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WHEN CAN THE DISCRETE MORAN PROCESS BE
REPLACED BY WRIGHT-FISHER DIFFUSION?

GORGUI GACKOU ♦ , A. GUILLIN ♦ ,
AND ARNAUD PERSONNE ♦

♦ Université Clermont-Auvergne

Abstract. The Moran discrete process and the Wright-Fisher model
are the most popular models in population genetics. It is common to
understand the dynamics of these models to use an approximating diffu-
sion process, called Wright-Fisher diffusion. Here, we give a quantitative
large population limit of the error committed by using the approxima-
tion diffusion in the presence of weak selection and weak immigration
in one dimension. The approach is robust enough to consider the case
where selection and immigration are Markovian processes, with limits
jump or diffusion processes.

1. Introduction

The diffusion approximation is a technique in which a complicated and
intractable (as the dimension increases) discrete Markovian process is re-
placed by an appropriate diffusion which is generally easier to study. This
technique is used in many domains and genetics and population dynamics
are no exceptions to the rule. Two of the main models used in popula-
tion dynamics are the Wright-Fisher (see for example [14],[15],[23],[24]) and
the Moran [20] models which describe the evolution of a population having
a constant size and subject to immigration end environmental variations.
For large population limit, it is well known that the Moran process is quite
difficult to handle mathematically and numerically. For example, the conver-
gence to equilibrium (independent of the population size) or the estimation
of various biodiversity index such as the Simpson index are not known. It
is thus tempting to approach the dynamics of these Markovian process by a
diffusion, called the Wright-Fisher diffusion, see for example [6], [9] or [19],
and work on this simpler (low dimensional) process to get good quantitative
properties.

A traditional way to prove this result is to consider a martingale problem,
as was developed by Stroock and Varadhan in [25], see also [4], [9] and [7]
for example for Wright-Fisher process with selection but without rates. This
technique ensures us that the discrete process converges to the diffusion when
the size of the population grows to infinity. If the setting is very general and
truly efficient, it is usually not quantitative as it does not give any order
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of the error committed in replacing the discrete process by the diffusion for
fixed size of population. To obtain an estimation of this error we will con-
sider another approach by Ethier-Norman in [22] (or [8]), which makes for a
quantitative statement of the convergence of the generator using heavily the
properties of the diffusion limit. For the Wright-Fisher model with immigra-
tion but without selection they showed that the error is of the order of the
inverse f the population size, and uniform in time. Our main goal here will
be to consider the more general model where 1) weak selection is involved; 2)
immigration and selection may be also Markov processes. To include selec-
tion, constant or random is of course fundamental for modelization, see for
example [12], [5], [18], [3], [16], [1], [2] for recent references. Also, to study
biodiversity, a common index is the Simpson index, which is intractable in
non neutral model (see [11] or [10] in the neutral case, and even not easy
to approximate via Monte Carlo simulation when the population is large.
Based on the Wright-Fisher diffusion, an efficient approximation procedure
has been introduced in [17]. It is thus a crucial issue to get quantitative
diffusion approximation result in the case of random selection to get a full
approximation procedure for this biodiversity index.

Let us give the plan of this note. First in Section 2, we present the Moran
model. As an introduction to the method, we will first consider the case
of a constant selection and we find an error of the same order but growing
exponentially or linearly in time. It will be done in section 3. Sections 4 and
5 are concerned with the case of random environment. Section 4 considers
the case when the limit of the selection is a pure jump process and Section
5 when it is a diffusion process. We will indicate the main modifications of
the previous proof to adapt to this setting. An appendix indicates how to
adapt the preceding proofs to the case of the Wright-Fisher discrete process.

2. The Moran model and its approximation diffusion.

Consider to simplify a population of J individuals with only two species.
Note that there no other difficulties than tedious calculations to consider
a finite number of species. At each time step, one individual dies and is
replaced by one member of the community or a member of a distinct (infinite)
pool. To make precise this mechanism of evolution, let us introduce the
following parameters:

• m is the immigration probability, i.e. the probability that the next
member of the population comes from the exterior pool;
• p is proportion of the first species in the pool;
• s is the selection parameter, which acts at favoring one of the two
species.

Let us first consider that m, p and s are functions depending on time (but
not random to simplify) and taking values in [0, 1] for the first two and in
]− 1; +∞[ for the selection parameter.
Note that this process may also be described considering mutation, rather
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than immigration but there is a one to one relation between these two inter-
pretations. Our time horizon will be denoted by T .
Rather than considering the process following the number of elements in each
species, we will study the proportion in the population of the first species.
To do so, let IJ = { iJ : i = 0, 1, 2, · · · , J}, and we denote for all f in B(IJ),
the bounded functions on IJ ,

‖f‖J = max
x∈IJ
|f(x)|.

Consider also ‖g‖ = sup |g| the supremum norm of g.
Let XJ

n , with values in IJ , be the proportion of individuals of the first species
in the community.
In this section, XJ

n is thus the Moran process, namely a Markov process
evolving with the following transition probabilities: denote ∆ = 1

J



P(XJ
n+1 = x+ ∆|XJ

n = x) = (1− x)

(
mnpn + (1−mn)

x(1 + sn)

1 + xsn

)
:= Px+

P(XJ
n+1 = x−∆|XJ

n = x) = x

(
mn(1− pn) + (1−mn)

(
1− x(1 + sn)

1 + xsn

))
:= Px−

P(XJ
n+1 = x|XJ

n = x) = 1− Px+ − Px−.

To study the dynamical properties of this process a convenient method
developped first by Fisher [14], [15] and then Wright [23], [24], aims at ap-
proximating this discrete model by a diffusion when the size of the population
tends to infinity.

In the special case of the Moran model with weak selection and weak im-
migration, meaning that the parameters s and m are inversely proportional
to the population size J , we usually use the process {Y J

t }t≥0 taking values
in I = [0, 1] defined by the following generator:

L =
1

J2
x(1− x)

∂2

∂x2
+

1

J
[sx(1− x) +m(p− x)]

∂

∂x
.

