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Abstract
In this paper, we introduce a robust estimator of the tail index of a Pareto-type distribu-

tion. The estimator is obtained through the use of the minimum density power divergence
with an exponential regression model for log-spacings of top order statistics. The proposed
estimator is compared to existing minimum density power divergence estimators of the tail
index based on fitting an extended Pareto distribution and exponential regression model on
log-ratio of spacings of order statistics. We derive the influence function and gross error
sensitivity of the proposed estimator of the tail index to study its robustness properties. In
addition, a simulation study is conducted to assess the performance of the estimators under
different contaminated samples from different distributions. The results show that our pro-
posed estimator of the tail index has better mean square errors and is less sensitive to an
increase in the number of top order statistics. In addition, the estimation of the exponential
regression model yields estimates of second-order parameters that can be used for estimation
of extreme events such as quantiles and exceedance probabilities. The proposed estimator is
illustrated with a practical dataset on insurance claims.
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1 Introduction
Extreme value theory (EVT) has become an important tool in many disciplines for the estima-
tion of rare events that are related to environmental science, hydrology, insurance and finance,
among others. The process of extreme value analysis involves fitting an extreme value distribu-
tion, characterised by a tail index, which measures the tail heaviness of the distribution function.
The most common method for estimating the parameters of an extreme value distribution in an
extreme value analysis is the maximum likelihood. Also in the semi-parametric framework, the
hill estimator (Hill, 1975) remains the most popular among a series of estimators. However, these
estimators do not take into account possible deviations from assumed extreme value models. This
may arise as a result of possible outliers in the data that may (or may not) have been recorded
in error. In such a dataset, the estimators mentioned above are known to be sensitive to such
outlying observations which affect the quality of the estimates of model parameters. In addition,
small errors in the estimation of model parameters such as the tail index can cause significant
errors in the estimation of extreme events such as high quantiles and exceedance probabilities
(see e.g. Brazauskas and Serfling, 2000).

Robust statistics presents a better method for addressing outliers and deviations from assumed
parametric models. In the context of extreme value analysis, its usage may appear to be contradic-
tory. However, it has been shown that employing robust statistical ideas in extreme value theory,
improves the quality and precision of estimates (Dell’Aquila and Embrechts, 2006). Among the
early applications of robust estimators include the Optimal Biased Reduced Estimator (OBRE) of
the parameters of the GEV distribution (Dupius and Field, 1998), generalised mean and trimmed
mean type estimators (Brazauskas and Serfling, 2000, 2001), method of medians for the gen-
eralised Pareto distribution (Peng and Welsh, 2001), and an integrated squared error approach
on partial density component estimation of the parameters of the generalised Pareto distribution
(Vandewalle et al., 2007).

Furthermore, Juarez and Schucany (2004) seem to be first authors to employ the minimum
density power divergence (MDPD) of Basu et al. (1998) for the robust estimation of parame-
ters of an extreme value distribution. Since then, this divergence measure has become the most
sought after divergence measure for robust estimation of parameters of extreme value distribu-
tions. Kim and Lee (2008), Dierckx et al. (2013), Goegebeur et al. (2014), Dierckx et al. (2018)
have made use of the MDPD in estimating the tail index and quantiles from Pareto-type distribu-
tions. Recently, Ghosh (2017) proposed a robust MDPD estimator for real-valued tail index. This
estimator is a robust generalisation of the estimator proposed by Matthys and Beirlant (2003) and
the author addresses the non-identical distributions of the exponential regression model using the
approach in Ghosh and Basu (2013). Also, Dierckx et al. (2013) employ the MDPD concept
on an extended Pareto distribution for relative excesses over a high threshold. This distribution
has second-order properties that are suitable for bias reduction such as in quantile estimation
(Dierckx et al., 2018).

In the present paper, we propose a robust estimator for tail index of Pareto-type using the
MDPD idea on an exponential regression model. Our estimator is a robust generalisation of
the estimator in Beirlant et al. (1999), and hence, it is different from the estimator in Ghosh
(2017). Again the use of this exponential regression model leads to estimates of other second-
order parameters that can be used to obtain bias-reduced estimators of extreme events such as
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quantiles and exceedance probabilities.
The rest of the paper is organised as follows. In Section 2, we present the robust estimation

methods of the tail index, beginning with an introduction to extreme value theory. The robust-
ness properties of the proposed estimators are studied using influence function and gross error
sensitivity analyses in Section 3. In section 4, the proposed estimator of the the Pareto-type tail
index is compared with two existing estimators in the literature via a simulation study. Section 5
presents an illustration of the proposed estimator on the estimation of the tail index of a practical
data set from the insurance industry. We provide concluding remarks in Section 6.

