
HAL Id: hal-02116891
https://hal.science/hal-02116891

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Convolutional Transforms for Lossy Point
Cloud Geometry Compression

Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux

To cite this version:
Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Learning Convolutional Transforms for Lossy
Point Cloud Geometry Compression. 26th IEEE International Conference on Image Processing (ICIP
2019), Sep 2019, Taipei, Taiwan. pp.4320-4324, �10.1109/ICIP.2019.8803413�. �hal-02116891�

https://hal.science/hal-02116891
https://hal.archives-ouvertes.fr


LEARNING CONVOLUTIONAL TRANSFORMS FOR LOSSY POINT CLOUD GEOMETRY
COMPRESSION

Maurice Quach Giuseppe Valenzise Frederic Dufaux

L2S, CNRS, CentraleSupélec, Université Paris-Saclay

ABSTRACT

Efficient point cloud compression is fundamental to enable
the deployment of virtual and mixed reality applications,
since the number of points to code can range in the order of
millions. In this paper, we present a novel data-driven ge-
ometry compression method for static point clouds based on
learned convolutional transforms and uniform quantization.
We perform joint optimization of both rate and distortion
using a trade-off parameter. In addition, we cast the decoding
process as a binary classification of the point cloud occu-
pancy map. Our method outperforms the MPEG reference
solution in terms of rate-distortion on the Microsoft Vox-
elized Upper Bodies dataset with 51.5% BDBR savings on
average. Moreover, while octree-based methods face expo-
nential diminution of the number of points at low bitrates,
our method still produces high resolution outputs even at low
bitrates. Code and supplementary material are available at
https://github.com/mauriceqch/pcc geo cnn.

Index Terms— point cloud geometry compression, con-
volutional neural network, rate-distortion optimization

1. INTRODUCTION

Point clouds are an essential data structure for Virtual Re-
ality (VR) and Mixed Reality (MR) applications. A point
cloud is a set of points in the 3D space represented by coor-
dinates x, y, z and optional attributes (for example color, nor-
mals, etc.). Point cloud data is often very large as point clouds
easily range in the millions of points and can have complex
sets of attributes. Therefore, efficient point cloud compres-
sion (PCC) is particularly important to enable practical usage
in VR and MR applications.

The Moving Picture Experts Group (MPEG) is currently
working on PCC. In 2017, MPEG issued a call for proposals
(CfP) and in order to provide a baseline, a point cloud codec
for tele-immersive video [1] was chosen as the MPEG anchor.
To compare the proposed compression solutions, quality eval-
uation metrics were developed leading to the selection of the
point-to-point (D1) and point-to-plane (D2) as baseline met-
rics [2]. The point to point metric, also called D1 metric, is
computed using the Mean Squared Error (MSE) between the
reconstructed points and the nearest neighbors in the refer-

ence point cloud. The point-to-plane metric, also called D2
metric, uses the surface plane instead of the nearest neighbor.

Research on PCC can be categorized along two dimen-
sions. On one hand, one can either compress point cloud ge-
ometry, i.e., the spatial position of the points, or their associ-
ated attributes. On the other hand, we can also separate works
focusing on compression of dynamic point clouds, which con-
tain temporal information, and static point clouds.

In this work, we focus on the lossy compression of static
point cloud geometry. In PCC, a precise reconstruction of
geometric information is of paramount importance to en-
able high-quality rendering and interactive applications. For
this reasons, lossless geometry coding has been investigated
recently in MPEG, but even state-of-the-art techniques strug-
gle to compress beyond about 2 bits per occupied voxels
(bpov) [3]. This results in large storage and transmission
costs for rich point clouds. Lossy compression proposed in
the literature, on the other hand, are based on octrees which
achieve variable-rate geometry compression by changing the
octree depth. Unfortunately, lowering the depth reduces the
number of points exponentially. As a result, octree based
lossy compression tends to produce “blocky” results at the
rendering stage with medium to low bitrates. In order to
partially attenuate this issue, [4] proposes to use wavelet
transforms and volumetric functions to compact the energy
of the point cloud signal. However, since they still employ an
octree representation, their method exhibits rapid geometry
degradation at lower bitrates. While previous approaches
use hand-crafted transforms, we propose here a data driven
approach based on learned convolutional transforms which
directly works on voxels.