Note that, in weak selection and immigration, s = s′/J and m = m′/J ,
so the process defined by {Zt}t≥0 = {Y J

J2t}t≥0 do not depend on J . Its
generator is

L = x(1− x)
∂2

∂x2
+ [s′x(1− x) +m′(p− x)]

∂

∂x

or equivalently by the stochastic differential equation

dZt =
√

2Zt(1− Zt)dBt +
[
s′Zt(1− Zt) +m′(p− Zt)

]
dt.
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Our aim is to find for sufficiently regular test function, say f ∈ C 4, an
estimation of : ∥∥∥Ex[f(Z[t])

]
− Ex

[
f(XJ

[J2t])
]∥∥∥

J

for 0 ≤ t ≤ T and for all x in IJ . By replacing Zt by Y J
J2t we thus get :∥∥∥Ex[f(XJ

[J2t])
]
− Ex

[
f(Y J

[J2t])
]∥∥∥

J

for 0 ≤ t ≤ T , and x ∈ IJ .
So equivalently it is convenient to study, if we note n = [J2t] :

‖Ex
[
f(XJ

n )
]
− Ex

[
f(Y J

n )
]
‖J

on 0 ≤ n ≤ J2T ,and x ∈ IJ .

3. Estimate of the error in the approximation diffusion for
constant weak immigration and selection

3.1. Main result. We now give our main result in the case where immi-
gration and selection are constant. It furnishes an estimation of the error
committed during the convergence of the discrete Moran process Xn toward
the Wright-Fisher diffusion process Yn.

Theorem 1. Let us consider the weak immigration and selection case, so
that s = s′

J and m = m′

J for some s′ ∈ R, m′ ∈ R+ (J large enough). Let
p ∈]0, 1[. Let f ∈ C4(I) then there exist positive a and b (depending on m′
and s′) such that:∥∥∥Ex[f(XJ

n )
]
− Ex

[
f(Y J

n )
]∥∥∥

J
≤
(
‖f (1)‖J + ‖f (2)‖J

) aebn
J

+ o(
1

J
).

If we suppose moreover that m′ > |s′| then there exists a > 0 such that∥∥∥Ex[f(XJ
n )
]
− Ex

[
f(Y J

n )
]∥∥∥

J
≤
(
‖f (1)‖J + ‖f (2)‖J

) an
J

+ o(
1

J
).

Remark 1. By considering s = 0 then b = 0 and we find back the uniform in
time approximation diffusion with speed J . Our method of proof, requiring the
control of some Feynman-Kac formula based on the limiting process, seems
limited to give non uniform in time result. Our hope is that we may get
weaker conditions than m > |s| to get linear in time estimates. Another
possibility is to mix these dependance in time approximation with known
ergodicity of the Wright-Fisher process, as in Norman [21].

Remark 2. We have considered to simplify s = s′

J and m = m′

J but one
may generalize a little bit the condition to locally bounded s and m such that
lim Js <∞ and lim Jm <∞.

Remark 3. Such approximation error is noticeably useful to polynomial test
function f , so that we may for example consider the Simpson index of the
Moran process, see [17] for further details.
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Remark 4. The following figures show that the obtained rate 1
J is of the

good order.

Figure 1. Conditions: s = 1, m = 0.2, p = 0.5, X0 =
0.7. Left hand side : Monte Carlo estimation of the error in
the approximation, using f(x) = x. Right hand side: same
Monte Carlo estimation of the error times J .

It shows that our rate may be the good one.

3.2. Proof. The proof relies on three ingredients:

(1) a "telescopic" decomposition of the error;
(2) a quantitative estimate of the error at time 1 of the approximation

of the Moran process by the diffusion;
(3) quantitative control of the regularity of the Wright-Fisher process.

Note also that in the sequel we will not make distinction between function
on C (I) and their restrictions on IJ .

Let Sn be defined on B(IJ) (the space of bounded functions on IJ) by :

(Snf)(x) = Ex[f(XJ
n )] ∀n ∈ N.

As is usual Sn verifies for all k in N the semigroup property, namely that
Sn+k = SnSk.

Let Tt be the operator defined on the space of bounded continuous function
by :

(Ttf)(x) = Ex[f(Y J
t )] ∀t ≥ 0.

It also defines a semigroup Ts+t = TsTt, ∀s ≥ 0.
Thanks to these properties, we have
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SnT0f − S0Tnf =

n−1∑
k=0

Sn−kTkf − Sn−k−1Tk+1f

SnT0f − S0Tnf =

n−1∑
k=0

Sn−k−1S1Tkf − Sn−k−1T1Tkf

=
n−1∑
k=0

Sn−k−1(S1 − T1)Tkf

and as ‖Snf‖J ≤ ‖f‖J by triangular inequality, we get ∀n ∈ N, ∀f ∈
C (IJ).

‖Snf − Tnf‖J ≤
n−1∑
k=0

‖Sn−k−1(S1 − T1)Tkf‖J ≤
n−1∑
k=0

‖(S1 − T1)Tkf‖J . (1)

We have two main terms to analyze : S1 − T1 for a "one-step" difference
between the Moran process and the Wright-Fisher diffusion process, and Tkf
for which we need regularity estimates.

Control of (S1 − T1).
Let us first study, for f regular enough , (S1 − T1)f . The main goal is to
obtain the Taylor expansion of this function when J is big enough.

Lemma 1. When J is big enough, i.e. s = s′/J > −1 + ε, there exists
K1(ε) > 0 such that

‖(S1−T1)f‖J ≤
|s′|m′ + s′2

4εJ3
‖f (1)‖J+

m′p+ |s′|
4 +m′(1 + |s′|)

2εJ3
‖f (2)‖J+

K1(ε)

J4

Proof. Let us begin by consideration on the Wright-Fisher diffusion process.
Remark first, as usual for this diffusion process

lim
t→0

∥∥∥∥Ttf − ft
− Lf

∥∥∥∥
J

= 0, ∀f ∈ C 2(I).

