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Abstract 

This report addresses three issues of motion planning for zero-moment point (ZMP)-based 

biped robots. First, three methods have been compared for smooth transition of biped 

locomotion from the single support phase (SSP) to the double support phase (DSP) and vice 

versa. All these methods depend on linear pendulum mode (LPM) to predict the trajectory of 

the center of gravity (COG) of the biped. It has been found that the three methods could give 

the same motion of the COG for the biped. The second issue is investigation of the foot 

trajectory with different walking patterns especially during the DSP. The characteristics of 

foot rotation can improve the stability performance with uniform configurations. Last, a 

simple algorithm has been proposed to compensate for ZMP deviations due to approximate 

model of the LPM. The results show that keeping the stance foot flat at beginning of the DSP 

is necessary for balancing the biped robot.  
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1 COG-based biped walking patterns  

Humans have perfect mobility with amazing control systems; they are extremely versatile 

with smooth locomotion. However, comprehensive understanding of the human locomotion is 

entirely still not analyzed.Please see [Hay19, Hay18/1, Hay18/2, Hay18/3,Hay18/4, Hay17/1, 

Hay17/2, Hay16, Hay15, Hay14, Hay14/1, Hay14/2, Hay14/3, Hay14/4, Hay13/1, Hay13/2, 

Hay13/3, Sam08] for more details on dynamics, walking pattern generators and control of 

biped locomotion (biped robots, lower-extremity exoskeletons, prosthetics, etc.). 

Since biped robots are desired to behave as humans do, they should have a certain level of 

intelligence [Vuk72]. In addition, a high level of adaptability should be provided to cope with 

external environments. As well as, in certain circumstances, optimal motion is selected to 

reduce energy consumption during walking [Vuk72]. There are numerous approaches to 

generate the biped robot motion as detailed in Chapter 2 of [Hay14]. Most researchers 

concentrate on control and walking patterns of the biped robot during the SSP due to its 

instability and the short time of the DSP (it is about 20% during one stride of the gait cycle). 

However, incorporating the DSP into gait cycle is necessary to generate smooth motion of 

COG/hip trajectory (the hip position could be considered as an approximation of the COG 

position), and to stop and change walking speed as desired [Shi06, Kud03, Zhu03]. On the 

other hand, analysis of the DSP could result in challenging problems concerning stable 

walking patterns and control; the biped robot behaves as over-actuated system with 

constrained motion as noted in Chapters 4 and 5 of [Hay14]. To enforce the target biped to 

move, the analyst should generate stable trajectories for the hip and feet; the angular joint 

displacements and their first and second derivatives can be obtained using inverse kinematics. 

Therefore, the first part of this report focuses on planning methods used for generation of hip 

trajectory especially during the DSP. Three methods are investigated and compared to 

understand differences, if exist, between these methods. Then, two walking patterns 1 and 2, 

described in Section 2.1, with four different cases are considered to understand the behavior 

of feet motion and the effect of impact on the biped configuration. Consequently, four 

different feet trajectories are encountered. Piecewise spline functions are used to approximate 

the feet trajectories during the SSP; whereas, foot rotation during the DSP is exactly arc.   

Above all, stability of biped locomotion is needed to be evaluated because these analyses 

depend on approximate model represented by inverted pendulum which can result in 

deviations of ZMP trajectories. Therefore, the last part introduces solutions to the above. 

First, it proposes a thorough algorithm to tune walking parameters (hip height, distance 

traveled by the hip, and the times of the SSP and the DSP) and to satisfy specified kinematic 

and dynamic constraints. Second, it derives exact trigonometric relationships for feet 

trajectories during the DSP rather than the piecewise spline functions used in some works 

such as [Hua99, Hua01]. This can avoid deviations in the velocity and acceleration of the feet 
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at the transition instances of the walking cycle resulting in continuous dynamic response for 

the biped mechanism. 

The structure of this report is as follows. Section  1.1 evaluates comparative studies of 

generation of walking patterns during the complete gait cycle, especially for the DSP. 

Whereas, Section  1.2 introduces a simple algorithm for generating stable biped walking 

compensating ZMP deviations. Section  1.3 presents simulation results and discussions. 

Section  2 concludes. 

