_ ()
2 B?
(155) = = H1(vs, (), V() + ABHL(v5.. ), V- () + 5 H1(Us_ (), V5 ()

In full generality, we compute Hs(vq,vg) for all a, 8 € R and all 6 > 0. As

one checks, for any ¢ = 1,...,n, we have that d;,v, = <6i 11— afl"“) |z| = for all

x € R™. Moreover, for x € dBs(0), we have that d,v, =
straightforward computations yield

in n—2 _ (a_ ﬁ_ VaUp
(z@zva—k 5 Ua>8,,11,3— (8 1)(2 04) 7]

(@) (Ma’ Ves) 7|ﬁ> el P 4 (@B —a— B~ )
and then

VoV
Hs(va,vs) = / (lel P ( (@+p)—n—ap —v) ﬁ) do
R™ N0 B5(0) 2 2|
We have that
1

/ |x|1_a_’3da: —/ |x|1_"_6da Wn— Inol gn—a—p
R™ NOB;(0) 2 JB5(0) 2
and

o 1 1 n—
/ VaUp do 2/ x%u\—a—,@—l do = 27 |x|—a—6+1 do — UJ2 16n a—/f
R"M0B;s(0) |7 B5(0) n JBs(0) n

Plugging all these identities together yields
Wn n—o—
Hi(va,v3) = 520" (Z(a+8) —aB 7).
Since B4 (), 8- (7) are solutions to X2 —nX + v = 0, we get that

" DiVa. Consequently,

- Iw\

and
VaUp

||

Hs(vs_(3):v8_ () = Hs (v, (7)1 V8, () = 0.
Since 8,(7) + A_(7) = n and B, (7)B_ () = 7, we get that
2
Wn—1 n
Hs(V8_(7): V84 () = n <4 - 7) :

Plugging all these results together yields (153). This ends Step P9.4.
These substeps end the proof of Step P9. (I
Step P10. We let (ue), (he) and (pe) be such that (E.), (15), (21) and (22) hold.

We assume that blow-up occurs. We assume that B4 (vy) — B-(y) < 2 and ue > 0
for all e > 0. Then ug = 0.

Proof of Step P10: We claim that, as € — 0,

(156)
2 By (M-B_(M
/ () e dao(uN,e 2 )when Bi() -5 () <2

T(aRz NBr (O\Byg (0)>
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Indeed, if B4 () — B-(7y) > 1, the claim follows from (126) and 1 > W If
now B4 (v) — B—(v) < 1, then (129) and the control (103) yield that

2
/ (z,u)'vus‘ do
2
<8R'ﬁ NB,, (0)\3’“%6 (O))

NS 0=6-() "
<C || b dz + do
OR™ B, (0) | (Z |2 |28+ (0 |2[28-()

i=1

N By (M)—B_(7)
< O3 T Dpn 122 0= g opfr (8- Z (T )
=1

,€

as € — 0. The limit case 84 (y) — B—(y) =1 is similar. This proves the claim.

Plugging (114), (120), (139), (141) and (156) into the Pohozaev identity (111), we
get

(157)
N - *
De n—s 1 |12 (%) Br(M—B_()
e dr+o(1) [ == (Fo+o(1)) py, *
2*(s) <2*(s) —p6> per RO |z|® N,

as € — 0, where Fp is as in (154). Therefore Fy < 0. Since u, > 0, it then follows
from (153) of Step P9 that ug = 0. This proves Step P10. O

8. PROOF OF THE SHARP BLOW-UP RATES

‘We now prove the sharp blow-up rates claimed in Propositions 5 and 6. We start
with the case when By (v) — 8- (v) # 1.
As a preliminary estimate, we claim that

N -
€ - 1 % 27(s)
P ( nos ) 5 | dzx + o(1)

2*(5) 2*(5) — Pe =1 t% |1‘|5
i R™
V|2 ()-8 ()
(138) = / () oy (Fy o)

T(&Rz NBr (\Byg _ (0)>
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as € — 0, where Fy is as in (140); and, when ug = 0, we claim that

N - *
De n—s 1 |2 (%)
— dr + o(1
i (7-7) = BT W
=t R™
Vu|? —B_
- / )L g (3, + o(1)) i 0
T((')RZ ﬂB(sO (O)\Bki; . (0))
(159)  + ol  + Oy

when B4 (v) = B-(7) 22  when 84 (7) — B_(7) <2

where F;, is as in (148).

We prove the claim. Collecting the first estimate of Step P2, (120), (139) and
(141) of the terms of the Pohozaev identity (111) gives (158). Similarly, the second
estimate of Step P2, (121), (146) and (147) of the terms of the Pohozaev identity
(112) gives (159).

8.1. Proof of the sharp blow-up rates when 5, (y) — f_(v) # 1. We first
assume u. > 0 and 4 (y) — f-(y) < 1.

Step P11. We let (ue), (he) and (pe) be such that (E¢), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that ue > 0 and S+ (v) — (7)) < 1.
Then (109) holds, that is

Wn—12%(8)% [n2?
D 12() (T_,Y)AQ

(160) i e 2% 2 “ 1y, ()
H.e (n—s) Y —= [ S do
i=1 tf* s)=2 Rn
for some A > 0, where m () is the boundary mass.
Proof of Step P11: It follows from Step P10 that ug = 0.
Step P11:1: We now claim that
N - *
pe (n—s 1 > 81 () —6-(3)
— dr+o(1) | = piy Ms, + o(1
5 (50) 2 | b W) [ = pare™ 0 (M 01D
=Y R™
where
(161)
Vhy, Vil?
Ms, == —/ (ho(ﬁc) + (053)> T dm—}'go-i-/ (z, V)' 9
T(R" NBsy (0)) 2 T(6R™ NBs, (0)) 2

and Fj, is as in (148) and @ is as in (144).

do,
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Indeed, the Pohozaev identity (111), the convergence (143), (145), (144) and 54 (y)—
B-(v) <1 yield

(162) / <he(a:) + (w;z)> u? dz

T(Rszso(O)\Bk%,e(O)>

_ Vho, _
= =P / <ho(:c) I (20"”)) u? dx + o(1)
T(R™NBs, (0))

Br(n=F_()
With ug = 0 and the control (103), we get that |Vue(z)| < Cﬂﬁ ||+ ()
for all € > 0 and x € Q. Therefore, with (143) and (144), we get that
(163)

Vu|? 45 Vi
el gy = 50 (/ ¥
T(OR™ NBj, (0))

as € — 0. Plugging (141), (162) and (163) into (112), we get (161).This proves the
claim and ends Step P11.1.

We fix § < §’. Taking U := T(R” N By (0) \ Bs(0)), K =0 and u = @ in (201), and
using (144), we get that My is independent of the choice of § > 0 small enough.

(z,v) do + 0(1)>

T(aRz NBsg (\Byg _ (0))

Step P11.2: We claim that u > 0.

We prove the claim. Since @ > 0 is a solution to (144), it is enough to prove that
u Z 0. We argue as in the proof of Step P9. We fix x € Q. Green’s identity, ue > 0
and the pointwise control (212) yield

ue(y)2 () —1=pe

_ - —B_ 2
’LLE(.’E) — “N<f+(’Y> B_(7)/ / Ge(.’b, y) - dy
: Q lyl*
_ B B—(v) 2%(s)—1—pe
> g+ B_(v))/2/ (mz}x{lw\, Iy\}) o — 3|2~ min {17 d(:v,aﬁ)d(y; 89)} ue(y) dy
: A \min{[z|, [y[} lz — yl lyl®

d(z, 00 pn ely1 } ue(T (pnv,ey)* ()71 7Pe

Tz = T(un,ey)? 1y clyl®
B-(M) d(z, 89 ()2 ()~ 1-pe

(M) |z _T(NN,ey)|27n ( (z,090)|y1| 2) Ue,i (Y) .

R NB2(0)\B1(0) \ |Vl |z = T(pN,ey)] [yl
where A := T(R” N B,y . (0) \ Buy . (0)), A:=R" N By(0) \ B1(0), {ne(x,y) =
max{lelun.cul} o q e ; is as in Proposition 2. Letting € — 0 and using the conver-

min{fz[, N, c[y[}
gence (A4) of Proposition 2, we get that

d(z,00)
|x|6+(7)

_ _B_ 2 _ .
ZCufoJ“(A’) B-)/ /AeN,E(gc,y)‘L(”’)lﬂc—7'(uN,sy)|2 "mm{l B dy

>C dy

a(z) > C for all z € Q.

And then @ > 0 in Q. This proves the claim and Step P11.2.

We fix ro > 0 and n € C*°(R"™) such that n(z) = 1 in B,,(0) and n(z) = 0 in
R™\ Bay,(0). It then follows from [20,21] that, for ro > 0 small enough, there exists
A>0and 3 € H} () such that

u(r)=A (W + B(m)) forall z € Q
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with

(z)d(z, H) (z)d(x,00)
ﬂ($):m'y,h(9)n |z[B=) +0<77 |z|A- () )

as € — 0. Here, m, () is the boundary mass.

Step P11.3: We claim that

. Wpo1 [ M?
(164) tim M = =2 (7 <) 4% ()

We prove the claim. Since 4 is a solution to (144), it follows from standard elliptic
theory that there exists C' > 0 such that a(z) + |z||Va(z)| < Clz|~#+() for all
x € Q. Therefore, since S () — f_(v) < 1, we get that

lim aner/ a2d0+/ |z|?|Val|* do = 0.
=0 J7(R" NB;(0)) T(R" N9B5(0)) T(8R™ NB;(0))

Therefore,

A% _ _ _
Ms = ——-Hs(0p,.(7) + Up_(2): Vg () + Vs () + (1)
as 0 — 0, where
Hs(u,v) == / (z,v) ((Vu, Vo)|? — #uv) — (mi&'u + g 2u> Ovv— (xiaiv + 2 ; 2'1)) Oyu do

T(R™N8Bs, (0))
and

Vg, () () := W and vg_(,(x) = B(x) for all 2 € Q.
We then get that

(165)

A% _ o _ Ac - _
Ms = =—-Hs5(0p, () U5, (v) = A*Hs (05, (1), U5_ () = 5 Hs (05 (), B () +0(1)
as 6 — 0. With the chart T, it follows from the definition of 8 that for all x €
R™ 1 B5(0),
|21

R et O(Jx|*~ P+ 1)) = vy, () + O(|a*~ P+ 1)

_ |961| _ _
and Uﬂ,('y)(T(m)) — m%h(Q)W—f—O(‘xlg 5—(7)) =M-Vg_(y) +O(|.T|2 5—(7)).

Moreover, elliptic theory yields
V(Up, () © T(2)) = Vg, (3) + Ol =7+,

and V(05 () 0 T(z)) = my 1 (Q) - Vog_(4) + O(|z| =) for all z € R™ N Bs(0),
where vg is defined in the proof of Step P9. Since 4 (v) — f-(y) < 1 and f4(v) +
B-(v) = n, we get with a change of variable that as § — 0,

7'25(7713+(’Y)777/3+(’Y)) = Hé(”m(’w“m(v))+O(51_(ﬂ+(7)_67m))

Hs(Us, (1), 08_() = M) - Hs (g, (1), Vp_ () + O3~ P+ =F-0D))
Hs(0p_ (1), Up_(y)) = O("2-10).

Using the computations performed in the proof of Step P9, we then get (164). This
proves the claim and ends Step P11.3.
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End of the proof of Step P11: Since My is independent of § small, we then get that

M, = —===L (”Tz - 7) A%m., (). Putting this estimate in (161), we then get
(160). This end Step P11. O

Proof of Proposition 5 when B4 (v) — B_(y) > 2: Plugging (126) into (158) and
using that B4 (y) — B_(7) > 2, we obtain

[ IIy(z,2)|Viy|? do

I De n—s 1 OR™
im = .
n—1
€0 UN e (n—2)2 O N 1 a2
N E : =] [z]7 T
i=142 (s)—2 R™

This yields (106) when Sy (y) — B—(y) > 2.

Proof of Proposition 5 when B4 (y) — 6-(y) > 1 and ug = 0. Plugging (127) into
(159) and using that 54 (y) — B-(y) > 1, we obtain also (106).

Proof of Proposition 6 when B4 (y)— B-(y) > 1. Since u. > 0, we get that dy > 0.
Therefore, it follows from Ghoussoub-Robert [20] that iy (21,2') = Uy (21, |2|) for
all (z1,2") € (0,+00) x R*71. Due to this symmetry, when 34 (y) — f_(v) > 1, we
get that

n—1

/ IIo(z,x)|Vian|* do = Z/ o' e’ |Vian|? do
oR™ i1/ orn
n—1 2 Vu |2 d
R I it f@R" |;1;‘ ‘ unN g
(166) = Z12170/ |z]*|Vin|* do = ——
n—1 oR™ n—1

When B4 (v)—B-(y) > 2 or {B+(7)—B-(y) = 2 and ug = 0}, Proposition 6 follows
from (106) and (166). When {8, (v)—S_(y) = 2 and ug > 0}, Proposition 6 follows
from (158), (153) of Step P9, (126) and (166). When 1 < B4 (y) — B-(v) < 2,
Proposition 6 follows from Step P10, (159), (127) and (166).

Proof of Proposition 6 when 54 (v) — f—(y) < 1: This is a direct consequence of
Steps P10 and P11.

8.2. Proof of the sharp blow-up rates when 5, (y) — f_(y) = 1. We start
with the following refined asymptotics when u, > 0, 81 (v) — 8- (v) = 1 and uy = 0.

Step P12. We let (uc), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that ue > 0 and ug = 0. We fix a
family of parameters (A¢)eso € (0,+00) such that

(167) lim A = 0 and lim 22 = 0.
e—0 e—0 )\e
Then, for all z € R™, x # 0, we have that
Br(v)—1
. )\e ‘.’E1|
lgr(l) ﬁ+(w>;ﬂ,(w) ue(TAew)) = K- |3$'|5+(’Y)7

IU’N,e
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where T is as in (27),
~2%(s)—1

_By(n-t |

EHOE yi| (y)

(168) K=t “)"’L’Q/ dy >0
N v R ‘y|ﬁ7(7) |’y|S

and L q > 0 is given by (215). Moreover, this limit holds in CZ.(R™ \ {0}).

Proof of Step P12: We define

/\E+(’)’)—1
we(®) = —g ey Ue(T(Ae)

MN,e :
for all z € R® N AZ'U. As in the proof of (139), for any i,j = 1,...,n, we let
(Ge)ij = (0iT (rex), 05T (rex)), where (-,-) denotes the Euclidean scalar product on
R™. We consider g. as a metric on R”. We let A, = divg(V), the Laplace-Beltrami
operator with respect to the metric g. From (E.) it follows that for all € > 0, we
have that

- _ ol )2 _ | e 2—sw
—Aj, we ‘T(Aem) ‘2 We — A2 he 0 T (Ae) we = 7Aﬁ+(7)_1 A2 €
X 3

ByN-B_(m \ 27 ()=2—pe
2 2% (s)—1—pe

we >0 in R N AU
we =0 on (R™ \ {0}) N AZLU.