The Chapman-Kolmogorov backward equation reads

∂

∂t
(Ttf)(x) = L(Ttf)(x) = Tt(Lf)(x)

and more generally if f is enough regular, for j in N it is possible to define
Lj as:

∂j

∂tj
(Ttf)(x) = (TtL

jf)(x),∀x ∈ I, t ≥ 0.

For this proof, we only need to go to the fourth order in j. So let f ∈ C 4(I)
(possibly depending on J), using Taylor theorem for (T1f)(x) there exists
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w2, independent of J , such as :

(T1f)(x) = (T0f)(x) + (T0f)(1)(x)(1− 0) + w2
1

2!
(T0f)(2)(x)

= f(x) + (L1f)(x) +
w2

2
(L2f)(x) (2)

By direct calculations, we have for the successive Lj

L1f(x) =
x(1− x)

J2
f (2)(x) +

sx(1− x) +m(p− x)

J
f (1)(x)

L2f(x) =
(x(1− x))2

J4
f (4)(x)

+
[2(1− 2x)x(1− x)

J4
+

2x(1− x)(sx(1− x) +m(p− x))

J3

]
f (3)(x)

+
[−2x(1− x)

J4

+
2x(1− x)(s(1− 2x)−m) + (1− 2x)(sx(1− x) +m(p− x))

J3

+
(sx(1− x) +m(p− x))2

J2

]
f (2)(x) +

[−2sx(1− x)

J3

+
(s(1− 2x)−m)(sx(1− x) +m(p− x))

J2

]
f (1)(x)

where f (i) the ith derivative of f . Remark now that by our assumption
on the boundedness of the successive derivatives of f that there exists K0

(depending also on m′, p, s′)

‖L2f‖J ≤
K0

J4

Thus, in the following this term could be neglected.
Let us now look at the Moran process and so get estimates on S1. The

quantity X1 − x is at least of the order of 1
J and when J goes to infinity,

goes to 0. So using Taylor’s theorem, there exists |w1| < 1 such that :

f(X1) = f(x) + f (1)(x)(X1 − x) +
f (2)(x)

2

(
X1 − x

)2
+
w1

3!
(X1 − x)3‖f (3)‖J

and thus

(S1f)(x) = Ex[f(X1)]

= f(x) + f (1)(x)Ex[X1 − x] +
1

2!
Ex[(X1 − x)2]f (2)(x)

+
w1

3!
Ex[(X1 − x)3]‖f (3)‖J

(3)
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Direct estimates (even if tedious) on the centered moments of the Moran
process give

Ex[X1 − x] =
sx(1− x)(1−m)

J(1 + sx)
+
m(p− x)

J
(4)

Ex[(X1 − x)2] =
1

J2

(
mp(1− 2x) +

(1−m)(1 + s)x(1− 2x)

1 + sx
+ x
)

(5)

Ex[(X1 − x)3] < K3
1

J4
(6)

where K3 is a constant (independent of J).
We may then consider (S1−T1)f through (3) and (2) so that there exists

a constant K1 such as :

(S1f)(x)− (T1f)(x) =f (1)(x)Ex[(X1 − x)] +
1

2
Ex[(X1 − x)2]f (2)(x)

+
w1

6
Ex[(X1 − x)3]‖f (3)‖J −

(
(L1f)(x) +

w2

2
(L2f)(x)

)
=γJ1 f

(1)(x) + γJ2 f
(2)(x) +

K1

J4
(7)

with

γJ1 =
−sx(1− x)(m+ sx)

J(1 + sx)

γJ2 =
1

2J2

[
mp(1− 2x) +

(1−m)(1 + s)x(1− 2x)

1 + sx
− x(1− 2x)

]
=

1

2J2

[
mp(1− 2x) + x(1− 2x)

s(1− x)−m(1 + s)

1 + sx

]
As selection and immigration are weak, we easily conclude that γJ1 and γJ2
are at most of the order of 1

J3 . �

Regularity estimates on Tt.
We have now to prove regularity estimates on Tt. By [6, Th.1], we have
that Tt : C j(I) → C j(I) for all j. Assume for now that f ∈ C 4(I) and
∀j ∈ {1, 2}, ∀k 6 j, there are cj and ak,j ∈ R+ independent of J such that:

‖(Ttf)(j)‖J ≤ ecj
t
J2

j∑
i=1

ai,j‖f (j)‖J (8)

with cj = sup
x∈[0,1]

|j(j − 1)− Js(1− 2x)− Jm|.
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Let us see how to conclude if (8) is verified. First it exists a continuous
(time dependent) function R̃j independent of J such that:

‖Snf − Tnf‖J ≤
n−1∑
k=0

(‖(S1 − T1)Tkf‖J

≤
n−1∑
k=0

(
‖γ1‖‖(Tkf)(1)‖J + ‖γ2‖‖(Tkf)(2)‖J +O

(
1

J4

))

≤
2∑
j=1

‖γJj ‖
j∑
i=1

ai,j‖f (j)‖J
n−1∑
k=0

exp(cj
k

J2
) +O

(
1

J2

)

≤
2∑
j=1

‖γJj ‖ × R̃jJ2 × ‖f (j)‖J +O

(
1

J2

)
−→

J→+∞
0

because if J is big enough,
j∑
i=1

ai,j

n−1∑
k=0

exp

(
cj
k

J2

)
=

j∑
i=1

ai,j
1− exp(cj

n
J2 )

1− exp(
cj
J2 )

≤ J2R̃j(t)

and R̃j is independent of J because n is of the order of J2. And so with
q(t) = max

j∈1,2

(
‖γj‖R̃jJ3

)
, we obtain the result:

‖Snf − Tnf‖J ≤
q(t)

J

(
‖f (1)‖J + ‖f (2)‖J

)
+O

(
1

J2

)
.