2 Estimation Method
Let X1,X2, . . . ,Xn be a sample of independent and identically distributed observations from some
process with underlying distribution F. Also let X1,n ≤ X2,n ≤ . . . ,Xn,n be the sample order statis-
tics associated with the sample. In order to infer on extreme events in the far tails or beyond
the data, one approach is to study the behaviour of the sample maximum, Xn,n. The well-known
Fisher and Tippett (1928) and Gnedenko (1943) theorem provides that a suitably normalised
maximum, Xn,n = max{X1, . . . ,Xn}, converges in distribution to a non-degenerate limit as n→∞.
Such a limit distribution was shown to be of the so-called generalised extreme value (GEV) dis-
tribution. Formally, if normalising sequences of constants an > 0 and bn ∈ R exist, then

lim
n→∞

P
(

Xn,n−bn

an
≤ x
)
= Gγ(x) (1)

with

Gγ(x) =

{
exp
(
−(1+ γx)−1/γ

)
, 1+ γx > 0, if γ 6= 0

exp(exp(−x)) , x ∈ R, if γ = 0.
(2)

If data from a distribution function, F, satisfies (2), F is said to belong to the domain of attraction
of Gγ and is denoted by F ∈ D(Gγ). Here, γ is the shape (tail index) and it measures the tail
heaviness of the underlying distribution, F. In particular, the distribution belongs to the Pareto
domain of attraction for γ > 0, Gumbel domain of attraction for γ = 0, and the Weibull domain
of attraction for γ < 0 with a finite right endpoint. The goal of extreme value analysis is mainly
to obtain estimates of high quantiles, exceedance probabilities and return periods. However, each
of the latter depends on the extreme value index, γ, which measures the tail heaviness of the
underlying distribution. Therefore, the estimation of γ remains an important research area in
EVT.

Another approach to obtaining the tail index relies on the Balkema and de Haan (1974) and
Pickands III (1975) theorem, which states that the distribution is in the max-domain of attraction
of the GEV distribution if and only if the distribution of excesses over high thresholds is asymp-
totically the generalised Pareto (GPD). An application of this theorem in Davison and Smith
(1990) gave rise to the so-called Peaks-Over-Threshold (POT) methodology in extreme value
analysis.

Among the early and popular estimators for estimating the parameters in (2) include, the max-
imum likelihood method, probability weighted moments and elemental percentile. In addition,
other semi-parametric estimators exist such as Hill (Hill, 1975), moment (Dekkers et al., 1989),
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exponential regression (Beirlant et al., 1999, 2009). However, in most instances the parametric
distribution, GEV or GPD, may not model all the data well. In addition, small deviations from
the assumed model may cause considerable effect on estimation of parameters and thereby affect
the estimation of extreme events such as high quantiles and exceedance probabilities. Robust
estimation aims at providing estimates that are stable or consistent within the neighbourhood of
the assumed model and can provide an assessment for the fit of the data to the model. If an ex-
treme observation is down weighted, then inferences on the GEV or GPD is potentially flawed.
Two options available are to base inferences on the part that is well fitted by the extreme value
distributions, GEV and GPD, or obtain a desirable model where the weights are consistent with
the bulk of the data.

In this paper, we consider the estimation of γ > 0, i.e. the Pareto domain of attraction. Such
domain has survival function,

1−F(x) = x−1/γ`F(x) (3)

or tail quantile function
U(x) = Q(1−1/x) = xγ`U(x) (4)

with Q the quantile function of F. Here, `F and `U are slowly varying functions given for t > 0
defined as,

lim
x→∞

`F(xt)
`F(x)

= 1, (5)

and similarly for `U .
In the next two sub-sections, we present the two methods used in estimation of the tail index

of a distribution function. In the third sub-section, we discuss the robust method of estimation of
the tail index using the minimum density power divergence method of Basu et al. (1998).

2.1 Extended Pareto Model
From (3), the conditional survival function of the relative excesses P

( X
u > x

∣∣X > u
)

converges
to x−1/γ for x > 1. Using the k upper order statistics and the Pareto-type behaviour, an estimate
of γ is obtained as the slope of the Pareto quantile plot. Also, the maximum likelihood estimate
of γ is the usual Hill estimator (Hill, 1975) given by

γ̂
H =

1
k

k

∑
j=1

j
(
logXn− j+1,n− logXn− j,n

)
. (6)

This estimator has been studied extensively in the literature because of its attractive properties.
However, it is known to have large bias and sensitive to outliers.