Since pfy . — tn > 0 (see (A9) of Proposition 2) and

B+(v) = B-(7)

(B+(7) = 1(2%(s) =2) = (2—5) = (2°(s) = 2) 3 ;

then using the hypothesis (167), we get that

Ben—6_(v \ 27 (8)=2=pc .
iy ° - [N (B+(v)—1)(2%(s) —2—pe)—(2—5)
W A SC(/\S) =o(l) as e — 0.

Since ug = 0, it follows from the pointwise control (61) that there exists C > 0
such that 0 < we(z) < Cla|- |z|~#+) for all z € R® NAZ'U. Tt then follows from
standard elliptic theory that there exists w € C?(R™ \ {0}) such that

(169) lim we = w in Cj,. (R™\ {0})
with
—Aw — #w =0 in R
0 <w(z) < Clay|- x|+ inR™
w=0 on OR™ \ {0}.
It follows from Lemma 4.2 in Ghoussoub-Robert [20] (see also Pinchover-Tintarev

[28]) that there exists A > 0 such that w(z) = Alzy| - |z|7#+() for all z € R™.
We are left with proving that A = K defined in (168). We fix z € R™. Green’s
representation formula yields

A1 ()2 ()17
we(r) = /QmGe(T()\ex),y)Tdy
:uN,e :

(170) _ / N /
TREN(Brky,  (0\Bsky (0)) T (REN(Brry (0\Bsky . (0))

B inR™NAU
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Step P12.1: We estimate the first term of the right-hand-side. Since d7y = Id, a
change of variable yields

)\SBJr(’Y)*l ue(y)Q*(s)—l—pe

Ge(T(Aew),y) 7

By(M—B_(v) €
2
IU‘N,e

)\E+(’Y)*1 n—2 (2)2*(3)—1—;76

—s —252(2"(s)=1—pc) UN,
mGs(T(Asx),T(kl\’,sz)) %,:UN,S ! :
3

/ "
TRZN(Bry (0\Bsky (0))

/ . (14 o(1))dz
R™ N(BR(0)\Bs(0)) |2|

y€

It follows from (215) that for any z € R™, we have that

Ae|z1] Enelyil
Ge(T(Aex), T(kn.ez)) = (Ly o+ o(1 . : ,
(T Ot Tlhwas)) = (L + o) S5 s ot

and that the convergence is uniform with repect to z € R™ N (Br(0) \ Bs(0)).

Plugging this estimate in the above equality, using that ky. = u}vjfe/(Q*(s)_Q),

/ﬂ;\;ﬁ — ty > 0 and the convergence of @iy . to Gy (see Proposition 2), we get that

A+ ()1 ()2 -1
e (T(Am,y)(y’w

Br(M—B_(7) T €
2
MN,E

/ .
T(R™N(Briy,, (0\Bsky . (0))

- L |1 t_ﬁzté:;:zl | an(2)” dz +o(1)
- W,Q|x|ﬁ+(7) N n |- |z|®
R™N(Br(0)\B5(0)) ¥

as € = 0. Therefore,
(171)
/\f+(7)—1 . 2% (s)—1
lm  lim A G(T )y

Br(MN—B_(v) 7€
R—+00,0—0€—0 T(RZQ(BI%N,E(0)\351@NY€(0)) 'uN+ v 2 ¥ |y‘s

,€

_ |21]
dy = K|x|5+(v)

where K is as in (168).

Step P12.2: With the control (212) on the Green’s function and the pointwise
control (61) on u,, we get that
(172)
By (7)1 2% (s)—1 N-1
Ae €
/ WGE(T(&M,Z})% dy < > Aic+Be(R)+Ce(6)
QT E N (Brky , (0\Bsgy , (0)) SO ll =
’ ’ 'U‘N,e
where

Br()—B_() 2% (s)-1

A1 1 oo 2 Iyl

Aie =C—rm oy / Ce(, )= DT Aew)—y P "re(@,y) — dy
PO P=@) Jp, (o) ly|s uf’:r(’”*ﬁf(ww‘ﬂf(w)+|y‘ﬂ+(w)

'U’N,e

PLON=B= (D (e (1

— MN,e
le(@,y)?= DT ) —y|* "re(w, y) @ =TT

A?-{-(’Y)—l
By (v)=B_(v)
'U‘N,e 2

Be(R):=C /
BRo (0\BRky (0)

Cu(0) = oo Ji (Ae)ﬁ’m xen 4l dy
€ = L) 3 =B () € N _
LW F Jpy, o) e PEO)_P-C)

Iyl (2*(9)-1) _1)(@* ()
ey ey 7D (B (1) =1D)(@* ()= D)

x{Ac s 3 Ae .
where £ (x,y) = 72&{{)\4';‘,"5“}?’ and r(z,y) = min {1, 7”()!2%‘};‘2 }
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Step P12.3. We first estimate C¢(d§). Since n > s + 2*(s)(8-(y) — 1) (this is a
consequence of S_(vy) < n/2), straightforward computations yield

C.(8) < C(x)5 F2B+M=B-(1)
and therefore

(173) lim lim C.(6) = 0.

6—0e—0

Step P12.4. We estimate B.(R). We split the integral as

B.(R) = [ Ly | rway+ [ Ly
Rke n <|y|<2elzl Aelel oyl <2, o] ly|>2Xc|z|

where I.(y) is the integrand. Since

n— (s 4+ (Ba(y) — D) — 1) 4 f_(y) — 1) = — 21 =2

straightforward computations yield

/ o Ley)dy
Rk, <|y|<2<zl
(2*(s)-1)

- ML”SB‘(” Rk, <lyl<2<i2t \ |y © Qe fy|BrI=DE ()= s
N,e

(B+(7) = B-(7)) <0,

By (N=B_(7)

< C(@)R-TF2 B 0)=6-00),

For the next term, a change of variable yields

ﬁ L(y) dy
2elzl cly|<2n x|

>\§+(7)71 , NNE (2% (s)—1)
<) mmw /Ae;qywwl [T(Aez) = 9] ly|Br D@ ()—D+s dy
2% (s)—2

IU’N,E :
LN 7— (B+(M—B-(7))
< C(x) ( ’6) / |t — 2> " dz = 0(1)
Ae %<|z|<2\x|

as € — 0. Finally, since B4 (y) + 8-(7) = n and n — s — (B4 (7) — 1)2*(s) =
2*2(5) (B+(v) — B=()), we estimate the last term

/ I(y)dy
lyl>2). ||

2% (s)—2 B_(y)+1—n—s d
=B+ (M =B=(M) By (7")=B-(7) |y Y
< Cl@)py A o o W[EFODEE=D

Br(M—B_(7)
2

ly
2% (s)—2
7— (B+(M—B-(M)
<o) (") —o1)
Ae
as € — 0. All these inequalities yield
(174) lim lim B.(R) = 0.

R—+o00 e—0
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Step P12.5. We fix i € {1,...,N — 1} and estimate A;.. As above, we split the
integral as

Aj e =/ i) dy+/ Jie(y) dy+/ Jie(y) dy,
ly| < 2elzl Aelzl <yl <ax x| ly|>2Ac ||

where J; . is the integrand. Since ;. < pn,., as one checks, the second and
the third integral of the right-hand-side are controled from above respectively by
f&z\z\ <lyl<2ral I.(y) dy and fly|>2>\e\w\ I.(y) dy that have been computed just above
and go to 0 as € — 0. We are then left with the first term. With a change of
variables, we have that

[ e
Y 2

By (7)—1 5_() BB (1) 2 (s)—1
< C’( )L k - )\2777,M lu’i,e ? |y| dy
=Y\ TR m relzl \ |y DY B+(M=B-(M, 18- (7) 81 () PE
pve © TR ¢\ Mic lyl?= (0 + Jy|o+
sy 1 2] 2 (s)-1
< i,€
= Ol@) B G- /Z<M 2] B—(—Ds <|z|5—(7) +|Z|ﬁ+(v)> dz
/J“N,e 21 ,e
BB ()

< Cl(a) (”) 2

ﬂN,e

since n > s+ (2*(s)(B—(y) — 1)) and n < (B_(y) — 1) + s+ (2*(s) = 1)(B+(y) = 1).
Since pie = o(un,e) as € — 0, we get that

(175) lim A;, = 0.
e—0

Step P12.6: Plugging (171), (173), (174) and (175) into (170) and (172) yields
lime o we(z) = K 21l for all € R®. With (169), we then get that A = K.

|x‘ﬂ+(’v)
This proves Step P12.

Now we can prove Proposition 6 when 84 (y) — S_(v) = 1 in the case when
ue > 0.

Step P13. We let (u), (he) and (pe) be such that (E.), (15), (21) and (22) hold.
We assume that blow-up occurs. We assume that ue > 0 and S+ (v) — f—(v) = 1.
Then ug =0 and

(176)
N ~ 2% (s) 2
De n—s 1 || K wn_2H(0) 1 1
— dr+o(l) | = —————Fpuneln—o( pn,eln .
o (50 2 et | T U R Ty e e

The case 54 (7) — B-(v) = 1 of Proposition 6 is a consequence of Step P13.

Proof of Step P13: First remark that since 4 (v) + 8- (y) = n, we then have that

n+1 n—1

Bi(n) = "0 and B (1) =
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It follows from Step P10 that ug = 0. We use (159) that writes

(177)
N ENO)
De n—s 1 o |Vu|?
pe_(_nos 1 de +o(1) | = /(:c, VU 450 (uwe)
2*(s) (2*(5) - ) ; t‘2*(5)272 s ||* 2

Te

where T, := T (8R7j N Bs,(0) \ Bys (0)) It follows from (130) that

Vue|? 1 -
oot ar = =3 [ 50 a0, TV 0 D g1+ O(ls]) o
T, Pa=2
(179) +0 / 21V (e © T e 40
OR™ B, (0)
1 n
(180) - / S a0, To(0)|V (e o T do
OR™ B3y (0\Bya (0) P77
(181) +0 / \9L‘|3|V(u6 ) 7’)\2 do
OR™ MBs, (0)

With the control (103) and B4 (v) — S—(7) = 1, we get that
B4 ()=B-(7)

/'[/ZE
2P [V(uc o T)|2do < C / LA
/awnto(o) Z OR™ NBj, (0 | |28+ ()
(182) < Cufvfe(” - ZC#N,e

We need an intermediate result. We let (s.)e, (tc)e € [0, +00) such that 0 < s, < ¢,
and pe v = o(te) as € = 0. We claim that

(183) / 2PV (uco T)Pdo < C Y ui,eln<t€>

. Max{ Se, [i,e
OR™ N(B, (0)\Bs, (0)) i=1,..,N { }

Indeed, with the pointwise control (103), ug = 0 and 254 (y) = n + 1, we get that

te 24(n—1)—1
Br()=8-(n r dr
/ @*|V(ueco T do < C Y ppl” ! / 231 (M B-() 25 >
1=1,... Se iu’z € e ’Y) +T. ﬁ+(’Y)
OR™ N( By, (0)\Bs, (0)) el '

26+(M-14
Mzé T T
< C Z Mu/ Ty T )

Distinguishing the cases s. < ;e and se > i, wWe get (183). This proves the
claim.

We define 0, := \/ﬁ, Qe = u%e and B := u}{f As one checks, we have
that

(184) ln% ~In— In- B
€ HN,e KN, e

{ He, N = 0(65) 55 = O(QE) Qe = 0(1) }

=0 (ln m) Ina. =o(lnun,)
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as € — 0. It then follows from (183) and the properties (184) that

1
/ 2|2 |V (ue 0 T)|? o(yN,Eln ) ;
KN ,e

(185) OR™ N(Bsy(0)\Ba, (0)) :
|z|?|V(uc o T)|> = 0 (,uN’E In >
NJN,e

OR™ ﬂB/je (O)

Since pn e = o(B) and a. = o(1) as € — 0, it follows from Proposition P12 that

|z[*+ )|V (ue o T)* ()
B+ (v)=B-(7)

;€

We fix 4,5 € {2,...,n}. It follows from (186) and B4 (v) — f—(v) =1 that

(186) lim sup — K2

€20 2€0R” NB,, (0)\Bg, (0)

=0

i..79. . 2 w 2
#0455 (0)|V (ue o ) dar = N e R
OR™ NBy, (0)\Bg, (0) OR™ NBq, (0)\Bg, (0)
3:%78”76(0) ‘$|26+ ’Y)|V(us o T)|2 2
+ / KN, e ‘x|2,8+('y) IN e - K du

OR™ NBa, (0)\Bgs, (0)

2'270:To(0) ||
= (187f pN,e =K dz + 0 / BN e 55 oy AT
|2 |28+ () OR™ NB., (0)\Bs, (0) |26+ ()
OR™ NBa, (0)\Bg, (0)
Independently, with a change of variable and 28, (y) = n + 1, we get that

2'290;;T0(0) “edr i j
MN767|,1;‘25]+(?7) dz = 0;;T0(0) </ r> </§n2 oo’ da)

OR™ NBa, (0)\ B, (0) ‘

= 6;50:57T0(0 )wn 21 F

where w,,_s is the volume of the round (n — 2)—unit sphere. This equality, (187)
and the properties (184) yield
(188)
i a 2 szn 2

' 2703504570 (0)|V (ueoT) | da = 5@‘3@‘]'76(0)”7
OR™ N Ba, (0)\ B, (0)
Therefore, plugging (182), (185) and (188) into (181) yields

‘VUEP K2wn_2 Zn_2 6“7—0(0) 1 1
do = — = eln—— el
/ (I,I/) 9 o 4(77/—1) KN, n/J/N,g +o KN, n/J/N’E
4(n—1)

\ )
/'LN,e
K?w,_oH(0 1 1
= MM\LGIH +o0 (MN,e In ) .
4(77,— ].) KN, e KN e

Plugging this latest estimate into (177) yields (176). This ends the proof of Step
P13. O

HUNe In
1 KN, e

=)
HN,e )

+o0 (:U‘N,e In

T(@Rﬁ NBsg (0\Byg (0))

K2wn—2 Z?:Q IIo,n‘

1
KN e 1n,LLT +o (,U/N,e In
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9. PROOF OF MULTIPLICITY

Proof of Theorem 3: We fix v < n?/4 and h € C1(Q) such that —A —~v|z|"2—h
is coercive. For each 2 < p < 2*(s)(s), we consider the Cz—functional

1 gl |ul?
I (u) = 5/Q <|Vu|2dx — Lfullef — ) do — = dz

o lzf®

on H7 ;(Q), whose critical points are the weak solutions of

(189)
u =0 on 0.