This concludes the proof in the first case. Indeed, we easily see that the
function R̃j(t) is exponential in time in the general case. We will see later
how, when some additional conditions are added on m′ and s′, one may
obtain a linear in time function.
We will now prove the crucial (8). It will be done through the following
proposition.

Proposition 1. Let φ(t, x) = (Ttf)(x), x ∈ IJ and t ≥ 0. Assume f ∈
C j+2(I) then φ(t, x) ∈ C j+2(I) and for j ∈ N, ∀k 6 j, there are cjand ak,j

∈ R independent of J such as ‖φ(t, x)(j)‖ ≤ exp(cj
t
J2 )

j∑
k=1

ak,j‖f (j)‖

Proof. First remark that the Chapman-Kolmogorov backward equation may
be written :

∂

∂t
φ = Lφ, φ(0, .) = f.

The following lemma gives the equations verified by ∂
∂tφ

(j):

Lemma 2. Let φ(j) be the jthderivative of φ with respect to x then we get:
∂

∂t
φ(j) = Ljφ

(j) − νjφ(j) + ψjφ
(j−1), φ(j)(0, .) = f (j)
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where

Ljφ
(j)(x) = Lφ(j) + j

1− 2x

J2
φ(j+1)

νj(x) =

(
j(j − 1)

J2
− j s(1− 2x)−m

J

)
ψj =

−sj(j − 1)

J
.

Let us remark that there are two new terms when there is selection in
Moran processes, i.e. ψj which will lead to the dependence in time of our
estimates handled via Feynman-Kac formula, and one in νj which will be
the key to the condition to get only linear in time dependence.

Proof.
A simple recurrence is sufficient to prove this result, for simplicity let us only
look at the case j=1

∂

∂t
φ(1) =

∂

∂x

(
∂

∂t
φ

)
=

∂

∂x
Lφ

=
∂

∂x

(x(1− x)

J2
φ(2) +

sx(1− x) +m(p− x)

J
φ(1)

)
=
x(1− x)

J2
φ(3) +

1

J
(sx(1− x) +m(p− x))φ(2) +

1− 2x

J2
φ(2)

+ (s(1− 2x)−m)
1

J
φ(1)

= (L+
1− 2x

J2

∂

∂x
)φ(1) +

s(1− 2x)−m
J

φ(1)

= L1φ
(1) +

s(1− 2x)−m
J

φ(1).

With L1φ
(1) = Lφ(1) + 1−2x

J2
∂φ(1)

∂x , we find the good initial coefficients. �

Let us now use the Feymann-Kac formula to get ,

φ(j)(t, x) = Ex

[
f (j)(Y j

t ) exp

(
−
∫ t

0

j(j − 1)

J2
+
m− s(1− 2Y j

u )

J
du

)

−
t∫

0

sj(j − 1)

J
φ(j−1)(Y j

h )e−
∫ h
0

j(j−1)

J2 +
m−s(1−2Y

j
u )

J
dudh
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with Y j
t the process having Lj for generator. Then look first at j = 1. As

we are in weak selection and weak immigration,

‖φ(1)(x, t)‖ ≤ Ex

[
‖f (1)(Ỹt)‖ exp

(
t

J2
sup
x∈[0,1]

J(m− s(1− 2x)

)]

≤ ‖f (1)‖ exp

(
t

J2
λ1

)
where λ1 = sup

x∈[0,1]
J(m − s(1 − 2x)) = m′ + |s′| is independent of J . The

case j = 1 is proved.

We will then prove the result by recurrence: suppose true this hypothesis
until j = j − 1.
For j > 1, denote cj = sup

x∈[0,1]
|J2νj(x)|, and remark that cj is no equal to

zero and is independent of J because the selection and immigration are weak.
Thus

‖φ(j)(t, x)‖ ≤ Ex
[
|f (j)(Y j

t )|ecj
t
J2 +

t∫
0

sj(j − 1)

J
‖φ(j−1)(Y j

h )‖e
hcj

J2 dh
]

6 ‖f (j)(x)‖ecj
t
J2 +

sj(j − 1)

J
‖φ(j−1)(x)‖∞

t∫
0

e
hcj

J2 dh

6 ‖f (j)(x)‖ecj
t
J2 +

sj(j − 1)

J
‖φ(j−1)(x)‖∞

J2

cj

(
e

tcj

J2 − 1
)

6 ‖f (j)(x)‖ecj
t
J2

+ exp(cj−1
t

J2
)

j−1∑
k=1

ak,j−1‖f (j)‖
Jsj(j − 1)

cj

(
e

tcj

J2 − 1
)

6 e
tcj

J2

(
‖f (j)(x)‖+ ecj−1

t
J2

j−1∑
k=1

ak,j−1‖f (j)‖
Jsj(j − 1)

cj

)

6 e
tcj

J2

(
j∑

k=1

ak,j‖f (j)‖

)
.

The ak,j do not depend on J , because Jsj(j−1)
cj

, the ak,j−1 and exp(λj
t
J2 )

can be bounded independently of J .