In view of this, Dierckx et al. (2013) employs the second-order condition of Beirlant et al.
(2009) on the rate of convergence of (5) to improve on the bias of this estimator. Denote by RVβ,
a class of functions regularly varying at infinity, with index β satisfying

lim
x→∞

LF(xt)
LF(x)

= tβ, (7)
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with (7) reducing to (5) if β = 0. The second-order condition needed to obtain the survival func-
tion of the extended Pareto distribution is given by:

Condition 1: Suppose γ > 0 and τ < 0 are constants, the distribution function F is said to
satisfy the second-order condition if x1/γ (1−F(x))→ C ∈ (0,∞) as x→ ∞ and the function δ

defined via
1−F(x) =Cx−1/γ

(
1+ γ

−1
δ(x)

)
is ultimately non-zero, of constant sign and |δ| ∈ RVτ ( Dierckx et al., 2013, pg. 71).

Equivalently, from Condition 1, the tail quantile function U, satisfies y−γU(y)→Cγ as y→∞.
Also define a function a implicitly as

U(y) =Cγyγ (1+a(y)) (8)

with a(y) = δ(Cγyγ)(1+o(1)) as y→ ∞. Thus, |a| ∈ RVρ where ρ = γτ. The second-order con-
dition was then used to obtain an extended Pareto distribution with survival function given by

1−G(y) = y−1/γ (1+δ−δyτ)−1/γ I{y > 1} (9)

and a density function

g(y) =
1
γ

y−1/γ−1 [1+δ(1− yτ)]−1/γ−1 [1+δ(1− (1+ τ)yτ)] , y > 1, (10)

where, γ > 0, τ < 0 and δ ∈ max{−1, 1/τ}. In practice, (9) is fitted to relative excesses over a
threshold, Xn−k, denoted Yi = Xn− j+1/Xn−k, j = 1,2, . . . ,k. The parameters γ > 0, τ < 0 and δ

can be estimated through maximum likelihood (Beirlant et al., 2009).

2.2 The Exponential Regression Model
Consider again X1, X2, . . . ,Xn i.i.d. random variables with common underlying distribution F
and associated quantile function Q. Then for the Pareto-type tails i.e. γ > 0, the survival function
is given by (3). Similarly, the associated tail quantile function U can be written in terms of the
associated slowly varying function `U as in 4. From (4), the order statistics X1,n, X2,n, . . . ,Xn,n
can be represented jointly as

logXn− j+1,n
d∼ γ logU−1

j,n + log`(U−1
j,n ) (11)

where U−1
j,n , j = 1,2, . . . ,n denote the order statistics of the standard uniform distribution, U(0,1).

From (11), Beirlant et al. (1999) obtain an approximate representation for

logXn− j+1,n

logXn−k,n

d∼ γ log
U−1

k+1,n

U−1
j,n

+ log`

(
U−1

j,n

U−1
k+1,n

)
(12)

k ∈ {2,3, . . . ,n−1}. The authors state that a more accurate representation is obtained from (12)
by implementing a slow variation with remainder condition on the rate of convergence to the
limit in (5). This is given as Condition 2:
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Condition 2: There exists a real constant ρ ≤ 0 and a rate function b satisfying b(x)→ 0 as
x→ ∞ such that for all u≥ 1,

lim
x→∞

log
`(ux)
`(x)

= b(x)κρ(u) (13)

with κρ(u) =
∫ u

1 vρ−1dv.
Under Condition 2, Beirlant et al. (1999) show that the weighted log-spacings of the order

statistics in (6),
Zi = i.(logXn−i+1,n− logXn−i,n) , 1≤ i≤ k ≤ n, (14)

are approximately exponentially distributed. Specifically, they obtain a regression model given
by,

Zi ∼

(
γ+bn,k

(
i

k+1

)−ρ
)

Ei (15)

where each Ei is a standard exponential random variable, and bn,k → 0 as k, n→ ∞, and ρ < 0
are second-order parameters. The parameters in (15) were estimated by maximum likelihood
in Beirlant et al. (1999) and shown to be better at reducing bias than the traditional estimators
such as Hill (1975). Also, when bn,k = 0, in (15), the resulting maximum likelihood estimator is
exactly the Hill estimator (Hill, 1975).

In this paper, we propose estimating the parameters robustly using the density power diver-
gence method of Basu et al. (1998). Our proposal is different from Ghosh (2017), in three ways.
Firstly, whereas we use the distribution of log-spacings of order statistics, Ghosh (2017) uses the
distribution of log ratio of order statistics. Secondly, our proposal is strictly for the Pareto domain
i.e. γ > 0 as against γ ∈ R. Lastly, the estimation of γ yields estimates of other second-order pa-
rameters that can be used in the reduced-biased estimators such as for quantiles and exceedance
probabilities.