For a fixed u € Hf 4(2), u # 0, we have that

A2 VA2 [ Jul? AP JulP
I )\uz—/ Vul?de — 22— —dx—/\z/huzdx—— dx
pr (M) 2 Q| | 2 Jo |z Q p

o lzf®

{—Au—lgpu—hu =M"w 6nQ

Then, since coercivity holds, we have that that limy_,o I, v(Au) = —oo, which
means that for each finite dimensional subspace Ej, C E := H7 (), there exists
Ry, > 0 such that

(190) sup{Ip(u);u € Ey,|lul| > Rx} <0

when p — 2*(s)(s). Let (Ej)32, be an increasing sequence of subspaces of H? ()
such that dim Ej, = k and U2 | By, = E := H{ ;(€2) and define the min-max values:

Cpk = 1nf sup I, ,(g9(z)),
9€H, ze B,

where

H;, ={g € C(E,E); gis odd and g(v) = v for ||v|]| > Ry, for some Ry > 0}.

Proposition 7. With the above notation and assuming n > 3, we have:

(1) For each k €N, cpp >0 and lim ¢, = Cou(g) 5 = Ck-
p—2*(s)

2) If2 < p < 2%(s), there exists for each k, functions u, € HZ,(Q) such that
D, 1,0
I’ v<u1” )=0, and Ipﬁ(uﬂk) = Cp,k-

(3) For each 2 < p < 2*(s), we have ¢, 1 > Dmpk%% where Dy, , > 0 is such

that lim D, ,=0.
po2e(s) P

(4) Jm e = Hm cpe(), = +o00.

Proof: (1) Coercivity yields the existence of ag > 0 such that

(191) /Q (|Vu|2 - WU — hu ) dz > aO/Q |Vul|? dz for all u € H1270(Q).

With (191), the Hardy and the Hardy-Sobolev inequality (20), there exists C' > 0
and a > 0 such that

ao
Iy () = 2 vul — CIvulg = [Vul (% - CIvuls?) 2 a >0
for all u € HY ((Q) such that provided ||Vul|; = p for some p > 0 small enough.

Then the sphere S, = {u € E;|[[ul gz (o) = p} intersects every image g(Ej) by an
odd continuous function g. It follows that

cp > Inf{I, (u);u € S,} > a>0.
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In view of (190), it follows that for each g € Hy, we have that

sup Ip, 4(9(z)) = sup I~ (g(z))
zeE) TEDy,

where Dy, denotes the ball in Ej, of radius Rj. Consider now a sequence p; — 2*(s)
and note first that for each v € E, we have that I, (u) — Is«(s),(u). Since
9(Dy,) is compact and the family of functionals (I ), is equicontinuous, it follows

that sup I, ,(g(x)) = sup Iss(s),,(g(x)), from which follows that limsupc,, x <
x€Fy zEE} ieN

sup Io«(s),,(g(x)). Since this holds for any g € Hy, it follows that

AT

limsup ¢, i < Cox (), = Ck-
ieN

On the other hand, the function f(r) 72" (5) attains its maximum on

[0,+00) at r = 1 and therefore f(r) < ]%

Ly o) () = L () + /Q \xl|s (;m(x)v’— 2*1(5)|u(a:>|2*<5’) Az < I (u)+ /Q |xl|s (; - 2@) da

from which follows that ¢, < lim Ii\lnf Cp; .k» and claim (1) is proved.
1€

1
T 25(s)
1§) for all » > 0. It follows

If now p < 2*(s), we are in the subcritical case, that is we have compactness in the
Sobolev embedding Hf 4(2) — LP(S; |z|~*dz) and therefore I, , has the Palais-
Smale condition. It is then standard to find critical points u, i for I, ., at each level

¢p.k (see for example the book [14]). Consider now the functional
/lv ‘2 _ = |u"s dr
o |zl
and its critical values
c = inf sup [, x)).
&=t s Lyolo(a)

It has been shown in [19] that (1), (2) and (3) of Proposition 7 hold, with ¢ , and
02 replacing ¢, ;. and ¢ respectively. In particular, lim cg = lim cg*(g) i = too.
k—oc0 k— o0 <0

On the other hand, with the coercivity (191), we have that
I (u) >af > I,0(v) for every u € H? (),

1
where v = ao *u. It then follows that khm L = hm cg*( ),k = +o0.
— 00

To complete the proof of Theorem 3, notice that since for each k, we have hm( : I, o (Up, k) =
pi—2*(s

lim( )cphk = ¢y, it follows that the sequence (up,); is uniformly bounded in
pi—2*(s

H? (). Moreover, since I (up, r) = 0, it follows from the compactness result
that by letting p; — 2*(s), we get a solution uj of (189) in such a way that

Iysysyy(ug) = lim I, (upr) = Hm cpp = cx. Since the latter sequence
' —2*(s) p—2*(s)
goes to infinity, 1t follows that (189) has an infinite number of critical levels.
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10. PROOF OF THE NON-EXISTENCE RESULT

Proof of Theorem 2: We argue by contradiction. We fix v < vy (2) < %2 and
A > 0. We assume that there is a family (uc)es0 € H7 o(€2) of solutions to

u2*(3)71

—Au, — Vl;‘ﬁ — heue = o in Q,
(192) ue >0 in Q
ue =0 on 90\ {0}

with ||[Vuc|lz2 < A and lim,_, ke = hg in C1(Q).

We claim that (u)eso is not pre-compact in Hf ;(€2). Otherwise, up to extraction,
there would be ug € H7 (), ug > 0, such that ue — ug in Hf 4(2) as € — 0.
Passing to the limit in the equation, we get that ug > 0 and

2% (s)—1

—Aug — Wl;f% — houp = %‘T in Q,
(193) ug >0 in
ug =0 on 00\ {0}.

The Hardy-Sobolev inequality (20) yields

w2 22 w2 W2 W2
¢ / e S/ \WEIde—v/ %dff:/—e d:c+/ heufdeC'/ ~—dz,
o lof* Q a || Q |z Q o |z

for small € > 0, and then, since u. > 0, there exists ¢y > 0 such that
2% (s)

/ de > co
o |zf*

for all € > 0. Passing to the limit yields ug # 0. Therefore, ug > 0 is a solution to
(192) with € = 0. This is not possible simply by the hypothesis.

The family (ue)e is not pre-compact and it therefore blows-up with bounded
energy. Let ug € H{ () be its weak limit, which is necessarily a solution to (193),
and hence must be the trivial solution ug = 0. Proposition 6 then yields that either

(194) B+ () — B—() > 1 and therefore H(0) = 0,
or
(195) B+(y) — B=(v) < 1 and therefore m. 5, (2) = 0.

It now suffices to note that when v < (n? — 1)/4 then B4 (y) — 8-(y) > 1 and
the above contradicts our assumption that H(0) # 0. Similarly, if v > (n? — 1) /4,
then B4 () — B—(7) < 1 and the above contradicts our assumption that the mass
is non-zero. In either case, this means that no such a family of positive solutions
(te)eso exist. O

Proof of Corollary 1: First note that if hg satisfies
1
(196) ho(z) + i(Vho(SC), x) <0 for all x € Q,

then by differentiating for any = € €, the function ¢ — t?hg(tx) (which is well
defined for ¢t € [0,1] since Q is starshaped), we get that hg < 0. Therefore
—A — y]x|=2 — hg is coercive.
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Assume now there is positive variational solution ug corresponding to hg, the Po-
hozaev identity (201) then gives

2
/ (z,v) (9 to) do — / (ho + 1(Vho, z)) ud dx = 0.
o9 2 0 2

Hopf’s strong comparison principle yields d,uq < 0. Since € is starshaped with
respect to 0, we get that (x,v) > 0 on 9. Therefore, with (196), we get that
(z,v) =0 for all z € Q, which is a contradiction since € is smooth and bounded.
If now v < (n? — 1)/4, the result follows from Theorem 2 since we have assumed
that H(0) # 0.

If v > (n? — 1)/4, we use Theorem 7.1 in Ghoussoub-Robert [20] to find K €
C?*(Q\ {0}) and A > 0 such that

—A—#K—hoKzo in Q

K>0 in Q
K=0 on 90\ {0}.
and such that
x)d(z, 0
K(z) =A (W + ﬂ(x)) for all z € Q,

where n € C®(R") and € H{y(Q) are as in Step P11. We now apply the
Pohozaev identity (201) to K on the domain U := Q\ T(Bs(0)) for T as in (27):
using that K2 € LY(Q) and (-,v)(8,K)? € L1(09Q) when B, (y) — B_(7) < 1, we get

that )
/ (x,u)wda—/ (ho—i—l(Vho,x)) K*dx = Ms
20 2 Q 2

where My is defined in (161). With (164), we then get
39,K)? 1 e 2
/m(a:, V)% do—/Q (ho + 2(Vho,x)> K?*dx = _wn ! (Z - 7) A%y 1 ().

Since Q is star-shaped and hg satisfies (196), it follows that m 5, (£2) < 0 and
Theorem 2 then applies to complete our corollary.

11. APPENDIX A: THE POHOZAEV IDENTITY

Proposition 8. Let U C R™ be a smooth bounded domain and let u € C*(U) be a
solution of

u
(197) —Au—vW—hu—K

Then, we have
(198)

o+ ) () [ e

where
(199)

2 2 2*(s)—p ) _
F(l‘) — (m,l/) <|VU| . 1 u B h(x)UQ B K |U| ) N (x131u+ n - 2u> 6,/11,,

2 2 |x|? 2 2%(s)—p |zI*
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Proof: For any yo € R"™, the classical Pohozaev identity yields
(200)

[ (@-wro,

where v is the outer normal to the boundary OU.

One hasfor1 <j<n

|u‘2*(s)_p _ a’ 2*(s)—p *
o (M) = s O 4 @) -

So
|u|2" (s)—2—p

-9 2 ) —
“) Au dz = / [(m = Yo, V) W;' - ((1‘ — o) i D+ —=
au

2
u) &,u] do,

1 , |u|?" () p) s Ju|?"(5)=P
x — Yo, Vu U= x — 38»( +
(=¥ (s p W 2°(s)~p |l

|z]* |[*

S (x’y0)|u|2*(s)—p
2%(s) — p [x[*+? '

Then integration by parts yields

- ‘u|2*(8)—2—p p 1 ig ‘u|2*(8)—p g
U/(x_yoa u) EE uar = 2*(5)_pU/(x_y0) ] ( |z[s ) x
s |u|2*(5)_p s / (T,90), or s)
+ / dr — SI7Pdy
T -p) W T )

— s ‘u|2*(8)*10 s /(1‘ yo) 9% (5)—
dz — . u|? )Py
—p/‘ ER >(5)—p ) Jo2
U U

1 u2*(s)—p
+ 7/(1'—y0,y)||7 do.

76~ EE
Similarly,
v o_ _ _ (x’y0> 2
(@ =0,V [ = 50~ ) QMJ LW aft "
n—2 U (xayo) 2
, V) = — dx — d
! — “|P 2 !zwx ! "
1 2
+§/(.’E y07V)| ‘2 dU
oU
and

/(x ~ o, Vi) h(w)u da = — g/h(az)zﬁ da — %/(Vh,z o) u? da

U U U

+ % /(x — o, v)h(z)u? do

oU
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Combining the above, we obtain for any K and any yo € R”,

_ —9 2"(s)—2-p
/((x—yo)zﬁiu—l—n u) (—Au—’yuz—hu—Ku'u> dx
J 2 o oF
1 P n—s |u|?" (=)—P
— [ h(z)u® dx — = h,x — yo) u® dz — /Kid
z/ e QU/(V TR (ws)—p)U E

(2.0) ) -

— ’ dr — LAY e (s)—pg

v ot VT iy —p ) Japr KT
U U

s 2 2 |z|? 2 2%(s) —p  |z|*
(201)
— / {((:c — o) Ou + n g 2u) 8yu} do.
oU

We conclude by taking yo = 0 and using that wu satisfies (197) on U.

12. APPENDIX B: A CONTINUITY PROPERTY OF THE FIRST EIGENVALUE OF
SCHRODINGER OPERATORS

Lemma 3. Let Q C R", n > 3, be a smooth bounded domain. Let (Vi) : Q2 — R

and Va : Q — R be measurable functions and let (x)r € Q be a sequence of points.
We assume that

i) klirf Vi(x) = Voo () for a.e. z €9,
—+oo
ii) There exists C > 0 such that |Vi(z)| < Clx — x| =2 for all k € N and z € Q.
ii1) khT xr =0 € 00.
— 400

iv) For some o < n?/4, there exists § > 0 such that |Vi.(z)| < yolz — 2k =2 for all
ke N and z € B5(0)N Q.
v) The first eigenvalue A\ (—A + V) is achieved for all k € N.

Then,

(202) lim )\1(—A + Vk) = )\1(—A + VOO)

k— o0

Proof: We first claim that (Ay(—A+Vj))x is bounded. Indeed, fix ¢ € H7 ((22)\{0}
and use the Hardy inequality to write for all £ € N,

JoIVelP +Vip) do _ [o (V| + Cla — 2k *p?) da

A(—A <
HmA) = Jo¥?dz B Jop?dx

=M < 400
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For the lower bound, we have for any ¢ € Hf (1),

/(|V<p|2+Vkap2)dx = /|V<p|2dx+/ Vk(,Ode-i-/ Vip? dx
Q Q Bs(0) Q\B5(0)

> / |V<p|2dfﬂ—vo/ | — @y 2% da
Q Bs(0)
740572/ ©*dx
O\ B;5(0)
(203) > (1—470/712)/ Vo2 de —4C5™2 | ¢ da.
Q

Q

Since vy < n?/4, we then get that A\;(—A+Vy) > —4C§~2 for large k, which proves
the lower bound.

Up to a subsequence, we can now assume that (A;(—A 4 V))x converges as k —
+00. We now show that

(204) liminf A\ (—A 4+ Vi) > M (—A+ Vo).

k—+oco

For k € N, we let ¢, € H? () be a minimizer of A\ (—A+Vy) such that [, o7 dz =
1. In particular,

(205) — Apk + Vipr = M (—A + V)i weakly in H1270(Q).

Inequality (203) above yields the boundedness of () in Hf 4(€2). Up to a sub-
sequence, we let ¢ € H7((Q) such that, as k — 400, ¢ — ¢ weakly in Hf 4(1),
oK — ¢ strongly in L*(Q) (then [, ¢?dz = 1) and ¢p(z) — ¢(z) for a.e. z € Q.
Letting £ — 400 in (205), the hypothesis on (V) allow us to conclude that

—Ap+ Voo = khT A (—A 4 Vi) weakly in H? ;(9Q).
—4o0 ’
Since fQ ¢?dz = 1 and we have extracted subsequences, we then get (204).