To conclude we have to justify that cj is finite for all j. For it we just
need to note that the processes Y j

t are bounded by 0 and 1 for all j.
This is partly due to the fact that their generator Ljφ(j)(x) = Lφ(j) +

j 1−2x
J2 φ(j+1) has a negative drift at the neighbourhood of 1 and a positive
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at the neighbourhood of 0, see Feller[13]. This argument completes the
proof. �

Let us now consider the case where m > |s|, we will show in this case
that we obtain a linear in time dependance rather than an exponential one.
Then, in the equation (9) we can use the following:

‖φ(1)(x, t)‖ ≤ ‖f (1)‖ exp(− t

J2
λ1)

‖φ(2)(x, t)‖ ≤ c1
(
‖f (1)‖+ ‖f (2)‖

)
where c1 is a constant independent of time. And then,

‖Snf − Tnf‖ ≤
n−1∑
k=0

‖(S1 − T1)Tkf‖

≤
n−1∑
k=0

(
‖γJ1 ‖‖(Tkf)(1)‖+ ‖γJ2 ‖‖(Tkf)(2)‖+O

(
1

J4

))

≤ ‖γJ1 ‖ ‖f (1)‖
n−1∑
k=0

exp(− k

J2
× λ1) + ‖γJ2 ‖ c1

(
‖f (1)‖+ ‖f (2)‖

)
n

+O

(
1

J2

)
≤ max(‖γJ1 ‖, ‖γJ2 ‖)× J2c(t+ 1)

(
‖f (1)‖+ ‖f (2)‖

)
+O

(
1

J2

)
because if J is big enough,

n−1∑
k=0

exp(− k

J2
× λ1) =

1− exp(− n
J2 × λ1)

1− exp(−λ1
J2 )

≤ c2J2

and c = max(c1, c2) is independent of J and independent of time.

4. Random limiting selection as a pure jump process

To simplify, we will consider a constant immigration, in order to see where
the main difficulty arises. The results would readily apply also to this case.
Let us now assume that s is no longer a constant but a Markovian jump
process (sn)n∈N with homogeneous transition probability (Px,y). We are in
the weak selection case so sn is still of the order of 1

J and takes values in a
finite space E.
Assume furthermore

P Js,s′ × J2 −→
J→+∞

αsQs,s′ ∀s 6= s′. (9)

As in the previous section, (Xn)n is the Moran process, but with a Markov-
ian selection and (Xn)n takes values in IJ . Finally denote Z̃n = (Xn, sn).
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Consider now the processes Zt tacking values in I = [0.1] × E defined by
the following generator:

Lx,sf(x, s) =
1

J2
x(1− x)

∂2

∂x2
f(x, s) +

1

J
[sx(1− x) +m(p− x)]

∂

∂x
f(x, s)

+
∑
s′∈E

α(s)Qs,s′

J2

(
f(x, s′)− f(x, s)

)
∀f ∈ C 2(I )

Its first coordinate is the process Yt having the same generator as in
the first part and the second is St the Markovian jump process having
(Qs′,s)s,s′∈E for generator and α

J2 for transition rates.
As in the previous part we want to quantify the convergence of Z̃n towards Zn
in law, when J goes to infinity. So the following theorem gives an estimation
of the order of convergence of E[f(Z̃n)− f(Zn)] for f ∈ C 2(I ).

Theorem 2. Let denote Ttf(x, s) = Ex,s[f(Zt)] and assume ∀s and ∀f ∈
C 2(I ), Ttf(., s) is in C 2(I ) . Let f ∈ C4(I ) then it exists a function Γ̃
at most exponential in time and a function k0 linear in time which verifies
when J goes to infinity: there exists Γ̃, k0 such that

‖Snf − Tnf‖J ≤ Γ̃

J

(
‖f (1)‖J + ‖f (2)‖J

)
+ k0 max

s,s′∈E

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖f‖J

+O(
1

J2
)

Proof. The sheme of proof will be the same than for constant selection. Let
us focus on the first lemma, where some changes have to be highlighted.

Lemma 3. There exist bounded functions of (x, s), ΓJj (j = 1, 2), and a
constant K such that :

‖(S1 − T1)f‖J ≤ ‖ΓJ1 ‖ ‖f (1)‖J + ‖ΓJ2 ‖ ‖f (2)‖J

+
∑
s′∈E

∣∣∣P Js,s′ − αs
J2
Qs,s′

∣∣∣ ‖f(x, s′)− f(x, s)‖J +
K

J3

Proof. We provide first the quivalent of (1) in our context, i.e. there exists
|w′2| < 1 such that

(S1 − T1)f(x, s) =Ex,s
[
f(X1, s1)

]
− f(x, s)− Lx,sf(x, s) + w′2Lx,s

2f(x, s)

=Ex,s
[
f(X1, s1)− f(X1, s)

]
+ Ex

[
f(X1, s)− f(x, s)

]
− Lxf(x, s)−

∑
s′∈E

αs
J2
Qs,s′

(
f(x, s′)− f(x, s)

)
+ w′2L

2
x,sf(x, s)

In fact as before, L2
x,sf is still of the order of 1

J4 , then
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∣∣∣(S1 − T1)f(x, s)
∣∣∣

6
∣∣∣Ex[Es[f(x1, s1)− f(x1, s)|X1 = x1

]]
− Lxf(x, s) (10)

+ Ex
[
f(X1, s)− f(x, s)

]
−
∑
s′∈E

αs
J2
Qs,s′

(
f(x, s′)− f(x, s)

) ∣∣∣+
K

J4

6
∣∣∣Ex [∑

s′∈E
Ps,s′

(
f(X1, s

′)− f(X1, s)
)
− αs
J2
Qs,s′

(
f(x, s′)− f(x, s)

)]

+ Ex
[
f(X1, s)− f(x, s)

]
− Lxf(x, s)

∣∣∣+
K

J4

6
∣∣∣Ex [∑

s′∈E
Ps,s′

(
f(X1, s

′)− f(x, s′)
)

+ f(x, s′)
(
Ps,s′ −

αs
J2
Qs,s′

)] ∣∣∣
+
∣∣∣− Ps,s′f(X1, s) +

αs
J2
Qs,s′f(x, s)

∣∣∣
+
∣∣∣Ex[f(X1, s)− f(x, s)

]
− Lxf(x, s)

∣∣∣+
K

J4

6
∣∣∣Ex[f(X1, s)− f(x, s)

]
− Lxf(x, s)

∣∣∣ (11)

+
∣∣∣ ∑
s′∈E

Ps,s′
(
Ex
[
f(X1, s

′)− f(x, s′)
]

+ Ex
[
f(x, s)− f(X1, s)

]) ∣∣∣ (12)

+
∑
s′∈E

∣∣∣Ps,s′ − αs
J2
Qs,s′

∣∣∣‖f(x, s′)− f(x, s)‖J) +
K

J4
. (13)

Let now look at the order in J of each term of the previous inequality.
First with the arguments used in (7), there exist K4 constant , ΓJ1 and ΓJ2
of the order of 1

J3 such as :

Ex
[
f(X1, s)− f(x, s)

]
− Lxf(x, s) 6 ΓJ1∂xf(x, s) + ΓJ2∂xxf(x, s) +

K4

J4
.

