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GLOBAL WEAK SOLUTIONS FOR QUANTUM ISOTHERMAL FLUIDS

RÉMI CARLES, KLEBER CARRAPATOSO, AND MATTHIEU HILLAIRET

Abstract. We construct global weak solutions to isothermal quantum Navier-Stokes equations,
with or without Korteweg term, in the whole space of dimension at most three. Instead of
working on the initial set of unknown functions, we consider an equivalent reformulation, based
on a time-dependent rescaling, that we introduced in a previous paper to study the large time
behavior, and which provides suitable a priori estimates, as opposed to the initial formulation
where the potential energy is not signed. We proceed by working on tori whose size eventually
becomes infinite. On each fixed torus, we consider the equations in the presence of drag force
terms. Such equations are solved by regularization, and the limit where the drag force terms
vanish is treated by resuming the notion of renormalized solution developed by I. Lacroix-Violet
and A. Vasseur. We also establish global existence of weak solutions for the isothermal Korteweg
equation (no viscosity), when initial data are well-prepared, in the sense that they stem from a
Madelung transform.
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1. Introduction

In this paper we consider the isothermal fluid equations in Rd (d ≤ 3):

(1.1a)

(1.1b)











∂t̺+ div(̺u) = 0,

∂t(̺u) + div(̺u⊗ u) + ∇̺ =
ǫ2

2
̺∇
(

∆
√
̺

√
̺

)

+ ν div(̺Du),

on some time interval (0, T ). Here, the unknowns are the density ̺ : (0, T ) × R
d → [0,∞) and

the velocity field u : (0, T ) × Rd → Rd of the fluid. We denote by Du = 1
2 (∇u + ∇u⊤), the

symmetric part of ∇u, and ǫ ≥ 0, ν ≥ 0 (with (ǫ, ν) 6= (0, 0)) are given parameters. When ǫ = 0
and ν > 0, the system (1.1) corresponds to the isothermal quantum Navier–Stokes equations; the
case ǫ, ν > 0 corresponds to the isothermal quantum Navier–Stokes–Korteweg equations; the case
ǫ > 0 and ν = 0 to the quantum Euler equation. The term ∇ρ on the left-hand side corresponds
to the gradient of the pressure of an isothermal fluid. Analytically, this corresponds to a limiting
case of equations for polytropic gases where the pressure is given by a power-law P (ρ) = aργ with
γ > 1 and a > 0. Such isothermal models are marginally studied in the literature (see [18] for the
quantum Navier-Stokes equations on Td, d ≤ 2, and [20, 24] for the 2D Newtonian Navier-Stokes
case on a bounded domain) whereas they have been derived in a quantum context [10]. In a
previous paper [11], we studied the large-time behavior of solutions to (1.1) with ǫ, ν ≥ 0, under
the assumption that sufficiently integrable solutions do exist globally in time. To our knowledge,
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2 R. CARLES, K. CARRAPATOSO, AND M. HILLAIRET

the question of the existence of such solutions remains open, specifically in the isothermal case.
We answer this question herein by proving that (1.1) admits weak solutions globally in time. The
main part of this paper addresses the Navier-Stokes case ν > 0 (with ǫ ≥ 0) for general initial data,
while the Korteweg case ν = 0, ǫ > 0 is considered for well-prepared initial data (stemming from
a Madelung transform), and is much more straightforward.

Formally, solutions to (1.1) enjoy the energy equality

E(t) +

∫ t

0

D(s)ds = E(0), t ≥ 0,

where the energy is defined by

(1.2) E(t) =
1

2

∫

Rd

(

̺|u|2 + ǫ2 |∇√
̺|2
)

+

∫

Rd

̺ log ̺,

and the dissipation is given by

(1.3) D(t) = ν

∫

Rd

̺|Du|2.

A feature of the isothermal case is that the pressure part of the energy,
∫

Rd

̺ log ̺,

involves a functional which has no definite sign, as opposed to

1

γ − 1

∫

Rd

̺γ

in the polytropic case. This is one of the reasons why there are fewer results regarding the global
existence of solutions in the case γ = 1 than in the case γ > 1. Also, because we consider the case
of an unbounded domain x ∈ Rd, nonzero constant densities cannot provide finite-energy solutions
to (1.1), ruling out natural candidates for an approach based on relative entropy like in e.g. [9].

Following [11], we circumvent this difficulty by considering the auxiliary unknowns (R,U) as
defined by

(1.4) ̺(t, x) =
1

τ(t)d
R

(

t,
x

τ(t)

) ‖̺0‖L1

‖Γ‖L1

, u(t, x) =
1

τ(t)
U

(

t,
x

τ(t)

)

+
τ̇ (t)

τ(t)
x,

where Γ(y) = e−|y|2

and the function τ is the global solution to the nonlinear ODE

τ̈ =
2

τ
, τ(0) = 1, τ̇(0) = 0.

We recall (see [12]) that there exists a unique global solution τ ∈ C∞([0,∞)) to this system. This
solution remains uniformly bounded from below by a strictly positive constant and its large time
behavior is known:

τ(t) ∼
t→∞

2t
√

log t, τ̇(t) ∼
t→∞

2
√

log t.

By convention, the space variable for unknowns with capital letters will be denoted by y, in
contrast with the initial space variable x. System (1.1) becomes, in the terms of the new unknown
(R,U) = (R(t, y), U(t, y)),

(1.5a)

(1.5b)



















∂tR+
1

τ2
div(RU) = 0

∂t(RU) +
1

τ2
div(RU ⊗ U) + 2yR+ ∇R =

ǫ2

2τ2
R∇

(

∆
√
R√
R

)

+
ν

τ2
div(RDU) +

ντ̇

τ
∇R.

Since the change of unknowns (1.4) preserves the integrability properties of density and velocity
unknowns locally in time (we consider velocity and space momenta), we focus in the whole paper
on system (1.5).
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An interesting feature of (1.5) is that it is again associated with a natural energy dissipation
estimate, but the new energy involved in this estimate is sign-definite and provides important
controls for the unknowns. Indeed, as exploited in [11], the energy associated to (1.5) reads

(1.6) E(R,U) =
1

2τ2

∫

Rd

(

R|U |2 + ǫ2|∇
√
R|2
)

+

∫

Rd

(

R|y|2 +R logR
)

,

so that, formally, solutions to (1.5) satisfy the energy equality

(1.7) E(R,U)(t) +

∫ t

0

D(R,U)(s)ds = E(R0, U0) − ν

∫ t

0

τ̇

τ3

∫

Rd

R divU, t ≥ 0,

where the nonnegative dissipation is given by

(1.8) D(R,U) =
τ̇

τ3

∫

Rd

(

R|U |2 + ǫ2|∇
√
R|2
)

+
ν

τ4

∫

Rd

R|DU |2.

In view of the conservation of mass, ‖R(t)‖L1 = ‖Γ‖L1 = πd for all t ≥ 0, we see that the functional
E is positive by writing

∫

Rd

(

R|y|2 +R logR
)

=

∫

Rd

R log
R

Γ
≥ 1

2πd
‖R− Γ‖2

L1,

where the last inequality stems from Csiszár-Kullback inequality (see e.g. [1, Th. 8.2.7]).

The construction of a positive-definite energy which is dissipated with time is a first building-
block to construct solutions to (1.5). However, it is classical in compressible fluid mechanics that
(1.7) must be completed. For instance, studies on compactness of finite-energy solutions to (1.5)
require to handle the viscous stress RDU. Yet, the information provided by (1.7) is insufficient
(when ǫ = 0) to pass to the limit in this term (see e.g. [7, 23]), because we lack information on
the regularity of the density R. More specifically, in the case of (1.5), with (1.7) alone, it is not
clear also how to define the Korteweg term when ǫ > 0. Another important quantity, known as
BD-entropy, introduced in [4, 7], is now standard to handle these difficulties. In the case of (1.5),
it reads

EBD(R,U) =
1

2τ2

∫

Rd

(

R|U + ν∇ logR|2 + ǫ2|∇
√
R|2
)

+

∫

Rd

(

R|y|2 +R logR
)

.

Exactly as above, the second integral defines a non-negative functional. The evolution of this
BD-entropy is given formally by

(1.9)

EBD(R,U)(t) +

∫ t

0

DBD(R,U)(s)ds

= EBD(R0, U0) + ν

∫ t

0

2d

τ2

∫

Rd

R+ ν

∫ t

0

τ̇

τ3

∫

Rd

R divU, t ≥ 0,

where the above dissipation is defined by

(1.10)

DBD(R,U) =
τ̇

τ3

∫

(

R|U |2 + ǫ2|∇
√
R|2
)

+
ν

τ4

∫

Rd

R|AU |2

+
νǫ2

τ4

∫

R|∇2 logR|2 +
4ν

τ2

∫

|∇
√
R|2,

with AU := 1
2 (∇U − ∇U⊤) the skew-symmetric part of ∇U. Hence putting together the energy

and the BD-entropy equalities, it holds

(1.11) E(t) + EBD(t) +

∫ t

0

(D(s) + DBD(s)) ds = E(0) + EBD(0) + ν

∫ t

0

2d

τ2

∫

Rd

R, t ≥ 0,

and thanks to the conservation of mass and the fact that
∫∞

0 τ−2(t) dt < ∞, the last term is
uniformly bounded. We note that, in view of (1.9), we gain information on the regularity of R
when ν > 0 which may help in the compactness issue of weak solutions to (1.5). To define the
Korteweg term, we may also apply the classical identity:

(1.12) R∇
(

∆
√
R√
R

)

= div(
√
R∇2

√
R− ∇

√
R ⊗ ∇

√
R),
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in view of

(1.13)

∫

Ω

|∇2
√
R|2 +

∫

Ω

|∇R1/4|4 .

∫

Ω

R|∇2 logR|2 .

∫

Ω

|∇2
√
R|2 +

∫

Ω

|∇R1/4|4,

which holds true for Ω = R
d or T

d (see [18, 23]).

The estimates provided by the above energy and BD-entropy turn out to be fundamental in the
construction of a weak solution, and motivate the following definition:

Definition 1.1. Assume ν > 0 and ǫ ≥ 0. Let (
√
R0, J0 = (

√
RU)0) ∈ L2(Rd) × L2(Rd). We call

global weak solution to (1.5), associated to the initial data (
√
R0, J0 = (

√
RU)0), any pair (R,U)

such that there exists a collection (
√
R,

√
RU,SK ,TN ) satisfying

i) The following regularities:

(〈y〉 + |U |)
√
R ∈ L∞

loc

(

0,∞;L2(Rd)
)

, ∇
√
R ∈ L∞

loc

(

0,∞;L2(Rd)
)

,

ǫ∇2
√
R ∈ L2

loc(0,∞;L2(Rd)),
√
ǫ∇R1/4 ∈ L4

loc(0,∞;L4(Rd)),

TN ∈ L2
loc(0,∞;L2(Rd)),

with the compatibility conditions
√
R ≥ 0 a.e. on (0,∞) × R

d,
√
RU = 0 a.e. on {

√
R = 0}.

ii) The following equations in D′((0,∞) × R
d)

(1.14)































∂t

√
R+

1

τ2
div(

√
RU) =

1

2τ2
Trace(TN ),

∂t(RU) +
1

τ2
div(

√
RU ⊗

√
RU) + 2y|

√
R|2 + ∇

(

|
√
R|2
)

= div

(

ν

τ2

√
RSN +

ǫ2

2τ2
SK

)

+
ντ̇

τ
∇R,

with SN the symmetric part of TN and the compatibility conditions:

(1.15)

(1.16)

√
RTN = ∇(

√
R

√
RU) − 2

√
RU ⊗ ∇

√
R ,

SK =
√
R∇2

√
R − ∇

√
R⊗ ∇

√
R .

iii) For any ψ ∈ C∞
0 (Rd),

lim
t→0

∫

Rd

√
R(t, y)ψ(y) dy =

∫

Rd

√

R0(y)ψ(y) dy,

lim
t→0

∫

Rd

√
R(t, y)(

√
RU)(t, y)ψ(y) dy =

∫

Rd

√

R0(y)J0(y)ψ(y) dy.

A specific feature of the previous statement is that we define weak solutions to (1.5) in terms

of
√
R and

√
RU. This is related to the fact that these are the natural quantities that are involved

in the energy and entropy estimates. By construction, we shall have
√
RU = 0 where

√
R = 0 so

that, whenever U is mentioned, it should be understood as:

U =

√
RU√
R

1√
R>0.

Also, thanks to the regularity estimates obtained on the density, the above weak formulation implies
the classical continuity equation (see [11, Lemma 2.2]). On the other hand, we mention that a

solution (
√
R,

√
RU) in the sense of distributions enjoying the regularity of i) satisfies furthermore

that
√
R ∈ C([0,∞), L2(Rd) −w) and RU ∈ C([0,∞);L1(R2) −w). Consequently, we may require

the initial conditions in terms of item iii). Finally, we do not claim for an energy estimate in our
definition, however we shall derive these solutions from approximate finite-energy, finite-entropy
solutions, so that the global weak solutions we construct satisfy: There exist absolute constants
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C,C′ such that, for almost all t ≥ 0, there holds:

(1.17)

(1.18)

E(t) +

∫ t

0

D(s) ds ≤ C(E(0)),

EBD(t) +

∫ t

0

DBD(s) ds ≤ C′(E(0), EBD(0)),

with E ,D, EBD,DBD as defined in (1.6)-(1.8)-(1.9)-(1.10). In terms of our weak solutions, the term
R|DU |2 appearing in these estimates must be understood as |SN |2 (and, similarly, R|AU |2 as
|TN − SN |2 , and R|∇U |2 as |TN |2). In addition, item i) along with (1.14) imply the conservation
of mass,

∫

Rd

R(t, y)dy =

∫

Rd

R0(y)dy, ∀t ≥ 0,

which is hence fixed through all the paper. The extra integral terms present on the right hand
side of (1.7) and (1.9) do not appear in the estimates (1.17) and (1.18): thanks to Cauchy-Schwarz
inequality, and the conservation of mass, they can be controlled by the dissipation D (see [11,
Remark 2.13] as well as the proof of Proposition 2.6 below). Note that in the previous definition,
the entropy of R is not mentioned. The reason is the following lemma.