Finally, we prove the reverse inequality. For ¢ > 0, let p € H 12,0(9) be such that

Jo(Vl? + Vaep?) dx
fQ 02 dx

<AM(-A+ Vo) +e

‘We have

fQ Vi — Vio|p? dr
+ .
Jo ©?dx
The hypothesis of Lemma 3 allow us to conclude that [, |V — Voolp?dz — 0 as

k — 4o00. Therefore limsupy_, o A(=A + Vi) < A\ (—A + Vo) + € for all € > 0.
Letting e — 0, we get the reverse inequality and the conclusion of Lemma 3. [

MEEA+VE) < AM(-A+ V) +e

13. APPENDIX C: REGULARITY AND THE HARDY-SCHRODINGER OPERATOR ON
R™

In this section, we collect some important results from the paper [20] used in the
proof of the compactness theorems. First we state the following regularity result:
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Theorem 6 ([20], see also [13] ). Let 2 be a smooth bounded domain of R™ (n > 3)

such that 0 € 9. We fiz v < ”72 and f: Q2 xR — R is a Caratheodory function
such that

|U|2*(s)72
|z[*

Let u € Hf 4(Q) be a weak solution of

v +0(z|”)

|z[?

for some 8 > 0. Then there exists K € R such that

1 =K.

+50 d(z, 09 |z| - ()

Moreover, if u > 0 and u # 0, we have that K > 0.

|f(z,v)| < C|v] (1—1— >f0r all z € Q and v € R.

/!

(206) —Au u= f(z,u) in (D“*(Q))

(207)

The following result characterizes the positive solution to the singular global
equation

Proposition 9 ([20]). Let v < "72 and let u € C%(R™ \ {0}) be a nonnegative
function such that
{ —Au—#u = 0 nR”
u = 0 ondR™\ {0}
Then there exist C_,Cy > 0 such that

|24
|x|5—(’)’)

u(z) =C 1]

B PR CY +C4

for all x € R™.

Next, we recall the existence and behaviour of the singular solution to the homo-
geneous equation.

Theorem 7 ([20]). Let Q be a smooth bounded domain of R™ (n > 3) such that
0€0Q. Fizy< %2 and h € C1(Q) be such that the operator A — ~|z|~2 — h is
coercive. There exists then H € C?(Q\ {0}) such that
—AH — #’H +h(x)H=0 inQ
H>0 inQ
H=0 onoQ\{0}.

These solutions are unique up to a positive multiplicative constant, and there exists

¢ > 0 such that H(z) ~4, 0 cldx(lgg’fg)).

Theorem 8 ([20]). Let Q be a smooth bounded domain of R™ (n > 3) such that

0 € 0. Suppose v < %2 and let h € C*(Q) be such that the operator A —~|z|~2—h
1s coercive. We assume that

n?—1

v > or equivalently B4 (v) — f—(v) < 1.

Let ‘H be defined as in Theorem 7. Then there exists c¢1,co € R with ¢; > 0 such
that

H(z)

d(z,0Q)  d(z,d0) (d@,&@)

T ) TR ™ 2]~
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as r — 0. We define the boundary mass as
C2

M,k (€2) = o

which is independent of the choice of H.

14. APPENDIX D: GREEN’S FUNCTION FOR THE HARDY-SCHRODINGER
OPERATOR WITH BOUNDARY SINGULARITY ON A BOUNDED DOMAIN

Definition 1. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 0.
We fixy < n?/4 and h € C%9(Q), 6 € (0,1) such that —A—(y|z|~2+h) is coercive.
We say that G : Q x Q\ {(z,z)/x € Q} is a Green’s function for —A —~|z|=2 — h
if

e For anyp € Q, G, := G(p,-) € L}(Q).

e Forall f € CX(Q) and all p € Q, then

¢(p) = /Q Gp(z)f(z) da.

where ¢ € HY o(Q) N C°(Q) is the unique solution to
—Ap — (le—&—h(x))(p:f in Q; @ =0.
This appendix is devoted to the proof of the following result.

Theorem 9. Let Q be a smooth bounded domain of R™ such that 0 € 9. We fix
v < %2. We let h € C%%(Q) be such that —A — ~y|x|~2 — h is coercive. Then,

I. Existence and uniqueness. There ezists a unique Green’s function G for

—A — vy|x|=2 — h such that
(a) G, € C?2(Q\ {0,p}) and G, > 0 for all p € Q.
(b) For allp € Q and all n € C(R™\ {p}), we have that nG, € H{ ().

(c) Forall f € L%(Q) N LY\ Bs(0)), for all 6 > 0 and some g > n/2, we have
for any p € Q

(208) o) = [ Gyla) (@) do.
where ¢ € HY o(Q) N C°(Q) is the unique solution to

Y .
(209) —Ap - <|$|2 + h(ﬂﬁ)) p=1FfinQ; paa =0,
In particular,

_AG, - (ﬁ + h(m)) Gp,=0 inQ\{p},

(210) G, >0 in 0\ {p},
G,=0 in 90\ {0}.

I1. Asymptotics. G satisfies the following properties:

(d) For all p € Q\ {0}, there exists co(p) > 0 such that
d(xz,00) 1

(1) Gyle) ~ao colp) [y and Goe) sy

(n — 2)wp_1|x — p|*—2
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2 2
B-(v) = g - m and B4 (v) = g + \/P

(e) There exists ¢ > 0 depending only on vy, the coercivity constant and an upper-
bound for ||h||co.e such that

where

(212) ¢ Hy(7) < Gp(x) < cHy(x) for x € Q — {0, p},
where
-
max{pl, |x|})5 2 { d(, 02)d(p, am}

213)  Hy(z):=|—r11 1+ x— "min} 1, —————~ .
@) = (Gn) o pP
And
(214)
VGy(@)| < c (maxﬂp" '“)5(7) o —p[' ™" min {1 dip, 061) 89)} for z € Q—{0, p}

70T N min{]pl, [} "z —pl o
(f) There exists L q > 0 such that for any (h;); € C%%(Q) such that lim h; = h

i—+o0
in C%, then for any sequences (x;);, (y;); € Q such that
yi = o(|z;|) and x; = o(1) as i — +o0,
then, as i — +o0o0 we have that
d(x;,0Q) d(y;, 0Q)

(215) Cri(@i0) = (Lo o) ey 1 oo

Notations: In order to simplify notations, we will often drop the dependence in
the domain 2 and the dimension n > 3. If F': A x B — R is a function, then for
any ¢ € A, we define F, : B — R by F,(y) := F(z,y) for all y € B. Finally, we
will write Diag(A) := {(x,z)/z € A} for any set A.

We split the proof into several parts.

14.1. Proof of existence and uniqueness of the Green function. We let
ne(z) :=7j(e]x|) for all z € R™ and € > 0, where 7 € C*°(R) is nondecreasing and
such that 7(¢) = 0 for t < 1 and 7j(¢) = 1 for t > 1. It follows from Lemma 3 (see
the Appendix) and the coercivity of —A — (’y|:1:|_2 + h) that there exists ¢g > 0
and ¢ > 0 such that such that for all p € Hf ;() and € € (0, €),

/ (|V902 - (W]; + h(a:)) @2) dx > c/ 02 da.
Q || Q

As a consequence, there exists ¢ > 0 such that for all ¢ € H} ;(2) and € € (0, ),

(216) [ (196 = (s n)) ) o = clelity.

Let Gc > 0 be the Green’s function of —A — (ync|z|~2 + k) on Q with Dirichlet
boundary condition. The existence follows from the coercivity and the C%? reg-
ularity of the potential for any ¢ > 0 (see Robert [29]). In particular, we have
that

(217) { —AGe(z, ) ~ (7.75 + h) Ge(z,-)=0 inQ\ {z}
Ge(z,-)=0 on O
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and ¢’ € (0,6), there exists C(d,q) > 0 and C(4,¢") > 0 such that

(218) 1Ge(, Loy < C(6,q) and [|Ge(a, ]| < (6,0

L A2 (Q\By (2) —

for all z € €, |z| > §. We prove the claim. We fix f € C2°(Q2) and let . € C%9(Q)
be the solution to the boundary value problem

(219) { ~Ap.— (s +h@) e =f
Pe = 0 on 0f)

Multiplying the equation by ¢, integrating by parts on 2, using (216) and Holder’s
inequality, we get that

2
| 1ved?d < €Il lod 2,
where €' > 0 is independent of €, f and ¢.. The Sobolev inequality [¢f| 2u <
ClIVells for ¢ € H} ;(€2) then yields
lcll zs, < Clflze,

where C' > 0 is independent of ¢, f and .. Fix p > n/2 and § € (0,6y) and
01,02 > 0 such that §; + d2 < §, and = € Q such that |z| > §. It follows from
standard elliptic theory that

lpe(z)] < ||<Pe\\00(351(z))

S (e I Py

(||f||W +||f||Lp<Bél+52<x>>)

where C' > 0 depends on p, , 01, d2, v and ||h||oc. Therefore, Green’s representation
formula yields

IN

(220)

[ Gutrsas) < (111, gy + 1610,
for all f € C*(Q). It follows from (220) that

/Q G(a,)f dy' <Cflre

for all f € C°(2) where p > n/2. It then follows from duality arguments that
for any ¢ € (1,n/(n —2)) and any § > 0, there exists C(d,q) > 0 such that
Ge(z,-)|[Laay < C(6,q) for all € < ¢g and = € '\ B5(0).

Let ¢’ € (0,0) and 01,2 > 0 such that §; + d2 < §’. We get from (220) that

(221)

d
) y’ 2 (Q\By ()

for all f € C*(Q\ Bgl(l‘)). Here again, a duality argument yields (218), which
proves the claim in Step 14.1.

Using the same method, we can get an improvement of the control, the cost being
the integrability exponent g. When ¢ € (1,n/(n — 1)), we get that p > n. Then,
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¢ellor(Bs, (r)ne) is controled by the LP and L7+ norms. Moreover, lpe(z)] <
lecllcos z)mg)d(x 09). The argument above then yields

(222) |Ge(, )| Lacay < C(6, q)d(x,00) for q € (1, 77171 1) )

Step 14.2: Convergence of G.. Fix z € 2\ {0}. For 0 < € < €, since G¢(z,-),
Go(z,-) are C? outside =, (217) yields

VNe V(e = ner)
7A(Ge(x7 ) -G (l’, )) - <| ) |2 + h) (Ge(l’, ) -G (‘Ta )) = WGG/("L )
in the strong sense. The coercivity (216) then yields Ge(x, ) > Ge(x,-) for 0 <
e < € if v > 0, and the reverse inequality if v < 0. It then follows from the integral
bound (218) and elliptic regularity that there exists G(z,-) € C%?(Q\ {0,2}) such

that
(223) lim Ge(z,) = G(x,") 2 0 in CEY (@ —{0,z}).

loc

In particular, G is symmetric and

(224) - AG(z,-) — <|7|2 + h> G(z,-) =01in Q\ {z} and G(x,-) =0 on 09.
Moreover, passing to the limit € — 0 in (218), (222) and using elliptic regularity,
we get that for all 6 > 0, 1 < ¢ < -5 and ¢’ € (0,9), there exist C'(4,¢) > 0 and
C(4,4") > 0 such that for all z € Q, |z| > 4,

@5) 166w < CO.0) and (Gl oy < O68)
and
(226) 1G(z, )| Lag) < C(6, q)d(z,09) for g € <1, nﬁl) .

In particular, for any z € Q\ {0}, G(x,-) € L¥(Q) for all 1 < k < n/(n — 2) and
G(x,) € L*/(=2(Q\ Bs(x)) for all § > 0. Moreover, for any f € Ltz (Q) N
L1(Q\ B5(0)) for all § > 0 with ¢ > n/2, let ¢, € H7 ;(€2) be such that (219) holds.

It follows from elliptic theory that ¢, € C%7(Q\ {0}) for some 7 € (0,1) and that
for all §; > 0, there exists C(d1) > 0 such that |[¢c|| o, (@\Bs, (0)) S 0(61) We fix

z € Q\{0}. Passing to the limit € — 0 in the Green identity ¢(z) = [, Ge(x,-)f dy
yields
(227) o) = / Glz,)f dy for all z € O\ {0}
Q

where ¢ € H} ;(Q2) N C°(Q2\ {0}) is the only weak solution to
~Ap— (Fr+h@) =/ nQ
=0 on 0

Since G(z,-) > 0, (224) and the strong comparison principle yield G(z,-) > 0.
These points prove that G is a Green’s function for the operator and that (c) holds.
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We now prove point (b). We fix n € C(R™ — {z}) such that n(y) = 1 when
y € Bs(0) for some 6 > 0. Then 1G.(z,-) € C*?(Q) N HE (). It follows from
(217) and (223) that

~A@Ge(z, ) - (ﬁ”l; - h) (nGe(x, ")) = 1,0 fo in ©

where || f, eHCO(ﬁ) < C for some C > 0 and all € > 0. Therefore, with the coercivity
(216) and the convergence (223), we get that

Gl iy < [ faGeydy<C
Q\B;(0)
for all € > 0. Reflexivity yields convergence of (nGc(z,-)) in Hf(Q) N L*(Q)
as € — 0 up to extraction. The convergence in C? and uniqueness then yields
nG(z,-) € Hiz() and nGe(z,-) = nG(z, ) in Hf(Q) as e — 0. The case of a
general 7 is a direct consequence. This proves point (b).

For the uniqueness, we suppose G’ be another Green’s function. We fix z € Q and
we define H, := G, — G'.. Then H, € L'(Q) and for any f € C°(Q), we have
that fQ H,fdy = 0. Approximating a compactly supported function by smooth
fonctions with compact support, we get that this equality holds for all f € C%(Q).
Integration theory then yields H, = 0, and then G/, = G,. This proves uniqueness.
This finishes the proof of (a).

This proves existence and uniqueness of the Green’s function in Theorem 9(I).

14.2. Proof of the upper bound. The behavior (211) is a consequence of the
classification of solutions to harmonic equations and Theorem 4.1 in Ghoussoub-
Robert [20].

In the proof, we will often use sub- and super-solutions to the linear problem. The

following existence result is contained in Proposition 4.3 of [20]:

Proposition 10. Let Q be a smooth domain and h € C°(Q) be a continuous
fonction. Wefﬁx v < %2 and B € {B_(v),B+(7)}. Then, there exist r > 0, and
Ug,ug € C(Q\ {0}) such that

ug,ug =0 on 9N B,.(0)
(228) —Aug — # +h)ug >0 m 2N BT(O)

Moreover, for some T > 0, we have that, as © — 0, z € Q,

d(x,090)

(229) up(x) = ug(x)(1+ O(|2|7)) = 2P

(14 O(|z[))-

Step 14.3: Upper bound for G(z,y) when one variable is far from 0.

Step 14.3.1: Tt follows from (224), elliptic theory, (226) and (225) that for any
d > 0, there exists C'(§) > 0 such that

(230) 0 < G(z,y) < C(0)d(y, 0V)d(z,0Q) for x,y € QX s.t. |z|,|y| > 9, |[z—y| > 0.
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Step 14.3.2: We claim that for any ¢ > 0, there exists C(d) > 0 such that
(231)

2= 4" G(a,y) < C(6) min {1, d(, 92)d(y, 02)

|z =yl

} for z,y € Q s.t. |z|, |y| > 4.