Then recall that Ps,s′ is of the order of 1
J2 and by the same calculations than

in (4) Ex
[
f(X1, s

′)− f(x, s′)
]
is also of the order of 1

J2 so (12) is at most of
the order of 1

J4 .
Finally (13) can be written∑

s′∈E

1

J2

(
J2Ps,s′ − αsQs,s′

)(
f(x, s′)− f(x, s)

)
and by (9) is at least o( 1

J2 ).

Note that in the case where f is Lipschitz in the second variable, as s is
of the order of 1

J , it’s possible to obtain a better order o( 1
J3 ).
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Anyway,

(S1 − T1)f(x, s) 6‖ΓJ1 ‖‖∂xf‖+ ‖ΓJ2 ‖‖∂xxf‖

+
∑
s′∈E

1

J2

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖f(x, s′)− f(x, s)‖J

+
K ′

J4
.

�

Assume now that ∀s, f(., s) ∈ C 2(I), and note f (j) the the jth derivative
in x of f . Note that the lemma 2 holds even if s is no longer constant. Indeed
Ls is not affected by the derivative in x. So we get ∀j ∈ {1, 2}and ∀k 6 j,
that there exist c′jand a

′
k,j ∈ R+ independent of J such that :

‖(Ttf)(j)‖ ≤ exp

(
c′j

t

J2

) j∑
k=1

a′k,j‖f (j)‖

with c′j = sup
x∈[0,1]

|j(j − 1)− Js(1− 2x)− Jm|.

We still have that Tt(., s) : C 2(I)→ C 2(I),∀s. And there exists a continuous
function Rj at most exponential in time and a linear function of time k0
independent of J verifying:

‖Snf − Tnf‖J ≤
n−1∑
k=0

(‖(S1 − T1)Tkf‖J

≤
n−1∑
k=0

(
‖ΓJ1 ‖‖(Tkf)(1)‖J + ‖ΓJ2 ‖‖(Tkf)(2)‖J

+
∑
s′∈E

1

J2

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖Tkf(x, s′)− Tkf(x, s)‖J

+O

(
1

J4

))
≤

2∑
j=1

‖ΓJj ‖
j∑

k=1

a′k,j‖f (j)‖J
n−1∑
k=0

exp

(
c′j
k

J2

)
+O

(
1

J2

)
+ k0 max

s,s′∈E

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖f‖

≤
2∑
j=1

‖ΓJj ‖RjJ2‖f (j)‖J + k0 max
s,s′∈E

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖f‖

+O

(
1

J2

)
−→

J→+∞
0
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because if J is big enough,
j∑

k=1

a′k,j

n−1∑
k=0

exp

(
c′j
k

J2

)
=

j∑
k=1

a′k,j
1− exp(c′j

n
J2 )

1− exp(
c′j
J2 )

≤ J2Rj(t)

and Rj is independent of J because n is of the order of J2. Finally, let
Γ̃ = sup

J∈N
max
j∈1,2

‖ΓJj ‖RjJ3, so that Γ̃ does not depend on J and is at most

exponential in time. Then

‖Snf − Tnf‖J ≤
Γ̃

J

(
‖f (1)‖J + ‖f (2)‖J

)
+ k0 max

s,s′∈E

∣∣∣J2Ps,s′ − αsQs,s′
∣∣∣‖f‖J

+ o(
1

J2
).

And this concludes the proof. �

5. Random limiting selection as a diffusion process

In this section, we assume that the limiting selection is an homogeneous
diffusion process. Once again for simplicity we will suppose that the im-
migration coefficient is constant. First consider the following the stochastic
differential equation:

dSt =
1

J2
b(St)dt+

√
2

J
σ(St)dBt

S0 = s

with b and σ are both bounded and lipschitzian functions, i.e.: ∀t ≥ 0,s, s′ ∈
R, it exists k ≥ 0 such that :

|b(t, s)− b(t, s′)|+ |σ(t, s)− σ(t, s′)| ≤ L|s− s′|

for some constant L. These assumptions guarantee the existence of strong
solutions of (St)t≥0 and (St)t≥0 has for generator

Ls =
σ2(s)

J2

∂2

∂s2
+
b(s)

J2

∂

∂s
.

Let Zt = StJ2 , then the process (StJ2)t≥0) is independent of J .

dZt =
√

2σ(Zt)dBt + b(Zt)dt, Z0 = s.

For T ∈ N, let divide the interval [0, T ] in TJ2 regular intervals and let
introduce TJ = {0, 1

J2 , · · · , T}. Use now the standard Euler discretization
and consider Zt defined by the relation:

Zk+1 = Zk +
1

J2
b(Zk) +

√
2σ(Zk)(Bk+1 −Bk)
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where the quantity (Bk+1 − Bk)k≤J2T are i.i.d and follow a N (0, 1
J2 ). It is

well known that
sup
t∈TJ

|Z̃t − ZtJ2 | J→∞−−−→ 0.

So it follows
sup

t∈{0,··· ,J2T}
|St − Zt|

J→∞−−−→ 0

It is of course possible to use another discretization to approach St and the
following method will still hold. There is however a small issue: in the model
described in first part, for rescaling argument, the selection parameters must
be in ]− 1,∞[. Our Markov process (St)t≥0 is in R.
It is thus necessary to introduce the function h : R −→ Es where Es is a
close bounded interval included in ]− 1 + ε,∞[ for some ε > 0.
We assume h is in C 2 and we consider now h((St))t≥0 for the selection
parameter.
Note that to have a non trivial stochastic part in our final equation, we need
as in the first section that h is of the order of 1

J . Many choices are possible
for h and will depend on modelisation issue.