Lemma 1.2. Let d ≥ 1. For all M > 0, there exists C(M) such that for all f ∈ H1 ∩ F(H1)(Rd)
satisfying

∫

Rd

(

1 + |y|2
)

|f(y)|2dy +

∫

Rd

|∇f(y)|2dy ≤ M,

the L logL norm of |f |2 is controlled by
∫

Rd

|f(y)|2
∣

∣log
(

|f(y)|2
)∣

∣ dy ≤ C(M).

Sketch of proof. We distinguish the regions where |f | is smaller or larger than one,
∫

Rd

|f(y)|2
∣

∣log
(

|f(y)|2
)∣

∣dy ≤
∫

|f |<1

|f(y)|2
∣

∣log
(

|f(y)|2
)∣

∣ dy +

∫

|f |>1

|f(y)|2
∣

∣log
(

|f(y)|2
)∣

∣ dy

.

∫

Rd

|f(y)|2−βdy +

∫

Rd

|f(y)|2+βdy,

where β > 0 is arbitrarily small. We then invoke the localization estimate in the former region,
∫

Rd

|f |2−β ≤ Cβ‖f‖2−β−dβ/2
L2 ‖|y|f‖dβ/2

L2 , 0 < β <
4

d+ 2
,

which is easily established by distinguishing the regions |y| < κ and |y| > κ, introducing |y|2/|y|2
in the latter, using Hölder inequality, and eventually optimizing in κ. We may take β = 2

d+2 , and

the term
∫

|f |2+β is then controlled by the H1-norm of f thanks to Sobolev embedding. �

Of course if H1 ∩ F(H1) is replaced by H1, the above lemma is no longer true. In view of the

above discussion, we will apply this lemma to
√
R. Recalling that the presence of a space mo-

mentum is natural when working with the unknown (R,U) (due to (1.5b), implying the definition
(1.6)), this yields another motivation for working with (R,U) instead of (̺, u): we definitely gain
coercivity properties.

With the above definition, the main result of this paper reads:

Theorem 1.3. Assume ν > 0, ǫ ≥ 0. Let (
√
R0, J0 = (

√
RU)0) ∈ L2(Rd) × L2(Rd) satisfy

E(0) < ∞, EBD(0) < ∞, as well as the compatibility conditions
√

R0 ≥ 0 a.e. on R
d, (

√
RU)0 = 0 a.e. on {

√

R0 = 0}.
There exists at least one global weak solution to (1.5), which satisfies moreover the energy and
BD-entropy inequalities (1.17) and (1.18).

In view of [11], we readily infer the following corollary:

Corollary 1.4. Under the assumptions of Theorem 1.3, every global weak solution to (1.5) enjoying
the energy inequality (1.17) satisfies

R(t) ⇀ Γ in L1(Rd), as t → ∞.
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To construct solutions of (1.5), we consider various levels of approximation, by resuming the
approach of [22] (summarized in [21]) in the case γ > 1. The first approximation consists in adding
two new terms in the left hand side of (1.5b), leading to more dissipation, hence better a priori
estimates,

r0

τ2
U +

r1

τ2
R|U |2U.

This yields the following system in R
d, for r0, r1 ≥ 0:

(1.19a)

(1.19b)



































∂tR+
1

τ2
div(RU) = 0

∂t(RU) +
1

τ2
div(RU ⊗ U) + 2yR+ ∇R+

r0

τ2
U +

r1

τ2
R|U |2U

=
ǫ2

2τ2
R∇

(

∆
√
R√
R

)

+
ν

τ2
div(RDU) +

ντ̇

τ
∇R.

When r0, r1 > 0 we call this system the isothermal fluid system with drag forces, whereas when
r0 = r1 = 0 we recover the original system (1.5). When the factor 1/τ2 is absent, these terms
correspond to physical models; see e.g. [3, 6] and references therein.

The change of unknown functions (1.4) involves a time-dependent spatial rescaling, an aspect
which essentially forces us to consider the geometrical framework x ∈ Rd. On the other hand,
construction of weak solutions in the context of compressible fluid mechanics is often performed in
the periodic case x ∈ Td: this geometry provides compactness in space more easily, and integrations
by parts are harmless. The periodic case is also rather convenient for approximating, among others
in Lebesgue spaces, the initial density by a density bounded away from zero (see (2.7) below), a
step which would be more delicate on Rd. Note also that this property is classically propagated
by the flow in a suitable regularized continuity equation (see e.g. [16, 18]), and such a property is
needed in the presence of cold pressure and regularizing terms (see e.g. [17, 23]). For these reasons,
the second step in our approach consists in replacing Rd with a box Td

ℓ of size ℓ > 0, where ℓ is
aimed at going to infinity at the last step of the construction of solutions to the system with drag
forces (1.19) with r0, r1 > 0. The most delicate step turns out to be the adaptation of the initial
data, given on Rd, in order to fit in the periodic framework. Details are given in Section 4.

We also emphasize another important difference whether the space variable belongs to Td or
to Rd. In the former case, it is possible to overcome the lack of positivity in the energy (1.2) by
introducing an intermediary constant density, as in e.g. [8, 9, 18]. This strategy cannot be carried
out in the case x ∈ R

d, since no non-zero constant belongs to L1(Rd).

To solve (1.19) on the torus Td
ℓ , we proceed as in [23] and introduce regularizing terms in (1.19a)

and (1.19b). This regularized system hence becomes

(1.20a)

(1.20b)























































∂tR+
1

τ2
div(RU) =

δ1

τ2
∆R,

∂t(RU) +
1

τ2
div(RU ⊗ U) + 2yR+ ∇R− η1∇R−α

+
r0

τ2
U +

r1

τ2
R|U |2U +

δ1

τ2
(∇R · ∇)U

=
ǫ2

2τ2
R∇

(

∆
√
R√
R

)

+
ν

τ2
div(RDU) +

ντ̇

τ
∇R +

δ2

τ2
∆2U +

η2

τ2
R∇∆2s+1R,

where the regularization parameters verify 0 < δ1, δ2, η1, η2 < 1; α, s > 0 are chosen sufficiently
large (to be fixed later on); and the drag forces parameters r0, r1 as well as the Korteweg parameter
ǫ are positive r0, r1, ǫ > 0. Such solutions are constructed in Section 2.1. Next, passing to the
limit δ1, δ2 → 0, then η1, η2 → 0, we obtain a solution to the system with drag forces (1.19) with
r0, r1, ǫ > 0 on the torus Td

ℓ . This is achieved in Section 3.

To pass to the limits θ → 0, where θ > 0 measures the fact that the initial density is bounded
away from zero (see (2.7)), r0, r1 → 0 and ℓ → ∞ (simultaneously), we proceed as in [19], and
consider an adapted notion of renormalized solutions, which is equivalent to our notion of weak
solution in the presence of drag forces terms, and provides a weak solution when r0 = r1 = 0.
We thus obtain a solution to (1.5) on the whole space. Note that this step has to be the final
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one, insofar as the case with drag forces requires to control r0 (logR)− in L1 (see e.g. [23]), which

is inconsistent with the property
√
R ∈ H1 in the case y ∈ Rd. These steps are performed in

Section 4.

We note that these final limits, θ → 0, r0, r1 → 0, and ℓ → ∞ could be performed in a more
independent fashion, by letting first θ, r0, r1 → 0, thus obtaining a global weak solution to (1.5)
on Td

ℓ , and then letting ℓ → ∞ (recalling that H1 ∩ F(H1) provides more compactness than the
mere H1 space). We choose to unify these steps in order to shorten the overall presentation, and
also since (1.5) is meaningful on Rd in view of (1.4), but not necessarily on a (time-independent)
torus.

We explain now the outcome of our main theorem in terms of the initial system (1.1). This is
the content of the following corollary:

Corollary 1.5. Assume ν > 0 and ǫ ≥ 0. Let (
√
̺0, j0 = (

√
̺u)0) ∈ H1 ∩ F(H1)(Rd) × L2(Rd)

satisfy the compatibility conditions

√
̺0 ≥ 0 a.e. on R

d, (
√
̺u)0 = 0 a.e. on {√

̺0 = 0},

and assume that the associated functions (
√
R0, J0 = (

√
RU)0) obtained via (1.4) satisfy E(0) < ∞

and EBD(0) < ∞. Then there exists a global weak solution to (1.1) in the following sense: there
exists a collection (

√
̺,

√
̺u,TN , SK) such that

i) The following regularities are satisfied:

(〈x〉 + |u|) √
̺ ∈ L∞

loc

(

0,∞;L2(Rd)
)

, ∇√
̺ ∈ L∞

loc

(

0,∞;L2(Rd)
)

,

ǫ∇2√
̺ ∈ L2

loc(0,∞;L2(Rd)),
√
ǫ∇̺1/4 ∈ L4

loc(0,∞;L4(Rd)),

TN ∈ L2
loc(0,∞;L2(Rd)),

with the compatibility conditions

√
̺ ≥ 0 a.e. on (0,∞) × R

d,
√
̺u = 0 a.e. on {√

̺ = 0}.

ii) The following equations hold in D′((0,∞) × Rd)

(1.21)















∂t
√
̺+ div(

√
̺u) =

1

2
Trace(TN ),

∂t(̺u) + div(
√
̺u⊗ √

̺u) + ∇
(

|√̺|2
)

= div

(

ν

τ2

√
̺SN +

ǫ2

2
SK

)

,

with SN the symmetric part of TN and the compatibility conditions:

(1.22)

(1.23)

√
̺TN = ∇(

√
̺
√
ρu) − 2

√
̺u⊗ ∇√

̺ ,

SK =
√
̺∇2√

̺− ∇√
̺⊗ ∇√

̺ .

iii) For any ψ ∈ C∞
0 (Rd),

lim
t→0

∫

Rd

√
̺(t, x)ψ(x) dx =

∫

Rd

√
̺0(x)ψ(x) dx,

lim
t→0

∫

Rd

√
̺(t, x)(

√
̺u)(t, x)ψ(x) dx =

∫

Rd

√
̺0(x)j0(x)ψ(x) dx.

The main shortcoming of this construction is that we do not get the energy inequality corre-
sponding to (1.2) for the initial system (but the regularity obtained ensures that, at any time t ≥ 0,
the energy E(t) is well defined). Indeed, we remark that, if U should be going to 0 at infinity, then,
our solution u would then be a perturbation of the affine velocity field (τ̇ /τ)x which increases at
infinity. In particular, performing back the change of variable (1.4) in the energy estimate (1.17),
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in the case ‖ρ0‖L1(Rd) = ‖Γ‖L1(Rd) we obtain:

1

2

[

∫

Rd

ρ(t, x)

∣

∣

∣

∣

u− τ̇

τ
x

∣

∣

∣

∣

2

dx+

∫

Rd

|∇√
ρ(t, x)|2dx

]

+

∫

Rd

ρ(t, x) ln(ρ(t, x))dx + d

(

ln(τ(t)) +
1

τ(t)2

)∫

R

ρ(t, x)dx

+

∫ t

0

[

∫

Rd

τ̇

τ
ρ

∣

∣

∣

∣

u− τ̇

τ
x

∣

∣

∣

∣

2

dx+ ν

∫

Rd

ρ|Du− τ̇

τ
|2
]

dxds ≤ C0.

Another point of view consists in recalling that in [11], the large time convergence of the second
order momentum of R is established by using the a priori bounds provided by (1.17), and the
information that the energy E defined in (1.2) is o(log t) as t → ∞: even though this information
is weaker than the expected boundedness of E (and even, decay), it seems to be needed in the
proof, suggesting that either some tools are missing in the study of (R,U) to recover the energy
inequality corresponding to (1.2) for the initial system, or that it is just not possible.

We complement the above results, valid for ν > 0, with a global existence result in the case of
the isothermal Korteweg equation (ǫ > 0 and ν = 0). The proof is fairly different from the case
ν > 0, since it is based on nonlinear Schrödinger equations, but is rather short. We choose to
present this case so that the family of results in this paper is consistent. Mimicking Definition 14
from [2], we set:

Definition 1.6. Let d ≥ 1. Assume ν = 0 and ǫ > 0. Let (
√
̺0, j0) ∈ L2(Rd) × L2(Rd). We call

global weak solution to (1.1), associated to the initial data (
√
̺0, j0), any pair (

√
̺,

√
̺u) such that

if we define ̺ :=
(√
̺
)2

, j :=
√
̺× √

̺u, then we have:

i) The following regularities:
√
̺ ∈ L∞

loc

(

0,∞;H1(Rd)
)

,
√
̺u ∈ L∞

loc

(

0,∞;L2(Rd)
)

,

with the compatibility condition
√
̺ ≥ 0 a.e. on (0,∞) × R

d,
√
̺u = 0 a.e. on {̺ = 0}.

ii) For every T > 0, for any test function ϕ ∈ C∞
0 ([0, T [×Rd),

∫ T

0

∫

Rd

(̺∂tϕ+ j · ∇ϕ) dtdx+

∫

Rd

̺0ϕ(0)dx = 0,

and for any test function η ∈ C∞
0 ([0, T [×Rd;Rd),

∫ T

0

∫

Rd

(

j · ∂tη + (
√
̺u) ⊗ (

√
̺u) : ∇η + ∇̺ div η + ǫ2∇√

̺⊗ ∇√
̺ : ∇η − ǫ2

4
̺∆ div η

)

dtdx

+

∫

Rd

j0 · η(0)dx = 0.

iii) (Generalized irrotationality condition) For almost every t ≥ 0,

∇ ∧ j = 2∇√
̺ ∧ (

√
̺u)

holds in the sense of distributions.

Note that in the second point, the quantum pressure (right hand side of (1.1b)) has been recast
in view of (1.12). Like before, whenever u is mentioned, it should be understood as

u =

√
̺u

√
̺

1√
̺>0.

The generalized irrotationality condition, explained in [2, Remark 2], is the generalization of the
property ̺∇ ∧ u = 0 of the smooth case j = ̺u, to the notion of weak solution.

