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Abstract

In this paper, we introduce a robust estimator of the tail index of a Pareto-type distribu-
tion. The estimator is obtained through the use of the minimum density power divergence
with an exponential regression model for log-spacings of top order statistics. The proposed
estimator is compared to an existing estimator for Pareto-type tail index based on fitting
an extended Pareto distribution with the minimum density power divergence. A simulation
study is conducted to assess the performance of the estimators under different contami-
nated samples from different distributions. The results show that the proposed estimator
has better mean square errors and less sensitivity to an increase in the number of top order
statistics. In addition, the estimation of the exponential regression model yields estimates
of second-order parameters that can be used for estimation of extreme events such as quan-
tiles and exceedance probabilities. The estimators are illustrated with a practical dataset on
insurance claims.

Keywords: Tail Index, robust estimation, maximum Likelihood, exponential regression
model, extended Pareto distribution; minimum density power divergence

1 Introduction
Extreme value theory (EVT) has become an important tool in many disciplines for the estima-
tion of rare events that are related to environmental science, hydrology, Insurance and Finance,
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among others. The process of extreme value analysis involves fitting an extreme value distribu-
tion, characterised by a tail index, which measures the tail heaviness of the distribution function.
The most common method for estimating the parameters of an extreme value distribution in an
extreme value analysis is the maximum likelihood. Also in the semi-parametric framework, the
hill estimator (Hill, 1975) remains the most popular among a series of estimators. However,
these estimators do not take into account possible deviations from assumed extreme value mod-
els. This may arise as a result of possible outliers in the data that may (or may not) have been
recorded in error. In such a dataset, the estimators mentioned above are known to be sensitive
to such outlying observations and affects the quality of the estimates of model parameters. In
addition, small errors in the estimation of model parameters such as the tail index can cause
significant errors in the estimation of extreme events such as high quantiles and exceedance
probabilities (see e.g. Brazauskas and Serfling, 2000).

Robust statistics presents a better method for addressing outliers and deviations from as-
sumed parametric models. In the the context of extreme value analysis, its usage may appear
to be contradictory. However, it has be shown that employing robust statistical ideas in ex-
treme value theory, improves the quality and precision of estimates (Dell’Aquila and Embrechts,
2006). Among the early applications of robust estimators include the Optimal Biased Reduced
Estimator (OBRE) of the parameters of the GEV distribution (Dupius and Field, 1998), gener-
alised mean and trimmed mean type estimators (Brazauskas and Serfling, 2000, 2001), method
of medians for the generalised Pareto distribution (Peng and Welsh, 2001), and an integrated
squared error approach on partial density component estimation of the parameters of the gener-
alised Pareto distribution (Vandewalle et al., 2007).

Furthermore, Juarez and Schucany (2004) seems to be first authors to employ the minimum
density power divergence (MDPD) of Basu et al. (1998) for the robust estimation of parame-
ters of an extreme value distribution. Since then, this divergence measure has become the most
sought after divergence measure for robust estimation of parameters of extreme value distri-
butions. Kim and Lee (2008), Dierckx et al. (2013), Goegebeur et al. (2014), Dierckx et al.
(2018) have made use of the MDPD in estimating the tail index and quantiles from Pareto-
type distributions. Recently, Ghosh (2017) proposed a robust MDPD estimator for real-valued
tail index. This estimator is a robust generalisation of the estimator proposed by Matthys and
Beirlant (2003) and the author addresses the non-identical distributions of the exponential re-
gression model using the approach in Ghosh and Basu (2013). Also, Dierckx et al. (2013)
employs the MDPD concept on an extended Pareto distribution for relative excesses over a high
threshold. This distribution has second-order properties that are suitable for bias reduction such
as in quantile estimation (Dierckx et al., 2018).

In the present paper, we propose a robust estimator for tail index of Pareto-type using the
MDPD idea on an exponential regression model. Our estimator is a robust generalisation of
the estimator in Beirlant et al. (1999), and hence, it is different from the estimator in Ghosh
(2017). Again the use of this exponential regression model leads to estimates of other second-
order parameters that can be used to obtain bias-reduced estimators of extreme events such as
quantiles and exceedance probabilities.