Specifically, we present a method for learning analysis
and synthesis transforms suitable for point cloud geometry
compression. In addition, by interpreting the point cloud ge-
ometry as a binary signal defined over the voxel grid, we cast
decoding as the problem of classifying whether a given voxel
is occupied or not. We train our model on the ModelNet40
mesh dataset [5, 6], test its performance on the Microsoft Vox-
elized Upper Bodies (MVUB) dataset [7] and compare it with
the MPEG anchor [1]. We find that our method outperforms
the anchor on all sequences at all bitrates. Additionally, in
contrast to octree-based methods, ours does not exhibit ex-
ponential diminution in the number of points when lowering

https://github.com/mauriceqch/pcc_geo_cnn


the bitrate. We also show that our model generalizes well by
using completely different datasets for training and testing.

After reviewing related work in Section 2, we describe
the proposed method in Section 3 and evaluate it on different
datasets in Section 4. Conclusions are drawn in Section 5.

2. RELATED WORK

Our work is mainly related to point cloud geometry compres-
sion, deep learning based image and video compression and
applications of deep learning to 3D objects.

Point cloud geometry compression research has mainly
focused on tree based methods [3, 4, 1] and dynamic point
clouds [8, 9]. Our work takes a different approach by com-
pressing point cloud geometry using a 3D auto-encoder.
While classical compression approaches use hand-crafted
transforms, we directly learn the filters from data.

Recent research has also applied deep learning to image
and video compression. In particular, auto-encoders, recur-
rent neural networks and context-based learning have been
used for image and video compression [10, 11, 12]. [13] pro-
poses to replace quantization with additive uniform noise dur-
ing training while performing actual quantization during eval-
uation. Our work takes inspiration from this approach in the
formulation of quantization, but significantly expands it with
new tools, a different loss function and several practical adap-
tations to the case of point cloud geometry compression.

Generative models [14] and auto-encoders [15] have also
been employed to learn a latent space of 3D objects. In the
context of point cloud compression, our work differs from the
above-mentioned approaches in two aspects. First, we con-
sider quantization in the training in order to jointly optimize
for rate-distortion (RD) performance; second, we propose a
lightweight architecture which allows us to process voxels
grids with resolutions that are an order of magnitude higher
than previous art.

3. PROPOSED METHOD

In this section, we describe the proposed method in more de-
tails.

3.1. Definitions

First, we define the set of possible points at resolution r as
Ωr = [0 . . r]3. Then, we define a point cloud as a set of points
S ⊆ Ωr and its corresponding voxel grid vS as follows:

vS : Ωr −→ {0, 1},

z 7−→

{
1, if z ∈ S
0, otherwise.

For notational convenience, we use s3 instead of s×s×s
for filter sizes and strides.

N
,9

3
,2

3
,R

eL
U

,b
ia

s

N
,5

3
,2

3
,R

eL
U

,b
ia

s

N
,5

3
,2

3
,N

on
e,

N
on

e

Q
ua

nt
iz

at
io

n

N
,5

3
,2

3
,R

eL
U

,b
ia

s

N
,5

3
,2

3
,R

eL
U

,b
ia

s

1,
9
3
,2

3
,R

eL
U

,b
ia

s

x y ŷ x̂

fa Q fs

Fig. 1: Neural Network Architecture. Layers are specified
using the following format: number of feature maps, filter
size, strides, activation and bias.

3.2. Model

We use a 3D convolutional auto-encoder composed of an
analysis transform fa, followed by a uniform quantizer and a
synthesis transform fs.

Let x = vS be the original point cloud. The correspond-
ing latent representation is y = fa(x). To quantize y, we
introduce a quantization function Q so that ŷ = Q(y). This
allows us to express the decompressed point cloud as x̂ =
v̂S = fs(ŷ). Finally, we obtain the decompressed point cloud
x̃ = ṽS = round(min(0,max(1, x̂))) using element-wise
minimum, maximum and rounding functions.

In our model, we use convolutions and transpose convo-
lutions with same padding and strides. They are illustrated in
Figure 2 and defined as follows :

• Same (half) padding pads the input with zeros so that
the output size is equal to the input size.

• Convolution performed with unit stride means that the
convolution filter is computed for each element of the
input array. When iterating the input array, strides spec-
ify the step for each axis.