Also, Definition 1.6 is readily adapted to the case of (1.5) in the following statement. The first
part of this result is the analogue of [2, Proposition 15] in the isothermal case.
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Proposition 1.7. Let d ≥ 1. Assume ν = 0 and ǫ > 0. Let ψ0 ∈ H2 ∩ F(Hα)(Rd) for some
0 < α ≤ 1, and assume that the initial data for (1.1) are well-prepared in the sense that

̺0 = |ψ0|2, j0 = ǫ Im
(

ψ̄0∇ψ0

)

.

(1) Then there exists a global weak solution to (1.1). Furthermore, the energy E(t) defined by (1.2)
is conserved for all time t ≥ 0.
(2) If ψ0 ∈ H2 ∩ F(H1)(Rd), then (

√
R,

√
RU) defined by

(1.24)

√
̺(t, x) =

1

τ(t)d/2

√
R

(

t,
x

τ(t)

)(‖̺0‖L1

‖Γ‖L1

)1/2

,

√
̺u(t, x) =

1

τ(t)

√
RU

(

t,
x

τ(t)

)(‖̺0‖L1

‖Γ‖L1

)1/2

+
τ̇(t)

τ(t)
x
√

̺(t, x),

is a global weak solution to (1.5). The pseudo-energy E, defined in (1.6), solves (1.7), where the
dissipation is given by (1.8). Equivalently, setting

E =
1

2τ2

∫

Rd

(

|
√
RU |2 + ǫ2|∇

√
R|2
)

+

∫

Rd

(

R|y|2 +R logR
)

, D =
τ̇

τ3

∫

Rd

|
√
RU |2 + ǫ2|∇

√
R|2,

we have

E(t) +

∫ t

0

D(s)ds = E(0), ∀t ≥ 0.

It may be surprising that in the above result, we assume ψ0 ∈ H2(Rd) instead of the more
natural regularity H1(Rd). We will see in the proof of Proposition 1.7 that this is due to somehow
pathological properties of the logarithmic Schrödinger equation, which is the natural candidate
to provide solutions to (1.1), as opposed to the nonlinear Schrödinger equation with power-like
nonlinearity in the polytropic case. The specificity of this nonlinearity also explains the presence
of a (fractional) momentum in the first part of the statement. We emphasize the fact that the
special structure of the initial data (due to the use of Madelung transform) implies that the flow
is irrotational (see also the last point of Definition 1.6 and [2, Remark 2] where it is discussed).

In view of [11], we readily infer the following corollary, which is stronger than Corollary 1.4:

Corollary 1.8. In the second case of Proposition 1.7, every such global weak solution satisfies

∫

Rd





1
y

|y|2



R(t, y)dy →
∫

Rd





1
y

|y|2



Γ(y)dy, R(t) ⇀ Γ in L1(Rd), as t → ∞.

Remark 1.9. In view of the proof of Proposition 1.7, Theorem 1.12 in [12] implies that Proposi-
tion 1.7 and its corollary (from [11]) remain valid in the case where the above pressure law p(̺) = ̺
is replaced for instance by

p(̺) = c0̺+

N
∑

j=1

cj̺
γj , cj > 0, 0 ≤ j ≤ N, 1 < γj <

d+ 2

(d− 2)+
.

Organization of the paper. Until the end of Section 4, we assume ν > 0. In Section 2, we construct
solutions to (1.20) on the torus Td

ℓ with strictly positive densities. In Section 3, we obtain solutions
to (1.19) in the presence of drag forces, r0, r1 > 0, by passing to the limit δ1, δ2, η1, η2 → in (1.20).
Theorem 1.3 is proved in Section 4, where we let r0, r1 → 0 and ℓ → ∞ (with possibly ǫ → 0).
Section 5 is devoted to the proof of Proposition 1.7 (ν = 0, ǫ > 0). In an appendix, we give more
details about the derivation of an identity appearing in Section 4.

2. Construction of solutions to the regularized system

We start this study by constructing weak solutions to the system (1.20) on the torus Td
ℓ with

strictly positive densities and deriving further properties satisfied by these solutions. We recall that
in system (1.20) the parameters r0, r1, ǫ > 0 are positive, which will be hence assumed through
this section.
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System (1.20) is endowed with some estimates. We first note that, integrating (1.20a) we obtain
the conservation of mass:

(2.1)

∫

Td
ℓ

R(t) =

∫

Td
ℓ

R0.

Then, by multiplying formally (1.20b) with U/τ2 and combining with equation (1.20a), we obtain
that reasonable solutions to (1.20) should satisfy the energy estimate:

(2.2)
d

dt
Ereg(R,U) + Dreg(R,U) =

2dδ1

τ2

∫

Td
ℓ

R− ντ̇

τ3

∫

Td
ℓ

R divU,

where

(2.3)

Ereg(R,U) =
1

2τ2

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2
)

+

∫

Td
ℓ

(

R|y|2 +R logR +
η1

α+ 1
R−α

)

+
η2

2τ2

∫

Td
ℓ

|∇∆sR|2,

and

Dreg(R,U) =
τ̇

τ3

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2 + η2|∇∆sR|2

)

+
ν

τ4

∫

Td
ℓ

R|DU |2

+
δ2

τ4

∫

Td
ℓ

|∆U |2 +
δ1η2

τ4

∫

Td
ℓ

|∆s+1R|2 +
4δ1

τ2

∫

Td
ℓ

|∇
√

RN |2

+
4δ1η1

ατ2

∫

Td
ℓ

|∇R−α/2|2 +
r0

τ4

∫

Td
ℓ

|U |2 +
r1

τ4

∫

Td
ℓ

R|U |4

+
δ1ǫ

2

2τ4

∫

Td
ℓ

R|∇2 logR|2.

Note that the term appearing on the last line is obtained thanks to the exact formula:

1

2

∫

R|∇2 logR|2 =

∫

∆
√
R√
R

∆R.

On the other hand, multiplying formally (1.20a) by a smooth function Ψ and (1.20b) by a smooth
vector field Φ yields respectively

(2.4)

∫

Td
ℓ

R0Ψ(0) +

∫ T

0

∫

Td
ℓ

R∂tΨ +

∫ T

0

∫

Td
ℓ

1

τ2
RU · ∇Ψ + δ1

∫ T

0

∫

Td
ℓ

1

τ2
R∆Ψ = 0,

and

(2.5)

∫

Td
ℓ

R0U0Φ(0) +

∫ T

0

∫

Td
ℓ

RU · ∂tΦ +

∫ T

0

∫

Td
ℓ

1

τ2
RU ⊗ U : ∇Φ

=

∫ T

0

∫

Td
ℓ

R(2y · Φ − div Φ) + r0

∫ T

0

∫

Td
ℓ

1

τ2
U · Φ + r1

∫ T

0

∫

Td
ℓ

1

τ2
R|U |2U · Φ

+ ǫ2

∫ T

0

∫

Td
ℓ

1

2τ2

[

2∆
√
R∇

√
R · Φ + ∆

√
R

√
R div Φ

]

+ ν

∫ T

0

∫

Td
ℓ

1

τ2
RDU : ∇Φ + ν

∫ T

0

∫

Td
ℓ

τ̇

τ
R div Φ

+ δ1

∫ T

0

∫

Td
ℓ

1

τ2
∇U : ∇R⊗ Φ + δ2

∫ T

0

∫

Td
ℓ

1

τ2
∆U · ∆Φ

+ η1

∫ T

0

∫

Td
ℓ

R−α div Φ + η2

∫ T

0

∫

Td
ℓ

1

τ2
∆s+1R∆s [∇R · Φ +R div Φ] .

So, to define weak solutions to (1.20), we look for minimal regularity assumptions that are induced
by energy estimate (2.2) and which make (2.4)-(2.5) meaningful for smooth test-functions. For this,
we first recall the following lemma – which is reminiscent of [5, Lemma 2.1] with a slightly different



GLOBAL SOLUTIONS FOR ISOTHERMAL FLUIDS 11

statement – to estimate negative power of the density which naturally appear in the formulation
(1.20):

Lemma 2.1. For n ∈ N∗ and Ω = Td or Ω = Rd, there holds

‖∇n(f−1)‖L2(Ω) .
(

1 + ‖f−1‖L4(Ω) + ‖f−1‖L2(n+1)(Ω)

)n+1 (
1 + ‖f‖Hσ(Ω)

)n

with σ > n+ d/2.

Proof. Recall the embedding Hd/2+0(Ω) →֒ L∞(Ω). We compute

|∇n(f−1)|2 .

n
∑

j=1

∑

i1+···+ij =n

|∇i1f |2 · · · |∇ijf |2
f2(j+1)

,

hence, for any j ≥ 1, we have:
∫ |∇i1f |2 · · · |∇ijf |2

f2(j+1)
dx . ‖∇i1f‖2

L∞(Ω) · · · ‖∇ijf‖2
L∞(Ω)

∫

f−2(j+1) dx

. ‖f‖2j
Hσ(Ω ‖f−1‖2(j+1)

L2(j+1)

.
(

1 + ‖f‖Hσ(Ω)

)2n (
1 + ‖f−1‖L2(j+1)(Ω)

)2(n+1)

.
(

1 + ‖f‖Hσ(Ω)

)2n (
1 + ‖f−1‖L4(Ω) + ‖f−1‖L2(n+1)(Ω)

)2(n+1)
,

which completes the proof. �

Since Ereg enables to control the H2s+1-norm of R together with the mean of R−α, we may infer
that, for α > 4 and s > d, the energy estimate (2.2) implies that 1/R is continuous. We also recall
that the Laplace equation on the torus enjoys classical elliptic estimate so that the dissipation Dreg

(note that r0, δ2 > 0) yields U ∈ L2
loc(R

+;H2(Td
ℓ )). Introducing the regularity expected for R and

U into the continuity equation (1.20a) entails that ∂tR ∈ L2
loc(R

+;H1(Td
ℓ )). Then, our definition

of weak solution to (1.20) reads as follows:

Definition 2.2. Given (R0, U0) ∈ L1(Td
ℓ ) × L2(Td

ℓ ), we say that (R,U) is a global weak solution
to (1.20) associated to the initial data (R0, U0) if we have:

(i) (R,U) satisfies

(2.6)
R ∈ H1

loc(R+;H1(Td
ℓ )) ∩ C(R+;H2s(Td

ℓ )) ∩ L2
loc(R

+;H2s+2(Td
ℓ )) with 1/R ∈ C(R+ × T

d
ℓ ),

U ∈ L∞
loc(R

+;L2(Td
ℓ )) ∩ L2

loc(R
+;H2(Td

ℓ )).

(ii) Equation (2.4) holds true for any Ψ ∈ D([0,∞) × Td
ℓ ).

(iii) Equation (2.5) holds true for any Φ ∈ D([0,∞) × Td
ℓ )d.

Remark 2.3. Thanks to the above remarks, the regularity statement (i) is sufficient to obtain that
all the terms in (2.4)-(2.5) are well-defined.

In this section, we restrict to initial data with smooth and strictly positive density. This means
that we shall assume that (R0, U0) satisfy:

(2.7) R0 ∈ D(Td
ℓ ), U0 ∈ L2(Td

ℓ ), inf
y∈Td

ℓ

R0(y) ≥ θ > 0.

The first main result of this section is the following proposition:

Proposition 2.4. Given initial data (R0, U0) satisfying (2.7), there exists a global solution (R,U)
to (1.20) associated to (R0, U0) on the torus Td

ℓ , which satisfies moreover the conservation of
mass (2.1) and the energy estimate

(2.8) Ereg(R,U)(T ) +

∫ T

0

Dreg(R,U)(s)ds ≤ C0(Ereg(R0, U0)), for a.e. T ≥ 0,

for some constant C0 > 0 depending on Ereg(R0, U0).
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Remark 2.5. We note that the energy estimate (2.8) together with (2.1) entail that the solution
we construct enjoys the following regularity properties, with norms corresponding to these spaces
bounded with respect to Ereg(R0, U0) only:

R(1 + |y|2 + | logR|) ∈ L∞
loc(R

+;L1(Td
ℓ )),

√
RU ∈ L∞

loc(R
+;L2(Td

ℓ )),
√
ν

√
RDU ∈ L2

loc(R
+;L2(Td

ℓ )), ǫ∇
√
R ∈ L∞

loc(R
+;L2(Td

ℓ )),
√
r0 U ∈ L2

loc(R
+;L2(Td

ℓ )),
√
r1 R

1
4U ∈ L4

loc(R
+;L4(Td

ℓ )),
√

δ2 ∆U ∈ L2
loc(R

+;L2(Td
ℓ )),

√
η2 R ∈ L∞

loc(R
+;H2s+1(Td

ℓ )),

η
1
α

1 R−1 ∈ L∞
loc(R

+;Lα(Td
ℓ )),

√

δ1η1 ∇R− α
2 ∈ L2

loc(R
+;L2(Td

ℓ )),
√
νǫ2 ∇2

√
R ∈ L2

loc(R
+;L2(Td

ℓ )), (νǫ2)
1
4 ∇R 1

4 ∈ L4
loc(R

+;L4(Td
ℓ )),

√

δ1η2 ∆s+1R ∈ L2
loc(R

+;L2(Td
ℓ )).

We refer to (1.13) for the regularity claim on the before-last line. Also, combining these bounds
with Lemma 2.1, we obtain that, for arbitrary T > 0, there exists a C(Ereg(R0, U0), η1, η2, θ, T ) > 0
so that

(2.9) ‖1/R‖L∞((0,T )×Td
ℓ

) ≤ C(Ereg(R0, U0), η1, η2, θ, T ).

The proof of Proposition 2.4 is the content of the next subsection. Then in the last subsection,
we focus on a further estimate satisfied by the weak solutions that we construct.

2.1. Proof of Proposition 2.4. The plan of the proof follows closely the method of [23]. In the
whole section (R0, U0) is a fixed initial data satisfying (2.7).