2.3 Robust Estimation through the Minimum Density Power Divergence
Consider two density functions f and g, the minimum density power divergence between f and
g, introduced by Basu et al. (1998) has been used extensively to provide robust estimators and in
recent years has received attention in extreme value analysis (see e.g. Dierckx et al., 2013, 2018;
Kim and Lee, 2008). The popularity of the minimum divergence power density function stems
from its implicit usage of the empirical density function of the data. In this method, weighted
likelihood estimation equations are developed and observations that are outliers in relation to the
model distribution are down-weighted by a robustness parameter, α, of the model density.

The density power divergence between any two density functions f and g, is defined as

dγ( f ,g) =
{ ∫ [

f 1+α−
(
1+ 1

α

)
f αg+ 1

α
g1+α

]
, if α > 0∫

f log(g/ f ), if α = 0.
(16)

Here, the case of α = 0, was obtained by taking the limit α→ 0 of the first case α > 0 and the
resulting divergence is the Kulback-Leibler divergence.

Consider the i.i.d sample X1, . . . ,Xn from a model distribution function F of which θ is an
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unknown parameter of interest. The minimum density power divergence (MDPD) estimator of θ

is obtained by minimising the divergence between the data and the model density

dθ( f ,g) =

{
f 1+α−

(
1+ 1

α

) 1
n ∑

n
j=1 f α(X j), if α > 0

−1
n ∑

n
j=1 log f (X j), if α = 0.

(17)

The MDPD estimator of the parameters of the extended Pareto distribution, (10), are obtained
from the following system of equations

∫
∞

1
f α(x)

∂ f (x)
∂γ

dx−
(

1+
1
α

)
1
k

k

∑
j=1

f α−1 ∂ f (X j)

∂γ
= 0 (18)

and ∫
∞

1
f α(x)

∂ f (x)
∂δ

dx−
(

1+
1
α

)
1
k

k

∑
j=1

f α−1 ∂ f (X j)

∂δ
= 0. (19)

The estimating equations (18) and (19) depend on the unknown parameter τ, which is obtained
in Dierckx et al. (2013) using the reparametrisation, τ = ρ/γ. The asymptotic normality of these
estimators are shown in that paper.

In the case of the exponential regression model, described in Section 2.2, the weighted
log-spacings of order statistics, Zi, i = 1, . . . ,k− 1, in (14) each has distribution function Fθi

and corresponding density functions fθi. Although the Zi’s are independent having approxi-
mate density fθi, an exponential distribution, they are not identically distributed. Note that
θi = γ+ bn,k (i/k+1)−ρ , and hence, it is linear function of γ and non-linear functions of the
other parameters, bn,k and ρ.

The minimum density power estimator for the parameters γ, bn,k and ρ, can be obtained by
following Ghosh and Basu (2013) and Ghosh (2017) viz. by minimisation of the function

Hk(θ) =
1

k−1

k−1

∑
i=1

[∫ [
f 1+α

θi
−
(

1+
1
α

)
f α

θi
ĝi

]]
, (20)

where ĝi is a non-parametric estimator of gi from the observed sample. Since there is only
one observation for each density, gi, Ghosh (2017) states that the best possible nonparametric
estimator ĝi of gi, is given by the non-degenerate distribution at Yi. Then, rewriting (20) using the
exponential density, we obtain as in Ghosh (2017),

Hk (γ,b,ρ) =
1

k−1

k−1

∑
i=1

[
1

(1+α)θα
i
− 1+α

αθα
i

exp
(
−αzi

θi

)]
(21)

where θi = γ+ b
( i

k+1

)−ρ with b = bn,k. The parameters η = (γ, b, ρ) can then be obtained by
minimising the objective function (21). Alternatively, these estimators can be obtained by solving

the estimating equations
∂Hk

∂η
= 000, given by

1
k−1

k−1

∑
i=1

(1+α)

θ
α+2
i

.

[
αθi

(1+α)2 +(zi−θi)e
−αzi

θi

]
∂θi

∂η
= 000. (22)
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Taking the derivatives in (22) give

1
k−1

k−1

∑
i=1

JJJα

(
i

k+1
,η

)
.