• Convolution can be seen as matrix multiplication and
transpose convolution can be derived from this. In par-
ticular, we can build a sparse matrix C with non-zero
elements corresponding to the weights. The transpose
convolution, also called deconvolution, is obtained us-
ing the matrix CT as a layout for the weights.

Using these convolutional operations as a basis, we learn
analysis and synthesis transforms structured as in Figure 1
using the Adam optimizer [17] which is based on adaptive
estimates of first and second moments of the gradient.

We handle quantization similarly to [11]. Q represents
element-wise integer rounding during evaluation and Q adds
uniform noise between −0.5 and 0.5 to each element during
training which allows for differentiability. To compressQ(y),
we perform range coding and use the Deflate algorithm, a



(a) Strided convolution on a 52 input with a 32 filter, 22 strides
and same padding. The shape of the output is 33.

(b) Strided transpose convolution on a 32 input with a 32 filter,
22 strides and same padding. The shape of the output is 52.

Fig. 2: Strided convolution and strided transpose convolution
operations. Illustrations from [16].

combination of LZ77 and Huffman coding [18] with shape
information on x and y added before compression. Note how-
ever that our method does not assume any specific entropy
coding algorithm.

Our decoding process can also be interpreted as a binary
classification problem where each point z ∈ Ωr of the voxel
grid is either present or not. This allows us to decompose x̂ =
v̂S into its individuals voxels z whose associated value is pz .
However, as point clouds are usually very sparse, most vS(z)
values are equal to zero. To compensate for the imbalance
between empty and occupied voxels we use the α-balanced
focal loss as defined in [19]:

FL(ptz) = −αz(1− ptz)γ log(ptz) (1)

with ptz defined as pz if vS(z) = 1 and 1 − pz otherwise.
Analogously, αz is defined as α when vS(z) = 1 and 1 − α
otherwise. The focal loss for the decompressed point cloud
can then be computed as follows:

FL(x̃) =
∑
z∈S

FL(ptz). (2)

Our final loss is L = λD + R where D is the distortion
calculated using the focal loss and R is the rate in number
of bits per input occupied voxel (bpov). The rate is com-
puted differently during training and during evaluation. On
one hand, during evaluation, as the data is quantized, we com-
pute the rate using the number of bits of the final compressed
representation. On the other hand, during training, we add
uniform noise in place of discretization to allow for differen-
tiation. It follows that the probability distribution of the latent
space Q(y) during training is a continuous relaxation of the
probability distribution of Q(y) during evaluation which is
discrete. As a result, entropies computed during training are
actually differential entropies, or continuous entropies, while
entropies computed during evaluation are discrete entropies.
During training, we use differential entropy as an approxima-

tion of discrete entropy. This makes the loss differentiable
which is primordial for training neural networks.

4. EXPERIMENTAL RESULTS

We use train, evaluation and test split across two datasets. We
train and evaluate our network on the ModelNet40 aligned
dataset [5, 6]. Then, we perform tests on the MVUB dataset
and we compare our method with the MPEG anchor [1].

We perform our experiments using Python 3.6 and Ten-
sorflow 0.12. We use N = 32 filters, a batch size of 64 and
Adam with lr = 10−4, β1 = 0.9 and β2 = 0.999. For the
focal loss, we use α = 0.9 and γ = 2.0.

To compute distortion, we use the point-to-plane symmet-
ric PSNR computed with the pc error MPEG tool [20].

4.1. Datasets

The ModelNet40 dataset contains 12,311 mesh models from
40 categories. This dataset provides us with both variety and
quantity to ensure good generalization when training our net-
work. To convert this dataset to a point cloud dataset, we
first perform sampling on the surface of each mesh. Then, we
translate and scale it into a voxel grid of resolution r. We use
this dataset for training with a resolution r = 64.

The MVUB dataset [7] contains 5 sequences captured at
30 fps during 7 to 10 seconds each with a total of 1202 frames.
We test our method on each individual frame with a resolution
r = 512. In other words, we evaluate performance for intra-
frame compression on each sequence.

We compute RD curves for each sequence of the test
dataset. For our method, we use the following λ values to
compute RD points : 10−4, 5 × 10−5, 10−5, 5 × 10−6 and
10−6. For each sequence, we average distortions and bitrates
over time for each λ to obtain RD points. For the MPEG
anchor, we use the same process with different octree depths.

