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[1] We present a description, an evaluation, and a comparison of four methods designed
to produce objective and physically consistent maps of ozone concentration fields. These
methods are based on the use of a chemistry-transport model (CTM) and available
observations. In most existing analysis systems, the error covariance is modeled using
assumptions of homogeneity and isotropy. However, these assumptions may fail in the
case of strongly heterogeneous terrain or emission patterns. Therefore we propose a simple
method for specifying an anisotropic and heterogeneous background error covariance
model in a statistical interpolation. We illustrate the positive impact of the implementation
of this model. Since the covariance model is independent of the state of the atmosphere
and invariant in time, we simultaneously test kriging techniques that are generally used for
spatial interpolations. Kriging is applied to the observed values or to the differences
between simulated and observed concentrations, namely the innovations. We perform an
objective statistical validation of all methods for data recorded over an entire summer
season, in contrast to other evaluations of data assimilation methods made in air quality
modeling. We demonstrate that the RMS error of the ozone analyses at the surface is
30–50% smaller than the one from simulations, regardless of the method used. Most of the
time, the kriging method applied to the innovations gives results equivalent to that of the
anisotropic statistical interpolation, in spite of very different formulations. In addition,
we show that this method outperforms the classical kriging method applied to only
observations. The information provided by the CTM is therefore essential to a good-quality
representation of ozone patterns such as city plumes or urban/suburban gradients. We
also use the Atmospheric Pollution Over the Paris Area (ESQUIF) airborne
measurements to demonstrate that the anisotropic method efficiently corrects CTM fields
in altitude. INDEX TERMS: 0345 Atmospheric Composition and Structure: Pollution—urban and regional

(0305); 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry;
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1. Introduction

[2] In the last 20 years, atmospheric chemistry and air
quality sciences have undergone increasing progress with
the development of sophisticated chemistry-transport
models (CTMs) and with the growing extent of operational

monitoring networks. So far, fields of pollutant concentra-
tions have been only represented by either of the three
following ways, namely, (1) direct model output maps,
(2) maps displaying concentration values at given monitor-
ing stations, or (3) field campaign measurement points.
Direct model output concentration maps are useful as a first
estimate of the pollutant concentrations anywhere over a
given region. However, they are not exact because of model
deficiencies. On the other hand, raw measurements suffer
from representativeness problems and only provide local
information.
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Copyright 2003 by the American Geophysical Union.
0148-0227/03/2003JD003679

ACH 10 - 1



[3] The need for observation-consistent three-dimensional
quantitative maps of pollutant concentration fields (usually
called analyzed maps) is obvious. First, our understanding
of the processes participating in photo-oxidant pollution
events can only be complete if accurate three-dimensional
descriptions of the atmospheric pollutant content are
available. Second, inhabitants need to know the quality
of the air they breathe regardless of whether or not they
live close to monitoring stations. Finally, the routine
production of analyzed concentration maps, used as initial
fields, may be of particular relevance to air quality
forecasting.
[4] In weather forecasting, accurate three-dimensional

initial fields are required because forecast errors propagate
to later times and eventually dominate. The routine produc-
tion of analyzed meteorological fields has been a well-
known question since forty years. A variety of statistical
interpolators have been proposed in order to account for
fresh observations when correcting previous forecasts [see,
e.g., Daley, 1991]. Presently, the three-dimensional initial
fields are constructed using data assimilation methods. In
these methods, the observed information is accumulated
into a model state by taking advantage of consistency
constraints with laws of time evolution and physical prop-
erties. The development of elaborate data assimilation
methods has led to an increasing interest, especially during
the last decade with the pioneering work of Lewis and
Derber [1985] and Talagrand and Courtier [1987] on four-
dimensional variational (4D-VAR) assimilation. Specific
input variables to the model are adjusted to optimize
predicted output fields in comparison to observations.
Techniques using the Kalman-Levy filter [Kalman, 1960;
Kalman and Bucy, 1961; Ghil and Malanotte-Rizzoli, 1991]
and variants have also been proposed.
[5] Recently, these advanced data assimilation techniques

have been applied in air quality modeling to determine
tropospheric pollutant concentration fields [Schmidt, 1999;
Elbern and Schmidt, 2001; van Loon and Heemink, 1997].
In addition, they have been demonstrated to be efficient for
optimizing model inputs such as emissions [Elbern et al.,
2000; Elbern and Schmidt, 2002; van Loon et al., 2000;
Mendoza-Dominguez and Russell, 2001; Chang et al.,
1996, 1997; Gilliland and Abbitt, 2001]. Their main advan-
tage is to provide best consistency between model input and
output fields. However, they are computationally intensive
and memory expensive. This is a major difficulty in
operational real time applications for air quality diagnosis
and forecasting.
[6] The purpose of this work is strictly to produce routine

ozone concentration maps, so a full data assimilation
scheme is not necessarily required. Therefore we propose
and evaluate methods based on statistical interpolation
[Daley, 1991] and ordinary kriging [Cressie, 1993]. These
methods are based on the use of a CTM ozone concentration
outputs and surface ozone measurements. Their advantage
is to present a compromise between numerical cost and
physical consistency.
[7] In atmospheric chemistry, statistical interpolation has

been mainly used for stratospheric data assimilation [Jeuken
et al., 1999]. In the troposphere, such an interpolation has
been tested by Finkelstein [1984] to produce acid precipi-
tation analyses. The method consists of interpolating differ-

ences between observations and simulations and adding the
resulting field to the initial simulation. The weights of the
interpolation depend on covariances of the observation
errors, of the CTM output errors and of their cross-cova-
riances. Therefore the success of the method relies on
accurate knowledge of the error statistics in both observed
data and CTM forecasts.
[8] In most existing analysis systems, the CTM error

covariance, usually called the background error covariance,
is modeled using assumptions about homogeneity and
isotropy. However, these assumptions are often violated in
the case of pollutants analysis. These violations especially
occur where there are strong concentration gradients (near
large sources, topographic barriers). Similar isotropy viola-
tions have been noticed in the representation of wind or
temperature near a front [Desroziers, 1997]. Riishøjgaard
[1998] studied the assimilation of nadir total ozone obser-
vations in a weather forecast model. He proposed a simple
way to construct an anisotropic error covariance model. The
method consists of multiplying the standard isotropic co-
variance, based on a distance criterion, by a function that
decreases with the norm of the differences between values
of the CTM simulated field. Following Riishøjgaard’s work,
Hoelzemann et al. [2001] developed a heterogeneous and
anisotropic error covariance model to produce ozone anal-
ysis over Europe. The error covariance is based on a urban/
rural classification of the CTM grid points in addition to the
distance criterion. In this paper, we propose a simple way
for specifying background error covariance in terms of the
background covariance itself. Error covariances between
two points are predicted using a function that decreases
with the covariances between the respective values of the
simulated field.
[9] In the statistical interpolation approach the back-

ground error covariance is modeled assuming ergodicity
of the forecasting system. Under this assumption the back-
ground error covariance is substituted by an average over a
time sequence of ozone residuals (observed minus CTM
simulated values). This time sequence leads to a climato-
logical description of the CTM error. The main disadvan-
tage of the approach is that the background error covariance
is treated as being decoupled from the actual pollution state
of the atmosphere. This is why we also test spatial interpo-
lation techniques. The error statistics are no longer assumed
to be stationary in time. Time averages are substituted by
spatial averages over data available only at the analysis
time.
[10] Several studies have been conducted, which were