The rest of the paper is organised as follows. In Section 2, we present the robust estimation
methods of the tail index, beginning with a introduction to extreme value theory. In section 3,
the two estimators of the the Pareto-type tail index are compared via a simulation study. Section
4 presents an illustration of the two estimators on the estimation of the tail index of a practical
data set from the insurance industry. We provide concluding remarks in Section 5.
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2 Estimation Method
let X1,X2, . . . ,Xn be a sample of independent and identically distributed observations from some
process with underlying distribution F. Also let X1,n ≤ X2,n ≤ . . . ,Xn,n be the sample order
statistics associated with the sample. In order to infer on extreme events beyond the range of the
data, we need to study the behaviour of the sample maximum, Xn,n. The well-known Fisher and
Tippett (1928) and Gnedenko (1943) theorem provides that for a suitable normalised maximum,
Xn,n = max{X1, . . . ,Xn}, converges in distribution to a non-degenerate limit as n→ ∞. Such a
limit distribution was shown to be of the extreme value type. Formally, if the sequence of
constants an > 0 and bn ∈ R exist, then we can find

lim
n→∞

p
(

Xn,n−bn

an
≤ x
)
= Gγ(x) (1)

with

Gγ(x) =

{
exp
(
−(1+ γx)−1/γ

)
, 1+ γx > 0, if γ 6= 0

exp(exp(−x)) , x ∈ R, if γ = 0.
(2)

If a distribution function, F, satisfies (2), it is said to belong to the domain of attraction of Gγ

and is denoted by F ∈D(Gγ). Here, γ is the shape (tail index) and it measures the tail heaviness
of the underlying distribution, F. In particular, the distribution belongs to the Pareto domain of
attraction for γ> 0, Gumbel domain of attraction for γ= 0, and the Weibull domain of attraction
for γ < 0 with a right endpoint. If the condition (2) is satisfied, then F is said to belong to the
domain of attraction of Gγ,written as F ∈D(Gγ). The goal of extreme value analysis is mainly to
obtain estimates of high quantiles, exceedance probabilities and return periods. However, each
of these parameters depend on the extreme value index, γ, which measures the tail heaviness of
the underlying distribution. Therefore, the estimation of γ remains an important research area
in EVT.

Another approach to obtaining the tail index relies on the Balkema and de Haan (1974) and
Pickands III (1975) theorem, which states that the distribution is in the max-domain of attraction
of an extreme value distribution if and only if the distribution of excesses over high thresholds
is asymptotically generalised Pareto (GP). An application of this theorem in Davison and Smith
(1990) gave rise to the so-called Peaks-Over-Threshold (POT) methodology in extreme value
analysis.

Among the early and popular estimators for estimating the parameters in (2) include, the
maximum likelihood method, probability weighted moments and elemental percentile. In addi-
tion, other semi-parametric estimators exist such as Hill (Hill, 1975), moment (Dekkers et al.,
1989), exponential regression (Beirlant et al., 1999, 2009).

However, in most instances the parametric distribution, GEV or GP, may not model all
the data well. In addition, small deviations from the assumed model may cause considerable
effect on estimation of parameters and thereby affect the estimation of extreme events such as
high quantiles and exceedance probabilities. Robust estimation aims at providing estimates that
are stable or consistent within the neighbourhood of the assumed model and can provide an
assessment for the fit of the data to the model. If an extreme observation is down weighted,
then inferences on the EVD is potentially flawed. Two options available are to base inferences
on the part that are well fitted by the EVD or obtain a desirable model where the weights are
consistent with the bulk of the data.

In this paper, we consider the estimation of γ > 0, i.e. the Pareto domain of attraction. Such
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domain has survival function,
1−F(x) = x−1/γ`F(x) (3)

or
U(x) = Q(1−1/x) = xγ`U(x) (4)

with Q the quantile function of F. Here, `F and `U are a slowly varying functions given for t > 0
defined as,

lim
x→∞

`F(xt)
`F(x)

= 1, (5)

and similarly for `U .
In this section, we present the two methods used in the estimation of tail index of a distri-

bution function. After, this we discuss the robust method of estimation using the density power
divergence method of Basu et al. (1998).

2.1 Extended Pareto Model
From (3), the conditional distribution of the relative excesses P

(X
u > x|X > u

)
converges to

x−1/γ for x > 1. Using this Pareto-type behaviour, an estimate of γ is obtained as the slope of
the Pareto quantile plot. Also, the maximum likelihood estimate of γ is the usual Hill estimator
(Hill, 1975) given by

γ̂
H =

1
k

k

∑
j=1

j
(
logXn− j+1,n− logXn− j,n

)
. (6)

This estimator has been studied extensively in the literature with attractive properties. However,
it is known to have large bias and sensitive to outliers.

