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Adsorption Deformation of Microporous Composites

We study here the behavior of flexible adsorbent materials, or Soft Porous Crystals, when used in practical applications as nanostructured composites such as core-shell particles or mixed matrix membranes. Based on simple models and the well-established laws of elasticity, we demonstrate how the presence of a binder results in an attenuation of the adsorption-induced stress and deformation. In the case where the adsorbent undergoes adsorption-induced structural transitions, such as the gate opening phenomenon occurring in some metal-organic frameworks, we show that the presence of the binder will result in shifts of the adsorption-induced transition pressures.

 Most prominent are gate

opening and breathing transitions, which have been explored in great detail by using in situ XRD scattering drawing on a variety of metal-organic framework (MOF) materials. 19,20,10 Microscopic mechanisms of MOF flexibility have been examined by detailed first principles and atomistic molecular dynamic and Monte Carlo simulations performed on the crystal cell level. 21,22,23,24,25 A rigorous thermodynamic approach 11 has been proposed to predict the adsorption stress from adsorption isotherms. 26 However, these studies are limited to single adsorbent particles, while the vast majority of practical applications require the use of composite materials, 27 such as micrometer size adsorbent particles embedded into a permeable matrix 28 , 29 , 30 or thin films anchored on a support. 31,32 Although composite MOF materials have been studied from the point of view of adsorption and gas separation, such as e.g. MOFs coated with mesoporous silica, 33 there has been so far no specific study focused on flexibility, which is still a completely open question.

In this letter, we explore the flexibility of composite materials formed by a soft porous crystal and a non-adsorbing matrix. In particular, we study the extent to which the elastic properties of the non-adsorbing matrix affect the adsorption-induced deformation of the adsorbent particles and the composite as a whole. Using a simple yet instructive spherical core-shell model, we find that adsorption deformation in composite is reduced compared to unconfined particles and the magnitude of this effect is determined by the both elastic moduli of the matrix and the morphology of the nanostructured composite. The reduction of adsorption deformation leads to the shift of the positions of morphological transformations, which can be even suppressed due to matrix rigidity. These conclusions have important implications on the feasibility assessment of the potential applications, which are based on the effects of adsorbent flexibility. For example, widening the hysteresis loops in adsorption-desorption behavior can improve the amount of mechanical energy stored in a high-pressure liquid intrusion. 23 Tuning the flexibility of the As a model system, let us consider a composite spherical particle made of an adsorbing core of radius R 1 (in our case, a particle of soft porous crystal) and non-adsorbing elastic shell of external radius R 2 . Both adsorbent and matrix materials are assumed isotropic. The elastic properties of the composite are characterized by the volumetric modulus K a of the adsorbent, whose deformation is considered uniform, and by the Young modulus E and Poisson's ratio ν of the matrix. Under the action of adsorption-induced stress 𝜎𝜎 " , the adsorbent core is deformed uniformly with linearly progressing radial displacement 𝑢𝑢 $ and constant radial strain 𝑢𝑢 $$ given by

𝑢𝑢 $ = & ' () * +, ' 𝑟𝑟 ; 𝑢𝑢 $$ = & ' () * +, ' at r < R 1 ( 1 
)
where r is radial coordinate. 35 The external pressure 𝑃𝑃 / acting on the core-shell boundary r = R 1 is unknown and is determined from the solution of the classical Lamé problem of the deformation of the outer spherical shell under action of internal P 1 and external P 2 pressures. 35 The general solution of the Lamé problem implies that in the shell, the radial displacement 𝑢𝑢 $ , strain 𝑢𝑢 $$ , and stress 𝜎𝜎 $$ are given by the following equations:

𝑢𝑢 $ = 𝑎𝑎𝑟𝑟 + 𝑏𝑏/𝑟𝑟 4 , 𝑢𝑢 $$ = 𝑎𝑎 -2𝑏𝑏/𝑟𝑟 + , 𝜎𝜎 $$ = 8 /(49 𝑎𝑎 - :; *<= > $ ? , at R 1 < r < R 2 . ( 2 
)
The constants a and b are determined from the boundary conditions, 

𝜎𝜎 $$ 𝑅𝑅 / = -𝑃𝑃 / (3) 
𝜎𝜎 $$ 𝑅𝑅 4 = -𝑃𝑃 4 , (4) as 𝑎𝑎 
Note that the composite morphology is characterized by the ratio g of the adsorbent and matrix volumes,

𝑔𝑔 = A * ? A : ? (A * ? (8) 
The unknown pressure 𝑃𝑃 / is determined from the third boundary condition of equality of the displacements in the core and in the shell at r = R 1 , namely:

𝑢𝑢 $ (𝑅𝑅 / ) = (𝜎𝜎 " -𝑃𝑃 / )𝑅𝑅 / /3𝐾𝐾 " = 𝑎𝑎𝑅𝑅 / + 𝑏𝑏/𝑅𝑅 / 4 (9) 
Combining condition ( 9) with ( 5) and ( 6) one arrives at a linear equation for the boundary pressure 𝑃𝑃 / , which solution gives:

𝑃𝑃 / = & ' H ? *<M N O( *PM Q , ' ) : /H, ' M Q H ? *<M N O (10) 
As such, the sought radial strain in the adsorbent core is given as

𝑢𝑢 $$ = (𝜎𝜎 " -𝑃𝑃 / )/3𝐾𝐾 " = & ' +, ' - & ' /+, ' H(/(R)(//IO(//+,)) : /H, ' (R/,H+(/(R)/IO) (11) 
Equation 11 shows that the adsorption-induced strain 𝜎𝜎 " is reduced by the elastic confinement, since the second term on the right-hand side is guaranteed to be negative. The extent of the lowering or "damping" of the deformation upon adsorption depends on both the geometrical characteristics of the composite material (through the ratio g) and the mechanical properties of the elastic shell (moduli K and µ). It should be noted that the volumetric strain 𝜖𝜖, which is the quantity involved in thermodynamic descriptions and models of adsorption deformation, is equal to three times the radial strain 𝑢𝑢 $$ , 𝜖𝜖 = 3𝑢𝑢 $$ . As such, Eqn. 11 can be rewritten in terms of the volumetric strain 𝜖𝜖 as a function of the adsorption stress 𝜎𝜎 " and external pressure, 𝑃𝑃 4 = 𝑃𝑃 ext :

𝜖𝜖 = & ' , ' - & ' /, ' H(/(R)(//IO(//+,)) ext /H, ' (R/+,H(/(R)/IO) (12) 
We will now consider specific cases, schematized in Figure 1, that are relevant for practical applications of composite materials containing soft porous crystals.

Let us first consider an unconfined adsorbent under external pressure 𝑷𝑷 e ex xt t . This case corresponds to 𝑃𝑃 4 = 𝑃𝑃 XYZ and 𝑔𝑔 → ∞ that reduces to the standard equation

𝜖𝜖 = (𝜎𝜎 " -𝑃𝑃 ext )/𝐾𝐾 " (13) 
This is the equation used in thermo-mechanical models of adsorption-induced deformation of soft porous crystals when the pure MOF is considered. 26 In the absence of external mechanical pressure (P ext = 0), it further reduces to the simple Hooke's law 𝜖𝜖 = 𝜎𝜎 " /𝐾𝐾 " , which will in the following serve as our baseline reflecting the behavior of flexible MOFs in the absence of confining phase.

In the case of an adsorbent particle in infinite elastic matrix, the volume of the exterior matrix is much larger than that of the crystal. It is a very simplified version of real composite materials used in practical applications, e.g. such as a mixed matrix membrane with particles of soft porous crystal embedded in a surrounding polymer phase.

This case corresponds to 𝑃𝑃 ext = 0 and 𝑔𝑔 → 0. The volumetric strain from Eqn. 12 is now equal to

𝜖𝜖 = & ' , ' 1 - / /H, ' /IJ = & ' , ' × / /HIJ/, ' < & ' , ' (14) 
From this equation, we see that the deformation of the material is reduced, by a constant factor that depends on the relative elasticity of the adsorbent and matrix: the stiffer it is, the more it prevents the core particle from changing its volume. The adsorption-induced stress is dampened, or diminished, by a factor of / /HIJ/, ' .

Another case of interest is that of core-shell nanoparticles, i.e. the general case in which g depends on the shell size but 𝑃𝑃 ext = 0. This geometry of a nanoparticle of MOF crystal coated (or surrounded) by a non-adsorbing matrix is particularly relevant for applications, where the shell could be used to reinforce the chemical and mechanical stability of the MOF core. For that case, the adsorption-induced strain is:

𝜖𝜖 = & ' , ' 1 - / /H, ' M ?Q H(/(R)/IJ < & ' , ' (15) 
Like in the previous case, the strain is reduced compared to the unconfined particle, but this time the factor depends on both the bulk (volumetric) K and shear µ moduli of the shell matrix, as well as the geometry (through g). For the specific case of a thin shell of thickness h (a coating of the MOF), this factor equals 𝑔𝑔 = 𝑅𝑅 / /3ℎ.

Finally, now turn to a composite material (soft porous crystal core and elastic shell) jacketed by a non-deformable outer container. In practice, this represents a composite that is surrounded by a much stiffer material. This case thus corresponds to different boundary conditions, because the outer stress P 2 is undetermined, but the volume is conserved leading to a condition of zero displacement at 𝑟𝑟 = 𝑅𝑅 4 , 𝑢𝑢 $ 𝑅𝑅 4 = 0 . Solution of the Lamé equations with this boundary condition gives the following equation for the volumetric strain (see mathematical derivation in Appendix):

𝜖𝜖 = & ' () * , ' = & ' , ' × / /H MQ Q ' H Na *<M ?Q ' < & ' , ' (16) 
Hence, despite the different nature of the boundary conditions, the end result is similar: additional constraints on the soft porous crystals cause further reduction in volumetric strain.