aimed at spatially interpolating observations of environmen-
tal parameters. Most of them are based on kriging formalism
[Finkelstein, 1984; Fedorov, 1989]. Ionescu et al. [2000]
used thin plate splines to interpolate nitrogen dioxide
observation data. They obtained fields of the pollutant over
Paris area. Fuentes [2001] and Fuentes and Raftery [2001]
combined outputs of a numerical model and measurements
to produce maps of pollutant concentrations. In the study by
Fuentes [2001] the model outputs are used to perform a
nonstationary covariance model by a spectral method. In the
study by Fuentes and Raftery [2001], model outputs and
measurements are prior of a Gibbs sampling used to deduce
posterior conditional distribution of the true process in a
Bayesian melding approach. Both methods seem to be
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computationally intensive and would not be suitable for
routine hourly analyses. In the present study, the CHIMERE
CTM [Vautard et al., 2001] is used to capture the non-
stationarity of the ozone fields in a fast and simple way.
Kriging is not only applied to observations but also to ozone
residuals. In this way, the model gives a first estimate of the
geographical distribution of the pollutant concentrations.
[11] We discuss the advantages and disadvantages of the

proposed methods when used in an operational forecasting
and diagnosis setup. We focus on accurate representations
of ozone fields on the scale of a large populated city, Paris,
and its surroundings (Île-de-France area). The problem
of forecast improvement is not considered in this work.
The 2-D or 3-D ozone maps are produced using surface
ozone observations and possibly ozone CHIMERE outputs.
Their quality are objectively estimated using the leave-one-
out method over the same surface measurements. Addition-
ally, in order to validate 3-D analyzed ozone patterns in
altitudes (typically a few hundred meters), we use airborne
measurements from the Atmospheric Pollution Over the
Paris Area (ESQUIF) field campaign [Menut et al., 2000;
Vautard et al., 2003a].
[12] In section 2 we briefly described the CTM. Section 3

presents the observations used in this study. The mathemat-
ical formulations of statistical interpolation and kriging
techniques are given in section 4. The results are presented
in section 5. We conclude with a summary and a discussion
in section 6.

2. Multiscale CTM

2.1. Model Brief Description

[13] CHIMERE [Vautard et al., 2001; Schmidt et al.,
2001] is a 3-D Eulerian chemistry-transport model. This
model is designed to allow fast simulations and forecasts of
photo-oxidant concentrations. It has been extended to a
multiscale version. A coarse-grid (0.5� � 0.5�) version
covers western Europe, and forces a refined-grid small-
scale version at the boundaries (one-way nesting). The
small-scale version of the model is centered on the city of
Paris and covers an area of 150 km � 150 km. Its horizontal
resolution is of 6 km � 6 km. The domain and grid are
represented in Figure 1a.
[14] The model formulation is based on the mass conti-

nuity equation for several chemical species in every grid
cell [Seinfeld and Pandis, 1998]. The time numerical solver
is the TWOSTEP method, which has been originally
described by Verwer [1994] for gas-phase chemistry. The
TWOSTEP method is applied here to integrate all processes
including advection and diffusion as proposed by Schmidt et
al. [2001]. Vertical resolution of both the coarse-grid and
refined-grid model consists in five layers, going from
surface up to 750 hPa. Therefore the model contains the
whole boundary layer in anticyclonic conditions over west-
ern Europe. For the coarse-grid model, the emissions are
derived from the EMEP [Mylona, 1999] annual totals,
modulated in time and VOC speciation by Generation of
European Emission Data for Episodes (GENEMIS ) Project
[1994] profiles. For the regional domain, anthropic emission
data are provided by AIRPARIF, the air quality monitoring
network. The spatial scale of these emission data is of 3 km.
More information is given by Vautard et al. [2003b].

Figure 1. (a) Regional CTM extension and (b) zoom on
the city of Paris. The city lies in the center of the maps.
The thicker line represents the highway around Paris.
Open circles, solid squares, and solid triangles denote
urban, rural, and suburban surface monitoring stations,
respectively. The names of these stations are: 1. PARIS06,
2. PARIS07, 3. PARIS13, 4. PARIS18, 5. NEUILLY, 6.
GENNEVILLIERS, 7. GARCHES, 8. AUBERVILLIERS,
9. VITRY, 10. MONTGERON, 11. CRETEIL, 12.
TREMBLAY, 13. MANTES, 14. MONTGE-EN-GOELE,
15. SAINTS, 16. FONTAINEBLEAU, 17. SONCHAMP,
18. PRUNAY, 19. FREMAINVILLE.
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Biogenic emissions data base has been developed by
Derognat et al. [2003] and has a resolution of 6 km. The
land-use data are derived from the RIVM data basis [van de
Velde et al., 1994]. Following the concept of chemical
operators, a reduced chemical mechanism has been derived
from the original one [Lattuati, 1997]. It describes 116
reactions with 44 gaseous species.
[15] Advection is modeled using the piecewise parabolic

method third-order scheme [Carpenter et al., 1990]. Vertical
mixing is parameterized by a diffusion profile [O’Brien,
1970] which depends only on the height of the boundary
layer. This height is calculated from Richardson number
profiles. Dry deposition is modeled following the resistance
analogy presented by Wesely and Hicks [1977] and Erisman
et al. [1994]. Photolytic rates are modulated by cloudiness.
Boundary concentrations for the continental setup are fixed
for fourteen species. These species have long lifetime and
are relevant to photo-oxidant formation. Their concentra-
tions are taken from a climatology of monthly mean data
produced by the global MOZART CTM [Hauglustaine et
al., 1998].
[16] The CTM is at all scales forced by the European

Centre for Medium-Range Weather Forecasts (ECMWF)
meteorological short range forecasts. These data include
temperature, pressure, wind, humidity and cloudiness fields.
Their horizontal resolution is of about 0.5�. They are
described in 10 vertical hybrid sigma-pressure levels for
summer 1999 (18 for summer 2001), covering the boundary
layer. Given the geographical nature of the city of Paris,
which is located far away from any coasts and any signif-
icant topography, the meteorological variables can reason-
ably be represented by the large-scale meteorological model
of ECMWF. Meteorological data have a time resolution of
six hours and are linearly interpolated to one hour intervals.
[17] The chemistry and physical processes of the model

are optimized enough (reduced chemical mechanism, low
vertical resolution, use of large-scale meteorology data
inputs, etc.) that long simulations or real-time forecasts
are possible on a workstation. Typically 5 CPU minutes
are required for one simulated day on a PC. However,
the model remains realistic and allows for quantitatively
reasonable ozone concentrations at various spatial scales.
More details about the model are given by Vautard et al.
[2001] and Schmidt et al. [2001].

2.2. CTM Errors

[18] The CHIMERE CTM errors are due to several
causes: (1) modeling conceptual limitations (approximate
description of processes, lack of an upper to mid-tropo-
sphere in the CTM, use of coarse meteorology), (2) model
setup (horizontal and vertical resolutions), and (3) input data
errors (imperfect emissions, meteorological errors, approx-
imate land use data and surface resistance, boundary con-
ditions, etc.). The combination of these errors leads to a total
model error, which is usually called the background error.
Schmidt et al. [2001] showed with CHIMERE model that
the RMS error of simulated ozone daily maxima is of the
order of 10 ppb on continental scale. Vautard et al. [2001]
also found this order of magnitude on regional scale for the
Paris area. They also use CHIMERE and show that one of
the major difficulty of the CTM is to capture the correct city
plume direction under very light wind conditions. However,

in most cases (light to moderate wind speed), the structure
and amplitude of the ozone field was correctly simulated.
Therefore we expect the CTM to add valuable information
to the interpolation methods, especially when there is spatial
variability in the ozone field.