1.1 A comparative study for generation of biped walking patterns  

1.1.1 COG (hip) trajectory 

It is verified that designing a suitable COG trajectory can ensure stable dynamic motion for 

biped robots [Hua99, Hua01]. We can classify two essential methods regarding this topic. The 

first one includes designing polynomial functions (or piecewise spline functions) for the COG 

trajectory during the complete gait cycle satisfying the constraint and continuity conditions 

[Hua99, Mu03, Tan03]. This method selects the COG trajectory with largest stability margin 

represented by the zero-moment point (ZMP) stability margin. In contrast, the second method 

suggests employing a simple dynamic model for the biped robot denoted by the linear 

inverted pendulum mode (LIPM) [Kaj96, Kud03, Shi06]. Consequently, the notion of 

pendulum mode has been exploited for generation of stable COG motion. Designing walking 

pattern for biped mechanism without the DSP can lead to discontinuity of COG acceleration 

at switch (transition) instances as seen in Fig.  1-1 and Fig.  1-2; the DSP can mainly improve 

dynamic response at the expense of further computation. Below we will discuss three 

important methods used in literature for describing the motion of the COG trajectory during 

the two gait phases guaranteeing continuous transition between the phases. The following 

three methods have been used as walking generators for biped locomotion during complete 

gait cycle: 

1.1.1.1 Method 1: LIPM-based method [Kud03] 

In this method, both generation of walking patterns during the SSP and the DSP exploits the 

simplified model of inverted pendulum mode. Kudoh and Komura [Kud03] have suggested a 

linear relationship between the ZMP and COG trajectories. In addition, they have considered 

the effect of the angular momentum at the COG of the biped robot; meanwhile, the classical 

linear inverted pendulum strategy assumes that no torques are applied at this point. Thus, we 

will modify the authors’ approach by assuming zero angular momentum and constant ZMP 

applied at the SSP for the sake of comparison with the next approach, as illustrated in Fig. 

 1-3.  From the latter figure, the ratio of the ground reaction forces can be described as 
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��

��
=

�̈�

(�̈� + �)
=

�� − ��

�
 Eq.  1-1 

By assumption of no vertical motion, the relationship between the ZMP and COG trajectories 

can be described as  

���
= ���

−
�

�
�̈��

 Eq.  1-2 

The subscript � refers to the swing phase. Alternatively, Eq.  1-2 can be got from Eq. 2-12 by 

neglecting the angular momentum of the biped and assumption of �̈� = 0. 

 

Fig.  1-1: (a) Biped walking pattern without the DSP, (b) COG velocity response [Shi06] 

 

Fig.  1-2: (a) Biped walking pattern with the DSP, (b) COG velocity response[Shi06] 
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Fig.  1-3: Simplified modeling of biped robot based on method 1. Here �� and �� represent 

half of the distance spent by the COG during the SSP and the DSP respectively. 

Because the ZMP is assumed fixed at the center of the stance foot in this work, the left hand 

side of Eq.  1-2 will be equal to zero. Consequently, the COG trajectory motion during SSP 

can be denoted by 

���
= ������(���) + ������(−���) 

Eq.  1-3 

where ���, ���  are constants which can be obtained from the boundary conditions, and  

�� = ��
��  Eq.  1-4 

In similar manner, the relationship between ZMP and COG trajectories during the DSP can be 

expressed as 

���
= ���

−
�

�
�̈��

 Eq.  1-5 

where ���
 denotes the position of COG during DSP; ZMP trajectory can be assumed as 

���
= ���

/��   Eq.  1-6 

where �� refers to a constant that governs the walking parameters of the biped walking. Then, 

we can get the following equation 

���
= ������(���) + ������(���) 

Eq.  1-7 

with 
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�� = ��(1/�� − 1)/� Eq.  1-8 

To ensure continuous acceleration at the transition moment of the two phases, it is necessary 

that (�̈��
= �̈��

) at this moment. Thus, by substituting ���
= −�� , ���

= �� in Eq.  1-2 and 

Eq.  1-5 we can obtain 

�� + �� =
��

��
 Eq.  1-9 

If one select �� and �� as two independent variables, �� can be get from Eq.  1-9.  

One of the important points lost in the above work is how to determine the suitable DSP time 

that corresponds with parameters ��, ��  and ��; selection of the SSP and the DSP time is not 

arbitrary to ensure continuous dynamic response. This will be answered in the next method. 

1.1.1.2 Method 2: LIPM and LPM-based method [Shi06] 

In this method, an inverted pendulum is considered in the SSP and the same equations of the 

previous method we get; whereas, a linear pendulum mode LPM can be used for modeling the 

biped during the DSP as shown in Fig.  1-4. This method was suggested by Shibuya et al. 