[
αθi

(1+α)2 +(zi−θi)e
−αzi

θi

]
= 000, (23)

where, for any µ ∈ (0,1), we define JJJα(µ,η) = (J1,α(µ,η), J2,α(µ,η), J3,α(µ,η))
′ with

J1,α(µ,η) =
(1+α)

(γ+bµ−ρ)α+2 , (24)

J2,α(µ,η) =
(1+α)µ−ρ

(γ+bµ−ρ)α+2 , (25)

J3,α(µ,η) =−
(1+α)bµ−ρlog(µ)
(γ+bµ−ρ)α+2 . (26)

3 Robustness of the Proposed Estimators

3.1 Influence Function Analysis
Hampel (1968) provides a classical tool for measuring robustness known as influence functions.
This function gives a first-order approximation of the asymptotic bias of any estimator under
contamination by an outlying observation. In practice, we seek a bounded influence function and
hence, such an estimator’s bias will not increase indefinitely under contamination by very far
outlying point.

In order to derive the influence function for our proposed estimator, we first need to define
it in terms of statistical functionals. Let Zi have a true distribution Gi with density gi for each
i = 1,2, . . . ,k−1. Denote GGG = (G1,G2, . . . ,Gk−1)

′ and ĜGG =
(
Ĝ1, Ĝ2, . . . , Ĝk−1

)′ where Ĝi is the
empirical distribution function corresponding to Gi for i= 1,2, . . . ,k−1. Then it is easy to see that
our minimum density power estimator of η = (γ, b, ρ) is given by η̂α = Tα

(
ĜGG
)

where Tα

(
ĜGG
)

is the corresponding statistical functional defined as the solution of the following population
estimation equation,

1
k−1

k−1

∑
i=1

JJJα

(
i

k+1
,η

)
.

[
αθi

(1+α)2 +
∫
(z−θi)e

−αz
θi gi(z)dz

]
= 0. (27)

Now, following Ghosh and Basu (2013) and Ghosh (2017), we may assume contamination
to be in any one or more (even all) g′is. For simplicity, let us first assume the contamination
is only in gi0 for some fixed i0 ∈ {1,2, . . . ,k− 1} and the corresponding contaminated den-
sity and distribution functions are gi0,ε = (1− ε)gi0 + εδti0

and Gi0,ε = (1− ε)Gi0 + ε∆ti0
re-

spectively, where δti0
and ∆ti0

are the density and distribution functions of a degenerate dis-
tribution at the contamination point ti0 and ε is the contamination proportion. Then, ηε =
Tα (G1, . . . ,Gi0−1,Gi0,ε,Gi0+1, . . . ,Gk−1) satisfy the estimating equation (27) with gi0 replaced
with gio,ε and η replaced by ηε (so that θi is replaced by the corresponding value, θi,ε, computed
from ηε for all i = 1,2, . . . ,k−1), i.e. we have
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1
k−1

k−1

∑
i=1

JJJα

(
i

k+1
,ηε

)
αθi,ε

(1+α)2 +
1

k−1

k−1

∑
i=1,i 6=i0

JJJα

(
i

k+1
,ηε

)∫
(z−θi,ε)e

− αz
θi,ε gi(z)dz+

JJJα

(
i0

k+1
,ηε

)∫
(z−θi0,ε)e

− αz
θi0,ε gi,ε(z)dz = 0. (28)

Differentiating (28) with respect to ε at ε = 0 and evaluating terms, we get the required partial
influence function of Tα under contamination only at the io-th density as given by

IF(ti0,Tα,G) =
δηε

δε

∣∣∣∣
ε=0

=
Ψ−1

n (G)

k−1
JJJα

(
i0

k+1
,ηg
) αθ

g
i0

(1+α)2 +(ti0−θ
g
i0)e
−

αti0
θ

g
i0

 (29)

where ηg = Tα(G), θ
g
i0 is the corresponding value of θi0 obtained from ηg and Ψn(G) is defined

from equations (3.3) and (3.5) of Ghosh and Basu (2013). In our case, we can simplify the form
of Ψn(G) for general distribution functions Gis as given by

Ψ−1
n (G) = −1

k−1 ∑
k−1
i=1

[{
M1
( i

k+1 ,η
g)− (α+2)

θ
g
i

M2
( i

k+1 ,η
g)} αθ

g
i

(1+α) +{
M1
( i

k+1 ,η
g)− (α+2)

θ
g
i

M2
( i

k+1 ,η
g)}∫

(z−θ
g
i )e
− αz

θ
g
i gi(z)dz+

M2
( i

k+1 ,η
g){ α

1+α
−

∫
e
− αz

θ
g
i gi(z)dz +

α

(θ
g
i )

2

∫
z(z−θ

g
i )e
− αz

θ
g
i gi(z)dz

}]
,

(30)

where

M1(µ,η) =
(1+α)