3. Observations

3.1. Surface Hourly Ozone Concentrations

[19] The surface ozone observations are provided by
AIRPARIF. Three types of ozone monitoring sites are used:
urban stations, suburban stations and rural stations. The
typology and discrimination of these sites are defined by
European standards.
[20] Urban stations are located where the minimum pop-

ulation density is 4000 inhabitants/km2 within a radius of
1 km. Suburban stations are situated under the direct
influence of the city. Both type of stations provide a
representative estimate of pollutant concentration in popu-
lated areas. They are located at some distance from all direct
sources of pollution. Most of them are in the city of Paris. In
contrast, rural stations are located about 50 km away from
the city of Paris and monitor pollution advected by the wind.
[21] The distribution of monitoring sites is shown in

Figure 1. There are 19 monitoring sites including six rural
sites, 2 suburban sites and 11 urban sites.

3.2. Airborne Measurements

[22] The ESQUIF project (Étude et Simulation de la
Qualité de l’air en Île-de-France) [Vautard et al., 2003a]
was designed to improve the understanding of photo-
chemical pollution events in the region of Paris. Within
the framework of this project, a large number of observation
flights have been performed around the agglomeration
[Menut et al., 2000]. The airborne measurements have been
carried out for several purposes, which include the study of
ozone production in the Paris pollution plume and the
improvement in emission inventories [Vautard et al.,
2003b].
[23] These flights were performed during high-ozone-

concentration episodes during Intensive Observation Peri-
ods (IOPs) which lasted several days. The ozone airborne
measurements used in the present article are taken from two
aircraft, the ARAT and the DIMONA aircrafts. DIMONA
aircraft was used to study the chemical composition of the
air masses entering and leaving Paris area. The ARAT flight
was designed to study the chemical regimes throughout the
region. Details of the measurements are given by Vautard et
al. [2003a].
[24] The above measurements are not used directly in the

analysis methods. However, they allow for an evaluation of
the methods’ skills in representing ozone in the middle of
the boundary layer. Table 1 lists the flight times and
altitudes and CTM level for comparison.

3.3. Observation Error

[25] The knowledge of instrumental characteristics allows
us to estimate observation uncertainties. On the other hand,
representativeness error are difficult to evaluate.
[26] In the present study, we consider no instrumental

biases. Even though this statement is hard to verify in
practice, the observations are assumed on average to be
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representative of an environment whose dimensions are at
least comparable to the model grid size. Indeed, since an
observation is a hourly mean, it is representative of the mean
concentration advected into the monitoring station during
that time. For wind speeds, at least of 1–2 m s�1, the space
spanned by the flow is about 5 km. Hence one hourly-mean
observation should be comparable to the instantaneous
concentration in one CTM grid cell. In other words, we
assume no systematic representativeness biases. If there is
one, it is assumed to be due to model deficiencies. Thus the
observation error only consists in a random error, including
instrumental and representativeness random errors.
[27] The representativeness of observations is controlled

by small-scale features like local emissions or surface
characteristics. The representativeness error depends on
the same features and also on the resolution of the analysis
grid. To estimate properly the random part of this error, it is
necessary to have several monitoring stations in the same
model box. As shown in Figure 1, this is a quite unusual
situation, except in the Paris center, where two or three
monitor stations can be in the same model box. The
standard deviation of the observations within one box is
calculated every day at each hour. It is an estimate of the
representativeness error. For instance, this standard devia-
tion is about 5 ppb at 1500 UTC.

4. Analysis Methods

[28] The analysis schemes developed in this paper follow
the general framework of statistical interpolation [Daley,
1991] and kriging techniques [Cressie, 1993]. The aim is to
provide an estimate Zt,h

a (s) of a field concentration value
Zt,h(s) at any location s, at day t (t = 1, . . ., T ), and hour
h (h = 1, . . ., 24). For this purpose, we have a set of K
spatially distributed measurement values Yt,h

o (sk) where
k = 1, . . ., K and sk is the location of the k-th monitoring
station. We also use a prior estimate of the concentration
field Zt,h

b (s), which is often called the first guess or the
background field. In this setting, Zt,h

a (s), which is called the
analysis, is given by

Za
t;h sð Þ ¼ Zb

t;h sð Þ þ
XK
k¼1

lk
t;h sð Þ Yo

t;h skð Þ � Zb
t;h skð Þ

� �
: ð1Þ

The lt,h
k (s) are weighting functions which have to be

determined.
[29] Equation (1) shows that the analyzed field is a

correction of the first-guess field by a linear combination
of the innovations, Yt,h

o (sk) � Zt,h
b (sk). The methods pro-

posed in the present study differ in the way the weights
lt,h
k (s) are calculated and in the background fields. These

background fields can be zero or fields simulated by CTM
CHIMERE.

4.1. Isotropic Statistical Interpolation (ISI) Method

[30] This is by far the most common method in meteoro-
logy for producing daily analyses. The reader is referred to
Daley [1991] for a complete mathematical description and
meteorological applications of the method. We now recall
only briefly the methodology, and especially the way to
construct the background error covariance.
[31] Assume temporarily that the background and the

observations are unbiased. Here, background fields Zt,h
b are

the hourly ozone fields simulated by CTM CHIMERE at
the first level. The optimized weighting functions blk

t;h(s)
are obtained by minimizing the mean square analysis error,
e.g., E(Zt,h

a (s) � Zt,h(s))
2. E() denotes the statistical mean.

The minimization problem leads to a linear system involv-
ing: (1) covariances of the background error, ct,h

b (sk, sl),
(2) covariances of the observation error ct,h

o (sk, sl), and
(3) their cross-covariance function. Since the causes of
errors in the first guess and in the observations are
presumably independent, the cross-covariance is assumed
to be zero. Moreover, we assume that observation errors of
two distinct monitoring stations are uncorrelated, e.g.,
ct,h
o (sk, sl) = st,h

2o(sk)dkl. dkl is the Kronicker delta function
(dkl = 0 if k 6¼ l and dkl = 1 if k = l ). In contrast, the
background errors are a priori spatially dependent. In this
setting, optimized weighting functions verify the following
system: 8k = 1, . . ., K

XK
l¼1

bll
t;h sð Þ cbt;h sk; slð Þ þ s2ot;h skð Þdkl

h i
¼ cbt;h sk; sð Þ: ð2Þ

[32] The computation of the weighting functions requires
the preliminary knowledge of the covariances of the back-
ground errors and the variances of the observation errors,
st,h
2o(sk). Because these quantities are not available directly,

they need to be estimated in a statistical sense.
4.1.1. Error Covariance Modeling
[33] The best source of information about errors is the

innovations Yt,h
o (sk) � Zt,h

b (sk). Assuming that observation
errors are uncorrelated and independent on CTM errors,
it can easily be shown that the innovation covariance
ct,h
i (sk, sl) equals to ct,h

b (sk, sl) + st,h
2o(sk)dkl. Therefore

covariance ct,h
b (sk, sl) between two distinct monitoring

station locations sk and sl (k 6¼ l, dkl = 0) can be directly
estimated from ct,h

i (sk, sl). In contrast, covariance ct,h
b (sk, s)

between a monitoring station location sk and any location s,
where there is generally no available measurements, needs
to be computed through a covariance model. To construct
this model, we use the observational method [Hollingsworth
and Lönnberg, 1986]. It consists in assuming that (1) the
forecasting system is ergodic, and then the error statistics
can be obtained from an average over a long time