[Shi06] to relate the ZMP linearly to the COG trajectory. Interestingly, the same Eq.  1-5 is 

obtained during the DSP with motion frequency 

�� = ��/�� Eq.  1-10 
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Fig.  1-4: Simplified modeling of the biped based on Method 2 

with notations shown in Fig.  1-4. Comparing the two mentioned methods (please see Fig.  1-3 

and Fig.  1-4), it can be noted that 

�� =
(1 − �)�

2
 Eq.  1-11 

with � denotes a parameter that governs the biped walking, as we will see, and � is the step 

length. In addition 

��

��
=

�

2
   Eq.  1-12 

As a result, we can obtain 

�� = 1 − �  
Eq.  1-13 

And the position of the ZMP can be calculated as  

���
= ���

/�� = ���
/(1 − �) 

Eq.  1-14 

which is the same equation provided by [Shi06]. By comparing Eq.  1-8 and Eq.  1-10, and 

substituting Eq.  1-13, we can get 

�� = (1 − �)�/� 
Eq.  1-15 

which is the same equation obtained in [Shi06]. Therefore, the two methods are equivalent 

and can give the same results.  

Remark  1-1. The correspondent value of the time of DSP (��) that satisfies the constraint 

and continuity equation can be calculated as [Shi06] 

�� =
1

��
����� �

�����
(0)���

(��) +
��̇�

(�)��̇�
(��)

��

�����
(0)� +

��̇�
(�)�

��

� Eq.  1-16 

Remark  1-2. . From Eq.  1-13, we can notice the relationship between the parameter � and the 

parameter ��. As a result, a relationship between the parameter � and the time of DSP (��) 

should be considered to ensure a continuous motion, which is illustrated in equation Eq.  1-16. 
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Remark  1-3. Following the work of [Zhu03], it is possible to consider the constraint 

relationship between the angle of the virtual pendulum (��) and the coefficient of friction (�) 

as follows. 

0 ≤ ����� ≤ � 
Eq.  1-17 

From Fig.  1-4, we can obtain 

0 ≤
� �

2�
≤ � Eq.  1-18 

By selecting the values of � and �, a suitable value of � that satisfies Eq.  1-18 can be chosen. 

In brief, we can summarize the procedure for determining the COG trajectory of the biped 

during the one-step walking as follows: 

1. Determine the position of the COG of the biped robot. This depends on the 

mechanical design of the biped robot. Most researchers have tried to make the COG 

close to the COG position to simplify the calculations. 

2. From Eq.  1-18, select the suitable values of � and �. 

3. From Eq.  1-16, determine the correspondent value of ��; the step time and the swing 

time can be determined as �� 0.2⁄  and (0.8 0.2⁄ )�� respectively. 

4. Using Eq.  1-3 and Eq.  1-7 and their 1st and 2nd derivatives, the motion of COG of the 

biped robot can be generated efficiently. 

1.1.1.3 Method 3 [Van08] 

This method suggests describing a suitable COG acceleration during the DSP satisfying 

continuous conditions at the transition instance. Vanderborght [Van08] suggested that two 

types of functions could be employed for this purpose. A linear acceleration at the DSP can be 

adopted to connect the previous SSP and the next one. However, a large computation can be 

arisen. Consequently, the author suggested the same acceleration of the SSP can be used but 

with a negative sign. We will just display the equations required for the acceleration, velocity 

and the position of the COG trajectory during DSP. For details, we refer to the mentioned 

reference. We do not mention the case of the SSP because a simplified model of the inverted 

pendulum can be used during this phase.  

�̈��
(�) = −�̈��

(�) = −(�����
����(−���) +  �����

����(���)) 
Eq.  1-19 

�̇��
(�) = −(−����� ���(−���) + ����� ���(���)) + �̇��

(��) + �� (��� − ���)   
Eq.  1-20 
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���
(�) = −�������(−���) + ������(���)� + (�̇��

(��) + �� (��� − ���))� + ���

+ ��� + ���
(��) 

Eq.  1-21 

One of the disadvantages of this method is the discontinuity in the position of the COG. This 

can be solved by modifying the time of the double support phase to guarantee the continuity. 

This can coincide with the two previous methods in the selection of suitable �� in order to 

guarantee continuous COG.  

Remark  1-4. All the mentioned methods above (1, 2 and 3) need compensation of the ZMP 

error due to approximation of the biped robot to pendulum model; the compensation 

technique will be explained in details later.  

1.1.2 Foot trajectory 

It is noticed that higher order trajectory may lead to oscillation and overshoot [Gua05]. 