In view of this, Dierckx et al. (2013) employs the second-order condition of Beirlant et al.
(2009) on the rate of convergence of (5) to improve on the bias of this estimator. Denote by
RVβ, a regularly varying function at infinity with index β satisfying

lim
x→∞

`F(xt)
`F(x)

= tβ, (7)

with (7) reducing to (5) if β = 0. The second-order condition needed to obtain the survival
function of the extended Pareto distribution is given by:

Condition 1: Suppose γ > 0 and τ < 0 are constants, the distribution function F is said to
satisfy the second-order condition if x1/γ (1−F(x))→C ∈ (0,∞) as x→ ∞ and the function δ

defined via
1−F(x) =Cx−1/γ

(
1+ γ

−1
δ(x)

)
is ultimately non-zero, of constant sign and |δ| ∈ RVτ (Dierckx et al., 2013, pg. 71).

Equivalently, from Condition 1, the tail quantile function U, satisfies y−γU(y)→Cγ as y→
∞. Also define a function a implicitly as

U(y) =Cγyγ (1+a(y)) (8)

with a(y) = δ(Cγyγ)(1+o(1)) as y→ ∞. Thus, |a| ∈ RVρ where ρ = γτ. The second-order
condition was then used to obtain an extended Pareto distribution with survival function given
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by
1−G(y) = y−1/γ (1+δ−δyτ)−1/γ I{y > 1} (9)

and a density function

g(y) =
1
γ

y−1/γ−1 [1+δ(1− yτ)]−1/γ−1 [1+δ(1− (1+ τ)yτ)] , y > 1, (10)

where, γ > 0, τ < 0 and δ ∈max{−1, 1/τ}. In practice, (9) is fitted to relative excesses over a
threshold, Xn−k, denoted Yi = Xn− j+1/Xn−k, j = 1,2, . . . ,k. The parameters γ > 0, τ < 0 and δ

can be estimated through maximum likelihood (Beirlant et al., 2009).

2.2 The Exponential Regression Model
Consider again X1, X2, . . . ,Xn i.i.d. random variables with common underlying distribution F
and associated quantile function Q. Then for the Pareto-type tails i.e. γ> 0, the survival function
is given by (3). Similarly, the associated tail quantile function U can be written in terms of the
associated slowly varying function `U as in 4. From (4), the order statistics X1,n, X2,n, . . . ,Xn,n
can be represented jointly as

logXn− j+1,n
d∼ γ logU−1

j,n + log`(U−1
j,n ) (11)

where U−1
j,n , j = 1,2, . . . ,n denote the order statistics of the standard uniform distribution, U(0,1).

From (11), Beirlant et al. (1999) obtains an approximate representation for

logXn− j+1,n

logXn−k,n

d∼ γ log
U−1

k+1,n

U−1
j,n

+ log`

(
U−1

j,n

U−1
k+1,n

)
(12)

k ∈ {2,3, . . . ,n−1}. The authors state that a more accurate representation is obtained from (12)
by implementing a slow variation with remainder condition on the rate of convergence to the
limit in (5). This is given as Condition 2:

Condition 2: There exist a real constant ρ≤ 0 and a rate function b satisfying b(x)→ 0 as
x→ ∞ such that for all u≥ 1,

lim
x→∞

log
`(ux)
`(x)

= b(x)κρ(u) (13)

with κρ(u) =
∫ u

1 vρ−1dv.
Under Condition 2, Beirlant et al. (1999) show that an approximate representation of the

log-spacings of the order statistics in (6),

Z j = j.
(
logXn− j+1,n− logXn− j,n

)
, 1≤ j ≤ k ≤ n, (14)

are exponentially distributed. Specifically, they obtain a regression model given by,

Z j ∼

(
γ+bn,k

(
j

k+1

)−ρ
)

E j (15)

where each E j is a standard exponential random variable, and bn,k→ 0 as k, n→ ∞, and ρ < 0
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are second-order parameters. The parameters of (15) were obtained by the maximum likelihood
in Beirlant et al. (1999) and shown to be better at reducing bias than the traditional estimators
such as Hill (1975). Also, when bn,k = 0, in (15), the resulting maximum likelihood estimator
is exactly the Hill estimator (Hill, 1975).