Table 1. Information About Flights of Aircrafts DIMONA and

ARAT During the ESQUIF Campaign

Flight Day Time, UTC MAFa Levelb

DIMONA 25 June 1999 1232–1638 270 2
DIMONA 2 July 1999 0752–0990 295 2
DIMONA 2 July 1999 1235–1660 292 2
DIMONA 16 July 1999 1157–1563 299 2
DIMONA 17 July 1999 0787–1010 262 2
DIMONA 17 July 1999 1498–1840 322 2
DIMONA 18 July 1999 0798–1038 270 2
DIMONA 18 July 1999 1223–1627 330 2
ARAT 17 July 1999 1124–1397 847 3
ARAT 17 July 1999 1518–1782 906 3
ARAT 29 July 1999 1110–1363 830 3
ARAT 29 July 1999 1486–1715 781 3
ARAT 30 July 1999 1212–1472 849 3

aMean values of the altitude of the flight (in meters) computed over the
time period indicated in the third column.

bCTM level to compare with observations.
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sequence of innovations (2) ct,h
b (sk, sl) is homogeneous and

isotropic.
[34] The first assumption implies that the error covarian-

ces do not depend on day t. However they depend on hour
h, e.g., ct,h

b (sk, sl) = ch
b(sk, sl) and st,h

2o(sk) = sh
2o(sk).

The weighting functions do not depend on t, e.g.,blk
t;h sð Þ ¼ blk

h sð Þ. They are optimized for each hour h of
the day. In this way, the pronounced diurnal cycle of the
ozone concentrations is reproduced. The second assumption
implies that ch

b(sk, sl) between two locations sk and
sl depends on their distance r = ksk � slk, e.g., chb(sk, sl) =
ch
b(r).
[35] In order to determine function ch

b(r), innovation
covariance coefficients are usually computed for innovation
time series at pairs of monitoring station locations. Then
they are plotted versus their corresponding distance. At zero
distance, the plot provides average information about the
background and observation errors. At nonzero distance it
gives the averaged background error covariance function.
[36] The methodology to construct the background error

covariance model is here achieved in two steps. First, a
model of the background error correlation rh

b(r) and second
a model of the innovation variance sh

2i(s) are built. The error
covariance model is then the product of the two separate
models.
[37] The background error correlation function rh

b(r) is
estimated by a fit of available innovation correlation coef-
ficients, rh

i (sk, sl). These coefficients are plotted versus
distance r = ksk � slk for each hour h. In order to ensure
the symmetric positive definiteness of background error
covariance matrix [Gaspari and Cohn, 1999], we use the
scaled Balgovind et al. [1983] correlation function:

rbh rð Þ ¼ rbh 0ð Þ 1þ r=ahð Þ exp �r=ahð Þ; ð3Þ

where rh
b (0) and ah are the regression coefficients.

[38] Under homogeneous conditions, the innovation var-
iance does not depend on location s, e.g., sh

2i(s) = sh
2i. It is

estimated by taking the mean value of the innovation
variances.
[39] Finally, the background error covariance is written

cbh rð Þ ¼ s2ih r
b
h rð Þ: ð4Þ

We notice that it is not site-specific (e.g., it does not depend
on location).
[40] sh

2i is actually the sum of the background error
variance, sh

2b = ch
b(0), and the observation error variance,

sh
2o. Both variances are assumed to be homogeneous. rh

b(0)
is the ratio of sh

2b to sh
2b + sh

2o. Therefore term st,h
2o(sk) in

equation (2), which is equaled to the constant value sh
2o, can

easily be estimated from rh
b(0) and sh

2i.
[41] Figure 2 shows the innovation correlation coeffi-

cients for 0700 UTC plotted versus their corresponding
distances. The innovation correlation coefficients are calcu-
lated for innovation time series at pairs of stations. The time
series cover summer 1999, from 1 May through 30 Sep-
tember, corresponding to T = 153 days. We remark that the
innovation correlation coefficients vary from 0.4 to 0.8 for
distances smaller than 10 kilometers. They also vary over a
very wide range of values for larger distances. Moreover,

fairly high correlation coefficients (0.7–0.8) are found even
if distance between monitoring stations is larger than 50 km.
These coefficients are of the same magnitude as the ones
calculated at some pairs of close monitoring stations. These
long-distance correlations occur for pairs of rural stations
while pairs of the type [rural;urban] display low correlation
coefficients. The explanation of such a behavior is simple.
Ozone is titrated by nitrogen monoxide emissions during
peak driving hours in shallow mixed layers over the urban
area. Therefore its concentration is very weak and quite
heterogeneous. In contrast, The concentrations advected
over rural stations from other areas are homogeneous. Both
observations and CTM outputs exhibit such a behavior.
Therefore the innovations at rural locations are strongly
correlated with one another, but are weakly correlated with
those in the urban areas. As shown in Figure 2, the isotropy
assumption is clearly violated.
[42] During the daytime, other isotropy violations occur

(not shown), especially because of the city plume develop-
ment. In other regions with significant topography or coastal
areas, the isotropy can even fail to a much larger extent. In
general, we expect that the error correlation between two
locations depends more on the fact that the locations belong
to the same spatial ozone patterns than on their distance.
This is why we propose an anisotropic approach based on
this principle in section 4.2.
[43] Finally, this isotropic covariance model can only be

applied for 2-D fields. Indeed, the isotropy is obviously
violated in the vertical direction because of the stratification
of the atmosphere. The distance criterion is not adapted.
Therefore, in the following, this method will only be used
for 2-D analysis of surface ozone concentrations.
4.1.2. Bias Model
[44] We have temporally assumed that neither observa-

tions nor first guesses are biased. That is not true in practice,
since model uncertainties lead to systematic errors and
observations can suffer from instrumental or representative-

Figure 2. Innovation correlation coefficients, rih(sk, sl),
calculated for innovation time series (over summer 1999) at
pairs of stations (k, l ) for h = 0700 UTC, versus the distance
r = ksk � slk. The squares stand for pairs of rural stations,
the circles stand for pairs of urban stations, the triangles
stand for the pairs of the type [rural;urban], and the plus
symbols stand for the rest of correlations.
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ness biases. Instrumental and representativeness biases are
assumed to be zero (see section 3.3). These assumptions
mean that the innovation biases are assumed to be entirely
due to CTM first-guess biases. In order to obtain an
unbiased estimated field, we need to remove potential biases
from the first guess, Zt,h

b (s) for each s before applying
equation (1). Therefore we also need to model these biases.
[45] Figure 3 displays averages of innovations versus

averages of ozone concentrations simulated at each moni-
toring stations for two specific hours of the day, 0700 UTC
and 1500 UTC. The averages are computed over summer
1999. We can see that the model tends to overestimate
ozone concentrations in rural areas where ozone concen-
trations are highest. It is especially the case for 0700 UTC.
The model also tends to underestimate concentrations over
the urban area, displaying low ozone concentration means.
This especially happens at 1500 UTC.
[46] Finally at any location within the studied area, the

first guess bias is modeled using a linear regression between
bias and CTM ozone concentration mean. It is removed
from the background field Zt,h

b before applying the analysis
algorithm each day t at each hour h. This yields 24 different
sets of linear coefficients per CTM box.