Therefore, it is desirable to use less order polynomials represented by piecewise spline 

functions to get the desirable dynamic performance for the biped robot. Huang et al. [Hua99, 

Hua01] have employed piecewise cubic spline functions for interpolation of the foot 

trajectory. However, the authors have not assumed zero acceleration where the swing foot 

becomes flat on the ground (initial full contact). Therefore, Guan et al. [Gua05] have 

suggested employing fourth order spline functions at the end segments with cubic spline 

functions for the intermediate segments to guarantee the zero constraint conditions at the end 

points. Depending on walking patterns 1 and 2, four cases are possible to be studied in order 

to see some differences of these walking patterns and the effect of impact from kinematics 

point view.  

1.1.2.1 Case 1 

In this case, the foot motion will depend on walking pattern 1; the foot is level to the ground 

without impact at instance of ground-contact of the swing phase, as depicted in Fig.  1-5 (a). 
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Fig.  1-5: Foot trajectory for (a) cases 1 and 2 (b) cases 3 and 4. 

1.1.2.1.1 The imposed constraint conditions 

 x-axis : 

��6
 (�1) = −�, ��6

(�2) = ����, ��6
(�3) = � 

�̇��
(��) = �̇��

(��) = 0, �̈��
(��) = �̈��

(��) = 0  

Eq.  1-22 

where ���
 denotes the x-coordinate of the ankle joint, (����, ����) is assumed a desired point 

should be crossed; it could be the maximum coordinate of the obstacle, �� = 0, �� = �� + �� 

and �� = �� + ��. with �� represent the time required to cross the obstacle. 

In addition to three blending conditions at � = ��; thus, we have 10 boundary and blending 

conditions.  

 y-axis: 

�
�6

 (�1) = 0, �
�6

(�2) = �
���

, ��6
(�3) = 0 

�̇��
(��) = �̇��

(��) = 0,�̈��
(��) = �̈��

(��) = 0  

Eq.  1-23 

where ���
 denotes the y-coordinate of the ankle joint. 

In addition to three blending conditions at � = ��; thus, we have 10 boundary and blending 

conditions.  

1.1.2.1.2 The proposed piecewise spline functions 

Since we have seven boundary conditions for each coordinate, 6-degree polynomial is needed 

to satisfy these boundary conditions; the blending conditions are important in case of 

piecewise polynomials. To avoid high oscillated degree polynomials, we can use 4-4 

piecewise polynomials (splines) to satisfy the ten boundary and blending conditions, as 

described below. 
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��(�) = � ���(� − ��)�       (�� ≤ � ≤ ��)

�

���

 

��(�) = � ���(� − ��)�       (�� ≤ � ≤ ��)

�

���

 

Eq.  1-24 

Where Fi (.) represents ���
 or ���

. 

Remark  1-5. If we intend to use a piecewise spline functions for a trajectory that consists of 

two end conditions without intermediate point, it is necessary to select some intermediate 

point to connect these two segmented polynomials; for details refer to [Gua05]. 

1.1.2.2 Case 2 

The same walking pattern of case 1 is used but with impact at landing, sees Fig.  1-5 (a). 

Therefore, the constraint conditions will be as follows. 

 

 

1.1.2.2.1 The imposed constraint conditions 

 x-axis : 

��6
 (�1) = −�, ��6

(�2) = ����, ��6
(�3) = � 

�̇��
(��) = �̈��

(��) = 0  

Eq.  1-25 

In addition to three blending conditions at � = ��; thus, we have 8 boundary and blending 

conditions.  

Remark  1-6. In effect, we have tried to connect the above constraint conditions using 3-3 

piecewise spline functions, and 4 degree polynomial separately, but deformation of the 

trajectory would occur close to the instance of heel strike. Therefore, to get a feasible 

trajectory to be compared with other cases, we released the intermediate point at � = �� for x- 

trajectory only; thus, we have four boundary conditions. 

 y-axis: 

�
�6

 (�1) = 0, �
�6

(�2) = �
���

, �
�6

(�3) = 0 

�̇��
(��) = �̈��

(��) = 0  

Eq.  1-26 
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In addition to three blending conditions at � = ��; thus, we have also 8 boundary and blending 

conditions.  

1.1.2.2.2 The proposed piecewise spline functions 

 x- axis 

Due to reduction of boundary conditions of x- trajectory (4 boundary conditions); a 3 

polynomials could directly be used to satisfy these conditions. 

��6
(�) = � �

1�
(� − �1)�       (�1 ≤ � ≤ �3)

3

�=0

 Eq.  1-27 

 y-axis 

We need 3-3 piecewise splines to satisfy the 8 boundary and blending conditions. 

��(�) = � ���(� − ��)�       (�� ≤ � ≤ ��)

�

���

 

��(�) = � ���(� − ��)�       (�� ≤ � ≤ ��)

�

���

 

Eq.  1-28 

where Fi (.) represents ���
. 