In this paper, we propose estimating the parameters robustly using the density power di-
vergence method of Basu et al. (1998). Our proposal is different from Ghosh (2017), in three
ways. Firstly, whereas we use the distribution of log-spacings of order statistics, Ghosh (2017)
uses the distribution of log ratio of order statistics. Secondly, our proposal is strictly for the
Pareto domain i.e. γ > 0 as against γ ∈ R. Lastly, the estimation of γ yields estimates of other
second-order parameters that can be used in the reduced-biased estimators such as for quantiles
and exceedance probabilities.

2.3 Robust Estimation through the Minimum Density Power Divergence
Consider two density functions f and g, the minimum density power divergence between g and
h, introduced by Basu et al. (1998) has been used extensively to provide robust estimators and in
recent years has received attention in extreme value analysis (see e.g. Dierckx et al., 2013, 2018;
Kim and Lee, 2008). The popularity of the minimum divergence density power function stems
from its implicit usage of the empirical density function of the data. In this method, weighted
likelihood estimation equations are developed and observations that are outliers in relation to
the model distribution are down-weighted by a robust parameter, α, of the model density.

The density power divergence between any two density functions f and g, is defined as

dγ( f ,g) =
{ ∫ [

f 1+α−
(
1+ 1

α

)
f αg+ 1

α
g1+α

]
, if α > 0∫

f log(g/ f ), if α = 0.
(16)

Here, the case of α = 0, was obtained by taking the limit α→ 0 of the first case α > 0 and the
resulting divergence is the Kulback-Leibler divergence.

Consider the i.i.d sample X1, . . . ,Xn from a distribution function F of which θ is an un-
known parameter of interest. The minimum density power divergence (MDPD) estimator of θ

is obtained by minimising the divergence between the data and the model density

dθ( f ,g) =

{
f 1+α−

(
1+ 1

α

) 1
n ∑

n
j=1 f α(X j), if α > 0

−1
n ∑

n
j=1 log f (X j), if α = 0.

(17)

The MDPD estimator of the parameters of the extended Pareto distribution, (10), are obtained
from the following system of equations

∫
∞

1
f α(x)

∂ f (x)
∂γ

dx−
(

1+
1
α

)
1
k

k

∑
j=1

f α−1 ∂ f (X j)

∂γ
= 0 (18)

and ∫
∞

1
f α(x)

∂ f (x)
∂δ

dx−
(

1+
1
α

)
1
k

k

∑
j=1

f α−1 ∂ f (X j)

∂δ
= 0. (19)

The estimating equations (18) and (19) depends on the unknown parameter τ, which is obtained
in Dierckx et al. (2013) using the reparametrisation, τ = ρ/γ. The asymptotic normality of these
estimators are shown in that paper.
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In the case of the exponential regression model, described in Section 2.2, the log-spacings of
order statistics, Z j, j = 1, . . . ,k−1, in (14) each has distribution function Fθ j and corresponding
density functions fθ j . Although the Yjs are independent and follows fθ j which are exponentially
distributed, they are not identical. Note that θ j = γ+ bn,k ( j/k+1)−ρ , and hence, it is linear
function of γ and non-linear functions of the other parameters, bn,k and ρ.

The minimum density power estimator for the parameters γ, bn,k and ρ, can be obtained by
following Ghosh and Basu (2013) and Ghosh (2017) where a minimisation of the function

Gk(θ) =
1

k−1

k

∑
i=1

[∫ [
f 1+α

θ j
−
(

1+
1
α

)
f α

θ j
ĝ j

]]
(20)

where ĝ j is a non-parametric estimator of g j from the observed sample. Since there are only
one observation for each density, g j, Ghosh (2017) states that the best possible nonparametric
estimator ĝ j of g j, is given by the non-degenerate distribution at Yj. Then, rewriting (20) using
the exponential density, we obtain as in Ghosh (2017),

Hk
(
γ,bn,k,ρ

)
=

1
k−1

k−1

∑
i=1

[
1

(1+α)θα
j
− 1+α

αθα
j

exp
(
−

αZ j

θ j

)]
(21)

where θ j = γ+ bn,k

(
j

k+1

)−ρ

. The parameters of the (15) can be obtained by minimising the
distance of the objective function (21). Alternatively, the estimators of (15) can be obtained by
solving the estimating equation δGk