To evaluate distortion, we use the point-to-plane sym-
metric PSNR [20] esymm(A,B) = min(e(A,B), e(B,A))
where e(A,B) provides the point-to-plane PSNR between
points in A and their nearest neighbors in B. This choice is
due to the fact that original and reconstructed point clouds
may have a very different number of points, e.g., in octree-
based methods the compressed point cloud has significantly
less points than the original, while in our method it is the
opposite. In the rest of this section, we refer to the point-to-
plane symmetric PSNR as simply PSNR.

Our method outperforms the MPEG anchor on all se-
quences at all bitrates. The latter has a mean bitrate of 0.719
bpov and a mean PSNR of 16.68 dB while our method has
a mean bitrate of 0.691 and a mean PSNR of 24.11 dB. RD
curves and the Bjontegaard-delta bitrates (BDBR) for each
sequence are reported in Figure 3. Our method achieves
51.5% BDBR savings on average compared to the anchor.



0.0 0.5 1.0 1.5 2.0
bits per occupied voxel

0

10

20

30

P
S
N
R
(d
B
)

Proposed

Anchor

(a) Andrew sequence (−47.8% BDBR)

0.0 0.5 1.0 1.5 2.0
bits per occupied voxel

0

10

20

30

P
S
N
R
(d
B
)

Proposed

Anchor

(b) David sequence (−55.7% BDBR)

0.0 0.5 1.0 1.5 2.0
bits per occupied voxel

0

10

20

30

P
S
N
R
(d
B
)

Proposed

Anchor

(c) Phil sequence (−49.0% BDBR)

0.0 0.5 1.0 1.5 2.0
bits per occupied voxel

0

10

20

30

P
S
N
R
(d
B
)

Proposed

Anchor

(d) Ricardo sequence (−52.7% BDBR)

0.0 0.5 1.0 1.5 2.0
bits per occupied voxel

0

10

20

30

P
S
N
R
(d
B
)

Proposed

Anchor

(e) Sarah sequence (−52.4% BDBR)

Fig. 3: RD curves for each sequence of the MVUB dataset. We compare our method to the MPEG anchor.

Fig. 4: Original point cloud (left), the compressed point cloud using the proposed method (middle) and the MPEG anchor
(right). Colors are mapped using nearest neighbor matching. Our compressed point cloud was compressed using λ = 10−6

with a PSNR of 29.22 dB and 0.071 bpov. The anchor compressed point cloud was compressed using a depth 6 octree with a
PSNR of 23.98 dB and 0.058 bpov. They respectively have 370,798; 1,302,027; and 5,963 points.

In Figure 4, we show examples on the first frame of the
Phil sequence. Our method achieves lower distortion at sim-
ilar bitrates and produces more points than the anchor which
increases quality at low bitrates while avoiding “blocking” ef-
fects. This particular example shows that our method pro-
duces 218 times more points than the anchor at similar bi-
trates. In other words, both methods introduce different types
of distortions. Indeed, the number of points produced by oc-
tree structures diminishes exponentially when reducing the
octree depth. Conversely, our method produces more points at
lower bitrates as the focal loss penalizes false negatives more
heavily.

In this work, we use a fixed threshold of 0.5 during de-
compression. Changing this threshold can further optimize
rate-distortion performance or optimize other aspects such as
rendering performance (number of points).

5. CONCLUSION

We present a novel data-driven point cloud geometry com-
pression method using learned convolutional transforms and
a uniform quantizer. Our method outperforms the MPEG An-
chor on the MVUB dataset in terms of rate-distortion with
51.5% BDBR savings on average. Additionally, in constrast
to octree-based methods, our model does not exhibit expo-
nential diminution in the number of output points at lower
bitrates. This work can be extended to the compression of
attributes and dynamic point clouds.

6. ACKNOWLEDGMENTS

This work was funded by the ANR ReVeRy national fund
(REVERY ANR-17-CE23-0020).



7. REFERENCES

[1] Rufael Mekuria, Kees Blom, and Pablo Cesar, “Design,
Implementation, and Evaluation of a Point Cloud Codec
for Tele-Immersive Video,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 27, no. 4,
pp. 828–842, Apr. 2017.