1.1.2.3 Case 3 

This case adopts walking pattern 2 described in Section 2.1 for trajectory generation of feet 

(see Fig. 1-5 (b)). As we will see in constraint conditions, the foot lands on the ground at heel 

strike without impact (zero velocity and acceleration). Here philosophy of foot trajectory will 

change due to rotation of the feet as arcs during the DSP. Thus, finding the feet trajectory (x 

and y coordinates rather than foot orientation) during the DSP will be easy inspired from 

mathematical formulae of arcs, whereas spline functions will be applied during the SSP. 

Piecewise spline functions will be used to generate trajectory of foot orientation during the 

complete gait cycle; the details are as follows. 

1.1.2.3.1 Rear foot trajectory during the period �� ≤ � ≤ �� (the foot will be in the rear 

position) 

���
= −� + ��� cos(��) , �̇��

= −��� sin(��) �̇�,�̈��
= −����sin(��) �̈� +

 cos(��) �̇�
�)  

Eq.  1-29 
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���
= ��� sin(��) , �̇��

= ��� cos(��) �̇�, �̈��
= ���(cos(��) �̈� − sin(��) �̇�

�)     Eq.  1-30 

1.1.2.3.2 Swing foot trajectory during the period �� ≤ � ≤ �� 

The possible constraint conditions of the swing ankle joint are as follows: 

 x-axis : 

��6
 (0) = −� + �7� cos��

7
(0)�,  ��6

(��) = ����,  

��6
(��) = � − �7 + �7� cos��

7
(��) − �� 

�̇��
(0) = −��� sin(��(0)) �̇�(0), �̇��

(��) = −��� sin(��(��) − �) �̇�(��) 

�̈��
(0) = −����sin���(0)� �̈�(0) +  cos���(0)� �̇�(0)�� 

�̈��
(��) = −���(sin(��(��) − �) �̈�(��) + cos(��(��) − �) �̇�(��)�) 

Eq.  1-31 

In addition to 3 blending conditions at � = �� (�� = �� − ��). 

 

 y-axis 

�
�6

 (0) = �7� sin ��
7
(0)�,  �

�6
(��) = �

���
, �

�6
(��) = �7� sin��

7
(��) − �� 

�̇��
(0) = ��� cos(��(0)) �̇�(0), �̇��

(��) = ��� cos(��(��) − �) �̇�(��) 

�̈��
(0) = ���(cos���(0)� �̈�(0) − sin���(0)� �̇�(0)�) 

�̈��
(��) = ���(cos(��(��) − �) �̈�(��) − sin(��(��) − �) �̇�(��)�) 

Eq.  1-32 

where ��� = �� − ���. 

In addition to three blending conditions at � = ��.To satisfy the boundary conditions 

(position, velocity and acceleration) of the swing foot with the intermediate point (����, ����) 

which represents the obstacle location, a 6th degree polynomial is needed for each coordinate 

(�, �) for the swing foot. Instead of using 6th degree polynomial which could lead to more 

oscillations, we have used piecewise spline functions with less oscillation. Because we have 

10 boundary and blending conditions including the continuity condition (velocity and 

acceleration) at the intermediate point, it is possible to use two 4th spline functions to satisfy 

all required conditions. 
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��(�) = � ���(�)�                      0

�

���

≤ � ≤ ��  

��(�) = � ���(� − ��)�            ��

�

���

≤ � ≤ �� 

Eq.  1-33 

where �(. ) represents � or � coordinate for swing ankle. Briefly, after substituting the 

boundary and blending conditions, a linear system of 10 equations can be obtained by which 

the constant coefficients of Eq.  1-33 can be found easily. 

1.1.2.3.3 Front foot trajectory during the period �� ≤ � ≤ �� (the foot will be in the 

front position) 

 
���

= � − ��� − ��� + ��� cos(�� − �) , �̇��
= −��� sin(�� − �) �̇�  

Eq.  1-34 

�̈��
= −���(sin(�� − �) �̈� + cos(�� − �) �̇�

�)  Eq.  1-35 

���
= ��� sin(�� − �) , �̇��

= ��� cos(�� − �) �̇�,   
Eq.  1-36 

�̈��
= ���(cos(�� − �) �̈� − sin(�� − �) �̇�

�) Eq.  1-37 

1.1.2.3.4 Orientation trajectory of foot during gait cycle (Trajectory of foot angle) 

Since the swing foot will impact the ground at instance of heel strike with zero velocity and 

acceleration; we should divide the angle-foot trajectory into two trajectories as follows. 