δθ j
= 0. For example, in the case of γ, differentiating (21) with

respect to γ, yields a simplified form,

1
k−1

k−1

∑
i=1

1+α

θ
α+2
j

[
αθ j

(1+α)2 +
(
Z j−θ j

)
exp
(
−

αZ j

θ j

)]
= 0 (22)

3 Simulation Study
In this section, we compare the performance of the two robust methods of estimating Pareto-
type tail index through a simulation study. We consider four distributions in the Fréchet-Pareto
domain of attraction namely the Fréchet, Pareto, Burr and the log gamma. The distribution
function, 1−F, tail index, γ, and the second-order parameter, ρ of the distributions used in the
simulation study are presented in Table 1.

For each distribution F, we generated samples from a mixture contaminated model: (1−
ε)F + εG where G is a nuisance distribution.Specifically, G is chosen in two ways: from the
same distribution as F but with different parameters and a different distribution from F. In each
case, we assess the robustness of the estimators under different contamination scenarios with
ε = 0.05 and ε = 0.15. Furthermore, to assess the effect of the robustness parameter, we take
three values of α, at 0.1, 0.5 and 1 representing increasing levels of robustness.
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Table 1: Distributions and their tail indexes

Distribution 1−F(x) γ ρ

Burr (η/(η+ xτ))λ , x > 0,η,τ,λ > 0 1
τλ

− 1
λ

Fréchet 1− exp(−x−β), x > 0, β > 0 1/β -1

Log gamma
∫

∞

x
λβ

Γ(β)u
−(λ+1) (logu)β−1 du, x > 1, β, λ > 0. 1

λ

Pareto x−β, x > 0, β > 0 1
β

-1

Uniform x−a
b−a ,a≤ x≤ b −b

3.1 Performance Measures under Contamination from the same Distri-
bution

We study the behaviour of the proposed estimator and the MDPD estimator of the tail index in
the case where contamination of the base distribution comes from the same distribution but with
different parameters. The results of the simulation studies for the Burr distribution contaminated
by another Burr but with different tail index are presented in Figures 1-3.
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Figure 1: Burr distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.

In the case of smaller sample size, n = 50, the proposed ERM MDPD estimator shows clear
improvement on MSE than the EPD MDPD across the three robust tuning parameters as well
as the percentage of contamination. Similar performance can be seen for the other sample sizes,
especially as the number of top order statistics increases.
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Figure 2: Burr distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(a)

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(b)

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(c)

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(d)

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(e)

0 200 400 600 800

0.
0

1.
0

2.
0

3.
0

k

M
S

E

ERM_MDPD
EPD_MDPD

(f)

Figure 3: Burr distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.

The results for the same scenario above but with Fréchet, Log gamma and Pareto distribu-
tions are deferred to appendices A.1, A.2 and A.3 respectively.

Firstly, for the Fréchet distribution, ERM MDPD generally outperforms EPD MDPD in
terms of MSE. However, for smaller sample size, and smaller robust tuning parameter α≤ 0.5,
EPD MDPD is preferred as it records lower MSE values. Secondly, in the case of the log
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gamma distribution, ERM MDPD estimator outperforms the EPD MDPD except for few cases
of the robust parameter, α = 0.1. Lastly, ERM MDPD is preferred in the estimation of the
tail index from the Pareto distribution as it has smaller MSE values for all cases considered
especially when k→ n.

Therefore, the simulation results show that across the different distributions and the factors
such as percentage of contamination and robustness levels, the ERM MDPD is found to be
generally a better alternative to the EPD MDPD estimator.

3.2 Performance Measures under Contamination from different Distri-
bution

In this section, we present the results of the simulation study for F and G chosen from a different
domains of attraction. Here, we present the results for the estimation of the tail index of a Burr
distribution with η = 1, τ = 0.5 and λ = 4. Therefore, the tail index is 0.5.
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Figure 4: Burr distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.

Considering the results from Figures 4-6, we observe that the proposed MDPD estimator
based on the exponential Regression Model (EPD MDPD), has generally smaller MSE and
stable across the values for k, compared to the existing MDPD estimator from extended Pareto
distribution of Dierckx et al. (2013). The other distributions Fréchet, Log gamma, and Pareto
have been presented in Appendices B.1, B.2 and B.3 respectively. In each case, the parameters
have been chosen such that the tail index is equal to γ = 0.5.