(γ+bµ−ρ)α+2


0 0 0

0 0 − log(µ).µ−ρ

0 −µ−ρ log(µ) bµ−ρ (log(µ))2

 ,
and

M2(µ,η) =
(1+α)

(γ+bµ−ρ)α+2


1 µ−ρ −bµ−ρ log(µ)

µ−ρ µ−2ρ −bµ−2ρ log(µ)

−bµ−ρ log(µ) −bµ−2ρ log(µ) b2µ−2ρ(log(µ))2

 .
To illustrate the influence function for our estimators, let us simplify the influence function

for the case where exponential regression model, (15), is valid. In that case, let Gi ≡ F
θ0

i
, the
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exponential distribution with mean, θ0
i , computed from (true) parameter value η0 =

(
γ0,b0,ρ0)

for all i = 1,2, . . . ,k−1. In addition, denoting FFF
θ0

i
=
(

F
θ0

1
,F

θ0
2
, . . . ,F

θ0
k−1

)
, we have

Tα (Fθ0) = η
0,

and
Ψ0

n = Ψn

(
FFF

θ0
i

)
= 1

k−1 ∑
k−1
i=1

[
(α4+2α3+2α2+1)

(1+α)3 M2
( i

k+1 ,η
0)− α2θ0

i
(1+α)2 M1

( i
k+1 ,η

0)] .

Then the influence function has the simplified form

IF(ti0 ,Tα,FFFθ0
i
) =

(Ψ0
n)
−1

k−1
JJJα

(
i0

k+1
,η0
) αθ0

i0
(1+α)2 +

(
ti0−θ

0
i0

)
e
−

αti0
θ0

i0

 . (31)

Considering the range of values for α > 0, the influence function for our estimators is bounded.
However, when α = 0, the expression (31) simplifies to

IF(ti0,Tα,FFFθ0
i
) =

(Ψ0
n)
−1

k−1
JJJ0

(
i0

k+1
,η0
)(

ti0−θ
0
i0

)
. (32)

Here, it is easy to see from (32) that the influence function is linear in terms of the contamination
point ti0 and hence it is unbounded. Therefore, we conclude that our estimators for the parameters
γ, b and ρ of (15) obtained with α > 0 are robust with respect to contamination at any or all of
the Z j’s compared with the maximum likelihood estimators obtained in Beirlant et al. (1999)
corresponding to α = 0.

The fixed-sample influence functions are shown in Figure 1 for various values of γ and at
different contamination points, ti0. Clearly, the influence function is unbounded for α = 0 : it has
a linear increasing function as the contamination point is more extreme. However, in the same
Figures, the boundedness of the estimators can easily be seen as it becomes flatter when a point
of contamination is farther detached from the bulk of the data.

In a similar way, if there is contamination in all densities as gi,ε = (1− ε)gi + ε∆ti at contam-
inant point ti, for i = 1,2, . . . ,k− 1, with the corresponding distribution function being Gi,ε =
(1− ε)Gi + ε∧ti, then we define ηε = Tα (G1,G2, . . . ,Gk−1) and proceed as before to obtain
the corresponding influence function. When the model assumptions are correct, i.e. Gi = F

θ0
i

for all i, the total influence function of our proposed estimate of η at the contaminated points
ttt = (t1, t2, . . . , tk−1)

′ has the form

IF0(ttt,Tα,FFFθ0
i
) =

(
Ψ0

n
)−1

k−1

k−1

∑
i=1

JJJα

(
i

k+1
,η0
)[

αθ0
i

(1+α)2 +(ti−θ
0
i )e
−αti

θ0
i

]
. (33)

Again, clearly it can be seen from (33), that the influence function is bounded for all α > 0.
However, in the case where α = 0, the influence function exhibits unboundedness as it is linear
in terms of ti, i = 1,2, . . . ,k−1.
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Figure 1: Influence function of Tα over contamination point with k = 100, b = 2, ρ =−1, Top
panel: i0 = 20; and bottom panel: i0 = 70. Leftmost column: γ = 0.1; middlemost column:
γ = 0.5; and rightmost column: γ = 1.