 Foot angle during the time �1 ≤ � ≤ �4 

The imposed constraint conditions 

q�(t�) = π, q�(t�) = q� �, q�(t�) = q� � 

q̇�(t�) = q̇�(t�) = 0 

q̈�(t�) = q̈�(t�) = 0 

Eq.  1-38 

In addition to the three blending conditions at time t�; thus 4-4 spline functions could be used 

to find all unknowns. 
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��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ �� 

��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ �� 

Eq.  1-39 

 Foot angle during the time t4 ≤ � ≤ t5 

The imposed constraint conditions 

q�(t�) = q� �, q�(t��) = q�, q�(t�) = π 

q̇�(t�) = q̇�(t�) = 0 

q̈�(t�) = q̈�(t�) = 0 

Eq.  1-40 

In addition to the three blending conditions at time t��; thus 4-4 spline functions could be used 

to find all unknowns. 

��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ t�� 

��(�) = � ���(� − ��)�                      t��

�

���

≤ � ≤ �� 

Eq.  1-41 

Remark  1-7. Concerning trajectory of foot angle during the time t4 ≤ � ≤ t5, additional 

intermediate point has been added at time � = t�� to connect the two piecewise splines 

together, see Remark  1-5. 

1.1.2.4 Case 4 

This case is the same as that of case 3 but without zero velocity and acceleration at instance of 

heel strike. The derivation of �, � foot trajectory during the SSP and the DSP are exactly the 

same as that of the latter case; see Eq.  1-34 to Eq.  1-41. However, the foot-angle trajectory 

will have different imposed constraint conditions; consequently, new piecewise spline 

functions will be used. The imposed constraint conditions for the foot angle are  

q�(t�) = π, q�(t�) = q� �, q�(t�) = q� �, q�(t�) = π 

q̇�(t�) = q̇�(t�) = 0 

q̈�(t�) = q̈�(t�) = 0 

Eq.  1-42 
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In addition to 6 blending conditions at times t� and t4; consequently, the total boundary and 

blending conditions are 14. To satisfy the above conditions, 4-3-4 piecewise splines can be 

used as described in the following equations. 

��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ �� 

��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ �� 

��(�) = � ���(� − ��)�                      ��

�

���

≤ � ≤ �� 

Eq.  1-43 

Remark  1-8. It is assumed that the walking step starts when the front foot strikes the ground 

while the rear foot is in full contact, and it ends when the swing foot becomes in full contact 

with the ground. However, we have assumed that the start time of each phase is set to zero, 

consequently shifting every piecewise polynomial function is needed in order to achieve this 

purpose. It should be mentioned that after finding the COG and foot trajectories, the inverse 

kinematics is necessary to find the biped joint trajectories. For details, we refer to [Van08]. 

1.2 A simple algorithm for generating stable biped walking patterns 

Despite miscellaneous walking pattern generation and stabilization approaches, it is difficult 

to find a thorough method that can tune the walking parameters to satisfy the kinematic and 

dynamic constraints: singularity condition at the knee joint, ZMP constraint, and unilateral 

contact constraints. Another problem that has been investigated in this section is the 

generation of foot trajectory during DSP. References [Hua99, Hua01] used piecewise spline 

functions to approximate the trajectory of the front and rear feet during DSP. It is known that 

during DSP the front foot rotates about the heel joint while the rear foot rotates about its front 

tip; therefore, their trajectories can be found easily by trigonometric relationships for arcs 

rather than approximate spline which can results in deviations in the velocity and acceleration 

of the feet especially at the transition instances. Therefore the following subsections propose a 

sufficient algorithm that solves the mentioned problems. 

1.2.1  COG Trajectory 

Eq.  1-3 and Eq.  1-7 can describe trajectory of biped COG during the SSP and the DSP 

respectively. 

Remark  1-9. Some of the drawbacks of walking pattern 2 have been described in Chapter 6 

of [Hay14]. In this section, we will see another important disadvantage related to 
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stability/balance problem. Moreover, trajectory planning of walking patterns 2 and 3 could be 

similar; the difference is that motion the front and rear feet during the walking pattern 2 are 

simultaneous, while their motion will be consecutive in walking pattern 3. Therefore, the next 

subsection will describe a novel algorithm for compensating for deviations of ZMP trajectory 

concerning walking patterns 2 and 3. 

1.2.2 Feet trajectory 

Subsection 6.1.2.3 describes in details the trajectory of feet for walking pattern 2; the same 

equations can be used for generating foot trajectory for walking pattern 3 (the difference lies 

in timing the DSP). In more details for walking pattern 3, the sequences of phase times are 

�� = 0, �� − �� = ��, �� − �� = ��, �� − �� = ��), whereas for walking pattern 3 they are 

�� = 0, �� − �� = ��/2, �� − �� = ��, �� − �� = ��/2). 