2.1.1. Faedo-Galerkin approximation. Let XN = span{e1, . . . , eN } be the finite-dimensional space
corresponding to the projection in L2(Td

ℓ ) onto the first N Fourier modes. We consider the system
whose unknowns are

(RN , UN) ∈ C(R+;H2s+1(Td
ℓ )) × C(R+;XN ),

and composed by (1.20a) and the following weak formulation of (1.20b): for any t ∈ (0, T ) and
any vector field φ ∈ (XN )d,

(2.10)

d

dt

∫

Td
ℓ

RNUN · φ− 1

τ2

∫

Td
ℓ

RNUN ⊗ UN : ∇φ+

∫

Td
ℓ

RN (2y · φ− div φ)

+
r0

τ2

∫

Td
ℓ

UN · φdy +
r1

τ2

∫

Td
ℓ

RN |UN |2UN · φ+
δ1

τ2

∫

Td
ℓ

([∇RN · ∇]UN ) · φ

+
ǫ2

2τ2

∫

Td
ℓ

[

2∆
√
RN ∇

√
RNφ+ ∆

√
RN

√
RN divφ

]

+
ν

τ2

∫

Td
ℓ

RNDUN : ∇φ

+
ντ̇

τ

∫

Td
ℓ

RN divφ+
δ2

τ2

∫

Td
ℓ

∆UN · ∆φ+ η1

∫

Td
ℓ

R−α
N div φ

− η2

τ2

∫

Td
ℓ

RN ∇∆2s+1RN · φ = 0,

where we recall that r0, r1, ǫ > 0. We complement the system with initial conditions:

(2.11)

RN |t=0 = R0,
[

∫

Td
ℓ

RNUN · φ
]

|t=0 =

∫

Td
ℓ

R0U0 · φ, ∀φ ∈ (XN )d.

We have the following existence result for this approximate system:

Proposition 2.6. Given N ∈ N∗, there exists a global solution (RN , UN ) to (1.20a)-(2.10)-(2.11)
that satisfies the conservation of mass (2.1) and the energy inequality

(2.12) sup
t∈(0,T )

Ereg(RN , UN) +

∫ T

0

Dreg(RN , UN) dt ≤ C(Ereg(RN , UN)|t=0),

for come constant C > 0 depending on Ereg(RN , UN)|t=0.
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Proof. The local existence is obtained following [23] (see also [18]). The novelties with respect to
this previous study are: the linearity of the pressure term, the time factors τ, τ̇ and the new terms

∫

Td
ℓ

R(2y · φ− div φ),
r0

τ2

∫

Td
ℓ

U · φ, ντ̇

τ

∫

Td
ℓ

R div φ.

However, these terms are harmless in the fixed-point approach of [23, Section 2], for instance.

The global existence is then a consequence of the energy estimate that we obtain as follows.
Conservation of mass follows by integrating (1.20a). We may then take φ = UN(t)/τ2(t) in (2.10)
since it corresponds to writing the N equations obtained by setting φ = ej, j = 1, . . . , N , and
combining them with the coefficients defining UN in this basis. This yields

(2.13)
d

dt
Ereg(RN , UN) + Dreg(RN , UN ) =

2dδ1

τ2

∫

Td
ℓ

RN − ντ̇

τ3

∫

Td
ℓ

RN divUN .

We deduce the energy inequality by remarking that the right-hand side of (2.13) can be bounded
by

(

2dδ1

τ2
+ C

ντ̇2

τ2

)∫

Td
ℓ

RN +
ν

2τ4

∫

Td
ℓ

RN |DUN |2 ≤ C
(1 + τ̇2)

τ2

∫

Td
ℓ

RN +
1

2
Dreg(RN , UN),

using the conservation of mass together with
∫ ∞

0

1 + τ̇2(t)

τ2(t)
dt < ∞,

and recalling that Ereg is nonnegative. �

2.1.2. Convergence of the approximate solutions. We split the proof into three steps: defining lim-
its to the sequence of approximate solutions (RN , UN ), improving the sense in which this sequence
converges, passing to the limit in the weak formulation (2.10). In all the convergences mentioned
in the proof, we have to extract subsequences that we do not relabel for conciseness.

So, let {(RN , UN )}N be the sequence of approximate solutions to (1.20a)-(2.10)-(2.11) given by
Proposition 2.6. We note that we have initially RN (0, ·) = R0 and RNUN(0, ·) = PN [R0U0] where
PN stands for the (L2(Td

ℓ ))-projection onto XN . In particular, since by assumption R0U0 ∈ L2(Td
ℓ ),

we have

(2.14) Ereg(RN , UN )|t=0 ≤ Ereg(R0, U0).

Step 1. From (2.14) and the energy inequality derived in Proposition 2.6, we infer that

sup
t≥0

Ereg(RN , UN) +

∫ ∞

0

Dreg(RN , UN) ≤ C(Ereg(R0, U0)), ∀N.

We obtain then uniform bounds on (RN , UN) in a series of spaces similar to the ones in Remark 2.5.
We first extract from this list that we have uniform bounds with respect to N for:

1

τ

√
η2RN in L∞(R+;H2s+1(Td

ℓ )),

(

η1

α+ 1

)
1
α 1

RN
in L∞(R+;Lα(Td

ℓ )),

1

τ

√

RNUN in L∞(R+;L2(Td
ℓ )).

Using the first bound, we can extract a subsequence so that RN/τ converges to some R/τ in this
same space (for the weak-∗ topology). From the last bound, we obtain that (up to the extraction
of a subsequence)

√
RNUN/τ converges to some V/τ in L∞(R+;L2(Td

ℓ )) −w ∗ . Restricting to any
time interval (0, T ) with T < ∞, the second bound with the first one and Lemma 2.1 imply that
RN is uniformly bounded from below on (0, T ) by a constant C(Ereg(R0, U0), η1, η2, θ, T ). Hence,
we have also

(2.15) R ≥ C(Ereg(R0, U0), η1, η2, θ, T ) in (0, T ),

and we may set U = V/
√
R. We focus now on the restriction of these limits on (0, T ).

Step 2. On (0, T ), we establish convergences of RN and UN in a stronger sense.
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To this end, we now extract from the list given by Remark 2.5 uniform bounds for

RN in L∞(0, T ;H2s+1(Td
ℓ )) ∩ L2(0, T ;H2s+2(Td

ℓ )),

1/RN in L∞((0, T ) × T
d
ℓ ),

UN in L2(0, T ;H2(Td
ℓ )).

The continuity equation (1.20a) satisfied byRN implies then that ∂tRN is bounded in L2(0, T ;H1(Td
ℓ )).

Combining classical weak-convergence results and Ascoli-Arzelà type arguments entails that:

(2.16)

RN → R in C([0, T ];H2s(Td
ℓ )),

RN ⇀ R in L2(0, T ;H2s+2(Td
ℓ )) − w,

RN ⇀ R in H1(0, T ;H1(Td
ℓ )) − w.

Given the bound by below on RN (2.15), we also have that 1/RN converges to 1/R in C([0, T ]×Td
ℓ ).

Next, given the uniform bounds for UN and RN , and since (ek)k∈N is orthogonal for the H2-
scalar product, we have that RNUN and PN [RNUN ] are uniformly bounded in L2(0, T ;H2(Td

ℓ ))
too. On the other hand, the weak formulation satisfied by the approximation (RN , UN) reads:

∂t(PN [RNUN ]) = PN

[

− 1

τ2
div(RNUN ⊗ UN ) − 2yRN − ∇RN + η1∇R−α

N +
r0

τ2
UN

+
r1

τ2
RN |UN |2UN +

δ1

τ2
(∇RN · ∇)UN +

ǫ2

2τ2
RN ∇

(

∆
√
RN√
RN

)

+
ν

τ2
div(RNDUN ) +

ντ̇

τ
∇RN +

δ2

τ2
∆2UN +

η2

τ2
RN ∇∆2s+1RN

]

:= PN [FN ]

Again we note here that PN is orthogonal with respect to the Hs-scalar product, so that

‖PNFN ‖H−s(Td
ℓ

) ≤ ‖FN ‖H−s(Td
ℓ

), ∀ s ∈ N.

For s sufficiently large, we may then combine the various uniform estimates satisfied by (RN , UN)
on (0, T ) to infer that ∂t(PN [RNUN ]) is uniformly bounded in L2(0, T ;H−(2s+2)(Td

ℓ )). To prove this,
the main terms to be discussed are div(RNUN ⊗UN) and RN |UN |2UN which can be handled (since
d ≤ 3) via the embedding H2(Td

ℓ ) ⊂ L∞(Td
ℓ ). To summarize, we know that PN [RNUN ] is bounded

in L2(0, T ;H2(Td
ℓ )) and ∂t(PN [RNUN ]) is bounded in L2(0, T ;H−(2s+2)(Td

ℓ )). Aubin-Lions like
arguments imply then that PN [RNUN ] converges in L2(0, T ;H1(Td

ℓ )). Due to the compactness of
the embedding H2(Td

ℓ ) ⊂ H1(Td
ℓ ) again, there exists a sequence (εN )N converging to 0 so that

‖PN [RNUN ] −RNUN‖L2(0,T ;H1(Td
ℓ

)) ≤ εN ‖RNUN ‖L2(0,T ;H2(Td
ℓ

)).

Consequently, (PN [RNUN ])N and (RNUN)N both converge to RU in L2(0, T ;H1(Td
ℓ )). Moreover,

since (1/RN)N∈N is uniformly bounded and RN converges to R in a sufficiently regular space, this
also implies that

(2.17) UN → U in L2(0, T ;H1(Td
ℓ )).

To end up this part on the convergence of UN , we note that the uniform estimates satisfied by
(RN , UN ) also entail that UN is bounded in L∞(0, T ;L2(Td

ℓ )) ∩ L2(0, T ;H2(Td
ℓ )) so that the limit

U lies in these spaces.

Step 3. Given the time-regularity of approximate solutions, RN and RNUN satisfy (2.4) for ar-
bitrary Ψ ∈ D([0,∞) × Td

ℓ ), and (2.5) for arbitrary Φ ∈ D([0,∞);XN ), respectively. The two
sets of convergence results (2.16) and (2.17) are then sufficient to pass to the limit in these
weak formulations. Again, the main difficulty might be here to pass to the limit in RN |UN |2UN .
However, we note that RN converges in the set of continuous functions while UN is bounded in
L∞

loc((0,∞);L2(Td
ℓ )) and converges in L2

loc((0,∞);H1(Td
ℓ )) so that, by interpolation, it converges in

L4
loc((0,∞);L3(Td

ℓ )). At this point, (R,U) satisfies (2.4) for arbitrary Ψ ∈ D([0,∞)×Td
ℓ ) and (2.5)

for arbitrary Φ ∈ D([0,∞);
⋃

N XN ). We note then that for arbitrary Φ ∈ D([0,∞) ×Td
ℓ ), ∂tPN [Φ]
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and PN [Φ] converge to ∂tΦ in C([0,∞);L2(Td
ℓ )) and Φ in L2(0,∞;H2s+2(Td

ℓ )), respectively. This
is sufficient to extend (2.5) to arbitrary Φ ∈ D([0,∞) × Td

ℓ ).
As for energy estimate, we note that (RN , UN ) satisfies (2.12) for arbitrary N and the initial

data verifies (2.14). Since Ereg(RN , UN) is continuous with respect to topologies for which RN , UN

converge strongly, while Dreg(RN , UN ) is continuous with respect to topologies for which RN , UN

converge weakly, we obtain that (R,U) satisfies (2.8) in the limit N → ∞. This concludes the
proof of Proposition 2.4.

Remark 2.7. With arguments similar to the ones in Step 3 of the above proof, we can extend the
weak form (2.5) of the momentum equation to any test-function Φ ∈ (L2(0, T ;H2s+1(Td

ℓ ))d having
compact support and such that ∂tΦ ∈ (L2(0, T ;L2(Td

ℓ )))d.

2.2. Further properties of weak solutions to the regularized problem. Along with the
energy estimate (2.8), we only showed that we had a list of regularity properties satisfied by our
weak solutions (R,U). Nevertheless, most of these estimates rely on the regularization parameters
η1, η2, r0, r1, etc. In order to let these parameters vanish, we need other estimates on these solutions.
This is the motivation of the following lemma:

Lemma 2.8 (BD-entropy). Assume the initial data satisfies (2.7). Then there exist constants
C1, C2, C3 with dependencies mentioned in parentheses, such that, for arbitrary T > 0, the global
solution (R,U) to (1.20) constructed in Proposition 2.4 satisfies

(2.18)
sup

t∈(0,T )

E+
BD,reg(R,U)(t) +

∫ T

0

DBD,reg(R,U)(t) dt

≤ C1(Ereg|t=0, E+
BD,reg|t=0) + (δ1 + δ2)C2

(

r0, r1, η1, η2, Ereg|t=0, T
)

+ C3(r0),

where E+
BD,reg is the positive part of the BD-entropy defined by

E+
BD,reg(R,U) =

1

2τ2

∫

Td
ℓ

(

R|U + ν∇ logR|2 + ǫ2|∇
√
R|2 − 2r0(logR)1R≤1

)

+

∫

Td
ℓ

(

R|y|2 +R logR+
η1

α+ 1
R−α

)

+
η2

2τ2

∫

Td
ℓ

|∇∆sR|2,

and its associated nonnegative dissipation is given by

DBD,reg(R,U) =
τ̇

τ3

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2 + η2|∇∆sRN |2

)

+
2r0ντ̇

τ3

∫

Td
ℓ

| logR| 1R<1

+

(

δ1ν
2

τ4
+
νǫ2

τ4
+
δ1ǫ

2

2τ4

)∫

Td
ℓ

R|∇2 logR|2 +

(

4ν

τ2
+

4δ1

τ2

)∫

Td
ℓ

|∇
√
R|2

+

(

η1να

4τ2
+

4δ1η1

10τ2

)∫

Td
ℓ

|∇R− α
2 |2 +

ν

τ4

∫

Td
ℓ

R|AU |2 +
(η2ν + δ1η2)

τ4

∫

Td
ℓ

|∆s+1R|2

+
δ2

τ4

∫

Td
ℓ

|∆U |2 +
r0

τ4

∫

Td
ℓ

|U |2 +
r1

τ4

∫

Td
ℓ

R|U |4.