Finally, let us highlight the effect of the confinement-induced dampening of the adsorption deformation drawing on the example of a stimuli-responsive MOF. We consider here a MOF crystal undergoing a gate opening phenomenon, i.e. the adsorption-driven opening from a nonporous closed structure (or structure of lower pore volume) into a microporous open phase (or structure of large pore volume). Following the thermo-mechanical view (or "stress model") of adsorption-induced structural transitions in soft porous crystals, 26 gate opening occurs upon adsorption when the outwards stress exerted by the guest molecules reaches a certain critical threshold, the limit of stability of this closed phase. Symmetrically, upon desorption the transition occurs when the adsorption-induced stress falls below another threshold, which is the limit of To illustrate the impact of the external confinement on the gate-opening phenomenon, we consider a crystal in infinite elastic matrix. The adsorption stress isotherm (stress vs. gas pressure) and the respective adsorption isotherm are plotted by dashed lines in Fig. 2. One can see that the changes in the adsorption stress lead to a shift in the position of the structural transition. In the example given in Fig. 2, this phenomenon leads to a widening of the hysteresis loop, with gate opening occurring at a higher pressure and gate closing at a lower pressure. It could also be possible, depending on the nature and shape of the adsorption stress profiles, to observe a reverse effect -e.g., with gate closing at a higher pressure than in the unconfined soft porous crystal, or gate opening at lower pressure. Similar conclusions can be made for the case of core-shell particles.

In conclusion, we have shown that the elastic confinement present in composite materials affects adsorption-induced deformation of soft porous crystals. This effect is of particular interest, since flexible adsorbents in practical applications are used as composites such as core-shell particles or mixed matrix membranes. By deriving the mechanical equations for the deformation of model composite materials, we show that this effect depends on the geometric nature of the composite as well as on the respective elastic properties of the adsorbent (through its bulk modulus) and the elastic matrix (through its bulk and shear moduli). In all cases, however, the presence of the binder results in an attenuation of the adsorption-induced deformation. In the case where the adsorbent undergoes adsorption-induced structural transitions, such as the gate opening phenomenon occurring in metal-organic frameworks, the presence of a binder around the adsorbent can result in shifts of the transition pressures. In future works, it will be of interest to expand the study from the radial stress to the tangential stress at the crystal-binder interface. This tangential stress cannot exceed the limit of material integrity of the elastic medium that 10 determines the conditions, at which the nanostructured composite "breaks down", i.e. contact between the soft porous crystal and the surrounding elastic medium is lost. Noteworthy the analysis performed in this work is limited to isotropic crystals; its extension to anisotropic structures is highly desired yet involves a much more elaborated treatment of adsorption deformation. We hope that this first theoretical treatment of the open question of flexibility of MOF-based nanocomposite materials will spur experimental research in that direction.
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 1 Figure 1. (a) Model system representing a composite material. (b) Three special cases of the

  The volumetric 𝐾𝐾 and shear 𝜇𝜇 moduli are used in the right-hand side of Eqns. 5 and 6 instead of Young's modulus E and Poisson's ratio ν, to which they are related in an isotropic elastic medium by:

  stability of the open phase. This mechanism results in step-wise adsorption-desorption isotherms forming a hysteresis loop exemplified in Figure2(solid lines), taking for the adsorption stress profile a Langmuirian equation, as derived in Ref.26. 
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 2 Figure 2. Gate-opening phenomenon in an isolated crystal (solid lines) and in a crystal
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Appendix A. Derivation of adsorption-induced deformation in a jacketed composite

Let us consider a composite material jacketed by a non-deformable outer container. The boundary condition in this case is

We start from the general solution to the Lamé problem in the shell region as given by Equation ( 2), which we re-write as

The boundary conditions are and for the strain in the adsorbent core 𝑢𝑢 $$ = (𝜎𝜎 " -𝑃𝑃 / )/3𝐾𝐾 " = 𝜎𝜎 " /3𝐾𝐾 " (1 + 𝑔𝑔𝐾𝐾/𝐾𝐾 " + 4𝜇𝜇(1 + 𝑔𝑔)/3𝐾𝐾 " ) (A.8) 𝜖𝜖 = (𝜎𝜎 " -𝑃𝑃 / )/𝐾𝐾 " = 𝜎𝜎 " /𝐾𝐾 " (1 + 𝑔𝑔𝐾𝐾/𝐾𝐾 " + 4𝜇𝜇(1 + 𝑔𝑔)/3𝐾𝐾 " ) (A.9)