3.2 Gross Error Sensitivity
The Gross-Error Sensitivity (Hampel, 1968) measures the maximum possible values of the bias
of an estimator under small infinitesimal contamination. Thus, the gross-error sensitivity is a
supremum of the influence function and can be defined as

S (Tα,GGG) = sup
t
{IF (t,Tα,FFF)}. (34)

Therefore, in considering the effect of k and α on the robustness of our estimator Tα, the smaller
the value of S (Tα,GGG) , the more robust the estimator is to these parameters. In the case of con-
tamination at a point Yi0 only, the gross-error sensitivity of the proposed estimator Tα is given
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by

Si0

(
Tα,FFFθ0

i

)
= sup

ti0

∥∥∥IF
(

ti0,Tα,FFFθ0
i

)∥∥∥

=



θi0

[
α2 +(1+α)2e−(1+α)

]
α(1+α)2(k−1)

√
JJJα

(
i0

k+1 ,η
0
)t
(Ψ0

n)
−2 JJJα

(
i0

k+1 ,η
0
)
,

if α > 0

∞, if α = 0.

Figure 2 presents the values of the sensitivity measures Si0(Tα,FFFθ0
i
) over the parameter α for

selected values of k. It can be seen that the value of Si0(Tα,FFFθ0
i
) decreases with increasing values

of α. In addition, the Si0(Tα,FFFθ0
i
) decreases with increasing k.
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Figure 2: Gross Error Sensitivity Si0

(
Tα,FFFθ0

i

)
over the tuning parameters α and k for estimating

γ = 0.5 for contamination direction i0 = k/2 (top panel) and i0 = k/10 (bottom panel).

Thus, Si0(Tα,FFFθ0
i
) decreases as α and k increase. Furthermore, the sensitivity values decreases

sharply for α < 0.2. However, it has smaller and near constant values for α > 0.2. These imply
that our proposed estimators show strong robustness properties for increasing values of α and k.
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Similarly, the sensitivity for contamination in at least two observations can be obtained but has
been omitted here for ease of presentation.

4 Simulation Study
In this section, we compare the performance of our proposed estimator with the equivalent mini-
mum density power divergence estimators of the Pareto-type tail index in the literature. Specifi-
cally, the proposed exponential regression model estimator based on log-spacings of order statis-
tics, ERM M, the Dierckx et al. (2013) estimator obtained from fitting an extended Pareto distri-
bution to relative excesses, EPD D, and the Ghosh (2017) exponential regression model estimator
based on log-ratio of order statistics, ERM G.

4.1 Simulation Design
We consider three distributions in the Fréchet-Pareto domain of attraction namely the Fréchet,
Pareto, and Burr. The distribution function, 1−F, tail index, γ, and the second-order parameter,
ρ, of the distributions used in the simulation study are presented in Table 1.

Table 1: Distributions and their tail indexes

Distribution 1−F(x) γ ρ

Burr (η/(η+ xτ))λ , x > 0,η,τ,λ > 0 1/(τλ) −1/λ

Fréchet 1− exp(−x−β), x > 0, β > 0 1/β -1

Pareto x−β, x > 0, β > 0 1/β -1

For each distribution F, we generated samples from a mixture contaminated model: (1−
ε)F + εG where G is a nuisance distribution. Specifically, G is chosen in two ways: from the
same distribution as F but with different parameters and a different distribution from F. In each
case, we assess the robustness of the estimators under different contamination scenarios with
ε = 0.05 and ε = 0.15. Furthermore, to assess the effect of the robustness parameter, we take
three values of α, at 0.1, 0.5 and 1 representing levels for increased robustness.

4.2 Discussion of Simulation Results
This section discusses the behaviour of the proposed estimator and the two existing estimators
of the tail index in the case where contamination of the base distribution comes from the same
distribution but with different parameters. Here the contaminating distribution’s parameter is
chosen such that the observations are generally distinct from the bulk of the data. The results of
the simulation studies for the Burr distribution contaminated by another Burr but with different
tail index are presented in Figures 3-5 for the Mean Square Error (MSE) and Figures 6-8 for the
bias.
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Figure 3: Burr distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.
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Figure 4: Burr distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.
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Figure 5: Burr distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.

From these Figures, the proposed ERM M estimator shows clear improvement on MSE and
bias than the ERM G and EPD D across the three robust tuning parameters as well as the percent-
age of contamination. However, for smaller values of k, the ERM G estimator seems to provide
better MSEs than the ERM M. This can be explained as the ERM G estimator does not involve
second-order parameters and hence should in theory have less variation.

In addition, the performance of the estimators in the case of samples generated from other
distributions (i.e. Fréchet and Pareto) are presented in Appendices A.1 and A.2. In the case
of the Fréchet distribution, the proposed ERM M and EPD G estimators are by far better than
the ERM G. The two estimators, ERM M and EPD G, have approximately equal performance
under MSE, with the ERM M slightly on top for larger values of k. However, in terms of bias, the
ERM M is the preferred estimator as it has the least values across the sample sizes, percentage
of contamination and the robust parameters.