Remark 2.9. Below, we see the positive BD-entropy as the positive part of the complete BD-entropy:

EBD,reg(R,U) =
1

2τ2

∫

Td
ℓ

(

R|U + ν∇ logR|2 + ǫ2|∇
√
R|2 − 2r0 logR

)

+

∫

T
d
ℓ

(

R|y|2 +R logR+
η1

α+ 1
R−α

)

+
η2

2τ2

∫

T
d
ℓ

|∇∆sR|2,

and we note that we have then

E+
BD,reg = EBD,reg − E−

BD,reg, E−
BD,reg = − r0

τ2

∫

Td
ℓ

logR 1R>1.

Proof. We consider in this proof (R,U) a weak solution to (1.20) constructed in Proposition 2.4.
We have

∇R ∈ H1
loc(R+;L2(Td

ℓ )) ∩ L∞
loc(R

+;H2s−1(Td
ℓ )) ∩ L2

loc(R
+;H2s+1(Td

ℓ )),

1/R ∈ H1
loc(R

+;L2(Td
ℓ )) ∩ L∞

loc(R
+;H2s(Td

ℓ )) ∩ L2
loc(R

+;H2s+2(Td
ℓ )).
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For s sufficiently large, we obtain that Φ = (ν∇ logR)/τ2 satisfies:

Φ ∈ (L2
loc(R

+;H2s+1(Td
ℓ ))d, ∂tΦ ∈ L2

loc(R
+;L2(Td

ℓ )))d.

Hence, for arbitrary χ ∈ D(0,∞), we can take Φ = (ν∇ logR)χ/τ2 as a test function in the weak
formulation of the momentum equation (2.5). Combining with a standard regularity estimate for
(1.20a), we obtain that, in D′((0, T )), there holds:

(2.19)

d

dt

[

ν

τ2

∫

Td
ℓ

RU · ∇ logR

]

+
2ντ̇

τ3

∫

Td
ℓ

RU · ∇ logR

+
ǫ2ν

τ4

∫

Td
ℓ

R|∇2 log(R)|2 +

(

ν

τ2
− ν2τ̇

τ3

)∫

Td
ℓ

4|∇
√
R|2

+
4η1ν

α

∫

Td
ℓ

∣

∣

∣∇
√
R−α

∣

∣

∣

2

+
η2ν

τ4

∫

Td
ℓ

|∆s+1R|2

=
2dν

τ2

∫

Td
ℓ

R− r0ν

τ4

∫

Td
ℓ

U · ∇ logR− r1ν

τ4

∫

Td
ℓ

|U |2U · ∇R

− ν2

τ4

∫

Td
ℓ

RDU : ∇2 logR

− δ1ν

τ4

∫

Td
ℓ

∇U : ∇R⊗ ∇ logR− δ2ν

τ4

∫

Td
ℓ

∆U · ∇∆ logR

− δ1ν

τ4

∫

Td
ℓ

∆R

R
div(RU) +

ν

τ4

∫

Td
ℓ

R∇U : ∇⊤U.

The proof of this identity is mostly technical. More details are provided in Appendix A. On the
other hand, differentiating the continuity equation (1.20a) we obtain:

∂t(R∇ logR) +
1

τ2
div(R∇ logR ⊗ U) +

1

τ2
div(R∇⊤U) =

δ1

τ2
∆∇R.

This identity holds in L2
loc(R

+;L2(Td
ℓ )) so, we can multiply it with a truncation of ∇ logR/τ2.

This leads to the energy estimate:

(2.20)

d

dt

[

1

2τ2
R|∇ logR|2

]

+
τ̇

τ3

∫

Td
ℓ

R|∇ logR|2 +
δ1

2τ4

∫

Td
ℓ

∆R|∇ logR|2

=
1

τ4

∫

Td
ℓ

R∇U : ∇2 logR+
δ1

τ4

∫

Td
ℓ

∆∇R · ∇ logR.

In this last identity, we note that:

∫

Td
ℓ

∆∇R · ∇ logR = −
∫

Td
ℓ

∇2R : ∇2 logR = −
∫

Td
ℓ

∇(R∇ logR) : ∇ logR,

= −1

2

∫

Td
ℓ

∇R · ∇|∇ logR|2 −
∫

Td
ℓ

R|∇2 logR|2

=
1

2

∫

Td
ℓ

∆R|∇ logR|2 −
∫

Td
ℓ

R|∇2 logR|2.

Consequently, we rewrite the previous energy identity (2.20) as:

(2.21)

d

dt

[

1

2τ2
R|∇ logR|2

]

+
τ̇

τ3

∫

Td
ℓ

4|∇
√
R|2 +

δ1

τ4

∫

Td
ℓ

R|∇2 logR|2

=
1

τ4

∫

Td
ℓ

R∇U : ∇2 logR.
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At this point, we combine (2.19)+ν2(2.21), which yields

d

dt

{

1

τ2

∫

Td
ℓ

(

νRU · ∇ logR+
ν2

2
R|∇ logR|2

)

}

+
2ντ̇

τ3

∫

Td
ℓ

RU · ∇ logR

+
4ν

τ2

∫

Td
ℓ

|∇
√
R|2 +

(

δ1ν
2

τ4
+
ǫ2ν

τ4

)∫

Td
ℓ

R|∇2 logR|2

+
4η1ν

ατ2

∫

Td
ℓ

|∇R− α
2 |2 +

η2ν

τ4

∫

Td
ℓ

|∆s+1R|2

=
2dν

τ2

∫

Td
ℓ

R− r0ν

τ4

∫

Td
ℓ

U · ∇ logR − r1ν

τ4

∫

Td
ℓ

|U |2U · ∇R

− ν2

τ4

∫

Td
ℓ

RDU : ∇2 logR+
ν2

τ4

∫

Td
ℓ

R∇U · ∇2 logR

− δ1ν

τ4

∫

Td
ℓ

∇U : ∇R⊗ ∇ logR− δ2ν

τ4

∫

Td
ℓ

∆U · ∇∆ logR

− δ1ν

τ4

∫

Td
ℓ

∆R

R
div(RU) +

ν

τ4

∫

Td
ℓ

R∇U : ∇⊤U.

Introducing AU = 1
2 (∇U−∇⊤U) the skew-symmetric part of ∇U, the second line of the right-hand

side also reads

−ν2

τ4

∫

Td
ℓ

RDU : ∇2 logR+
ν2

τ4

∫

Td
ℓ

R∇U · ∇2 logR =
ν2

τ4

∫

Td
ℓ

RAU : ∇2 logR = 0,

since skew-symmetric and symmetric matrices are orthogonal for the matrix contraction. Remark
also that from the continuity equation (1.20a) we get

∂t(logR) +
1

τ2
∇ logR · U +

1

τ2
divU =

δ1

τ2

∆R

R
,

whence

−r0ν

τ4

∫

Td
ℓ

U · ∇ logR =
d

dt

[

r0ν

τ2

∫

Td
ℓ

logR

]

+
2r0ντ̇

τ3

∫

Td
ℓ

logR− r0νδ1

τ4

∫

Td
ℓ

∆R

R
.

We finally obtain the identity:

(2.22)

d

dt

{

1

τ2

∫

Td
ℓ

(

νRU · ∇ logR+
ν2

2
R|∇ logR|2 − 2r0ν logR

)

}

+
2ντ̇

τ3

∫

Td
ℓ

(RU · ∇ logR− r0 logR)

+
4ν

τ2

∫

Td
ℓ

|∇
√
R|2 +

(

δ1ν
2

τ4
+
ǫ2ν

τ4

)∫

Td
ℓ

R|∇2 logR|2

+
4η1ν

ατ2

∫

Td
ℓ

|∇R− α
2 |2 +

η2ν

τ4

∫

Td
ℓ

|∆s+1R|2

=
2dν

τ2

∫

Td
ℓ

R− r0νδ1

τ4

∫

Td
ℓ

∆R

R
− r1ν

τ4

∫

Td
ℓ

|U |2U · ∇R

− δ1ν

τ4

∫

Td
ℓ

∇U : ∇R⊗ ∇ logR− δ2ν

τ4

∫

Td
ℓ

∆U · ∇∆ logR

− δ1ν

τ4

∫

Td
ℓ

∆R

R
div(RU) +

ν

τ4

∫

Td
ℓ

R∇U : ∇⊤U.

We now integrate this identity with respect to time and combine with (2.2), observing that
∫

Td
ℓ

R|DU |2 −
∫

Td
ℓ

R∇U : ∇⊤U =

∫

Td
ℓ

R|AU |2.
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Thus, we obtain (with the notations of Remark 2.9) that, for almost all T ≥ 0,

EBD,reg(R,U)(T ) +

∫ T

0

τ̇

τ3

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2 + η2|∇∆sR|2

)

+ 2r0ν

∫ T

0

τ̇

τ3

∫

Td
ℓ

| logR| 1R<1 +

(

δ1ν
2 + νǫ2 +

δ1ǫ
2

2

)∫ T

0

1

τ4

∫

Td
ℓ

R|∇2 logR|2

+ (ν + δ1)

∫ T

0

4

τ2

∫

Td
ℓ

|∇
√
R|2 + (ν + δ1)

∫ T

0

4η1

τ2α

∫

Td
ℓ

|∇R− α
2 |2

+

∫ T

0

ν

τ4

∫

Td
ℓ

R|AU |2 +

∫ T

0

(η2ν + δ1η2)

τ4

∫

Td
ℓ

|∆s+1R|2

+

∫ T

0

δ2

τ4

∫

T
d
ℓ

|∆U |2 +

∫ T

0

r0

τ4

∫

T
d
ℓ

|U |2 +

∫ T

0

r1

τ4

∫

T
d
ℓ

R|U |4

≤ −r1ν

∫ T

0

1

τ4

∫

Td
ℓ

|U |2U · ∇R − r0νδ1

∫ T

0

1

τ4

∫

Td
ℓ

∆R

R
+ 2r0ν

∫ T

0

τ̇

τ3

∫

Td
ℓ

logR 1R≥1

− δ1ν

∫ T

0

1

τ4

∫

Td
ℓ

∇U : ∇R ⊗ ∇ logR− δ1ν

∫ T

0

1

τ4

∫

Td
ℓ

∆R

R
div(RU)

− δ2ν

∫ T

0

1

τ4

∫

Td
ℓ

∆U · ∇∆ logR+ 2d(δ1 + ν)

∫ T

0

1

τ2

∫

Td
ℓ

R+ ν

∫ T

0

τ̇

τ3

∫

Td
ℓ

R divU

+ EBD,reg(R0, U0).

We denote by I1, . . . , I8 the integrals on the right-hand side of this inequality so that we have

EBD,reg(R,U)(T ) +

∫ T

0

DBD,reg(R,U)(t) dt ≤ EBD,reg(R0, U0) +

8
∑

k=1

Ik,

and we estimate each of them separately. In the sequel, we denote by K and C constants (that
may change from line to line). The constant K depends only on the parameters of the target
system (namely ν, ε) and the initial energy Ereg(R0, U0), while the constant C may depend also on
T, the parameters ǫ, ν, r0, r1, η1, η2, and the initial energy Ereg(R0, U0). But none of them depends

on (δ1, δ2). We remark that the functions 1
τ 2 , τ̇ 2

τ 2 , 1
τ 3 and τ̇

τ 3 are integrable in time over R+, which
we shall use below.

For the term I1, integrating by parts, applying Young inequality – and referring again to (2.8)
– yields:

|I1| ≤ r1ν

∫ T

0

1

τ4

∫

Td
ℓ

R|U |2|∇U |,

≤ K

[

∫ T

0

r1

τ4

∫

Td
ℓ

R|U |4 +

∫ T

0

ν

τ4

∫

Td
ℓ

R|DU |2
]

+
1

2

∫ T

0

ν

τ4

∫

Td
ℓ

R|AU |2,

≤ 1

2

∫ T

0

ν

τ4

∫

Td
ℓ

R|AU |2 +K,

and we observe that the first term can be absorbed by the dissipation DBD,reg.
For the term I2, since α > 2 and s > 2, there holds thanks to (2.8):

|I2| ≤ r0νδ1

∫ T

0

1

τ4
‖∆R‖L2 ‖R−1‖L2 ≤ δ1K sup

(0,T )

‖∆R/τ‖L2 sup
(0,T )

‖R−α‖1/2
L1

∫ T

0

1

τ3
≤ δ1C.

For the term I3, we have:

I3 ≤ 2r0ν

∫ T

0

τ̇

τ3

∫

Td
ℓ

logR1R≥1 ≤ r0K

∫ T

0

τ̇

τ3

∫

Td
ℓ

R ≤ r0K.
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For the term I4, Hölder inequality in space and Cauchy-Schwarz inequality in time yield

|I4| = δ1ν

∣

∣

∣

∣

∣

∫ T

0

1

τ4

∫

Td
ℓ

√
RDU :

∇R⊗ ∇R
R3/2

∣

∣

∣

∣

∣

≤ δ1

√
νT

[

∫ T

0

ν

τ4

∫

Td
ℓ

R|DU |2
]

1
2

sup
(0,T )

‖∇R/τ‖2
L∞ sup

(0,T )

[

∫

Td
ℓ

1

R3

]
1
2

.

Using Sobolev embedding and (2.8), we obtain that, since s > d/2:

sup
(0,T )

‖∇R/τ‖2
L∞ ≤ K sup

(0,T )

‖∇∆sR/τ‖2
L2 ≤ C,

and then |I4| ≤ δ1C.
For the term I5, we split I5 = Ia

5 + Ib
5 where:

Ia
5 = δ1ν

∫ T

0

1

τ4

∫

Td
ℓ

∆R√
R

√
R divU, Ib

5 = 2δ1ν

∫ T

0

1

τ4

∫

Td
ℓ

√
RU · ∇

√
R∆R.

As previously, we note in these inequalities that thanks to Sobolev embeddings and (2.8), there
holds:

sup
(0,T )

‖∆R/τ‖L∞ + sup
(0,T )

‖∇R/τ‖L∞ + sup
(0,T )

∫

Td
ℓ

1

R
≤ C.