Indeed, with no loss of generality, we can assume that § € (0,dp). Let Q5 be a
smooth domain of R™ be such that Q\ Bss/4(0) C Q5 C Q\ Bs/2(0). We fix x € Q

such that |z| > §. Let H, be the Green’s function for —A — (ﬁ + h(x)) in Qs

with Dirichlet boundary condition. Classical estimates (see [29]) yield the existence
of C(6) > 0 such that

d(xz,0Q)d(y, 00Q)
|z —y?

|z —y|" " ?H,(y) < C(§) min {1, } for all x,y € Q5.

It is easy to check that

~A(Ge— Hy) ~ (e + 1) (Ga— Hy) =0 weakly in Q5
Gw - Hl =0 on (896) \B35/4(0)
G, —H, =G, on (696) N B35/4(0)'

Regularity theory then yields that G, — H, € C*?(Qs). It follows from (230) that
G.(y) < C1(9)d(y, 0Q)d(x, 082) on (0Qs) N Bss/4(0) for |x| > §. The comparison
principle then yields G, (y) — H(y) < C1(8)d(y, 9Q)d(x, 0) for y € Qs and |z| > 6.
The above bound for H, and (230) then yields (231).

Step 14.3.3: We now claim that for any 0 < ¢’ < §, there exists C(4,0") > 0 such
that
(232)

y|P- DG (x,y) < C(6,8)d(y, 0Q)d(x,dQ) for z,y € U s.t. |x] > > 8 > |yl.

We let §; € (0,9’) that will be fixed later. We use (230) to deduce that G,(y) <
C(6,61)d(x,00)d(y, 0N) for all x € Q\ Bs(0) and y € dBs, (0) N . Since &; < |z,
we have that

~AG, — (#m) G, =0 in QN Bs, (0)
0< Gy < C(6,6)d(y, 00)d(x,00)  on AN Bs, (0)) \ {0}.

We choose a supersolution %g_(4) as in (228) of Proposition 10. It follows from
(229) and (230) that for d; > 0, there exists C'(d,01) > 0 such that G,(z) <
C(0,81)d(x,00)ug_(z) for all z € (2N By, (0)). It then follows from the compar-
ison principle that G, (y) < C(8,61)d(z, 0Q)us_(y) for all y € (2N Bs,(0)) \ {0}.
Combining this with (230) and (228), we obtain (232).
Note that by symmetry, we also get that for any 0 < §’ < §, there exists C(6,4") > 0
such that
(233)

2P~ G(x,y) < O, 8" )d(x,dQ)d(y, Q) for z,y € Vs.t. |y| > > > |z

Step 14.4: Upper bound for G(z,y) when both variables approach 0.
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We claim first that for all ¢1,co, c3 > 0, there exists C(cy, co,c3) > 0 such that
for z,y € Q such that ¢ |z] < |y| < ca|z| and |z — y| > c3|x|, we have

d(xz,00)d(y, 0)
[ '

(234> ‘x - y|n_2G<.’L‘, y) S C'(01.7 C2, 03)

When one of the variables stays far from 0, (234) is a consequence of (230). We
now consider a chart 7 at 0 as in (27). In particular, there is §o > 0,0 € V C R"
and T : Bas,(0) — V a smooth diffeomorphism such that 7(0) = 0 and

(235) T (Bas,(0)NR™) = T(U)NQ and T (Bas, (0) NOR™) = T(U) N Q.
Moreover, dTg : R — R™ = Idg~ and

(236) |T(X)| = (1+0O(]X]))|X]| for all X € Bss,/2(0).

We fix X € R” such that 0 < |X| < 3d9/2. We define

H(z) := Gr(x)(T(|X|z)) for z € Bs, /1x(0) \ {0, é} ,
so that
v 2 . X
A H | T [XPA(T(X2) | H =00 Bs,yx(0) \ {o, le} .

(\T(\X IZI)>

[XT
where gx := (T*Eucl) x is the pulled-back metric of the Euclidean metric Eucl via
the chart 7 at the point X. Since H > 0, it follows from the Harnack inequality
on the boundary (see Proposition 6.3 in Ghoussoub-Robert [20]) that for all R > 0
large enough and r > 0 small enough, there exist §; > 0 and C > 0 independent of
| X| < 3dp/2 such that

which, via the chart T, yields
(237)
/
Goly) _ o Galy)
d(y,00) = d(y',0Q)
for all € Q such that |z| < §y. We let W be a smooth domain of R™ such that for
some A > 0 small enough, we have

(238) By(0)NQ C W C Bx(0)NQ and Bx(0) NOW = B, (0) N ox.

<C

for all Y, y/ €eQn BR\I|/2<0) \ <B2r|x|(0) U B2r|z|(‘r)) .

We choose a subsolution ug, (. as in (228) of Proposition 10. It follows from (229)
and (230) that for |z| < 5 small

. G:(y)
G.(2) > C(R)|z|P+) f TwAT) for all WNOBR. /3(0).
(Z) > O( )lml yeQﬁéIEl?R\w\(O) d(y, 99) glﬂ(v)(z) orall z € R| \/3( )

Since —AG, — (7| |72 + h)G, = 0 outside 0, it follows from coercivity and the

comparison principle that

. G (y)
B
Calz) 2 cla o <yeﬂmé%fmz|(0) d(y, 09) 25+(7)(Z) for all = € W BR‘xl/B(O)'
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We fix zg € W\ {0}. Then for d3 small enough, when |z| < d3, it follows from (233)
and the Harnack inequality (237) that there exists C' > 0 independent of = such
that

G.(y) < C’|x\75+(7)7ﬂ*(7)d(x, 0N)d(y,00) for all y € BR|I|(O)\(BT‘1|(O) U Br|w|(x))

Taking r > 0 small enough and R > 0 large enough, we then get (234) for |z| < d3.
The general case for arbitrary « € 0\ {0} then follows from (231). This comptetes
the proof of (234).

Step 14.4.2: We claim that for all ¢1,co > 0, there exists C(cq,c2) > 0 such that
d(z, 02)d(y, 09) }

|z —yl?

(230) & — y"2GC(x,y) < Cler, ) min {1,

for all z,y € Q s.t. ¢1]z| < |y| < c2|x|. To prove (239), we distinguish three cases:
Case 1: We assume that
(240) |z] < Cid(z,00) with C; > 1.
We define
H(z) = |z|"?Ga(z + |2|2) for z € By /¢, (0) \ {0}.

Note that this definition makes sense since for such z, = + |z|z € Q. We then have
that H € 02(31/(201)(0) \ {0}) and

% + |2’h(z + |z|2) | H = 6y weakly in By j2¢,)(0).

Z
B *Z’

—AH —

We now argue as in the proof of (231). From (234), we have that |H(z)| < C for all
z € OBy /(2¢,)(0) where C is independent of z € Q\ {0} satisfying (240). Let I'g be
the Green’s function of —A — (“12 + |z|?h(z + |x|z)> at 0 on By /(2¢,)(0) with
Ty t?
Dirichlet boundary condition. Therefore, H — Ty € C?(Bj/2¢,)(0)) and, via the
comparison principle, it is bounded by its supremum on the boundary. Therefore
|2|""2H(z) < C for all By(2¢,)(0) \ {0} where C' is independent of 2 € Q\ {0}
satisfying (240). Scaling back and using (234), we get |z — y|"2G,(y) < C for
all z,y € Q\ {0} such that c1]z| < |y| < c2|z| and (240) holds. This proves
(239) if d(z,00)d(y,00) > |z — y|?. If d(z,09)d(y,00) < |x — y|?, we get that
d(x,00) < 2|x—y|, and then (240) yields |z| < 2C1|z—yl, and (239) is a consequence
of (234).
This ends the proof of (239) in Case 1.
Case 2: By symmetry, (239) also holds when |y| < C1d(y, 09).

Case 3: We assume that d(z,0Q) < C; 2| and d(y, Q) < Cy'y|. We consider a
chart at 0, that is 69 > 0, 0 € V' .C R™ and T : Bas,(0) — V a smooth diffeomor-
phism such that 7(0) = 0 and that (235) and (236) hold. We fix 2/ € R"~! such
that 0 < |2/| < 3d0/2.

We assume that r < ¢o|z’|. We define

Hy(Z) = 7An72617_((0,316’)-1-7@)(7-((07 l’l) + TZ)) for Y,z € Béo/(QT) (0) N RT—L \ {0}
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We then have that H, € C*(Bg,(0) NR™ \ {0,y}) and

—A, H,— % +7r2h(T((0,2") +r2)) | H, = §, weakly in Bg,(0)NR",
(‘T((Oﬂ;')Jrrz))

where g, := (T*Eucl)g,z/)4r. is the pulled-back metric of the Euclidean metric

Eucl via the chart 7 at the point (0,z’) + rz. We now argue as in the proof of

(231). From (177), we have that |H,(z)| < C for all z € 0Bg,(0) N R” where C

is independent of y € Bg,/2(0) and 7 € (0,00/4). Let T'y be the Green’s function

of —A,, — <(T((OJ)+”))2 +7r2h(T((0,2") —|—rz))> at y on B 2(0) N R™ with

Dirichlet boundary condition. Therefore, H, — 'y € C?(B,,/2(0) N"R") and, via
the comparison principle, it is bounded by its supremum on the boundary. It follows
from (177) and elliptic estimates for I'; (see for instance [29]) that |H, —I',|(z) <
Clyi| - |z1] for z € 9(Bg,/2(0) NR™) and y € B,,;4(0) N R™. Applying elliptic
estimates, we then get that |H, — T'y[(z) < Clyi| - |z1] for z € B, /2(0) NR™ and
y € Be,/4(0) NR™, and since

|yl| ) |Zl|
ly — 2|

I',(2) < Clz — y[* " min {1, } for all y, z € B, /2(0) "R”

(see [29]), we get that

|z —y|"2H,(z) < C'min {17 M} for all y, z € B, /2(0) NR™

where C' is independent of ' € Bs,2(0) \ {0}. This yields

o . Yi| - |z
(241) Irz —ry| 2GT((o,w')+ry) (T((0,2") +7z)) < Cmin{1, |yl|_L|;|

for |a'| < 80/3, 1 < cola’| and |y, |z| < ¢o/4.

We now prove (239) in the last case. We fix € Q\ {0} such that |z| < do/3.
We assume that d(x,0Q) < C; x|, d(y,0Q) < Cylly| and |z — y| < eolz|. We
let (z1,2'), (y1,y’") € Bs,(0) be such that © = T (x1,2') and y = T (y1,y’). Taking
the norm |(x1,2")| = |z1] + |2|, we define r := max{d(z,dQ), |z — y|}. Using that
|X|/2 < |T(X)| < 2|X| for X € Bs,(0), up to taking ¢y > 0 small and Cy,¢p > 1
large enough, we get that

Z1 Co

— 4 )

o
(?ﬂ?y x)’gifandrgcoaﬂ.

r T r

Therefore, (241) applies and we get (239) in Case 3.

We are now in position to conclude. Inequality (239) is a consequence of Cases 1,
2, 3, (231) and (177). This ends the proof of (239).

Step 14.4.3: We now show that there exists C' > 0 such that
(242)

1
Y|P~ D)2+ DG (2, y) < Cd(x,0Q)d(y, Q) for x,y € Q such that |y| < 51l
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The proof goes essentially as in (232). For |z| < § with 6 > 0 small, we have that

-8y = (54 1) G =0 i 90 Blaya(0) 0 AN By s0)\ 0))

It follows from (177) that G, (y) < Clz[~"d(x,0Q)d(y, o) in QN IB|,/3(0). We
choose a supersolution %g_(,) as in (228) of Proposition 10. It follows from (229)
and (177) that there exists C' > 0 such that

Go(y) < Cla|P+Md(z,09)u5 () (y) for all y € QN IB),/3(0).
The comparison principle yields that this inequality holds on QN B;/3(0).

Step 14.4.4: By symmetry, we conclude that there exists C' > 0 such that

(243) |z D)+ DG (x,y) < Cd(z, dN)d(y, dNQ) for z,y € A s.t. |z] < %|y\

Step 14.5: Finally, it follows from (242), (243) and (239) that there exists ¢ > 0
such that

max T - T
) e <e(TREER) ool min {1 SR

for all z,y € Q, x # y. This proves the upper bound in (212) of Theorem 9. The
lower-bound and the control of the gradient will be proved in Section 14.4.

14.3. Behavior at infinitesimal scale. We prove three convergence results to
get a comprehensive behavior of the Green’s function. Throughout this subsection,
we assume {2 is a smooth bounded domain of R™ such that 0 € 9Q2. We fix v < %
and let h € C%?(Q) be such that —A — v|z|~2 — h is coercive. We consider G to be
the Green’s function of —A — ~|z|~2 — h with Dirichlet boundary condition on 9f).

Lemma 4. Let (z;); € Q and (r;); € (0,400) be such that

lim r; =0 and lim M:Jroo.
1——+00 1—>—+00 r;
Then, for all X,Y € R™ such that X # Y, we have that
1

li n—2 . X s V) =
iS00 1 Glai+riX,zitriY) (n — 2)wp_1

Moreover, the convergence holds in CZ ((R™)?\ Diag(R™)).

|X _ Y|2—n

To deal with the case when the points approach the boundary, we consider for
any xg € 082, a §o > 0, a neigborhood V' of zy in R™, and a smooth diffeomorphism
T : Bs,(0) — V such that 7(0) = 2 and

(245) T (Ba2s,(0) NR™) =T(U) N Q and T (Bas, (0) NOR™) = T(U) N Q.
Without loss of generality, we can assume that d7j : R™” — R" = Idgn.
Lemma 5. Let (z;); € 092 and (r;); € (0,400) and xzo € 0N be such that

lim r; =0, lim x; =xz9 € 0Q and lim il = +00.

i—+00 i—+00 i—+oo T
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We let T be a chart at xg as in (245). We define x, € R"~! such that z; = T(0,z%).
Then, for all X, Y € R™ such that X #Y, we have that

1

lim 7 2G(T ((0,2)) + 7 X), T ((0,2)) + 1Y) = ——— (X = Y[* " = | X —Y**™")

i—+00 (n — 2)wp—1

where (Y1,Y')* = (=Y1,Y") for (Y1,Y’) € R x R"~L. Moreover, the convergence
holds in C%_((R™)?\ Diag(R™)}).

Lemma 6. Let (r;); € (0,+00) be such that lim;_, 1o 7; = 0. We let T be a chart
at 0 as in (245). Then, for all X, Y € R™ \ {0} such that X #Y, we have that

lim 7 2G(T (r,X),T (rY)) = G(X,Y)

1——+00
where G(X,Y) = Gx(Y) is the Green’s function for —A — ~v|z|=2 on R™ with
Dirichlet boundary condition. Moreover, the convergence holds in CZ,.((R™\ {0})2\
Diag(R™ \ {0})).
Proof of lemma 4: We let (r;); € (0,400) and (z;); €  as in the statement of the
lemma. For any X, Y € R", X # Y, we define
Gi(X,Y) =1 2Glai + ri X, mi + 1Y)

for all ¢ € N. Since r; = o(d(z;,00Q)) as i — +oo, for any R > 0, there exists ig € N
such that this definition makes sense for any X, Y € Br(0). Equation (210) yields

(246) — AGi(X,-) - %‘*‘T?h(%-ﬁ-?‘i') Gi(X,") =0in Br(0)\ {X}.