Firstly, for Fréchet distribution, the ERM MDPD estimator is generally the best as it has
smaller MSEs except for the case of smaller sample size, n = 50, and α ≤ 0.5. Secondly, the
case of the log gamma distribution, the performance of the ERM MDPD is better in terms of its
stability with increasing k and level of contamination. Similar conclusions can be reached for
the performance of the estimators in the case of the Pareto distribution.
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Figure 5: Burr distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.
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Figure 6: Burr distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.

4 Application
In this section, we estimate the tail index of the Society of Actuaries (SOA) Group Medi-
cal Insurance data studied in Beirlant et al. (2004, Chapters 1 and 5) and can be found at
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https://lstat.kuleuven.be/Wiley/Data/soa.txt. However, all the estimators used were
non-robust including maximum likelihood estimator based an perturbed Pareto distribution and
exponential regression model. In this section, we illustrate the application of the robust estima-
tors discussed in the previous section in estimating the tail index of the SOA data.

The plot of the data in Figure 7 shows that two particular large claims seems to be detached
from the bulk of the data. Such outliers have implications on traditional method of estimation
of the parameters of the GP distribution such as maximum likelihood. Using different robust
tuning parameters, we compute the tail index as a function of the number of top order statis-
tics, k. The result shows that the our proposed estimator, ERM MDPD, is mostly stable along
the path of k compared to the robust estimator of based on the extended Pareto distribution,
EPD MDPD. Also, in conformity with the behaviour of robust estimators, the variation in the
estimates increases with increasing α. Therefore, ERM MDPD provides a better alternative
robust estimator for the tail index in the Pareto domain as illustrated with the SOA data.
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Figure 7: SOA data: (a) scatter plot (b) γ estimates with α = 0.1 (c) γ estimates with α = 0.5
and (d) γ estimates with α = 1
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5 Conclusion
In this paper, we proposed a robust estimator of tail index using the minimum density power
divergence through an exponential regression model. The estimator is valid for the Pareto do-
main of attraction, i.e. heavy-tailed distributions. The robustness aspect of this estimator was
studied through a simulation study together with a similar estimator using minimum density
power divergence but on an extended Pareto distribution fitted to relative excesses. The results
of the simulation study shows that the proposed minimum density power estimator based on
an exponential regression model generally has a better performance than that of the extended
Pareto distribution. In addition, the proposed robust estimator of the tail index is less sensitive to
the number of top order statistics. The theoretical and the robustness properties of the proposed
estimator is a subject for future research.
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A Contamination with same distribution

A.1 Fréchet Distribution
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Figure 8: Fréchet distribution with n= 50 and γ= 0.5. Topmost row: ε= 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.
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Figure 9: Fréchet distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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Figure 10: Fréchet distribution with n= 1000 and γ= 0.5. Topmost row: ε= 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.

A.2 Log gamma Distribution
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Figure 11: Log gamma distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 12: Log gamma distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 13: Log gamma distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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A.3 Pareto Distribution
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Figure 14: Log gamma distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(a)

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(b)

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(c)

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(d)

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(e)

50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

k

M
S

E

ERM_MDPD
EPD_MDPD

(f)

Figure 15: Log gamma distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 16: Log gamma distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 17: Fréchet distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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Figure 18: Fréchet distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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Figure 19: Fréchet distribution with n= 1000 and γ= 0.5. Topmost row: ε= 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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B.2 Log gamma Distribution
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Figure 20: Log gamma distribution with n = 50 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 21: Log gamma distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.
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Figure 22: Log gamma distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and
bottommost row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and
rightmost column: α = 1.

B.3 Pareto Distribution
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Figure 23: Pareto distribution with n= 50 and γ= 0.5. Topmost row: ε= 0.05; and bottommost
row: ε= 0.15. Leftmost column: α= 0.1; middlemost column: α= 0.5; and rightmost column:
α = 1.
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Figure 24: Pareto distribution with n = 200 and γ = 0.5. Topmost row: ε = 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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Figure 25: Pareto distribution with n = 1000 and γ = 0.5. Topmost row: ε = 0.05; and bottom-
most row: ε = 0.15. Leftmost column: α = 0.1; middlemost column: α = 0.5; and rightmost
column: α = 1.
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