Consequently, we have the following controls

|Ia
5 | ≤ δ1

(

∫ T

0

ν

τ4

∫

Td
ℓ

R|DU |2
)

1
2
(

∫ T

0

ν

τ2

)
1
2

sup
(0,T )

‖∆R/τ‖L∞ sup
(0,T )

(

∫

Td
ℓ

1

R

)
1
2

≤ δ1C,

and

|Ib
5 | ≤ δ1

[

∫ T

0

ν

τ2

]

sup
(0,T )

‖
√
RU/τ‖L2 sup

(0,T )

‖∇
√
R/τ‖L2 sup

(0,T )

‖∆R/τ‖L∞ ≤ δ1C.

For the term I6 we have:

|I6| ≤ δ2

∫ T

0

1

2τ4

∫

Td
ℓ

|∆U |2 + δ2ν
2

∫ T

0

1

2τ4

∫

Td
ℓ

|∇∆ logR|2,

and we remark that

∇∆ logR =
∇∆R

R
− ∆R∇R

R2
− 2

∇2R∇R
R2

+ 2
|∇R|2∇R

R3
,

so that, using Sobolev embedding and (2.8) we obtain:

sup
(0,T )

‖∇∆ logR‖L2 ≤ K sup
(0,T )

(1 + ‖∇∆sR‖L2)
3

sup
(0,T )

(

1 +

∫

Td
ℓ

1

R3

)

≤ C,

which implies

|I6| ≤
∫ T

0

δ2

2τ4

∫

Td
ℓ

|∆U |2 + δ2C,

and we observe that the first term can be absorbed by the dissipation DBD,reg.
For the last two terms, we have:

I7 + I8 ≤ (2d(1 + ν) + ν)

∫ ∞

0

1 + τ̇2

τ2

∫

Td
ℓ

R+

∫ ∞

0

ν

τ4

∫

Td
ℓ

R|DU |2,

where we have used Cauchy-Schwarz and Young inequalities for I8. Then, thanks to (2.8), we get

I7 + I8 ≤ K.

Gathering the previous estimates yields

EBD,reg(R,U)(T ) +
1

2

∫ T

0

DBD,reg(R,U) dt ≤ K + r0K + (δ1 + δ2)C + E+
BD,reg(R0, U0).
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To conclude, we only need to control the negative part of the BD-entropy, which is done by

E−
BD(R,U)(T ) :=

r0

τ2(T )

∫

| logR(T )| 1R(T )≥1 ≤ Kr0

∫

Td
ℓ

R ≤ r0K.

This concludes the proof. �

3. Global weak solutions to isothermal fluids with drag forces

In this section we construct global weak solutions to the isothermal fluid system with drag forces,
that is system (1.19) with r0, r1 > 0. We consider solutions on the torus Td

ℓ by passing to the limit
in the regularizing parameters δ1, δ2, η1, η2 → 0 from solutions to the regularized system (1.20).
Let r0, r1 > 0, we define the energy and its corresponding dissipation for the system (1.19):

Edrag(R,U) =
1

2τ2

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2
)

+

∫

Td
ℓ

(

R|y|2 +R logR
)

,

Ddrag(R,U) =
τ̇

τ3

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2
)

+
ν

τ4

∫

Td
ℓ

R|DU |2 +
r0

τ4

∫

Td
ℓ

|U |2 +
r1

τ4

∫

Td
ℓ

R|U |4,

as well as the BD-entropy and its corresponding flux

E+
BD,drag(R,U) =

1

2τ2

∫

Td
ℓ

(

R|U + ν∇ logR|2 + ǫ2|∇
√
R|2 − 2r0 logR1R<1

)

+

∫

Td
ℓ

(

R|y|2 +R logR
)

,

DBD,drag(R,U) =
τ̇

τ3

∫

Td
ℓ

(

R|U |2 + ǫ2|∇
√
R|2
)

+
2r0ντ̇

τ3

∫

Td
ℓ

| logR| 1R<1

+
νǫ2

τ4

∫

Td
ℓ

R|∇2 logR|2 +
4ν

τ2

∫

Td
ℓ

|∇
√
R|2 +

ν

τ4

∫

Td
ℓ

R|AU |2

+
r0

τ4

∫

Td
ℓ

|U |2 +
r1

τ4

∫

Td
ℓ

R|U |4.

We note that these quantities correspond to what remains of the energy and entropy defined in
Section 2 when the regularizing parameters δ1, δ2 and η1, η2 are sent to 0.

It is then natural to build-up a definition of global solution to the isothermal system with drag
forces (1.19) with r0, r1 > 0 based on the only information that Edrag and E+

BD,drag are L∞(R+)

while Ddrag and DBD,drag are L1(R+). For this, it turns out that it is more suitable to interpret

the density R as the square of
√
R. Indeed, combining Edrag and E+

BD,drag yields a bound on

R|∇ log(R)|2 = 4|∇
√
R|2. Correspondingly, we write (1.19a) in terms of

√
R:

(3.1) ∂t

√
R+

1

τ2
div(

√
RU) =

1

τ2

√
R divU,

while in (1.19b) we only rewrite the Korteweg term applying the identity (see [19]):

R∇
(

∆
√
R√
R

)

= div
(√

R∇2
√
R− ∇

√
R ⊗ ∇

√
R
)

,

so that we obtain:

(3.2)
∂t(RU) +

1

τ2
div(

√
RU ⊗

√
RU) + 2yR+ ∇R+

r0

τ2
U +

r1

τ2
R|U |2U

=
ǫ2

2τ2
div
(√

R∇2
√
R − ∇

√
R⊗ ∇

√
R
)

+
ν

τ2
div(RDU) +

ντ̇

τ
∇R.

This remark motivates the following definition.

Definition 3.1. Given positive parameters r0, r1 > 0 and initial data (
√
R0, J0 = (

√
RU)0) ∈

L2(Td
ℓ ) × L2(Td

ℓ ), we call global weak solution to the isothermal system with drag forces (1.19) in
Td

ℓ any pair

(
√
R,U) ∈ C([0,∞);H1(Td

ℓ ) − w) × L2
loc(R

+;L2(Td
ℓ )),

satisfying
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i) Further regularity properties:
√
RU ∈ C([0,∞);L2(Td

ℓ ) − w), ∇2
√
R ∈ L2

loc(0,∞;L2(Td
ℓ )).

ii) Equations (3.1) and (3.2) in the sense of distributions.

iii) Initial data
√
R|t=0 =

√
R0 and

√
R(

√
RU)|t=0 =

√
R0J0.

Remark 3.2. We note that, since
√
R and

√
RU are continuous with respect to time, we may give

sense to the initial conditions required in item iii) of the above definition.

Remark 3.3. We observe the difference between the definition of weak solutions for the system
without and with drag forces. When the latter are present (r0, r1 > 0), U is well defined as a

function, ∇U as a distribution and
√
RDU is well defined. However, in the original system without

drag forces, U is not well defined and
√
RDU has to be understood as SN .

Theorem 3.4. Assume r0, r1, ν, ǫ > 0. Let (
√
R0, J0 = (

√
RU)0) be an initial data satisfying (2.7)

and such that Edrag|t=0, EBD,drag|t=0 < +∞. Then there exists a global weak solution (R,U) to the

isothermal fluid system with drag forces (1.19) in Td
ℓ , in the sense of Definition 3.1, associated to

the initial data (
√
R0, J0). Furthermore, there exist constants C1 and C2 (whose dependencies are

mentioned in parenthesis) such that this solution satisfies the energy inequality

sup
t≥0

Edrag(R,U) +

∫ ∞

0

Ddrag(R,U) dt ≤ C1(Edrag|t=0),

and also the BD-entropy inequality

sup
t≥0

EBD,drag(R,U) +

∫ ∞

0

DBD,drag(R,U) dt ≤ C2(Edrag|t=0, EBD,drag|t=0).

Proof of Theorem 3.4 . The proof consists of three parts: starting with the regularized system
(1.20), in the first one we pass to the limit in the parameters δ1, δ2 → 0, which shall give us the
existence of global weak solutions to an intermediate system given by (1.20) with δ1 = δ2 = 0;
then we pass to the limit η1, η2 → 0 to obtain a weak solution to (1.19) on the torus. In the

whole proof (
√
R0, J0 = (

√
RU)0) is a fixed initial data satisfying (2.7) and the drag parameters

(r0, r1) ∈ (0,∞)2 are fixed.

Step 1. Limits δ1, δ2 → 0. In this part, we fix η1 > 0 and η2 > 0 and we consider sequence of
parameters δ1, δ2 converging to 0. To simplify notations we shall denote δ = (δ1, δ2) and drop
the η1, η2 dependencies. We consider the sequence of global weak solutions {(Rδ, Uδ)}δ to the
regularized problem (1.20) associated to (R0, U0), as constructed in Proposition 2.4. First, we
construct limits R and U of this sequence as in Step 1 of Section 2.1.2.

We proceed with improving the sense of the convergence of {(Rδ, Uδ)}δ to these limits. For this,
we fix an arbitrary finite T > 0. Thanks to the energy and BD-entropy inequalities, this sequence
verifies uniform estimates in the following spaces:

(3.3)

Rδ(1 + |y|2 + | logRδ|) in L∞(0, T ;L1(Td
ℓ )), ∇

√

Rδ in L∞(0, T ;L2(Td
ℓ )),

√
η2Rδ in L∞(0, T ;H2s+1(Td

ℓ )),
√

RδUδ in L∞(0, T ;L2(Td
ℓ )),

√
ν
√

Rδ∇Uδ in L2(0, T ;L2(Td
ℓ )).

Recalling (2.9), this entails that {Rδ}δ is bounded in L∞(0, T ;H1(Td
ℓ )). Writing the weak form

(2.4) with a test function Ψ ∈ D((0, T ) × Td
ℓ ), we obtain that:

∂tRδ = −
√

Rδ

√

Rδ div(Uδ) − 2
√

RδUδ · ∇
√

Rδ +
δ1

τ2
∆R in D′((0, T ) × T

d
ℓ ).

This implies that {∂tRδ}δ is also bounded in L2(0, T ;L1(Td
ℓ )). Applying again Ascoli-Arzelà argu-

ments yields Rδ → R in C([0, T ];H2s(Td
ℓ )) and, moreover, with the uniform bound from below on

Rδ in (2.9), we get

R−1
δ → R−1 in C([0, T ] × T

d
ℓ ).
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On the other hand, we note that the above bound (3.3) also entails that {RδUδ}δ is bounded in
L2(0, T ;H1(Td

ℓ )). Taking then Φ ∈ D((0, T ) × Td
ℓ ) in (2.5), and recalling (1.12) which is satisfied

by Rδ > 0, we obtain (in D′((0, T ) × T
d
ℓ )):

∂t(RδUδ) = − 1

τ2
div(

√

RδUδ ⊗
√
RδUδ) − 2yRδ − ∇Rδ + η1∇R−α

δ

− r0

τ2
Uδ − r1

τ2
Rδ|Uδ|2Uδ − δ1

τ2
(∇Rδ · ∇)Uδ

+
ǫ2

2τ2

(

√

Rδ∇2
√

Rδ − ∇
√

Rδ ⊗ ∇
√

Rδ

)

+
ν

τ2
div(RδDUδ)

+
ντ̇

τ
∇Rδ +

δ2

τ2
∆2Uδ +

η2

τ2
Rδ∇∆2s+1Rδ.

Consequently, combining the uniform bounds in (3.3) with the uniform bounds in the following
spaces (again due to the energy and BD-entropy inequalities):

(3.4)

√
r0 Uδ in L2(0, T ;L2(Td

ℓ ),
√
r1 R

1
4

δ Uδ in L4(0, T ;L4(Td
ℓ )),

√

δ2 ∆Uδ in L2(0, T ;L2(Td
ℓ ), Rδ in L2(0, T ;H2s+2(Td

ℓ )),

η
1
α

1 R−1
δ in L∞(0, T ;Lα(Td

ℓ )),
√
νǫ2 ∇2

√

Rδ in L2(0, T ;L2(Td
ℓ )),

we conclude that {∂t(RδUδ)}δ is bounded in L2(0, T ;H−(2s+1)(Td
ℓ )). This entails that RδUδ → RU

in L2(0, T ;L2(Td
ℓ )).

Thanks to the previous estimates and Aubin-Lions/Ascoli-Arzelà arguments, we obtain the
following convergences:

(3.5)

Rδ → R in L2(0, T ;H2s+2(Td
ℓ ) − w) and C([0, T ];H2s(Td

ℓ )),

RδUδ → RU in L2(0, T ;Lp(Td
ℓ )) , ∀ p < 6

Uδ → U in L2(0, T ;L2(Td
ℓ ))

√

RδUδ →
√
RU in Lp(0, T ;L2(Td

ℓ )) (∀ p < ∞) and C([0, T ];L2(Td
ℓ ) − w),

R
1
4

δ Uδ → R
1
4U in Lp(0, T ;Lp(Td

ℓ )), ∀ p < 4.

The above list of convergences shows that we can pass to the limit in the initial condition. It also
readily implies that:

(3.6)

(3.7)

(3.8)

RδUδ ⊗ Uδ → RU ⊗ U in L1(0, T ;L1(Td
ℓ )),

Rδ|Uδ|2Uδ → R|U |2U in L1(0, T ;L1(Td
ℓ )),

√

RδUδ →
√
RU in L2(0, T ;L2(Td

ℓ )).

We can now pass to the limit in the equations (2.4)-(2.5) when δ → 0, by remarking that, using
the above estimates, we have

δ1

∫ T

0

∫

1

τ2
Rδ∆Ψ → 0, δ1

∫ T

0

∫

1

τ2
∇Uδ : ∇Rδ ⊗ Φ → 0, δ2

∫ T

0

∫

1

τ2
∆Uδ∆Φ → 0,

where Ψ and Φ are smooth test functions with compact support in (0, T ) × Td
ℓ . We have hence

constructed (R,U) which is a global weak solution to the intermediate system corresponding to
(1.20) with δ1 = δ2 = 0, and, passing to the limit δ → 0 in the energy (2.8) and BD-entropy (2.18)
inequalities, the solution (R,U) satisfies moreover the energy inequality (2.8) with δ1 = δ2 = 0 as
well as the BD-entropy inequality (2.18) with δ1 = δ2 = 0.