Similar performance can be seen of the ERM M estimator in the case of samples generated
from the Pareto distribution. It has smaller values of the MSE in most cases. However, unlike
the other distributions, the ERM G estimator is quite competitive and can be considered as an
appropriate estimator of the tail index than the EPD G with bias and MSE values comparable to
the ERM M estimator.

Therefore, the simulation results indicate that across the different distributions and factors
such as percentage of contamination and robustness levels, the ERM M is found to be generally
a better alternative to the EPD D and the ERM G estimators.

Lastly, the R codes for the computation of the tail index, implementation of the influence
function analysis and sensitivity measures can be found at https://github.com/rminkah/
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Figure 6: Burr distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.

5 Application
In this section, we estimate the tail index of the Society of Actuaries (SOA) Group Medical
Insurance data studied in Beirlant et al. (2004, Chapters 1 and 5) and can be found at https://
lstat.kuleuven.be/Wiley/Data/soa.txt. However, all the estimators used were non-robust
including maximum likelihood estimator based on perturbed Pareto distribution and exponential
regression model. In this section, we illustrate the application of the proposed robust minimum
density power divergence estimator of the tail index based on log-spacings of order statistics
discussed in the previous section in estimating the tail index of the SOA data.

The plot of the data in Figure 9 shows that two particular large claims seem to be detached
from the bulk of the data. Such outliers have implication on traditional methods of estimation
of the parameters of the GP distribution such as maximum likelihood and probability weighted
moments. Using different robust tuning parameters, we compute the tail index as a function of
the number of top order statistics, k. The result reveals that our proposed estimator, ERM M,
is mostly stable along the path of k compared to the robust estimator of Dierckx et al. (2013)
based on the extended Pareto distribution, EPD D. Also, in conformity with the behaviour of
robust estimators, the variation in the estimates increases with increasing α. Therefore, ERM M
provides a better alternative robust estimator for the tail index in the Pareto domain as illustrated
with the SOA data.
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Figure 7: Burr distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.
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Figure 8: Burr distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost column:
α = 1.
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Figure 9: SOA data: (a) scatter plot (b) γ estimates with α = 0.1 (c) γ estimates with α = 0.5 and
(d) γ estimates with α = 1

6 Conclusion
In this paper, we proposed a robust estimator of tail index using the minimum density power
divergence through an exponential regression model. The estimator is valid for the Pareto do-
main of attraction, i.e. heavy-tailed distributions. The robustness aspect of this estimator was
studied analytically by deriving its influence function and gross error sensitivity functions. In
addition, the finite sample properties of the estimator was studied through a simulation study
together with a similar estimator using minimum density power divergence but on an extended
Pareto distribution fitted to relative excesses and an exponential regression model estimator based
on log-spacings of order statistics. The results of the simulation study show that the proposed
minimum density power estimator based on an exponential regression model on log-spacings of
order statistics generally has better performance in terms of mean square errors and bias than the
existing estimators. In addition, the proposed robust estimator of the tail index is less sensitive
to the number of top order statistics. Lastly, the proposed estimator is illustrated on real-data set
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on insurance claims. The theoretical properties of the proposed estimators, estimation of high
quantiles and exceedance probabilities are the subjects for future research.
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A Simulation Results for other Distributions
For each figure in the sections of the appendix, the following description applies: Topmost
row: ε = 0.05; and bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost col-
umn: α = 0.5; and rightmost column: α = 1.

A.1 Fréchet Distribution
A.1.1 Mean Square Error
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Figure 10: Fréchet distribution with n = 50 and γ = 0.5.
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Figure 11: Fréchet distribution with n = 200 and γ = 0.5.
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Figure 12: Fréchet distribution with n = 1000 and γ = 0.5.
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A.1.2 Bias
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Figure 13: Fréchet distribution with n = 50 and γ = 0.5.
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Figure 14: Fréchet distribution with n = 200 and γ = 0.5.
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Figure 15: Fréchet distribution with n = 1000 and γ = 0.5.

A.2 Pareto Distribution
A.2.1 Mean Square Errors
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Figure 16: Pareto distribution with n = 50 and γ = 0.5.
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Figure 17: Pareto distribution with n = 200 and γ = 0.5.
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Figure 18: Pareto distribution with n = 1000 and γ = 0.5.
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A.2.2 Bias
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Figure 19: Pareto distribution with n = 50 and γ = 0.5.
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Figure 20: Pareto distribution with n = 200 and γ = 0.5.
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Figure 21: Pareto distribution with n = 1000 and γ = 0.5.
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