Let us give back the definition of our Moran process in this context.

P+ = (1− x)

(
mp+ (1−m)

x(1 + h(s))

1 + h(s)x

)
P− = x

(
m(1− p) + (1−m)

(
1− x(1 + h(s))

1 + h(s)x

))

Its first moments are given by, still denoting ∆ = J−1,

Ex [Xn+1 − x|Un] = ∆
[
m(p− x) +

(1−m)h(s)x(1− x)

1 + h(s)x

]
V ar (Xn+1 − x|Un) = ∆2

[
Ex (Xn+1 − x)2 − E2

x (Xn+1 − x)
]

= ∆2
[
mp(1− 2x) + x+

(1−m)h(s)x(1− x)(1− 2x)

1 + h(s)x

−
(
m(p− x) +

(1−m)h(s)x(1− x)

1 + h(s)x

)2 ]
.

As in the previous case we use the process (Yt)t≥0 having the following
generator to approach the Moran process when J tends to infinity:

Lx =
x(1− x)

J2

∂2

∂x2
+

1

J
[m(p− x) + h(s)x(1− x)]

∂

∂x

So our aim is to give an upper bound for the error committed when

(Xn, Zn) −→
J→∞

(Yt, St) .
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Let denote by H the generator of the two dimensional process (Yt, St).

H = Lx+Ls =
x(1− x)

J2

∂2

∂x2
+

1

J2

[
h(s)x(1−x)+m(p−x)

] ∂
∂x

+
σ2(s)

J2

∂2

∂s2
+
b(s)

J2

∂

∂s

Let now state the main result of this section:

Theorem 3. Let f be in C 4 then there exists a function at most exponential
in time q′ such that

sup
x∈[0,1]

|Ex,s (f(Xn, Zn))−Ex,s (f(Yt, St)) | ≤
q′(n)

J
(‖∇f‖+‖Hessf‖)+O(

1

J2
).

Proof. Let Pn be the operator defined on the space of bounded functions on
E by:

(Pnf) (x, s) = Ex,s
[
f (Xn, Zn)

]
It is of course a semigroup so that Pn+m = PnPm, ∀m,n ∈ N. In parallel, let
(Tt)t≥0 be defined on the space of bounded continuous functions by :

(Ttf) (x, s) = Ex,s
[
f (Yt, St)

]
also verifying,Tt+s = TsTt, ∀s ≥ 0, t ≥ 0. The starting point is as in the first
part of (1),

|Pnf(x, s)− Tnf(x, s)| ≤
n−1∑
k=0

‖ (P1 − T1)Tkf‖.

We now focus on the quantity ‖ (P1 − T1)Tkf‖, the following lemma gives
a upper bound of the quantity ‖ (P1 − T1) f‖ for f in C 4.

Lemma 4. Let f be in C 4 it exists γJ1 ,and γJ2 such as :

‖(P1f)(x, s)− (T1f)(x, s)‖ =γJ1 ‖
∂

∂x
f(x, s)‖+ γJ2 ‖

∂2

∂x2
f(x, s)‖+O(

1

J4
)

where γJ1 and γJ2 are of order 1
J3 .

Proof. We will use the same methodology. First the Taylor expansion (in
space) of P1 gives:

(P1f)(x, s) =f(x, s) + Ex,s
[
X1 − x

] ∂
∂x
f(x, s) + Ex,s

[
Z1 − s

] ∂
∂s
f(x, s)

+
1

2
Ex,s

[
(X1 − x)2

] ∂2
∂x2

f(x, s) +
1

2
Ex,s

[
(Z1 − s)2

] ∂2
∂s2

f(x, s)

+ 2Ex,s
[
(X1 − x)(Z1 − s)

] ∂2

∂x∂s
f(x, s) +O(

1

J4
).
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Indeed we have the quantities:

Ex,s
[
X1 − x

]
=

1

J

[
m(p− x) +

(1−m)h(s)x(1− x)

1 + h(s)x

]
Ex,s

[
(X1 − x)2

]
=

1

J2

[
mp(1− 2x) + x+

(1−m)x(1 + h(s))(1− 2x)

1 + h(s)x

]
Ex,s

[
Z1 − s

]
=
b(s)

J2

Ex,s
[
(Z1 − s)2

]
=
b2(s)

J4
+

2σ2(s)

J2
=

2σ2(s)

J2
+O(

1

J4
)

Ex,s
[
(X1 − x)(Z1 − s)

]
= Ex,s

[
X1 − x

]
Ex,s

[
Z1 − s

]
=
b(s)

J3

[
m(p− x) +

(1−m)h(s)x(1− x)

1 + h(s)x

]
= O(

1

J4
)

Ex,s
[
(X1 − x)3

]
= O(

1

J4
), Ex,s

[
(Z1 − s)3

]
= O(

1

J4
).

And the Taylor expansion of T1 in times gives:

(T1f) (x, s) = f(x, s) + Lxf(x, s) + Lsf(x, s) +O(
1

J4
).

Indeed it is easy to see that H2 is O( 1
J4 ). Do now the difference

(P1 − T1)f(x, s) =Ex,s
[
X1 − x

] ∂
∂x
f(x, s) + Ex,s

[
Z1 − s

] ∂
∂s
f(x, s)

+
1

2
Ex,s

[
(X1 − x)2

] ∂2
∂x2

f(x, s)

+
1

2
Ex,s

[
(Z1 − s)2

] ∂2
∂s2

f(x, s)

− Lxf(x, s)− Lsf(x, s) +O(
1

J4
).