Before going further, we remark that the continuity equation (1.20a) holds almost everywhere.

Since R > 0 on any compact interval of time, this entails that
√
R satisfies (3.1) in D′((0,∞)×T

d
ℓ ).

Step 2. Limits η1, η2 → 0. With similar conventions as in the previous step, we introduce now
η = (η1, η2) and we consider {(Rη, Uη)}η the sequence of global weak solutions associated with
initial data (

√
R0, J0) constructed in the Step 1. Thanks to the energy and BD-entropy inequalities,
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we obtain again the following uniform bounds:

(3.9)
Rη(1 + |y|2 + | logRη|) in L∞(0, T ;L1(Td

ℓ )), ∇
√

Rη in L∞(0, T ;L2(Td
ℓ )),

√

RηUη in L∞(0, T ;L2(Td
ℓ )),

√

Rη∇Uη in L2(0, T ;L2(Td
ℓ )).

Introducing this bound in (3.1) – so that we prove ∂t

√

Rη is bounded in L2(0, T ;H−1(Td
ℓ )) – and

remarking that
√

Rη is bounded in L∞(0, T ;H1(Td
ℓ )), Aubin-Lions argument entails that

√

Rη →
√
R in C([0, T ];L2(Td

ℓ )) and L2(0, T ;L2(Td
ℓ )).

Furthermore, thanks to the energy and BD-entropy inequalities, we have the uniform bounds:

(3.10)

√
r0 Uη in L2(0, T ;L2(Td

ℓ )),

√
r1 R

1
4
η Uη in L4(0, T ;L4(Td

ℓ )), r0 log

(

1

Rη

)

+

in L∞(0, T ;L1(Td
ℓ )),

ǫ∇2
√

Rη in L2(0, T ;L2(Td
ℓ )),

√
ǫ∇R

1
4
η in L4(0, T ;L4(Td

ℓ )).

From these bounds, and arguing similarly as in Step 1, we get the convergences

(3.11)

Uη → U in L2(0, T ;L2(Td
ℓ )) − w,

√

RηUη →
√
RU in C([0, T ];L2(Td

ℓ ) − w),

R
1
4
η Uη → R

1
4U in L4(0, T ;L4(Td

ℓ )) − w,

RηUη → RU in L2(0, T ;L2(Td
ℓ )).

Furthermore, we remark that we have

Rη|Uη|2Uη → R|U |2U a.e.

so that we can apply the uniform bound on {R1/4
η Uη}η to reproduce the arguments of [23, Lemma

2.3] to yield:

RηUη ⊗ Uη → RU ⊗ U in L1(0, T ;L1(Td
ℓ )).

With these convergences at-hand, we can already pass to the limit in the weak formulation of the
continuity equation (2.4). For the weak formulation (2.5), we only need to prove the convergence
to zero of the cold pressure term η1∇R−α

η and the regularization term η2

τ 2Rη∇∆2s+1Rη, since the
other terms can be treated with the above convergences.

We recall that we have the estimates

(3.12)

√
η2 Rη ∈ L∞(0, T ;H2s+1(Td

ℓ )),
√
η2 ∆s+1Rη ∈ L2(0, T ;L2(Td

ℓ )),

η
1
α

1 R−1
η ∈ L∞(0, T ;Lα(Td

ℓ )),
√
η1 ∇R− α

2
η ∈ L2(0, T ;L2(Td

ℓ )).

On the one hand, from (3.12) and Fatou’s lemma we obtain
∫

log

(

1

R

)

+

dy =

∫

lim inf
η→0

log

(

1

Rη

)

+

dy < +∞,

which implies that meas({y ∈ Td
ℓ | R(t, y) = 0}) = 0 for a.e. t ∈ (0, T ). Since we already know that

Rη → R a.e. in (t, y), we deduce

η1R
−α
η → 0 a.e. in (t, y) when η1 → 0.

We now claim that the uniform estimate η1R
−α
η ∈ L

5
3 ((0, T ) × Td

ℓ ) holds, from which we deduce
the convergence

η1R
−α
η → 0 in L1(0, T ;L1(Td

ℓ )) when η1 → 0.

Let us prove this claim: since
√
η1 ∇R− α

2
η ∈ L2(0, T ;L2(Td

ℓ )) and
√
η1 R

− α
2

η ∈ L∞(0, T ;L2(Td
ℓ )),

we get
√
η1 R

− α
2

η ∈ L2(0, T ;H1(Td
ℓ )) →֒ L2(0, T ;L6(Td

ℓ )), whence η1R
−α
η ∈ L1(0, T ;L3(Td

ℓ )). We
finally obtain the claim by using the interpolation inequality

‖f‖
L

5
3 ((0,T )×Td

ℓ
)

≤ ‖f‖
2
5

L∞(0,T ;L1(Td
ℓ

))
‖f‖

3
5

L1(0,T ;L3(Td
ℓ

))
.
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On the other hand, we now want to show that, for any test function Φ ∈ D([0, T ) × Td
ℓ )d,

(3.13) η2

∫ T

0

∫

1

τ2
∆s+1Rη∆s [∇Rη · Φ +Rη div Φ] → 0 as η2 → 0,

and we only concentrate in the sequel on the most difficult term, that is corresponding to the
∆s(∇Rη) · Φ term, the other ones being treated similarly. Recall that Rη ∈ L∞(0, T ;L1 ∩L3(Td

ℓ ))
uniformly in η thanks to (3.9), and also the interpolation inequality

‖f‖Ḣ2s+1(Td
ℓ

) . ‖f‖
2s+1
2s+2

Ḣ2s+2(Td
ℓ

)
‖f‖

1
2s+2

L2(Td
ℓ

)
.

Therefore, denoting 0 < a = 2s+1
2s+2 < 1, we have

∣

∣

∣

∣

∣

η2

∫ T

0

∫

1

τ2
∆s+1Rη∆s(∇Rη) · Φ

∣

∣

∣

∣

∣

≤ CΦ η2‖∇2s+2Rη‖L2(0,T ;L2(Td
ℓ

)) ‖∇2s+1Rη‖L2(0,T ;L2(Td
ℓ

))

≤ CΦ η
1
2 − a

2
2

(√
η2‖∇2s+2Rη‖L2(0,T ;L2(Td

ℓ
))

)1+ 2s+1
(2s+2) ‖∇2s+1Rη‖

1
2s+2

L2(0,T ;L2(Td
ℓ

))
→ 0 as η2 → 0.

This ends the proof that (
√
R,U) satisfies (3.2). �

At this stage we have constructed a global weak solution (
√
R,U) to the isothermal fluid system

(1.19) with drag forces (r0, r1 > 0) on the torus Td
ℓ , in the sense of Definition 3.1, for smooth initial

data satisfying (2.7). Furthermore this solution verifies the energy and BD-entropy inequalities of
the statement of the theorem, which are obtained straightforwardly in the limit η → 0 from the
associated inequalities for (Rη, Uη).

4. Global weak solutions in the whole space R
d

The next steps consist in passing to the limit r0, r1 → 0, ℓ → ∞, and possibly ǫ → 0. To do so,
we adapt the approach of [19], based on a suitable notion of renormalized solution. We emphasize
the main steps of the proof and the technical modifications, and refer to [19] for other details.

4.1. Outline of the proof. The method introduced in [19] is based on the introduction of a new
family of solutions to the Navier-Stokes system: the renormalized weak solutions. In our framework
these solutions are defined as follows:

Definition 4.1 (Renormalized weak solution). Let Ω = Td
ℓ or Ω = Rd. Let r0, r1 ≥ 0, ǫ ≥ 0 and

ν > 0. Let (
√
R0, J0 = (

√
RU)0) ∈ H1 ∩ F(H1)(Ω) × L2(Ω) verify

√

R0 ≥ 0 a.e. on Ω, (
√
RU)0 = 0 a.e. on {

√

R0 = 0}.

We say that (R,U) is a global renormalized weak solution to (1.19) in Ω, and associated to the

initial data (
√
R0, J0), if there exists a collection (

√
R,

√
RU,SK ,TN ) satisfying

i) The following regularities:

(〈y〉 + |U |)
√
R ∈ L∞

loc

(

0,∞;L2(Ω)
)

, ∇
√
R ∈ L∞

loc

(

0,∞;L2(Ω)
)

,

ǫ∇2
√
R ∈ L2

loc(0,∞;L2(Ω)), TN ∈ L2
loc(0,∞;L2(Ω)),

√
ǫ∇R1/4 ∈ L4

loc(0,∞;L4(Ω)), r
1/4
1 R1/4U ∈ L4

loc(0,∞;L4(Ω),

r
1/2
0 U ∈ L2

loc(0,∞;L2(Ω)), r0 logR ∈ L∞
loc(0,∞;L1(Ω)),

with the compatibility conditions
√
R ≥ 0 a.e. on (0,∞) × Ω,

√
RU = 0 a.e. on {

√
R = 0}.

ii) For any function ϕ ∈ W 2,∞(Rd), there exist two measures fϕ, gϕ ∈ M((0,∞) × Ω) with

‖fϕ‖M((0,∞)×Ω) + ‖gϕ‖M((0,∞)×Ω) ≤ C‖∇2ϕ‖L∞(Rd),
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where the constant C depends only on the solution (
√
R,

√
RU), such that in D′((0,∞) ×

Rd),

(4.1a)

(4.1b)















































∂t

√
R +

1

τ2
div(

√
RU) =

1

2τ2
Trace(TN ),

∂t(Rϕ(U)) +
1

τ2
div(Rϕ(U) ⊗ U)

+ 2yRϕ′(U) + ϕ′(U)∇R +
r0

τ2
Uϕ′(U) +

r1

τ2
R|U |2Uϕ′(U)

= div

(

ν

τ2

√
Rϕ′(U)SN +

ǫ2

2τ2
ϕ′(U)SK

)

+
ντ̇

τ
ϕ′(U)∇R+ fϕ,

with SN the symmetric part of TN and the compatibility conditions:
√
Rϕ′

i(U)[TN ]jk = ∂j(Rϕ′
i(U)Uk) − 2

√
RUk∂j

√
R+ gϕ , ∀i, j, k ∈ {1, · · · , d},

SK =
√
R∇2

√
R− ∇

√
R⊗ ∇

√
R .

iii) For any ψ ∈ C∞(Ω),

lim
t→0

∫

Ω

√
R(t, y)ψ(y) dy =

∫

Ω

√

R0(y)ψ(y) dy,

lim
t→0

∫

Ω

√
R(t, y)(

√
RU)(t, y)ψ(y) dy =

∫

Ω

J0(y)ψ(y) dy.

Recall the definition of global weak solutions for (1.19) on the torus in Definition 3.1 for the
case r0, r1 > 0, or in Definition 1.1 for solutions in R

d with r0 = r1 = 0. The main interest of
the notion of renormalized solutions lies in the fact that it is easier to construct solutions to (4.1).
More precisely, it is easier to prove the weak stability of renormalized solutions, and to prove the
following properties:

• For r0, r1 ≥ 0, any renormalized weak solution is also a weak solution,
• In the case r0, r1, ǫ > 0, the two notions are equivalent: any weak solution is a renormalized

solution.

The proof of existence of weak solution to the quantum Navier Stokes system then reduces to
three steps:

• Proving that the weak solutions with drag forces that we constructed previously are indeed
renormalized solutions.

• Proving compactness of renormalized solutions in terms of the parameters r0, r1, ǫ and ℓ.
• Proving that renormalized solutions in the whole space provide weak solutions in Rd.

4.2. Proof of the main theorem. Consider initial data (
√
R0, J0 = (

√
RU)0) ∈ H1∩F(H1)(Rd)×

L2(Rd) as in the assumption of Theorem 1.3. We first construct a sequence of initial data
√

R0,ℓ, J0,ℓ ∈ H1(Td
ℓ ) × L2(Td

ℓ ), ∀ ℓ ∈ N
∗,

which enter the framework of Theorem 3.4. This shall yield an associated sequence {(
√
Rℓ, Uℓ)}ℓ∈N∗

of weak solutions to the isothermal system (1.19) with drag forces (r0, r1 > 0) on the torus Td
ℓ . We

design our sequence of truncated initial data so that, for well-chosen drag parameters, the energy
and BD-entropy estimates of Theorem 3.4 yield uniform bounds for these solutions.

So, we consider a plateau function χ ∈ C∞
c (Rd) and smoothing kernel ζ ∈ C∞

c (Rd) such that

1|y|≤1/2 ≤ χ ≤ 1|y|<1,

supp(ζ) ⊂ B(0, 1),

∫

Rd

ζ(y)dy = 1,

and, for ℓ, ι > 0, we set

χℓ(y) = χ
(y

ℓ

)

, ζι(y) =
1

ιd
ζ
(y

ι

)

.

Given ℓ ∈ N∗, ι > 0 and θ > 0 we define now S0
ℓ,θ,ι and J0,ℓ as

S0
ℓ,θ,ι(y) =

(

√

R0(y)χℓ(y) + θ
)

∗ ζι, J0,ℓ(y) = J0(y), for y ∈ [−ℓ, ℓ]d.
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Since χℓ is zero on the boundary of the box, the above formula for S0
ℓ,θ,ι defines an initial data

that is smooth, strictly positive, and periodic. The above candidate (S0
ℓ,θ,ι, J0,ℓ) satisfies then the

assumptions of Theorem 3.4 whichever the value of θ, ι > 0. The main property of this construction
is the following proposition.

Proposition 4.2. There exist sequences (θℓ)ℓ∈N∗ and (ιℓ)ℓ∈N∗ such that, denoting
√

R0,ℓ := S0
ℓ,θℓ,ιℓ

, ∀ ℓ ∈ N
∗,

we have:

lim sup
ℓ→∞

∫

Td
ℓ

R0,ℓ(x)dx ≤
∫

Rd

R0,

lim sup
ℓ→∞

∫

Td
ℓ

|∇
√
R0,ℓ|2 ≤

∫

Rd

|∇
√
R0|2,

lim sup
ℓ→∞

∫

Td
ℓ

R0,ℓ|y|2 ≤
∫

Rd

R0|y|2.