The pointwise control (244) writes

B—(7)
3 in [ ZY _
@47)  0< Gu(X,v) < ¢ etz X, foi £ V) X — V]2
min{|z; + X/, |x; + Y|}

for all X,Y € Bg(0) such that X # Y. Since 0 € 02, we have that d(z;,9Q) < |z,
and therefore r; = o(|z;|) as i — +oo. Equation (246) and inequality (247) yield
—AG;(X,)+0,(X,)G;(X,-) =0in Br(0)\ {X}.
where 6; — 0 uniformly in C2_((R™)?) and 0 < G;(X,Y) < ¢|X —Y|*™ for all
X,Y € Bgr(0) such that X # Y. It then follows from standard elliptic theory that,
up to a subsequence, there exists G (X,-) € C?(R"™ \ {X}) such that G;(X,-) —
Go(X,") > 0in C2,(R™\ {X}) and
~AGo(X,)=0in R"\{X} and G (X,Y) < | X-Y|* " for X,Y € R", X £Y.
It then follows from the classification of positive harmonic functions that there
exists A > 0 such that Goo(X,Y) = ANX —Y[2 " forall X,Y e R", X #Y.
We fix ¢ € C°(R"). We define ;(z) := ¢(r; ' (x —x;)) for z € Q (this makes sense
for i large enough). It follows from (209) that
v
e+ 1) = [ Gl rixon) (<2 - (T 4000 ) i)
Via a change of variable, and passing to the limit, we get that

P(X) = | GulX.¥) (~2(Y)) d.
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Since Goo (X, Y) = A X —Y|?>™", we get that A = 1/((n—2)w,_1). Since the limit is
unique, the convergence holds without extracting a subsequence. The convergence
in C?_((R")?\ Diag(R")) follows from the symmetry of G and elliptic theory. O

loc

Proof of lemma 5: The proof goes as in the proof of lemma 4, except that we
have to take a chart due to the closeness of the boundary. We let (r;); € (0, +00),
(z;); € O and xg € IR as in the statement of the lemma. We let T be a chart at xq
as in (245) (in particular d7y = Idgn) and we set z; € R™ such that z; = 7(0,x%).
In particular, lim; , 1o 2} = 0. For any X,Y € R”, X # Y, we define

Gi(X7 Y) = rznizG(T((va;) + TiX) ,T((O,:EQ) + TZY))

for all i € N. Here again, provided X,Y remain in a given compact set, the
definition of G; makes sense for large i. Equation (210) then rewrites
(248)

where

A B 2 ’

0;(Y) = ——————— +r; h(T((0,2;) + ;Y

(V) = T BT (0.27) 4 1)

and g; = T*Eucl((0, z})+r;-) is the pull-back of the Euclidean metric. In particular,
since dTo = Idgn~, we get that g; — Eucl in C?_(R"). Since r; = o(|z;]), we get
that r; = o(|x}|) as i — 400, and, using again that d7g = Idr~, we get that
6; — 0 uniformly in Br(0) NR™. The pointwise control (244) rewrite G;(X,Y) <
X —Y[|>™" for all X,Y € R", X # Y. With the same arguments as above, we
get that for any X € R”, there exists Goo(X,-) € C?(R™ \ {X}) such that

dim Gi(X,) = Goo(X, ) in Choe(R™\ {X})

CAG(X,)=0 iR\ {X}
with Goo(X,)>0
Goo(X,)=0 on OR" \ {X}
and
o(X) = Goo(X,)(—Ap) dY for all p € CF(R™).

R™
with 0 < Goo(X,Y) < c¢|X —Y|?7" for all X,Y € R", X #Y. Define
1

Ipn (X,Y) = =2

(|X _ Y‘Z—n _ |X _ Y*|2—n) .

As one checks (see for instance [29]), g satisfies the same properties as Go,. We
set f = Goo(X,) — Trn (X,-). As one checks, f € C®([R™ \ {X}), —Af =0
in the distribution sense in R™, |f| < C|X — -[>=™ in R™ \ {X} and fag» = 0.
Hypoellipticity yields f € C°(R™). Multiplying —Af by f and integrating by
parts, we get that f = 0, and then G (X, ) = I'rn (X, ). As above, this proves the

convergence without any extraction. The convergence in C?_((R™)? \ Diag(R™))

follows from the symmetry of G and elliptic theory. O

Proof of lemma 6: Here again, the proof is similar to the two preceding proofs. We
let (r;); € (0,+00) such that lim; , o r; = 0. We let T be a chart at 0 as in (245)
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(in particular d7y = Idg~). For any X,Y € R™ \ {0}, we define
Gi(X,Y) =] 2G(T (r:X), T (r:Y))
for all 4 € N. Equation (210) rewrites

—Ag,Gi(X, ) - ‘T(v)’g +rih(T(ri)) | Gi(X,-) = 0 in Br(0) NR™ \ {0, X}.
with G;(X,-) = 0 on Br(0) N OR™, where g; = T*Eucl(r;-) is the pull-back of

the Euclidean metric. In particular, since d7y = Idgn, we get that g; — Eucl in
C2 .(R™). The pointwise control (244) writes

loc
max{|X|, [V}
min{[X], [Y]}

It then follows from elliptic theory that G;(X, ) = Goo(X, ) in CZ _(R™ \ {0, X }).
In particular, G (X, -) vanishes on OR™ \ {0} and
(249)

B-(7)
0<GZ-(X,Y)<C( ) |X—Y|2_" for X, Y e R", X #Y.

max{|X|, [Y]}
min{|X|, [Y'[}

Moreover, passing to the limit in Green’s representation formula, we get that

B-(7)
OSGOO(X,Y)SC( ) |X—Y\2_” for X, Y e R", X #£Y.

P(X) = GMQKYU<—A¢—W;P¢)dYﬁnaH@E(f%R”)
R7
Since G(x, ) is locally in H? () (see (b) in Theorem 9), we get that (nG;(X,-)); is
uniformly bounded in Hf 4(R™ ) for all n € C2°(R™\{X}). Up to another extraction,
we get weak convergence in Hi(R™), and then nGuso(X,-) € Hio(R™) for all
n € CP(R"\{X}). It then follows from Theorem 10 and (249) that G (X, ) = Gx
is the unique Green’s function of —A — 7|z|~2 on R™ with Dirichlet boundary
condition. Here again, the convergence in C? follows from elliptic theory. (I

14.4. A lower bound for the Green’s function. We let 2, v, h be as in Theo-
rems 9. We let G be the Green’s function for —A — (y|z| =2+ h) on Q with Dirichlet
boundary condition. We let (z;), (y;)ien be such that z;,y; € Q and z; # y; for all
i € N. We also assume that there exists Too, Yoo € 2 such that

lim z; = 2o and lim y; = Yoo
1—+o00 11— 400

and that there exists ¢y, ¢y such that
lim G(zi,yi)

i—too H(z;,y;)

where H(x,y) is defined in (213) and

ro.y) o= (UL T o A0

— &1 € [0,+00] and lim 1Yozl

= 0
i~too I'(my, ;) ¢2 € [0, +od]

min{|z/, [y|} [z -y
for z,y € Q, x # y. Note that ¢; < +oo by (244). We claim that
(250) 0<cpand 0<cy < 400

The lower bound in (212) and the upper bound in (214) both follow from (250).
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This section is devoted to proving (250). We distinguish several cases:

Case 1: Zoo 7 Yooy Toos Yoo € 2. As one checks, we then have that lim; o G(z;,y;) =

G(Zoo,Yoo) > 0. Therefore, we get that ¢; € (0,400). Concerning the gradient,
lm; 400 |[VGa, (0:)] = |[VGao (Yoo)| > 0 and this yields ca < +o00. This proves
(250) in Case 1.

Case 2: 2, € Q and y. € 90\ {0}. Since o, yso are distinct and far
from 0, we have that G(z;,v;) = d(y;, Q) (—0,Gz. (Yoo) +0(1)) as i — 400,
where 0,G5__ (Yoo) is the normal derivative of G, > 0 at the boundary point
Yoo. Hopf’s Lemma then yields 0,G.__ (¥s0) < 0. As one checks, we have that
H(zi,yi) = (¢ + 0o(1))d(y;, 00Q) as © — +oo. This then yields 0 < ¢; < +o0.
Concerning the gradient, we get that lim;, y o |VGy, (v:)] = [VGa., (Yoo)| > 0 and

lim; oo T4, yi) € (0, +00), which yields ¢z < 4+00. This proves (250) in Case 2.

Case 3: 2, € Q and yo, = 0 € 99Q. It follows from Case 2 above that there exists
¢ > 0 such that G, (y) > cd(y, 0Q)|y| -1 for all y € (2N B,,(0)). We take the
subsolution ug () defined in Proposition 10. With (229), there exists ¢’ > 0 such
that Gy, (y) > ciug (,)(y) for all y € d(QN By, (0)). Since Gy, is locally in Hy
around 0, the comparison principle and (229) yields Gy, (y) > ¢"d(y, 0Q)|y|~#-(")
for all y € QN By, (0). This yields ¢; > 0.

We deal with the gradient. We let 7 be a chart at 0 as in (245) and we define
Gily) = {7 Gy, (T(riy)) for y € R N By(0)

with r; — 0. Tt follows from (244) that G;(y) < Clyi| - |y| 7P~ for all y €
R™ NB3(0). It follows from (210) that —A,, G;— (7] - [* 4+ 0(1)) G; = 0 in R™ NBz(0)
where g; :== T*Eucl(r;-) and o(1) — 0 in LS (R™). Elliptic regularity then yields
IVGi(y)| < C for y € R” N B3/2(0). We now let r; := [§;| where y; := T(7;), so
that 7, — 0. We the have that |VG;(y;/r;)| < C, which rewrites |VGy, (y:)| <
Clyi|~#-(). By estimating I'(x;, y;), we then get that ¢y < +00. This proves (250)
in Case 3.

Case 4: Too 7 Yoos Toos Yoo € 0N\ {0}. Since zoo, Yoo are distinet and far from 0,
we have that G(z;,y;) = d(yi, 00)d(z;,09) (0,,0,, Gu. (Yso) + 0(1)) as i = +o0,
where 0, is the normal derivative along the first coordinate, and 9, is the normal
derivative along the second coordinate. Since y — G, (y) is positive for z,y € Q,
x # y, and solves (210), Hopf’s maximum principle yields —0,, G(z,yo0) > 0 for
x € 2. Moreover, it follows from the symmetry of G that —09,, G(z, ys) > 0 solves
also (210). Another application of Hopf’s principle yields 0,,0,,Ge.. (¥oo) > 0.
Estimating independently H(z;,y;), we get that 0 < ¢; < +o0.

We deal with the gradient. We have that |V, G, (y;)| = |Vy(Gz, — Gg,)(ys)| where
Z; € 09 is the projection of z; on Q. The C?—control then yields |V, Gy, (y:)] <
Cd(x;,00). Estimating independently I'(z;, y;), we get that co < +o00. This proves
(250) in Case 4.

Case 5: Too # Yooy Too € 0N\ {0} and yoo = 0. It follows from Cases 2 and
4 that Gy, (y) > Cd(z;,0Q)d(y;, 09) for all y € I(B|,_|/2(0) N Q). Using a sub-
solution as in Case 3, we get that G, (y) > cd(x;,dQ)d(y,d0)|y|~#- ) for all
y € O(B|y1/2(0) N Q). This yields 0 < c;.
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For the gradient estimate, we choose a chart 7 around y., = 0 asin (245), and we let
r; = |§;| = 0 where y; = T (g;)we define G;(y) := r?’("’)_le (T (ryy))/d(x;, OQ)
for y € R™ N By(0) where r; — 0 . The pointwise control (244) and equation
(210) yields the convergence of (G;) in C}_(R™ N B2(0) \ {0}) as i — +o00. The
boundedness of |VG;| yields ¢a < 4+o00. This proves (250) in Case 5.

Since G is symmetric, it follows from Cases 1 to 5 that (250) holds when z+, # Yoo-

We now deal with the case 2o = Yoo, which rewrites lim;_, o |x; — y;| = 0. Via
a rescaling, we are essentially back to the case o, # Yo via the convergence
Theorems 4, 5 and 6.

Case 6: |x; —y;| = o(d(z;,00)) as i — +o00. We set r; := |z; —y;| — 0 as i — +oo
and we define
O—

T
0}.
T q0)
It follows from Theorem 4 that G; — c¢,| - [*7" in C7_(R" \ {0}) as i — +oo,

with ¢, = ((n — 2)w,—1)"!. We define Y; := ﬁ7 and we then get that |y; —
2;|"2G (x4, y:) = Gi(Y;) — ¢, as i — +oo. Estimating H(x;,y;) (and noting that
d(x;,00) < |z; — 0] = |z;]), we get that 0 < ¢; < +o0.

The convergence of the gradient yields |[VG;(Y;)| < C for all 5. With the original
function G and points x;, y;, this yields co < +o00. This proves (250) in Case 6.

Gi(Y) == 2G(zi,x + 1Y) for Y €

Case T7: d(z;,0Q) = O(|lz; — vi|) and |z; — y;| = o(|z;|) as ¢ — +oo. Then
lim; 400 T = Too € 0. We let T be a chart at zo, as in (245) such that d7y =
Idgn. We let z; = T(wia,2}) and y; = T (yi1,y,) where (x;1,25), (yi1,9) €
(—00,0) x R"~! are going to 0 as i — +oo. In particular d(x;, Q) = (1+0(1))|z;1]|
and d(y;, 0Q) = (14 o(1))|ys,1| as i — +oo. We define r; = |(yi1,v;) — (@1, ;)|
In particular r; = (14 o(1))|z; — y;| as @ — +o0. The hypothesis of Case 7 rewrite
x;1 = O(ry) and r; = o(|(x4,1,25)]). Consequently, we have that y; ;1 = O(r;) and
r; = o(|x}]) as i = +o00. We define
Gi(X,Y) =i 2G(T ((0,27) +7:X) . T (0, 27) + 1Y)
for X, Y € R” such that X # Y. It follows from Theorem 5 that
: . — _ 2—n __ _ *x|2—n —
l_li_rgloo G/(X,)Y)=¢, (|X Y| | X — Y™ ) =U(X,Y)
for all X,Y € R?, X # Y, and this convergence holds in C?.. We define X; :=
(r;lxiyl,()) and Y; := (Ti_lyi,l,ri_l(yg —2%)): the definition of r; yields X; — X €
R” and Y; — Y., € R” as i — +o0o. Therefore, we get that

|z; — yi|n72G(=fEi7yi) = (140(1))Gi(X;,Y;) = ¥(Xoo, Yoo)

as i — +oo, and

(251) Xoor| = tim ol gy 2@000)

1—>+4oco T 1—+00 T
Case 7.1: Xoo1 # 0 and Yoo 1 # 0. We then get that lim; oo [~y |" 3G (2, y;) =
U(Xoo,Ys) > 0. Moreover, it follows from (251) that d(x;, 9Q)d(y;,0Q) = (¢ +
o(1))|z; —yi|? as i — +o0 for some ¢ > 0. Since |z;| = (1+0(1))|y:| as i — +oo (this
follows from the assumption of Case 7), we get that lim; | o |7; — ;|2 H (24, ;) €
(0, +00). Then 0 < ¢1 < +o0.
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Case 7.2: Xoo1 # 0 and Yoo1 = 0. Then Y;; — 0 as ¢ — +oo, and then,
there exists (7;); € (0,1) such that G;(X;,Y;) =Y, 10y, G;(X;, (Y51, Y/)). Letting
i — 400 and using the convergence of G; in C', we get that

lzi — ui|"2G(ziy:) = (1+0(1)Gi(X4,Y;) = Y10y, Gi(Xi, ,Y5)
_ ‘m (= 0y, U(X oo, Yao) + 0(1))

as i — 4o00. As one checks, 0y, U(X,Yo) < 0. Arguing as in Case 7.1, we get
that 0 < ¢; < +00.