4.2. Anisotropic Statistical Interpolation (ASI) Method

[47] This new method is based on the assumption that
innovation correlations are higher when the two locations
frequently belong to the same ozone pattern and lower
when they do not. The methodology is nearly the same as in
section 4.1. However, instead of modeling the background

error correlation rh
b (sk, sl) as a function of the distance r =

ksk � slk, we model it as a function of the ozone
concentration correlation, r O3½ �

h (sk, sl). An exponential fit
is again carried out to model these correlations (see equa-
tion (6)). We also assume that innovation variance sh2i(s)
depends linearly on ozone concentration variance sh

2[O3](s)
(see equation (7)). In contrast with ISI method, error
variances, sh

2b(s) and sh
2o(s), are no longer assumed to be

homogeneous. They depend on location s. Finally, the
background error covariance model is written:

cbh sk; slð Þ ¼ sih skð Þsih slð Þrbh sk; slð Þ; ð5Þ

with

rbh sk; slð Þ ¼ eh 1þ 1� r O3½ �
h sk; slð Þ

� �
=bh

� �
� exp � 1� r O3½ �

h sk; slð Þ
� �

=bh

� �
; ð6Þ

and

s2ih sð Þ ¼ ahs
2 O3½ �
h sð Þ þ bh: ð7Þ

�1 � r O3½ �
h (sk, sl)) � 1. ah, bh, eh and bh are the regression

coefficients. These coefficients are computed at each hour h.
As ch

b(sk, sl) depends on ozone concentration correlation
pattern, it is site-specific.
[48] Figure 4 shows the innovation correlation coeffi-

cients for 0700 UTC, plotted versus corresponding coeffi-
cients of correlation of observed ozone concentrations.
Coefficients are calculated for time series at pairs of stations
The spread of points is clearly smaller than when distance is
used (see Figure 2). The innovation correlations computed
at pairs of urban stations or pairs of the type [rural; urban]

Figure 3. Averages of innovations hZb(sk) � Yo(sk)i (in
ppb), versus averages of ozone concentration values
hZb(sk)i (in pbb) simulated and interpolated on station
locations sk. Solid symbols stand for 0700 UTC, and open
symbols stand for 1500 UTC. Linear regression lines are
also presented: solid line for 0700 UTC and dashed line for
1500 UTC. r denotes the correlation regression coefficient.
Circles, squares, and triangles denote urban, rural, and
suburban surface observation sites, respectively.

Figure 4. Innovation correlation coefficients rih(sk, sl)
computed for innovation time series (over summer 1999) at
pairs of stations (k, l ) for h = 0700 UTC versus the
corresponding correlation coefficients of observed ozone
values r O3½ �

h (sk, sl). The squares stand for pairs of rural
stations, the circles stand for pairs of urban stations, the
triangles stand for the pairs of the type [rural; urban], and
the plus symbols stand for the rest of correlations.
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are better modeled. Nevertheless, we notice that innovation
correlations computed at pairs of rural stations still remain
underestimated.
[49] As the ozone concentration correlations cannot be

computed for sites where no measurements are available,
we use the correlation computed on simulated ozone con-
centrations. Since the ozone concentration correlations
given by the CTM may contain biases relative to observed
ones, they are corrected using a linear regression.
[50] In the same way, sh

2i(s) model is estimated from the
variances of observed values. It is computed for any s using
variances of simulated ozone concentrations, which are not
particularly biased relative to variances of observed values.
[51] Finally, we remark that the anisotropic covariance

model proposed here can be a priori used to produce 3-D
analyses using only surface measurements. Indeed, the
method takes as an error covariance predictor, the covari-
ance of the simulated ozone concentration field itself
regardless of its 3-D structure. However, the skill of the
method above the surface is difficult to estimate since we do
not have a large series of upper air ozone measurements.
The ESQUIF airborne measurements is precisely used to
make an a posteriori verification of the quality of upper air
analyses in section 5.2.
[52] Both statistical interpolation methods proposed here

strongly rely on the assumption of time stationarity of the
background error covariance. They lead to weighting func-
tions blk

h(s), which do not depend on the state of the
atmosphere of the day t. The weighting functions do not
account for daily changes in meteorology and emissions,
which could modify the information content of a given
measurement. This is why we now investigate the use of
kriging methods. In these methods, weighting functions are
computed at each analysis, and are time dependent.

4.3. Observation Kriging Method (OBK)

[53] In geostatistics, estimating a random field at location
s from observations at locations sk is classically achieved by
the kriging method. The analyzed value at a given point s
reads:

Za
t;h sð Þ ¼

XK
k¼1

lk
t;h sð ÞYo

t;h skð Þ: ð8Þ

[54] The method follows the general formalism of equa-
tion (1), but now the CTM outputs are not used. Therefore
the first-guess field Zt,h

b is zero. Ordinary kriging method
[Cressie, 1993] is performed under the assumptions of
spatial intrinsic stationarity and isotropy. These assumptions
read

E Z skð Þ � Z slð Þð Þ ¼ 0; ð9Þ

1

2
E Z skð Þ � Z slð Þð Þ2¼ gt;h ksk � slkð Þ: ð10Þ

[55] The weighting functions blk
t;h(s) are optimized at each

hour h and day t. We minimize the mean square analysis
error with an additional constraint to force the sum of
weights to be equaled to one. This constraint is required to

obtain an unbiased estimate (m is a Lagrangian multiplier).
The criterion to minimize is written:

E Za
t;h sð Þ � Zt;h sð Þ

� �2
þ 2m

XK
k¼1

lk
t;h sð Þ � 1

 !
:

[56] The minimization problem leads to the following
system:

8k ¼ 1; . . . ;K;PK
l¼1
bll
t;h sð Þgt;h sk; slð Þ � m ¼ gt;h sk; sð Þ;PK

l¼1
bll
t;h sð Þ ¼ 1:

8>>>><>>>>: ð11Þ

[57] System (11) involves the semivariogram function
gt,h(ksk � slk) = gt,h(r) with r = ksk � slk. The observation
error variance st,h

2o(sk) is assumed to be homogeneous and
constant in time, e.g., st,h

2o(sk) = sh
2o. In practice, hourly

values sh
2o are the same values computed when using ISI

method.
[58] To model the semivariance gt,h(r), an experimental

variogram gt,h
exp is first computed using observation data

available at hour h, day t. We construct some distance classes
Nj ( j = 1, . . ., J ) with a length interval of L = 15 km, and a
tolerance of t = 10 km. Each class, Nj, is defined by

Nj ¼ sk; slð Þ;

�����ksk � slk � 2j� 1ð Þ L
2

����� < L

2
þ t

( )
: ð12Þ

[59] Over each distance class, we compute

2g
exp
t;h rj
� �

¼ 1

jNjj
X
Nj

Y o
t;h skð Þ � Yo

t;h slð Þ
� �2

; ð13Þ

where jNjj is the number of elements into the class Nj. rj is
the mean distance of the class. It is defined by

rj ¼
1

jNjj
X
Nj

ksk � slk: ð14Þ

[60] Second, an exponential model with nugget effect
(noted NUGh) is used to fit the experimental variogram.
This model is written by

gt; h rð Þ ¼ ct;h 1� exp � r
dt; h

� �� �
þ NUGh r > 0;

gt; h 0ð Þ ¼ 0;

8<: ð15Þ

where dt,h and ct,h are the regression coefficients.
[61] This function is conditionally negative definite. It

produces a permissible model [Cressie, 1993]. Moreover, it
has only two parameters to be fitted and it allows a quite
wide range of situations. In our case, the nugget effect
characterizes the observation error variance. For consistency
with ISI method, we set the nugget to a value of NUGh = sh