Finally,

(P1 − T1)f(x, s)

= − 1

J

[h(s)x(1− x)

1 + h(s)x
(m+ h(s)x)

] ∂
∂x
f(x, s)

+
h(s)x2 + x(1− 2x)(h(s)−m−mh(s))− 2x(1− x)h(s)

1 + h(s)x

∂2

∂x2
f(x, s)

+
b2(s)

J4

∂2

∂s2
f(x, s) +O(

1

J4
).
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Let us conclude by taking the norm to get

γJ1 = sup
(x,s)∈Es×[0,1]

1

J

∣∣∣h(s)x(1− x)

1 + h(s)x
(m+ h(s)x)

∣∣∣
γJ2 = sup

(x,s)∈Es×[0,1]

1

2J2

∣∣∣mp(1− 2x) +
(1−m)(1 + h(s))x(1− 2x)

1 + h(s)x
− x(1− 2x)

∣∣∣
so that we obtain the result. �

Then (9) still holds for this case as the proof of 1 is exactly the same, so
the end follows as in the first part. �

6. Appendices : Wright-Fisher discrete model and its
approximation diffusion

Let’s consider the Wright-Fisher discrete model with selection and immi-
gration. The population still consists of two species, immigration and selec-
tion are still the same. But the Markovian process Xn

J evolves according to
the following probability:

P
(
XJ
n+1 =

k

J
|XJ

n = x

)
=

(
J
k

)
P kx (1− Px)J−k

with Px = mp+ (1−m) (1+s)x1+sx .

At each step, all the population is renewed, so this process goes J times
faster than the Moran process. And we usually, in the case of weak selection
and immigration, use the diffusion {Yt}t>0 defined by the following generator
to approach this discrete model, when the population goes to infinity.

L =
1

2J
x(1− x)

∂2

∂x2
+ (sx(1− x) +m(p− x))

∂

∂x

Theorem 4.
Let f be in C5(I) then there is a function q(t) growing at most exponentially
in time, depending on m′ and s′ which satisfies when J goes to infinity:

sup
x∈IJ
|Ex
[
f(XJ

n )
]
−Ex

[
f(Y J

n )
]
| ≤

(
‖f (1)‖J + ‖f (2)‖J + ‖f (3)‖J

) q(n)

J
+o

(
1

J

)
.

Proof. Even if the structure of the proof is the same than for the Moran
model, however the difference of scale (in 1

J now) causes some small differ-
ences. Mainly, the calculation of the {γj}j∈{1,2,3,4} is a bit different. Note
that we need to have f ∈ C5 in the previous theorem, which is stronger than
for the Moran process. The main explanation comes from the calculation of
E[(XJ

n+1 − x)k|XJ
n = x], for which for the Wright-Fisher discrete process it

is no longer of the order of 1
Jk . Let us give some details.

First consider the moments {E[
(
XJ
n+1 − x

)k|Xn = x]}k65:
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E[XJ
n+1 − x|Xn = x] =m(p− x) +

sx(1− x)

1 + sx

E[
(
XJ
n+1 − x

)2|Xn = x] =
1

J
x(1− x) +

1

J

(
m(p− x) +

sx(1− x)

1 + sx

)
+

(
m(p− x) +

sx(1− x)

1 + sx

)2

+O(
1

J3
)

E[
(
XJ
n+1 − x

)3|Xn = x] =x(x− 1)(2x− 1)
1

J2

− 1

J
3x(x− 1)

(
m(p− x) + sx(1− x)

)
+O(

1

J3
)

E[
(
XJ
n+1 − x

)4|Xn = x] =
1

J2
3x2(1− x)2 +O(

1

J3
)

E[
(
XJ
n+1 − x

)5|Xn = x] =O(
1

J3
).

To get a quantity of the order of 1
J3 we need to go to the fifth moment of

XJ
n+1 − x, so in the Taylor development we need to have f in C5. Then,

L1f(x) =
x(1− x)

2J
f (2)(x) + sx(1− x) +m(p− x)f (1)(x)

L2f(x) =
(x(1− x))2

4J2
f (4)(x)

+
[2(1− 2x)x(1− x)

4J2
+

2x(1− x)(sx(1− x) +m(p− x)

2J

]
f (3)(x)

+
[−2x(1− x)

4J2

+
2x(1− x)(s(1− 2x)−m) + (1− 2x)(sx(1− x) +m(p− x))

2J

+
(sx(1− x) +m(p− x))2

4J2

]
f (2)(x)

+
[−2sx(1− x)

2J

+ (s(1− 2x)−m)(sx(1− x) +m(p− x))
]
f (1)(x)

L3f(x) = O(
1

J3
).

We are now able to give the expression of the {γj}j∈{1,2,3,4}, as in the
lemma 1.

Lemma 5.
It exists bounded functions of x, {γj}j∈{1,2,3} such as when J is big enough,

‖(S1 − T1)f‖J ≤ ‖γJ1 ‖‖f (1)‖J + ‖γJ2 ‖‖f (2)‖J + ‖γJ3 ‖‖f (3)‖J +
K1

J3
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where for i = 1, ..., 3, ‖γJi ‖ ∼ 1
J2 .

Proof. The proof of this lemma is exactly the same than in lemma 1. Just
the calculations are a little bit more tedious:

γJ1 =
−sx(1− x)

J
+ (s(1− 2x)−m)(sx(1− x) +m(p− x))

γJ2 =
−x(1− x)

4J2
+
xs(6x2 − 7x+ 1) +m(4x2 − 2xp− x− p)

4J
+O(

1

J3
)

γJ3 =
x(x− 1)(2x− 1)

12J2
+O(

1

J3
)

γJ4 = O(
1

J3
)

�

The end of the proof follow exactly the same pattern.
�

So the Wright-Fisher dynamics causes harder calculations than the Moran
model but the spirit of the proof is the same. So All the methods studies in
this paper still hold for the Wright-Fisher model.
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