Case 7.3: Xoo,1 = Yoo,1 = 0. As in Case 7.2, there exists (7;);, (0;); € (0,1) such
that Gl(XZ,Y;) = i71Xi’18y18X1Gi((0'iXi71,X{)Xi,(Ti}/iﬁl, 1/)) We conclude as
above, noting that 9y, dx, ¥(Xeo, Yso) > 0. Then 0 < ¢1 < +00.

The gradient estimate is proved as in Cases 1 to 6. This proves (250) in Case 7.

Case 8: d(z;,00) = O(|z; — yil), |zi] = O(|lx; — wi|) and |y;| = O(|lz; — wi])
as i — 4oo. In particular, xo = Yoo = 0. We take a chart at 0 as in Case 7,
and we define (z;1, %), (yi,1,y;) similarly. We define r; :== |(yi1,v}) — (i1, 2})| =

(14 o(1))|z; — yi| as i — 4o00. We define
Gi(X,Y) = 2G(T (1:X), T (1Y)

for X,Y € R™. It follows from Theorem 6 that G; — G in C2_((R™ \ {0})%\
Diag(R™ \ {0})), where G is the Green’s function for —A —~|-|~2 in R". Then

|2 — yi" G (@i, yi) = (14 0(1))Gi(Xi,Y;) = G(Xoo, Yoo) + 0(1)
as 1 — +o0.

Case 8.1: We assume that Xoo 1 # 0 and Yoo 1 # 0. Then we get 0 < ¢; < 400 as
in Case 7.1.

Case 8.2: We assume that Xoo € R™ and Yoo € OR” \ {0} or X0, Yoo € OR™ \
{0}. Then we argue as in Cases 7.2 and 7.3 to get 0 < ¢; < +oo provided
{0v,0(Xoo, Yoe) < 0if Xoo € R™ and Yoo € 9R"} and {8y, 0x,G(Xoo, Yoo) >
0if Xoo, Y € OR™ }. So we are just left with proving these two inequalities.

We assume that X, € R™. It follows from Theorem 10 below that G(Xo,-) > 0 is
a solution to (—=A — 7| -[72)G(X, ) = 0 in R” — { X}, vanishing on OR™ \ {0}.
Hopf’s maximum principle then yields —0y, G(X oo, Yoo) > 0 for Yo € OR™ \ {0}.
We fix Y, € OR™ \ {0}. For X € R", we then define H(X) := —0y,G(X,Y) >0
by the above argument. Moreover, (—A —«|-|72)H = 0 in R”, vanishing on R™ \
{0,Ys}. Hopf’s maximum principle then yields —0x, H(X ) = 0y, 0x, G (X0, Yoo ) >
0 for X, Y, € OR™ \ {0}

Case 8.3: we assume that Xo, =0 or Yoo = 0. Since | X — Yoo| = 1, without loss

of generality, we can assume that X, # 0. It follows from Cases 8.1 and 8.2 that
there exists C' > 0 such that

|| =B-() |y|F- (D) < Goi(y) < C‘xi‘n—ﬁ_('y) |y|B- ()

(252) ct

for all y € 9(B),|/2(0)NS2). We let ug (. be the sub-solution given by Proposition
10. Arguing as in Case 3, it then follows from the comparison principle that (252)
holds for y € By,,/2(0) N €. Since |y;| = o(]x;]), we then get that (252) holds with
y :=vy;. Estimating H(x;,y;), we then get that 0 < ¢; < +00.
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The gradient estimate is proved as in Cases 1 to 6. This proves (250) in Case 8.
Since G is symmetric, it follows from Cases 7 and 8 that (250) holds when o = Yoo-

In conclusion, we get that (250) holds, which proves the initial claim. As noted
previously, both the lower bound in (212) and the upper bound in (214) follow from
these results.

We are now left with proving (215). We let (Z;);, (9:): € © be such that

7; = o(|Z;]) and &; = o(1) as i — +o0,
and (h;); € C%%(Q) such that l_l:gloo h; = h in C%Y. Tt follows from (212) that, up
to extraction, there exists [ > 0 such that

(&, 09) d(i, 99)

(253) G}’Li (i'zvgz) = (l + 0(1)) ‘i‘ilﬂJr('Y) |gi|’87(7)

From now on, to avoid unnecessary notations, the extraction is fixed. We define
r=Z4] 8 = Uil o= 5;17'71(3}14) € R” and 6; := Ti_l’T*l(:i’i) e R”,
and O, Too € R™ such that

Step P14. We fixr R > 0. We claim that
(255)

Gh, (T4, y) = (I+o(1))

d(&;,09) d(y, %)
|§ci|b’+(v) |y|ﬁ7(v)

as i — +oo uniformly for y € QNT (Brs, \Br-1s,)-

Proof of Step P14: For z € Bag \ B2gr)-1, we define
7= 071 3,18+ ()
d(z;,09)

As one checks, (255) is equivalent to prove that

Gi(z) := Gh, (%, T (5:2))-

(256) Gi(y) = (I +0(1)) |y||gl |(7) uniformly for y € Br(0) \ Bg-1(0)

Since s; = o(]Z;]) and (28) holds, it follows from the control (212) that there exists
C > 0 such that

1 lal |21 n
@) ¢ ppmm SO <O g forall 2 €REN Ban Bery-t.
As for (248), it follows from (210) that
(258)
2
8; :
_AgiGi_<|T(s;~)|2 + O(s?)) G; =0 in Br(0O)NR” ; G; =0 on dR” NBr(0)\{0}.

It follows from (257), (258) and standard elliptic theory that there exists G €
C?(R™ \ {0}) such that, up to a subsequence,
(259) lim G; =G in C2.(R™ \ {0})
11— 400
with

_AG_%GZOin@\{O};G:OonaR’i\{O};
xr
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1 |21] |21]
C T S G(z)<C- P

It the follows from Proposition 6.4 in [20] that there exists A > 0 such that

for all z € R™ \ {0}.

|21]

| - for all z € R™.
18-

(260) G(z) = A

We claim that A = I. We prove the claim. It follows from (253) and the definition
(254) of 7; that

|7ial

(261) Gi(ri) = (1+ o) -5

and 7; = T # 0 as i — 4o00.
Case 1: we assume that 7o, € R”™ \ {0}, that is 751 # 0. Passing to the limit in
(261), using the convergence (259) and the explicit form (260), we get that

[Tooal _y |7o0ul
TP~ 7 |ee |B-(

and therefore, since 70,1 # 0, we get that A = [.

Case 2: we assume that 7., € OR” \ {0}, that is 7,7 — 0 as ¢ — +oo. With
a Taylor expansion, we get that there exists a sequence (¢;);en € (0,1) such that
Gi(1;) = 1Gi(tiTi1,00) 71 for all i € N. With the convergence (259) of G; to G in
C', we get that

A
|Too|ﬁ*(7)

GZ(TZ) = (81(;(7'00) + 0(1)) ‘Tl = ( + O(l)) . |Ti’1|.

Since 7;1 # 0 for all ¢ € N, it follows form (261) that A = 1.

Therefore, in both cases, we have proved that A = [. It follows from this uniqueness
that the convergence of GG; holds with no extraction.

We now prove (256). We let (z;); € R™ \ {0} be such that z; — zo, € R™ \ {0}.
Then G;(z;) = G(%200) as ¢ — 400. Therefore, if 2.1 # 0, we get that G;(z;) =
(1 4+ 0(1))G(#) as i — 4+00. We now assume that 2,1 = 0, that is z;; — 0 as
i — +0o0. We use the C'—convergence of (G;) and argue as in Case 2 above to
get that lim; 1 |21 7 Gi(2:) = —01G(200) # 0. As one checks, this yields also
Gi(z) = (1+0(1))G(%) as i — 4o00. As noticed above, this proves (255) and ends
Step P14. O

Step P15. We fiz R > 0. We claim that
(262)

. d(z;,00) d(y, 09
G (Fy) = (+o(1) W02 A, OF)

|ji|5+("/) |y|ﬁ7(v)

as i — +o0 uniformly for y € QNT (Brs, (0)).

Proof of Step P15: For r > 0 small, we choose tig_(,) € C?(QN B,(0)) a supersolu-
tion to —Atig_(4) — (y|z| 72 +hi)tig_(5) > 0 as in (228) and (229). Note that, due to
the convergence of (h;) to h in C°, the choice of Ug_(~) can be made independently
of i. We fix ¢ > 0. It follows from the convergence (255) of Step P14 and (229)
that there exists ig € N

(263)

Gr,(Ziy) < (I+¢€) d(#:,09) (y) for all y € 9 (QN T (Bgs,(0))) for all i > i.

|7 P “P- ()
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Note that Gy, (Zi, ), ig_() € Hf (2N T(Bgs,(0))) (these are variational (super)solutions)
and that the operator —A — (y|x|=2 + h;) is coercive. Since Gy, (%, ) is a solution

and 1ig_(,) is a supersolution to —Au — (y|z|7? 4+ hy)u = 0, it follows from the
comparison principle that (263) holds for y € QN T (Bgs, (0)). With (229), we get

that there exists 7; € N such that

(264)

- d(z;,00) d(y,00)
Ghi(Zi,y) < (L4 2¢) |Z:|P+ () |y|B-()

for all y € QN T (Brs, (0)) for all 4 > 5.
Using a subsolution ug (. as in (228) and (229) and arguing as above, we get that
(265)

G, (Zi,y) > (1 — 2¢) d(z,09) d(y, 0%2)

|J~:1‘B+(’Y) |y|ﬁ—(7)
The inequalities (264) and (265) put together yield (262). This ends Step P15. O

for all y € QN T (Brs, (0)) for all i > is.

We now vary the x—variable.

Step P16. We fix R, R’ > 0. We claim that

(266) G, (Zi,y) = (I +o(1)) Cfiféi?)) Tﬁﬁ’a(%)

(267) uniformly for y € QN T(Brs,(0)) and x € QN T (Brrr,(0) \ Bgry-1,,(0)).

as v — +00

Proof of Step P16: We fix a sequence (y;); € € such that y; € T(Bgs,(0)) for all
i € N. For z € Byp/ \B(QR/)—l, we define

. (B= () BT
Gi(z) := 4 o
As one checks, (266) is equivalent to prove that

|21
|x|5+(7)

(268) Gi(z) = (1 +o(1)) uniformly for x € Br/(0) \ B(ry-1(0)

Since |y;| = o(r;) as @ — +oo and (28) holds, it follows from the control (212) that
there exists C' > 0 such that

Lzl 5 |21 n
(269) 6 . ‘Z|,3+(’Y) < GZ(Z) < C- |Z|f3+(7) for all z e R™ N BQR/ \B(QR/)_l.
As for (248), it follows from (210) that
(270)
. r? . .
~A,,Gi— (m + O(rf)) Gi =0 in Bop (0)NR™ ; G; = 0 on OR™ NBap (0)\{0}.

It follows from (269), (270) and standard elliptic theory that there exists G €
C?(R™ \ {0}) such that, up to a subsequence,

(271) lim G; =G in C,.(R™ \ {0})
1—~400
with R ~ ~
_AG—#Gzoin@\{O}; G =0 on OR™ \ {0};
1 |Zl‘ A |21‘ n
ok ) <G(z)<C- FEAG) for all z € R™ \ {0}.
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It the follows from Proposition 6.4 in [20] that there exists g > 0 such that

~ |21]

(272) G(z)=p- P for all z € R”.

We claim that p = I. We prove the claim. It follows from (262) and the definition
(254) of 0; that

10; 1]

(273) Gi(0;) = (1 + 0(1))W

and 6; — 0, # 0 as i — +o0.

Case 1: we assume that 0., € R™ \ {0}, that is 6,1 # 0. Passing to the limit in
(273), using the convergence (271) and the explicit form (272), as in Case 1 of Step
P14, we get that 1|0 1] - 0o =) = plfoc 1| - |0oo] 7?-), and therefore, since
00,1 # 0, we get that u = 1.

Case 2: we assume that 6, € OR” \ {0}, that is 6;7 — 0 as i — +oo. With
a Taylor expansion, we get that there exists a sequence (f;);en € (0,1) such that
él(ﬁz) = 8léi(fi9i,1, 0;)01'71 for all ¢ € N. With the convergence (271) of éi to é in
C', we get that

Gi(0;) = (5’16(900) + 0(1)) 0i1 = (|9<>o|l;+(7) + 0(1)) “10; 1]

Since ;1 # 0 for all ¢ € N, it follows form (273) that u = 1.

Therefore, in both cases, we have proved that u = . It follows from this uniqueness
that the convergence of G; holds with no extraction. As for Step P14, we get (255).
This ends Step P16. ]
Step P17. We fizr R, R’ > 0. We claim that

d(x,00) d(y,00)
|x|8+(”/) |y|/37(“/)
(275)  wniformly for y € QN T (Bgs,(0)) and v € Q\ T(B(ry-1,,(0)).

as v — +00

(274) Gy, (z,y) = (1 + o(1) + O(|z| P+ =A-()y)

Proof of Step P17: The differs from Step P15 since one works on domains exteriors
to the ball of radius r;. Here again, we choose (y;); such that y; € T(Bgs,(0)).
For r > 0 small, we choose @g, () € C*(QN B,(0)) a supersolution to —Adg, () —
(v]@| 72+ hi)tig, (1) > 0 as in (228) and (229). Note that, due to the convergence of
(hi) to h in C?, the choice of tg_(,) can be made independently of i. We fix € > 0.
It follows from the convergence (266) of Step P16 and (229) that there exists ig € N
(276)

G () < (14 0

WU6+(7)(I) forallz € QN aT(BR/TZ (0)) for all 4 Z iO.