2o

= 25 ppb2 when h = 1500 UTC. The variability of the
semivariogram is reflected in the statistics on parameters dt,h
and ct,h given in Table 2 for h = 1500 UTC.
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[62] When dt,h and ct,h are large, gt,h(r) varies almost
linearly with r, and goes to infinity when r is large (high
variability). This high variability occurs when a strong
urban plume is developed. In such cases, at same large
distance r, differences Yo(s + r) � Y o(s) between observa-
tions located in and out of the urban plume are higher than
differences between observations located both out of the
urban plume. The assumption of spatial constant mean of
the true ozone concentration field made when using an
ordinary kriging (see equation (9)) fails. In order to
prescribe the geographical location of the plume and limit
such nonstationarities, we propose in section 4.4 to use
CTM outputs.
[63] Three experimental variograms are shown in

Figure 5a for three typical days at 1500 UTC. For 17 July
1999, the variogram displays an increase of the spatial
variation of Zt,h(s + r) � Zt,h(r) when considering point
pairs at large distance. As we will show later, three
rural monitoring stations (FREMAINVILLE, PRUNAY,
MANTES) are located in the urban plume.

4.4. Innovation Kriging Method (INK)

[64] The present method uses the same ordinary kriging
method as in section 4.3. However, we interpolate the
innovations instead of the observations. The idea is actually
to use the CTM outputs as a predictor of the spatial trend of
the field in order to reduce its variability. If the CTM
predicts plume direction relatively well, the innovations
vary less than the observations and equation (9) is more
justified.

[65] Such method consists actually in estimating the CTM
error field, Zt,h

b � Zt,h, using the K innovations, Zt,h
b (sk) �

Yt,h
o (sk), as ‘‘observations.’’ The analysis formula has the

exact same form as in equation (1). However, weighting
functions blk

t;h(s) significantly differ from methods ASI or
ISI. The variogram model is built here from the innovations
instead of the ozone concentrations. The nugget is the same
as in section 4.3.
[66] Some experimental and fitted variograms are dis-

played in Figure 5b for the same three days as in Figure 5a.
For 17 July 1999, the variogram does no longer go to
infinity at large distances. For 18 and 29 July 1999, vario-
grams are now almost a positive constant (except at the
origin). In these cases, the error field almost behaves as a
white noise.
[67] As ISI method, INK method could only be used to

correct the first level of the CTM.

5. Method Validation

[68] The four methods described in section 4 are now
tested over the region of Paris during summer 2001.

5.1. Leave-One-Out Validation Using
Ground-Based Observations

[69] In order to objectively evaluate the efficiency of the
analysis methods, a leave-one-out method is used. Sequen-
tially, observations collected during summer 2001 at one
single observation site are omitted in the analysis process.
These omitted observations are afterward statistically com-
pared with the resulting analyzed field. Error statistics are
calculated at each hour h by the root mean square analysis
residuals RMSh:

RMSh skð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

Za
t;h skð Þ � Yo*t;h skð Þ

� �2vuut ; ð16Þ

where Yt,h
o*(sk) (t = 1,. . .,T ) denotes the omitted observations.

Table 2. Statistics Computed on Coefficients dt,h and ct,h of the

Semivariogram Modela

Mean Min. Q25 Med. Q75 Max.

dt,15 1393 0.0056 4 15 45 17, 353
ct,15 6437 0 59 141 445 233, 860

aThese statistics are given for h = 1500 UTC over the period from the
1 May to 1 September 1999 (t = 1, . . ., 153). Min., minimum; Q25, quantile
25%, Med., medium; Q75, quantile 75%; Max., Maximum.

Figure 5. Experimental (symbols) and fitted (lines) variograms used in (a) OBK method and (b) INK
method for three days at 1500 UTC of summer 1999: triangles and solid line for 17 July 1999, circles and
dashed line for 18 July 1999, crosses and dot-dashed line for 29 July 1999. The semivariance is in ppb2,
and the distance is in kilometers.
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[70] The statistical analysis methods (ISI and ASI) are
trained over observed and simulated data available during
summer 1999 and verified over data from summer 2001.
Therefore all statistics, including biases and covariances are
calculated from a set of data independent on the testing data.
Summers are defined as running from 1May to 30 September.
5.1.1. Isotropic and Anisotropic Methods
[71] We first compare ISI and ASI methods in order to

investigate their relative skill. Figure 6 shows the mean
diurnal cycles of the RMS analyses residuals and RMS
innovations. These RMS error are computed over urban or
rural observations sites. The analyses are produced using
methods ISI or ASI.
[72] We note that the RMS analyses residuals are signif-

icantly smaller than the RMS innovations, regardless of the
method used. Ozone analyses are clearly of better quality
than the initial simulations. By combining observations and
simulations, the RMS error is reduced of about 30 to 50%.
We also note that RMS reduction is larger at urban sites than
at rural sites. This is mainly caused by the high density of
urban sites. It is also due to the larger adjustments needed at
urban locations since model performance is often worse
than at rural location.
[73] Moreover all curves display a marked diurnal cycle

with values larger during nighttime than daytime. Several
factors could explain this behavior. First the CTM itself
simulates better ozone concentrations during daytime than
nighttime, as shown by the RMS innovations. Indeed,
nighttime ozone concentrations are very sensitive to the
thickness of the mixing layer. However, during nighttime,
the variability of this thickness is not well described,
especially because of the low vertical resolution of the
CTM. The first CTM layer is fixed at 50-m thick, while
the mixing layer can be smaller at night. Second, because of
titration with local nitrogen monoxide emissions, ozone
structures at ground level could be of smaller scale than
during daytime. Large horizontal gradients could cause
representativeness problems. Since all other calculations

depend on innovation statistics, they could simply be
modulated by the CTM skill variation.
[74] Finally the comparison between the two methods

displays small differences (about 1 ppb) during nighttime
and emission hours (mainly at peak traffic hours) in favor of
the anisotropic method. These differences are often higher
over rural stations because in data-sparse areas, the first
guess correction is completely controlled by the background
error correlation structure. While in data-dense area, like the
city of Paris, the first guess corrections are less sensitive to
the background error covariance shape and tend to average
the measurements.
[75] Figure 7a details the RMS errors for 0700 UTC.

Statistics display large fluctuations from one station to
another. By comparison with ISI method, ASI allows almost
systematically more reduction of RMS error. The maximum
reduction is�17%.We note that the RMS goes up for station
MONTGE-EN-GOELE for both ASI and ISI methods.
Several factors could explain this behavior. First, on that
monitoring station, the modeled bias (5 ppb) overestimates
by a factor 2 the average of innovations (2.5 ppb). The
standard deviations which allow to compare methods
besides the bias problem are reduced of about 12% for both
methods. Second, correlations of observed ozone concen-
trations between that monitoring station and the other ones
are also specially overestimated by the correlations calcu-
lated with the CTM. The corresponding background error
covariances are also probably overestimated. The monitor-
ing station may be influenced by small-scale features like
local emission sources or dynamical processes not resolved
by the CTM. It is located on a house side in a town of
about 8000 inhabitants. Figure 7b details the RMS errors for
1500 UTC. At this time, no significant differences are
observed between ISI and ASI methods.
[76] The present results confirms that the use of a hetero-

geneous and anisotropic background error covariance has a
positive impact on the analyses. During emission hours and
nighttime, errors are not correlated between rural and urban