1.2.3 Kinematic and dynamic constraints 

 Singularity constraint  

There could be three reasons which may lead ZMP-based biped robot to walk with bent 

knees: (a) constraining the COG trajectory to move in constant height, (b) appearance of the 

difference of shank and thigh angles at the denominator in the inverse kinematics solution. (c) 

if the DSP is included in the trajectory planning, the constraint control (force control) of the 

biped could demand the same problem of (b) during solution. 

Applying the cosine’s law  

���Ω = (2�� − ��) 2��⁄  
Eq.  1-44 

with Ω denotes the angle between the thigh link and the shank link, � is the length of the 

shank link which is equal to the thigh one, and � represents the distance between the ankle 

joint and the COG joint. To avoid singularity position for the knee joint, it is necessary to 

satisfy the following condition 

−1 < (2�� − ��) 2��⁄ < 1 
Eq.  1-45 

 Unilateral contact constraints 

Please see Eq. 4-54 which can be used to describe unilateral contact constraints during the 

SSP and the DSP. 
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Remark  1-10. Since the biped robot does not have a unique solution during the DSP, we 

assume a linear transition function for the ground reaction forces of the front foot (right foot) 

as described in Subsection 4.2.1.3. 

 Zero-moment point constraint 

−�� ≤ �� ≤ 0        for SSP 

−�� ≤ �� ≤ �        for DSP 

Eq.  1-46 

1.2.4 The proposed algorithm 

As said previously, the pendulum model is approximate model for biped robot because the 

real robot is multibody system. In addition the biped mechanism is inherently unstable and 

has not fixed base. Therefore, to get feasible biped motion, the aforementioned kinematic and 

dynamic constraints should be satisfied via modifying the times of the DSP (��) and the SSP 

(increasing the phase times). The distance travelled by the COG during the walking phases 

will be changed accordingly; this will be clear in the simulation results. The proposed 

compensation algorithm can be described as shown in Fig.  1-6. 
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Fig.  1-6: Flowchart of the proposed algorithm for compensation of ZMP deviations 
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1.3 Simulation results and discussions 

The results can be divided into three categories as follows: 

1.3.1 Comparison between methods 1, 2 and 3 

Following the procedure described in Subsection  1.1.1 for generation of COG trajectory, the 

desired (walking) parameters have been used (� = 0.5, � = 0.7561 (cases 1 , 2), � =

 0.7575 (cases 3 , 4), �� = 0.5 [�], �� = 0.125 [�]). It is noticed that there is clear 

relationship between the walking parameter � and �� as expressed in Eq.  1-16. We have 

employed the mentioned parameters with methods 1, 2 and 3. Consequently, the COG motion 

is continuous regarding position, velocity and acceleration, as shown in Fig. 1-7. In effect, the 

methods 1 and 2 are identical; therefore, we compared between methods 2 and 3. The latter 

two methods give similar motion. However, Method 2 is more systematic in dealing with the 

parameters of the biped walking and guaranteeing the constraint and continuity conditions. 

From Fig. 1-7, it is clear that the SSP encounters deceleration and acceleration sub-phases 

sequentially. This can be explained according to Eq.  1-2 where deceleration of the biped 

robot can occur until the middle of SSP because the COG position is behind the front stance 

foot. The next acceleration sub-phase can result from the progression of the COG in front of 

the stance foot. Another issue that can be noticed is that the motion of the hip link is close in 

the middle of SSP, as shown in Fig. 1-8 to Fig. 1-11. As aforementioned, the COG of the 

biped robot will decelerate very slowly at the middle region of the SSP, and then it accelerates 

slowly near this region.  

 

Fig.  1-7: The position, velocity and acceleration of COG (hip) (Method 2 ----; whereas 

Method 3              ). As noted, the two methods have the same results.  
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Fig.  1-8: Stick diagram of case 1 Fig.  1-9: Stick diagram of case 2 

 

(a) with contact angle of 120. 

 

(b) with contact angle of 300. 

Fig. 1-10: Stick diagram for case 3 

 

(a) Stick diagram of case 4 with contact 

angle of 120. 

 

(b)  Stick diagram of case 4 with contact 

angle of 300. 

Fig.1-11: Stick diagram for case 4 
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1.3.2 Gait Patterns based on foot trajectory 

In this study, four cases of foot trajectory with different boundary conditions were compared 

as detailed in Section  1.1.2. The characteristics (advantages and disadvantages) of these cases 

are detailed in Tab.  1-1. 