[2] Sebastian Schwarz, Gaëlle Martin-Cocher, David Flynn,
and Madhukar Budagavi, “Common test condi-
tions for point cloud compression,” in ISO/IEC
JTC1/SC29/WG11 MPEG output document N17766.
July 2018.

[3] Diogo C. Garcia and Ricardo L. de Queiroz, “Intra-
Frame Context-Based Octree Coding for Point-Cloud
Geometry,” in 2018 25th IEEE International Confer-
ence on Image Processing (ICIP), Oct. 2018, pp. 1807–
1811.

[4] Maja Krivokuća, Maxim Koroteev, and Philip A. Chou,
“A Volumetric Approach to Point Cloud Compres-
sion,” arXiv:1810.00484 [eess], Sept. 2018, arXiv:
1810.00484.

[5] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao,
“3d ShapeNets: A deep representation for volumetric
shapes,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015, pp. 1912–
1920.

[6] Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan
Amiri, and Thomas Brox, “Orientation-boosted Voxel
Nets for 3d Object Recognition,” arXiv:1604.03351
[cs], Apr. 2016, arXiv: 1604.03351.

[7] Charles Loop, Qin Cai, Sergio O. Escolano, and
Philip A. Chou, “Microsoft voxelized upper bod-
ies - a voxelized point cloud dataset,” in ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input
document m38673/M72012. May 2016.

[8] Ricardo L. de Queiroz, Diogo C. Garcia, Philip A. Chou,
and Dinei. A. Florencio, “Distance-Based Probability
Model for Octree Coding,” IEEE Signal Processing Let-
ters, vol. 25, no. 6, pp. 739–742, June 2018.

[9] Dorina Thanou, Philip A. Chou, and Pascal Frossard,
“Graph-Based Compression of Dynamic 3d Point Cloud
Sequences,” IEEE Transactions on Image Processing,
vol. 25, no. 4, pp. 1765–1778, Apr. 2016.

[10] Giuseppe Valenzise, Andrei Purica, Vedad Hulusic,
and Marco Cagnazzo, “Quality Assessment of Deep-
Learning-Based Image Compression,” in 2018 IEEE

20th International Workshop on Multimedia Signal Pro-
cessing (MMSP), Vancouver, BC, Aug. 2018, pp. 1–6,
IEEE.

[11] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image com-
pression with a scale hyperprior,” arXiv:1802.01436
[cs, eess, math], Jan. 2018, arXiv: 1802.01436.

[12] Li Wang, Attilio Fiandrotti, Andrei Purica, Giuseppe
Valenzise, and Marco Cagnazzo, “Enhancing HEVC
spatial prediction by context-based learning.,” Brighton,
UK, May 2019.

[13] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli,
“End-to-end Optimized Image Compression,” in 2017
International Conference on Learning Representations,
2017, arXiv: 1611.01704.

[14] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas,
and Leonidas Guibas, “Learning Representations and
Generative Models for 3d Point Clouds,” in 2018 Inter-
national Conference on Learning Representations, Feb.
2018.

[15] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and
Abhinav Gupta, “Learning a Predictable and Genera-
tive Vector Representation for Objects,” in Computer
Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, Eds. 2016, Lecture Notes in
Computer Science, pp. 484–499, Springer International
Publishing.

[16] Vincent Dumoulin and Francesco Visin, “A
guide to convolution arithmetic for deep learning,”
arXiv:1603.07285 [cs, stat], Mar. 2016, arXiv:
1603.07285.

[17] Diederik P. Kingma and Jimmy Ba, “Adam: A Method
for Stochastic Optimization,” arXiv:1412.6980 [cs],
Dec. 2014, arXiv: 1412.6980.

[18] David A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proceedings of the IRE,
vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár, “Focal Loss for Dense Object De-
tection,” arXiv:1708.02002 [cs], Aug. 2017, arXiv:
1708.02002.

[20] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Co-
hen, and Anthony Vetro, “Geometric distortion metrics
for point cloud compression,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), Beijing,
Sept. 2017, pp. 3460–3464, IEEE.


	 Introduction
	 Related Work
	 Proposed method
	 Definitions
	 Model

	 Experimental results
	 Datasets

	 Conclusion
	 Acknowledgments
	 References