Figure 6. Mean diurnal cycles of the RMS analyses residuals computed over observations sites:
(a) urban sites and (b) rural sites. The analyses are produced using ISI method (black solid line and
circles) or method ASI (black solid line). Statistics are computed over summer 2001 using the leave-one-
out method. The dashed line corresponds to the mean diurnal cycle of the RMS innovations. The RMS is
in ppb, and time is in UTC.
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areas, while they are strongly correlated over rural area. In
these cases, assumption about isotropy of the background
error covariance fails. In contrast, during the afternoon, in
strongly mixed air, statistics are more homogeneous between
rural and urban stations and the two methods are equivalent.
5.1.2. Statistical Interpolation and Kriging
[77] In this section, we compare ASI method with the two

kriging methods. Kriging is also applied every day of
summer 2001 at each hour. In the present study, we only
show results for 1500 UTC for comparison. In this way, we
especially investigate the use of time varying weighting
functions or the use of the CTM, regardless of the isotropic

or anisotropic assumption. The comparison ISI/ASI showed
that the isotropic assumption does not generate major fail-
ures during afternoon peak ozone hours (see section 5.1.1).
[78] Figure 8a presents RMS analyses residuals over

observations sites for 1500 UTC. It shows that ASI method
is often more efficient than INK method. Indeed, in case of
ASI method, a specific bias model is built while in INK
method, bias is accounted for by the constraint on the sum
of weights and is finally assumed to be uniform over the
regional domain. In order to compare the methods besides
the bias problem, we present in Figure 8b the standard
deviations of analyses residuals over observations sites for

Figure 7. RMS innovations (open bars) and RMS analyses residuals on each observations sites (a) at
0700 UTC and (b) at 1500 UTC. The analyses are produced using ISI method (gray bars) or ASI method
(solid black bars). Statistics are computed over summer 2001 using the leave-one-out method. Dashed
vertical lines separate urban, suburban, and rural monitoring stations.

Figure 8. (a) RMS analyses residuals on each observations sites at 1500 UTC. (b) Same as Figure 8a
for standard deviations. The analyses are produced using ASI method (open bars), OBK method (gray
bars), and INK method (solid black bars). Statistics are computed over summer 2001 using the leave-one-
out method. Dashed vertical lines separate urban, suburban, and rural monitoring stations.
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the same hour, 1500 UTC. Contrary to RMS analyses
residuals, the standard deviations are nearly the same for
methods ASI and INK. These results show that besides the
bias problem, methods ASI and INK are almost strictly
equivalent at 1500 UTC.
[79] RMS analyses residuals (like standard deviations)

results also show that OBK method is less accurate than the
other methods during the afternoon in rural areas where the
network is sparse. At 1500 UTC the RMS analyses residuals
can be 2 ppb larger for OBK method in comparison with the
other methods. We especially noticed that OBK method is
less efficient during high-pollution events, when a strong
ozone plume is developed. In these cases mean concentra-
tion values are often higher in rural area (outside the Paris
city) than in urban area (inside Paris city). However,
OBK method consists in looking for a true field Zt,h with
a spatial constant mean. There are more many urban
stations than rural stations. Therefore the kriging is mainly
controlled by urban observations and the quality of analyses
is better over the urban area. When the CTM is relatively
correct as concerns plume direction, the innovations are
more homogeneous than the observations. Finally, applying
INK method to interpolate innovations is more efficient.
[80] When computed over the training year 1999, the

statistics display similar behavior, demonstrating that the
results are robust to inter-annual variability.
5.1.3. Case Studies
[81] In order to further illustrate the differences between

the methods, we now show individual cases. Figure 9 shows
the CTM simulation, three analyses resulting from methods
ASI, OBK and INK, and the available observations for
17 July 1999 at 1500 UTC.
[82] The pattern predicted by the CTM is a strong ozone

plume in the northwestern area with a ‘‘bubble’’ shape. The
patterns analyzed by methods ASI and INK add small
corrections to the model prediction. In contrast, OBK
method gives a very different pattern with high ozone
values spread all over the northwestern side of the domain.
This latter structure is probably unrealistic since high values
on the sides do not correspond to any significant precursor
sources upstream. Nevertheless, the pattern matches quite
closely the observations. On this day, another measurement
was available in the city of Chartres, located in the domain’s
southwest corner. The monitoring station belongs to another
operational monitoring network, LIGAIR. The ozone value
reached 77 ppb at 1500 UTC. This value matches better the
ASI pattern than the OBK and the INK patterns. Indeed,
simulated ozone concentrations at station SONCHAMP and
station CHARTRES-FULBERT location are highly corre-
lated (correlation coefficient: 0.99), which agree with the
correlation coefficient of observed ozone concentrations
(0.96). Thus increased ozone level on one station has the
same effect onto the other one. ASI method is able to extend
the plume more than the INK. However, for the same
reason, ASI keeps the overestimation at MANTES, because
ozone concentration on this station is correlated with
stations GARCHES and PRUNAY ones.
[83] INK method has the advantage of time-varying

weights. It is suited to atypical days when the CTM fails
to represent the ozone concentration even in a qualitative
manner and when errors, which are usually very correlated,
become independent. Such days are rare but it happens

especially when the cloudiness is not well forecasted. It was
the case of 24 May 2001. The meteorological conditions on
that day were characterized by very light northeast winds,
and stationary boundary-layer clouds developed in the
afternoon only in the southern part of the domain. While
the wind prediction was fairly correct, the ECMWF mete-
orological data strongly underestimated clouds. As a result,
the CTM develops a strong city plume in the southwestern
part of the domain, which is not observed (see Figure 10a).
The observed ozone pattern seems even reversed with
higher values in the North of the domain. Moreover, the
CTM does not respect the ozone gradient observed over the
center of Paris.
[84] For this case, the ASI and INK analyses (see

Figures 10c and 10d) at 1500 UTC display large differ-
ences. The ASI has more difficulties in decreasing ozone
level in the south of the domain and increasing ozone level
over the eastern SAINTS station than the INK technique.
These differences highlight the advantage of using INK for
special days when large gradients occur between stations
that are usually correlated. For instance, this is the case
between SAINTS and FONTAINEBLEAU (the two east/
southeast rural stations). Their average ozone concentration
correlation coefficient is quite high (0.91).
[85] Finally, a comparison between Figure 10b and

Figure 10d shows that analysis INK is very close to analysis
OBK. In this case, INK method gives almost all weight to
the observations and few to the first guess.

5.2. Validation of Upper Air ASI Analyses

[86] Long range transport of pollutants often implies ver-
tical exchange between the boundary layer and the free
troposphere. Therefore the evaluation of the vertical pollutant
distribution is an important issue. However, the lack of
routine data above ground does not permit to evaluate the
CTM 3-D error field (bias, background error covariance). In
the present section, we investigate the extension of ASI
method to altitudes higher than the surface.
[87] Two assumptions are made. First, the background

error covariance model, estimated using surface observations
and simulations in the CTM first level, is used to model
background error covariances between any locations above
the surface up to theCTM top.As ozone concentrations in and
out the boundary layer are less correlated than ozone concen-
trations in the boundary layer (almost homogeneous), the
CTM error is assumed to follow the same behavior.
[88] Second, the CTM bias is assumed to be constant in

the vertical direction. However, as we have no information
about the bias value out of the boundary layer, its correction
is only performed in that layer. In other words, information
contained in surface observations is assumed to be relevant
to higher altitude when the air is sufficiently mixed.
[89] These two assumptions can not be directly verified

since there are no continuous monitoring except at the
ground. However, the ESQUIF field campaign [Menut et
al., 2000] during summer 1999 provides a basis for a
comparison between 3-D analyses and a number of airborne
measurements.
[90] In these settings, 3-D ozone analyses are produced by

ASI method using only the ground-based measurements
(e.g., the airborne measurements are not used) but are
compared in altitude to the ESQUIF airborne measurements.
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[91] Figure 11 shows results of such a comparison. The
airborne measurements of ozone (12 flights over the
region, 7 DIMONA flights and 5 ARAT flight covering
7 distinct IOP days) simulated, and analyzed values are
displayed. Compared to the raw CTM simulations (Table
1 gives the CTM level for comparison), the RMS
reduction is almost systematically observed. Only for a
flight during the 17 July afternoon are the analyses
slightly poorer than the simulation. This day was already
well simulated by the CTM (see section 5.1.3) and
surface measurements do not bring any significant addi-
tional information.