Tab.  1-1: The characteristics of foot trajectory according to the four simulated cases. 

Case No Characteristics 

1  The foot is level to the ground. 

 The maximum hip height is 85 [mm]; increasing this value could result in 

singularity at knee joint. 

 Due to zero velocity and acceleration at end conditions, the swing foot moves very 

slowly at these ends; this can lead more energy consumption especially at heel 

strike [Van08]. 

 Due to the latter point, relatively messing configuration of swing leg at the end of 

swing phase; see Fig. 1-8. 

2  The foot is also level to the ground. 

 The maximum hip height is 85 [mm]; increasing this value could result in 

singularity at knee joint. 

 There is some change in behavior of foot motion at the end of the swing phase due 

to free condition (striking the ground with some velocity) at this end. This may 

explain the uniform configuration of the swing leg at end of this phase, see Fig. 1-

9. 

 It is difficult to add intermediate point for foot trajectory in x-axis due to the free 

condition mentioned previously, see Remark  1-6.  

3  The foot takes off and strikes the ground with specified angles; see Fig. 1-10 . 

 Although the biped robot strikes the ground without impact, its configuration can 

be improved by modifying landing angle as shown in Fig. 1-10 (a) and (b). 

 The foot moves very slowly at the beginning and end of the swing phase due to its 

zero end conditions.  

4  The foot trajectory has the same characteristics as that of case 3 but with some free 

motion at heel strike due to free impact at this instance; see Fig. 1-11. 

1.3.3 Compensation of ZMP deviations using algorithm of Fig. 1-6 

All above analyses have been performed without checking whether the ZMP trajectory is still 

inside the support polygon or not, see Chapter 2 of [Hay14] for more details on this important 
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criterion. In this study, we concentrated on walking pattern 2 and 3. In general, the results can 

be summarized as follows:  

 Walking pattern 3 before and after compensation. 

We selected initial parameters for our biped model (� = 0.88�, � = 0.7557, �� =

0.125 [�], �� = 0.5 [�]). In effect, these parameters have been selected according to previous 

work which deals with suboptimal trajectory planning of the same robot model. The proposed 

hip height of the biped can violate the singularity condition. Therefore, unreasonable solution 

can be obtained due to appearance of imaginary numbers. Our suggested algorithm tunes the 

mentioned parameters to give stable trajectory for the COG of biped model. Tab.  1-2 shows 

the walking parameters before and after compensation while Fig. 1-12 and Fig. 1-13 show 

COG and ZMP trajectories before and after tuning respectively. 

Tab.  1-2: Tuning of walking parameters 

 Walking parameters 

Before 
compensation 

� = 0.88�, � = 0.5757, �� = 0.125 [�], �� = 0.5 [�] 

After compensation � = 0.86�, � = 0.6203, �� = 0.3 [�], �� = 1.2 [�] 

 

 

Fig. 1-12: ZMP and COG trajectories before compensation (walking pattern 3) 
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Fig. 1-13: ZMP and COG trajectories after compensation (walking pattern 3) 

 Walking pattern 2 vs. walking pattern 3. 

From Fig. 1-14, it could be noted that the ZMP is out of its stability margin at the beginning 

of the DSP due to rotation of the rear foot instantaneously at the DSP. This instability can be 

avoided in walking pattern 3 which can guarantee smooth transition or ZMP trajectory and 

foot rotation. In effect, keeping stance foot fixed at beginning of DSP is necessary to get 

stable motion. 

 

Fig. 1-14: ZMP and COG trajectories after compensation (walking pattern 2) 
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2 Conclusions 

 In this report, we have attempted to focus on the smooth transition from the SSP to 

the DSP and vice versa. Three methods have been compared for this purpose. The 

first two methods have exploited the notion of pendulum mode with different 

strategies. However, it is found that the two mentioned methods can give the same 

motion of center of gravity for the biped.  Whereas, Method 3 has suggested to use 

a suitable acceleration during the double support phase (DSP) for a smooth 

transition. Although the Method 3 can give close results as in the former methods, 

the latter are more systematic in dealing with the walking parameters of the biped 

robot. The second issue we focus on is the different patterns of the foot trajectory 

especially during the DSP. The characteristics of foot rotation can improve the 

stability performance generating uniform configuration. 

 The last part of this report concentrates on compensating the ZMP deviations due 

to approximate model of LPM. Successful results can be got with walking pattern 

3. 

 All above methods are offline applied because it uses much iteration to get the 

feasible motion for the target biped. The online modified version should be tested 

and selected carefully as discussed in detail in Chapter 3 of [Hay14].  
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