We fix § > 0 such that 6 < 7. We choose a supersolution g () as in (228) and
(229). It follows from the upper bound (212) that for some i; € N, there exists
C > 0 such that

d(y;, 0Q) _ L
(277)  Gp,(z,y;) < Cmuﬁ(ﬂ{)(x) for all z € QN IBs(0) for all i > ;.
Yil"~

Therefore,

(278) G, (x,y;) < wi(x) for all z € (AN T(Bs(0) \ B(rr)-1,,(0)))
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where

i lys P~ ((l +€)tg, (y) + Cﬂﬁ—(’)’))

and, since ug, (,), Ug_(y) are supersolution,

2 .
—Awi — <|LE|2 + ]’Lz) w; Z 0in QN T(B5(O) \B(R/)—lri (0))
Since —A — (y|z| 72 + h;) is coercive, the maximum principle holds and (278) holds
on QN T(Bs(0)\ Bgry-1,,(0)). With (229), we get that there exists i € N such
that

_ d(xz,00) d(y,00)
, B+(v)—=B-(7) ) ’
(279) Gra(2,9:) < (”26+C|x| i ) 2B+ Jy[B—(1)

for all x € QNT(Bs(0)\ B(rry-1,,(0)) for all i > i5. Using subsolutions and arguing

as above, we get that for some i3 € N

d(x, 99) d(y, 09)
|x|5+ (v) |y|ﬁf (v)

(280) G, (z, ;) > (z 92— C|z|ﬁ+(v)fﬁ7(w)>

for all x € QN T(Bs(0) \ Bry-1,,(0)) for all i > i3. The inequalities (279) and
(280) put together yield (274). This ends Step P17. O

Step P18. We let (X;)i, (Yi)i € Q such that |Yi| = o(|X;]) and X; = o(1) as
1 — +o00. We assume that there exists ' > 0 such that

FAECN AR

G, (X, Y;) = (I' + 0o(1)) as i — +00.

Then I’ = 1.

Proof of Step P18: We define
oi := min{[g;[, [Yi[} and p; := max{[Z;[, [ X[}

We let (2;)s, (t;); € Q such that c10; < |2;] < cooy and c1p; < |t;] < cop; for all
i € N. Since |z;| = O(s;), s = O(|t;|) and t; — 0 as i — 400, it follows from (274)
that

\zi|57(’7) |ti|ﬂ+(7)

Gh,(zi,t;) = (I + 0(1)) as i — +o00.

In addition, since |z;| = O(|Y];), | X;| = O(|t;]) and t; — 0 as i — +oo, it follows
from (274) that

|Zi|r8—('>’) |t7’|[5+('y)

G, (2, t:) = (I' + o(1))

as 1 — +oo.

Therefore, we get that I’ = [. This ends Step P18. (]

Step P19. We let (X;)i, (Yi): € Q such that |Y;| = o(|X;]) and X; = o(1) as
i — 4+00. Then
4(X,, 09) d(Y, 09)

Cn (X i) = (L 4-0(1)) | X; |8+ |Y;|8-()

as v — +o0o.




106 NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FREDERIC ROBERT

Proof of Step P19: We argue by contradiction and we assume that there exists
€0 > 0 and a subsequences (¢(i)); such that Uy, —I| > € for all i € N where

Ghi(Xi,Y;)\Yi|3*(7)|Xi|B+(7)

Since (U, (;)) is bounded, up to another extraction, there exists I” > 0 such that
Ugy(iy — I" as i — 4-00. Therefore, |l —1"| > €y and I" # [. Since (253) holds for the
subfamily (¢(7)), it then follows from Step P18 that {” = I, contradicting I” # .
This ends Step P19.

We are now in position to prove (215), that is the convergence with no extraction
of subsequence. It follows from (253) and Step P18 applied to (h;); and to the null
function that there exists a subsequence (hy(;y) and [, L, o > 0 such that for any
(z4)i, (yi); € Q such that |y;| = o(Jz;|) and z; = o(1) as i — 400, then

Ui =

(281) th(i) (mﬂyl) = (l +0(1)) ‘mi|ﬁ+(ﬂ/) |yi|ﬂ—(7) ’
and

d(x;, 00) d(y;, 09
(252) Golws, ) = (L + of1)) L 02) o, 0

|3 | P+ () |y ] B- (D)

as ¢ — +oo. We fix a sequence (x;); € Q such that x; — 0 and d(z;,0Q) > |x;|/2

as i — +oo. In the distribution sense, we have that

—A(Gh, . (Tiy ) =Go(Tis ) Fhp) (Ghy o (@i, ) —Go(Ti, ) = (0—hyi))Go(zi, ) in

in the distribution sense and Gy, (zi,") — Go(zi,-) = 0 on 9Q. It follows from

(212) that for any 1 < p < "5, we have that ||Go(z;,-)|, < C(p) for all i € N. Tt

then follows from elliptic theory that Gy, (2i,-) — Gp(xs,-) € W*P(Q2) and that
1Ghy ) (@is ) = Go(wis ) lwzr < Cllhga) ll

For 1 < p <min{n/2;n/(n — 2)}, we define q := ;5. Sobolev embeddings then

yield

1Ghy (@is ) = Go(@i, )llLace) < Cllhg(iylloo-
We let (¢;)~0 such that ¢, — 0 as i — +oo. We define «; := ¢;|x;| so that
a; = o(|z;]) as i — +oo. We have that

/ |Gy (i, y) = Golws, y)|* dy < Cllhye) |-
Bai (0)
It then follows from (281), (282) and the boundedness of (h;) in C that

/ d(x:,09) d(y,09) |
B, (0)

<
w0 | W=
We assume by contradiction that [ # L, o, so that

1/q
d(.ﬁi, 89) / 1
A 7 dy <C.
|l’1|:3+(’7) ( Ba, (0)

If n < q(1—B-(7)), then the integral is infinite. This is a contradiction. Therefore
n > q(1 — f_(v)). Estimating the integral and using that |z;| < 2d(z;, 9), we get
that

(I = Ly0+o(1))

d(y, 00)

|y‘57(7)

|xi|175+(7)a;_5* O+ <
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With a; = €;|x|;, B- () + B+(7) = n and the definition of ¢, we get that
|zi|_"(1_%)eziﬂf(7)+% <C.

Since |z;| — 0, with a suitable choice of ¢; — 0, we get a contradiction.

Therefore [ = L., o that is independent of the choice of the sequence (h;). This
proves (215) and ends the proof of Theorem 9.

15. APPENDIX E: GREEN’S FUNCTION FOR THE HARDY-SCHRODINGER
OPERATOR ON R"™

In this section, we prove the following;:

Theorem 10. Fiz v < %2, For all p € R™ \ {0}, there exists G, € L'(R™) such
that
(i) nGp € H o(R™) for all n € CZ(R" — {p}),
(i) For all p € C(R™), we have that
2
(259) o) = [ Gyl (~a0 - ) dn

R™ E
Moreover, if Gy, G, satisfy (i) and (ii) and are positive, then there erists C € R
such that Gp(x) — Gp,(z) = Cla| - |2|=B-) for all x € R™ \ {0, p}.

In particular, there exists one and only one function G, = G(p,-) > 0 such that (i)
and (i) hold with G, = G, and
(iii) Gp(z) =0 (Iﬂvl‘;%) as |z| = +oo.

We then say that G is the Green’s function for —A —~|x|=2 on R™ with Dirichlet
boundary condition.

In addition, G satisfies the following properties:
(iv) For all p € R™\ {0}, there exists co(p), coo(p) > 0 such that

co(p)|1] Coo(p)|21]
(284) Gp(2) ~am0 TaF- and Gp(z) ~o—so0 W
and

1
2 ~ .
( 85) gp(l‘> T—p (n _ Q)Wn—1|x _ p|n72
(v) There exists ¢ > 0 independent of p such that
(286) ¢ Hy(2) < Gp(2) < cHyp(x)
where
(287) Hy(z) = (maX{|p|’ |x|})5(7) |z — p|*”" min {1 2] - Ip] |p1|}
? min{|pl, [z[} "z —pl?

Proof of Theorem 10: We shall again proceed with several steps.
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Step 15.1: Construction of a positive kernel at a given point: For a fixed
po € R™\ {0}, we show that there exists G, € C*(R™ \ {0,po}) such that

_AGpn - #Gm =0 in R\ {0’p0}
Gp, >0

238 Po 2n

(288) Gy, € L727(B5(0) NR™) with & := [po| /4

Gy, satisfies (i7) with p = po.

Indeed, let 7 € C*°(R) be a nondecreasing function such that 0 < 7 < 1, 7(t) =
forallt <1and#(t) =1forallt> 2. Fore>0,set n(z) —ﬁ(m) for all z € R™.

We let Q7 be a smooth bounded domain of R™ such that R™ N B;(0) C Q1 C
R™ N B3(0). We define Qp := R-Qy so that R® N Br(0) C Qr C R” N B3r(0). We
argue as in the proof of (216) to deduce that the operator —A — % is coercive on

Qg and that there exists ¢ > 0 independent of R, e > 0 such that

Ve 00
/ (|ch|2 iz |2g0 ) dx > c/ |Vp|?dz  for all p € C°(QR).
Qr Qr

Consider R,e > 0 such that R > 2|pg| and € < ‘p"‘, and let Gr . be the Green’s
function of —A — mQ in Qg with Dirichlet boundary condition. We have that

GR,e > 0 since the operator is coercive.

Fix Ry > 0 and ¢’ € (1, -%5), then by arguing as in the proof of (218), we get that
there exists C = C(v, po,q Ry) such that
(289) |Gr.c(Po, )|l 1o’ (Bry ()nkn) < C forall R> Ry and 0 < € < |p0|
and
\po\
(290) |G R.e(po, )|| T <Cforall R> Rpand 0 <e< 5

where § := |pg|/4. Arguing again as in Step 14.2 of the proof of Theorem 9, there
exists Gp, € C*(R™ \ {0,po}) such that

GR 6(p07 ) — Gpo >0 in C?oc(Rr—L \ {07])0}) as R — 400, € = 0
—AG), — ‘xlgGm =0 in R™ \ {0, po}
Gp, =0 on OR™ \ {0}

G, € L73(Bs(0) NR™)

(291)

and nG,, € H}(R™) for all 77 € CP(R™"\{po}). Fix ¢ € C*(R™). For R > 0 large
enough, we have that ¢(pg) f]R" GRr.c(po, ) (=A@ — yne|x|~2p) dz. The integral

bounds above yield z — Gp, (z)|z|~2 € L}, .(R™). Therefore, we get
(292) o(po) = / Gp, () <—A<p - Z|2<p> dx for all ¢ € C(R?).

As a consequence, G, > 0.

Step 15.2: Asymptotic behavior at 0 and py for solutions to (288). It
follows from Theorem 6.1 in Ghoussoub-Robert [20] that either G, behaves like
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1]+ 2| 7= or |21] - |z ~#+ ) at 0. Since G, € L7 (Bs(0)NR™) for some small
d>0and B_(y) < § < B4(7), we get that there exists ¢y > 0 such that

(293) Jim — Cro(®)

z—0 |g;1| . |x‘—/8—('¥) = Co-

Since Gp, is positive and smooth in a neighborhood of py, it follows from (292) and
the classification of solutions to harmonic equations that

1
n —2)wp_1|z — po|"~2

(294) Gpo (x) ~z—po (

Step 15.3: Asymptotic behavior at co for solutions to (288): We let

~ 1 x n D
Gpo (.’1?) = WGPO <x|2> for all z € R™ \ {O, 0} 5

\Po\z
be the Kelvin’s transform of G. We have that

—AG,, — LG, :omm\{o,p‘)} ;G =0ondR™\ {po}.

|[? [pol?
Since G, > 0, it follows from Theorem 6.1 in [20] that there exists ¢; > 0 such
that | |
. = |£U1 = |£U1
either GPO (x) ~r 0 Clm or GPO (x) ~r 0 Clm.

Coming back to Gy, we get that

| |21

. T
(295) either G, () ~|z/500 ClW or Gp, (%) ~|z|—00 Clm'
Assuming we are in the second case, for any ¢ < ¢1, we define

A |21

Gc(x) = Gpo (l‘) - C|x|ﬁf(7) in RE \{Oap0}7

which satisfy —AG.. — #G’C =0in R™ \ {0,po}. Tt follows from (295) and (294)
that for ¢ < ¢;, G. > 0 around py and co. Using that nG. € HE(R™) for all
n € CX(R™\ {po}), it follows from the coercivity of —A — v|z|~2 that G, > 0 in
R™ \ {0,po} for ¢ < ¢;. Letting ¢ — ¢; yields G, > 0, and then G., > 0. Since
Ge, () = o(|z1| - |2|78-1)) as |x| — oo, another Kelvin transform and Theorem
6.1 in [20] yield |z~ z|?+ G, (2) — ca > 0 as |z| — oo for some ¢y > 0. Then
there exists c3 > 0 such that

(296) lim 6 =c¢3 >0and lim Ge, (2) Co.

70 |zq| - |z B-) =00 [ay| - 2] B+
Since z 1= |21 |-|z| 7= € HY , (R"), we get that (p) = [ G, () (‘A@ - #“”) de
for all ¢ € C(R™).

Step 15.4: Uniqueness: Let G1,G2 > 0 be 2 functions such that (¢), (4¢) hold
for p := pg, and set H := G1 — Go. It follows from Steps 2 and 3 that there exists
c € R such that H'(z) := H(x) — clzy| - |#| 7P~ ) satisfies

(297) H'(z) =40 O (|x1| : |x|‘5*(7>) and H'(z) =|z 00 O (|x1| : ‘x|—ﬁ’+(w)) .
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We then have that nH’ € H}(R™) for all n € C>(R™ \ {pg}) and

H'(z) (—Ago - ’yg0> dr =0 forall ¢ € C°(R™).

R™ |z[2

The ellipticity of the Laplacian then yields H' € C>(R" \ {0}). The pointwise
bounds (297) yield that H' € H}(R™). Multiplying —AH' — #H' =0 by H,
integrating by parts and the coercivity yield H' = 0, and therefore, (G — Gs2)(z) =

clxq| - x| =P~ for all € R™. This proves uniqueness.

Step 15.5: Existence. It follows from Steps 2 and 3 that, up to substracting a
multiple of = + || - |z|7#-() there exists a unique function G,, > 0 satisfying
(i), (ii) and the pointwise control (iii). Moreover, (293), (294) and (296) yield (284)
and (285). As a consequence, (286) holds with p = pg.

For p € R™ \ {0}, consider p, : R” — R” a linear isometry fixing R” such that
Pp(\%) = |%|, and define

Gp(x) == (ﬁ;)nQ Gpo ((p;1 ('Zf"x))) for all = € R™\ {0, p}.

As one checks, G, > 0 satisfies (1), (ii), (iii), (284), (285) and (286).

The definition of G, is independent of the choice of p,. Indeed, for any linear
isometry p,, : R — R™ fixing po and R™, G, o p, ! satisfies (i), (ii), (iii), and
therefore G, o p;ol = Gp,- The argument goes similarly of any isometry fixing p.
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