[92] As an example, Figure 12 shows a comparison of
ARAT measurements with CTM ozone simulation and anal-
yses for 30 July 1999 around 1500 UTC (IOP 8 of the
ESQUIF campaign). The model strongly underestimates the
whole ozone field, probably because of an underestimate in
the large-scale simulation forcing the boundaries. The anal-
ysis using only surface measurements drastically reduces the
underestimate and improves the CTM behavior in the urban
plume (the simulations are not degraded if they are already
closed to the observations). However, some small-scale
structures still remain unresolved by the analyses involving
only ground-based observations.

Figure 9. Comparison of some grounded observations (black numbers) with simulated or analyzed
ozone mixing ratios (gray contours) in the first CTM level for 17 July 1999 at 1500 UTC. (a) CTM raw
simulations, (b) analysis OBK, (c) analysis ASI, and (d) analysis INK. Ozone mixing ratio are in ppb.
The plus sign denotes the monitoring station CHARTRES-FULBERT.
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[93] These results are important for future forecast experi-
ments. By such a correction in the vertical direction at
1500 UTC (when the boundary layer is thickest), we expect
to correct a part of the upper level ozone, retained in the
residual layer during the night and introduced again in the
convective boundary layer during its development the day
after. We expect that an initialization of the model forecast
with analyses will have a positive impact on short-time
ozone forecasts.

6. Summary and Discussion

[94] In this study, we presented a discussion and compar-
ison of four analysis methods which are designed to

produce 2-D or 3-D ozone fields as close as possible to
real state. Two of the methods are adapted from meteorol-
ogy where routine analyses are necessary for daily numer-
ical weather forecasting. A classical isotropic statistical
interpolation (ISI) is proposed, which uses the assumption
of isotropy of error statistics. Since this assumption may fail
in the case of strongly heterogeneous terrain or emission
patterns, we propose a new anisotropic method (ASI). These
two methods actually aim at correcting the ozone concen-
tration fields simulated by a chemistry-transport model
(CTM) with the routine observations of the regional air-
quality monitoring network AIRPARIF.
[95] The two other methods are kriging techniques gen-

erally used for spatial interpolation. They directly interpo-

Figure 10. Comparison of some grounded observations (black numbers) with simulated or analyzed
ozone mixing ratios (gray contours) in the first CTM level for 24 May 2001 at 1500 UTC. (a) CTM raw
simulations, (b) analysis OBK, (c) analysis ASI, and (d) analysis INK. Ozone mixing ratio are in ppb.
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late surface observations (OBK method) or the differences
between the CTM concentrations and the observations (INK
method). In the first case, the CTM information is not used
while in the second case, kriging is applied as a correction
method.
[96] Each method relies on strong assumptions about

error statistics and about the concentration field itself. ISI,
OBK, and INK methods assume isotropy of statistical
properties. ISI and ASI are calculated from statistics over
a sufficient number of CTM simulation days and
corresponding observations. They provide an interpolator
whose parameters do not vary with time but depend only on
station distribution. In contrast, OBK and INK methods are
based on spatial statistics. They presumably are more
suitable to represent-day to day variations in error statistics.
OBK is the only method which does not assume a first-
guess field given by the CTM. Finally, ASI is the only
method which can provide corrections in three dimensions
rather than in two dimensions. The efficiency of these 3-D
corrections is assessed using the airborne measurements
during the ESQUIF field campaign.
[97] The intercomparison of the methods is performed

with a leave-one-out verification technique. It shows that
on average the most accurate methods are ASI and INK.
Therefore the additional information provided by the
CTM simulation is of particular value, especially in the
sparsest parts of the monitoring network. Comparison
between ISI and ASI shows that the isotropic assumption
does not seem to generate major failures during peak
ozone hours in the afternoon. However, this assumption
provides systematically poorer interpolations than those

calculated using ASI, for data taken during night and
emissions times.
[98] Above all, the mean reduction of the RMS error

relative to the CTM simulations is large for all methods. The
leave-one-out method actually shows a reduction of the
order of 30–50% at the surface. These results are obtained
not only over the training period (summer 1999) but also
over the validation period (summer 2001). The improve-
ment of upper air ASI analyses relative to the raw simu-
lations is shown to be of the same order of magnitude. It
corresponds not only to the reduction of biases but also to a
reduction of random errors. This is an important result for a
model designed to forecast pollution episodes. We also
demonstrate that the INK method can give more accurate
ozone maps than ASI in exceptional cases. This happens
when the CTM fails to represent the ozone concentration
even in a qualitative manner, and when the resulting errors
which are usually correlated, become independent. In these
cases, the advantage of INK is due to use of spatial statistics
rather than time statistics.
[99] There are various types of applications of these

analysis techniques. The first one is the routine production
of maps at the surface level. This is a strong requirement
for pollution monitoring especially away from monitoring
station locations. Since the INK method seems more
efficient in extreme cases and has otherwise skills equiv-
alent to that of ASI, its use is recommended for routine
analyses production. However, the relative skills of the
different methods are likely to change depending on the
region. Indeed, our comparisons could yield different
results in the presence of strong terrain/emission hetero-
geneities such as coasts or mountains. The assumptions of
homogeneity and isotropy made in INK method (not in
ASI method) may fail.
[100] For the purpose of initializing CTMs for air-quality

forecasts, the three-dimensional character of ASI seems more
appropriate. However, analyses performed for a large scale

Figure 11. RMS of differences between aircraft measure-
ments of ozone and simulated (open bars) or analyzed (solid
bars) values. Results given for 12 flights around Paris.
Analyses have been produced using ASI method. DI
corresponds to the DIMONA aircraft, and AR corresponds
to the ARAT aircraft. A stands for morning flights, and B
stands for flights in the afternoon. DI_990716A corresponds
to DIMONA aircraft measurements of 16 July 1999 in the
morning.

Figure 12. Comparison of ARAT aircraft measurements
of ozone with simulated (dashed black line) and analyzed
values (solid black line; produced using ASI method)
of ozone concentrations at 1400 UTC calculated by
CHIMERE for 30 July 1999 in the third level.
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(e.g., European scale) should be more efficient for 1–2 day
forecasts. Since, the wind may transport air masses over
several tens or hundreds of kilometers, the relevant observa-
tional information does not necessary lie within the regional
domain. A series of experimental forecasts have been per-
formed in real-time using the continental version of the CTM
during summer 2001. Some ozone analyses has been also
produced. The results will be presented in a future article.
[101] Future investigation will extend this study to include

analyses of other pollutants such as nitrogen oxides or
particle matter. Preliminary experiments performed on nitro-
gen dioxide, routinely monitored in the AIRPARIF network,
show promising results.
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