Proof. We note that

S0
ℓ,θ,ι −→

θ→0

(

√

R0χℓ

)

∗ ζι =: S0
ℓ,ι in C1(Td

ℓ ).

Since all the integrals involved in our proposition are continuous in S0
ℓ,θ,ι for the C1-topology, we

may only prove the claimed inequalities by replacing S0
ℓ,θ,ι with S0

ℓ,ι.

Standard arguments with the convolution – combined with explicit computations of the trunca-
tion – entail that, for arbitrary ι > 0:

lim sup
ℓ→∞

∫

Td
ℓ

|S0
ℓ,ι|2dx 6

∫

Rd

R0

lim sup
ℓ→∞

∫

Td
ℓ

|∇S0
ℓ,ι|2 6

∫

Rd

|∇
√

R0|2.

Then, by a convexity argument and duality formulas for the convolution, we obtain that
∫

Td
ℓ

S0
ℓ,ι|y|2 =

∫

Td
ℓ

|[
√

R0χℓ] ∗ ζι|2|y|2 ≤
∫

Td
ℓ

[|
√

R0χℓ|2 ∗ ζι]|y|2

≤
∫

Td
ℓ

|
√

R0χℓ|2((1 + ι)|y|2 + Cι),

for an absolute constant C. Consequently, we obtain again that, for arbitrary ι > 0,

lim sup
ℓ→∞

∫

Td
ℓ

|S0
ℓ,ι|2|y|2 ≤

∫

Rd

R0(1 + ι)|y|2 + Cι2
∫

Rd

R0.

It thus suffices to consider a sequence ιℓ → 0. �

Note that applying Lemma 1.2 to

1[−ℓ,ℓ]d

√

R0,ℓ,

viewed as a function on Rd, we infer from the above proposition that
∫

Td
ℓ

R0,ℓ |logR0,ℓ| is bounded

uniformly in ℓ.
In what follows, we consider that (

√

R0,ℓ, J0,ℓ)ℓ∈N∗ is the sequence of initial data constructed in
the previous proposition. Invoking Theorem 3.4 with these data for arbitrary ℓ ∈ N∗, we obtain a
sequence (

√
Rℓ, Uℓ)ℓ∈N∗ such that for arbitrary ℓ ∈ N∗, the pair (

√
Rℓ, Uℓ) is a global weak solution

to (1.19) on the torus Td
ℓ . We denote also

r0,ℓ :=
1

ℓ+

(

∫

Td
ℓ

log(R0,ℓ)1R0,ℓ<1

)2 , r1,ℓ :=
1

ℓ
, ǫℓ = ǫ+

1

ℓ
,

and of course, these values affect the above mentioned sequence of solutions (
√
Rℓ, Uℓ)ℓ. These

choices ensure that the associated sequence of initial energies Edrag (resp. entropies EBD,drag)
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converge to the energy E (resp. entropy EBD) of (
√
R0, J0). As a matter of fact, the somehow

intricate choice for r0,ℓ is motivated by this property, to obtain

r0,ℓ

∫

Td
ℓ

log(R0,ℓ)1R0,ℓ<1 −→
ℓ→∞

0.

4.2.1. Weak solutions with drag forces are renormalized solutions. Given ℓ ∈ N∗, we first obtain
that the weak solution we constructed in the previous step is a renormalized solution as stated in
Definition 4.1. To start with, we note that, in the case with drag and when Ω is a torus, item i) in
Definition 4.1 gathers all the regularity properties inherited from the energy and entropy estimates
in Theorem 3.4. The only point that deserves more details is the construction of the tensor TN,ℓ.
We set:

TN,ℓ =
√

Rℓ∇Uℓ.

This tensor is well defined (at least in D′((0,∞)×Td
ℓ )) since, thanks to the energy/entropy estimates,

we have Uℓ ∈ L2
loc((0,∞) × T

d
ℓ ) and

√
Rℓ ∈ L2

loc((0,∞);H1(Td
ℓ )). Furthermore, we control the

symmetric part (resp. the skew-symmetric part) of TN,ℓ with the energy dissipation (resp. the
BD-entropy dissipation) so that we obtain the expected L2

loc((0,∞);L2(Td
ℓ )) regularity.

We proceed with item ii) of the definition, the last one being an obvious corollary to the time
regularity of (

√
Rℓ, Uℓ) as stated in Definition 3.1. By definition, the pair (

√
Rℓ,

√
RℓUℓ) solves the

continuity equation (4.1a), identifying the right-hand side of (3.1) as div TN,ℓ. The compatibility
conditions for the tensor SK,ℓ can be seen as a definition.

The main point of the construction is to obtain the momentum equation in terms of renormalized
solution (4.1b). We give here only the main ideas of the computation and refer the reader to [19,
Section 3] for more details. In order to multiply the equation with ϕ′(Uℓ), the first step is to
regularize the momentum equation by truncating large and small values of

√
Rℓ in order to take

advantage of the good integrability properties of R
1/4
ℓ Uℓ. To this end, we first remark that the

continuity equation reads:

∂t

√

Rℓ +
2

τ2
R

1/4
ℓ Uℓ · ∇R1/4

ℓ +
1

2τ2

√

Rℓ divUℓ = 0.

Applying the bounds on ∇R1/4
ℓ stemming from (1.13) we obtain ∂t

√
Rℓ ∈ L2

loc((0,∞) ×Td
ℓ ). More-

over, we also know that ∇
√
Rℓ ∈ L∞

loc((0,∞);L2(Td
ℓ )). Consequently, for arbitrary φ ∈ C1

c (0,∞),

φ(Rℓ) = φ(
√
Rℓ

2
) enjoys the same time and space integrability. On the other hand, we remark

that the momentum equation satisfied by RℓUℓ reads:

∂t(RℓUℓ) +
1

τ2
div(RℓUℓ ⊗ Uℓ) = div(

√

RℓSℓ) − Fℓ,

where

Sℓ =
ν

τ2

√

RℓD(Uℓ) +
ǫℓ

2τ2
(∇2

√

Rℓ − 4∇R1/4
ℓ ⊗ ∇R1/4

ℓ ) +

(

ντ̇

τ
− 1

)√
RℓId,

Fℓ =
r0,ℓ

τ2
U +

r1,ℓ

τ2
Rℓ|Uℓ|2Uℓ + 2yRℓ.

Here we denoted by Id the identity matrix. Since
√
Rℓ ∈ L2

loc((0,∞);H2(Td
ℓ )) ⊂ L2

loc((0,∞);L∞(Td
ℓ ))

(d ≤ 3), we have Fℓ ∈ L
4/3
loc ((0,∞) × Td

ℓ ) and
√
RℓSℓ ∈ L1

loc((0,∞) × Td
ℓ ). On the left-hand side of

the equation, we have:

RℓUℓ =
√
Rℓ(
√

RℓUℓ) ∈ L2
loc((0,∞) × T

d
ℓ ) ,

RℓUℓ ⊗ Uℓ =
√
RℓR

1/4
ℓ Uℓ ⊗R

1/4
ℓ Uℓ ∈ L1

loc((0,∞);L2(Td
ℓ )).

We thus have sufficient regularity to multiply the momentum equation with φ(Rℓ). We obtain:

∂t(φ(Rℓ)RℓUℓ) +
1

τ2
div(RℓUℓ ⊗ φ(Rℓ)Uℓ)

= div(φ(Rℓ)
√

RℓSℓ) + φ(Rℓ)Fℓ −
√

RℓSℓ · ∇φ(Rℓ) + (∂tφ(Rℓ) + Uℓ · ∇φ(Rℓ))RℓUℓ.

At this point, we remark that we may also multiply the continuity equation (4.1a) with a suitable

function of
√
Rℓ in order to replace it with

∂tφ(Rℓ) + Uℓ · ∇φ(Rℓ) = − 1

τ2
φ′(Rℓ)

√

RℓTraceTN,ℓ.
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Introducing Vℓ = φ(Rℓ)Uℓ, we have finally,

∂t(RℓVℓ) +
1

τ2
div(RℓUℓ ⊗ Vℓ)

= div(φ(Rℓ)
√

RℓSℓ) + φ(Rℓ)Fℓ −
√

RℓSℓ · ∇φ(Rℓ) − 1

τ2
RℓUℓφ

′(Rℓ)
√

RℓTraceTN,ℓ.

Since φ truncates the small and large values of Rℓ we may rewrite

Vℓ = R
1/4
ℓ Uℓ

φ(Rℓ)

R
1/4
ℓ

∈ L4
loc((0,∞) × T

d
ℓ ).

We are then in position to multiply the i-th equation of the momentum equation by ϕ′(Vℓ). With
the help of Friedrich’s lemma we obtain, on the left-hand side

(

∂t(RℓVℓ) +
1

τ2
div(RℓUℓ ⊗ Vℓ)

)

· ϕ′(Vℓ) = ∂t(φ(Rℓ)Rℓϕ(Vℓ)) +
1

τ2
div(RℓUℓ ⊗ ϕ(Vℓ))),

and, on the right-hand side:
(

div(φ(Rℓ)
√

RℓSℓ) + φ(Rℓ)Fℓ −
√

RℓSℓ · ∇φ(Rℓ) − 1

τ2
RℓUℓφ

′(Rℓ)
√

RℓTraceTN,ℓ

)

· ϕ′(Vℓ)

= div(φ(Rℓ)
√

RℓSℓ · ϕ′(Vℓ)) + φ(Rℓ)ϕ
′(Vℓ) · Fℓ − [Sℓ · ∇φ(Rℓ)] · ϕ′(Vℓ)

− 1

τ2
φ′(Rℓ)

√

RℓRℓUℓ · ϕ′(Vℓ)TraceTN,ℓ − φ(Rℓ)
√

RℓSℓ : ϕ′′(Vℓ)∇Vℓ.

To obtain (4.1b), it remains to approximate the constant 1 with a suitable sequence of functions
(φm)m∈N. This construction is performed in [19] and [23]. We emphasize that, in this case with
drag forces:

fϕ = ϕ′′(Uℓ)Sℓ :
√

Rℓ∇Uℓ ∈ L1
loc((0,∞) × T

d
ℓ ),

‖fϕ‖L1
loc

((0,∞)×Td
ℓ

) ≤ ‖ϕ′′‖L∞([0,∞))

(

Edrag(R0
ℓ , U

0
ℓ ) + EBD,drag(R0

ℓ , U
0
ℓ )
)

.

Finally, the compatibility condition concerning TN,ℓ is obtained by noting that for arbitrary ϕ ∈
W 2,∞(Rd) and j, k ∈ {1, . . . , d}, we have:

ϕ′(Uℓ)Rℓ∂jUℓ,k = ∂j(Rℓϕ
′(Uℓ)Uℓ,k) − 2

√

RℓUℓ,kϕ
′(Uℓ)∂j

√

Rℓ −RℓUℓ,kϕ
′′(Uℓ)∂jUℓ,

which is obtained standardly by first regularizing
√
Rℓ and Uℓ. So, we have:

√

Rℓϕ
′(Uℓ)TN,ℓ,j,k = ∂j(RℓUℓϕ

′(Uℓ)Uℓ,k) − 2
√

RℓUℓ,∂j

√

Rℓ + gj,k,ϕ,

with gj,k,ϕ ∈ L2
loc((0,∞);L1(Td

ℓ )) satisfying

‖gj,k,ϕ‖L1
loc

((0,∞)×Td
ℓ

) ≤ ‖ϕ′′‖L∞([0,∞))

(

Edrag(R0
ℓ , U

0
ℓ ) + EBD,drag(R0

ℓ , U
0
ℓ )
)

.

4.2.2. Compactness of renormalized solutions and conclusion. We are now able to prove our main
result Theorem 1.3. Since, in any case (i.e. with or without drag) renormalized solutions to (1.5)
are weak solutions as defined in Definition 1.1 (see [19, Section 4]), we only show that, when we
let the parameter ℓ → ∞, we can extract a subsequence from (

√
Rℓ,

√
RℓUℓ)ℓ∈N∗ that converges to

a renormalized solution to (1.5) on the whole space Rd.
First, thanks to the energy and entropy estimates on the one hand, and the choice of initial data

on the other hand, the sequences {(
√
Rℓ,

√
RℓUℓ,TN,ℓ)}ℓ are uniformly bounded in the following

spaces, respectively:
√

Rℓ in L∞
loc(0,∞;H1

loc(R
d)),

√
RℓUℓ in L∞

loc(0,∞;L2
loc(R

d)),

TN,ℓ in L2
loc(0,∞;L2

loc(R
d)).

Furthermore, by the choice of our initial data, we have:

lim sup
ℓ→∞

(

‖
√
Rℓ‖L∞

loc
(0,∞;H1(Td

ℓ
)) + ‖

√
RℓUℓ‖L∞

loc
(0,∞;L2(Td

ℓ
)) + ‖TN,ℓ‖L2

loc
(0,∞;L2(Td

ℓ
))

)

≤ C(
√

R0, J0).
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Consequently, by a standard Cantor extraction argument, we can construct
√
R in L∞

loc(0,∞;H1(Rd)),
√
RU in L∞

loc(0,∞;L2(Rd)),

TN in L2
loc(0,∞;L2(Rd)),

so that, without relabelling the subsequences:
√

Rℓ ⇀
√
R in L∞

loc(0,∞;H1
loc(R

d)) − w∗,
√
RℓUℓ ⇀

√
RU in L∞

loc(0,∞;L2
loc(R

d)) − w∗,
TN,ℓ ⇀ TN in L2

loc(0,∞;L2
loc(R

d)) − w.

In addition, we have also momentum and (if ǫ > 0) second order bounds for
√
Rℓ uniformly in ℓ

so that
√
R enjoys the further estimates:

ǫ∇2
√
R ∈ L2

loc(0,∞;L2(Rd))
√
ǫ∇R1/4 ∈ L4

loc(0,∞;L4(Rd)) 〈y〉
√
R ∈ L∞

loc(0,∞, L2(Rd)).

We have now a candidate satisfying item i) of the definition of renormalized solutions without
drag forces on the torus. Furthermore, we can pass to the weak limit in the energy and entropy
estimates on the torus so that these solutions satisfy (1.17) and (1.18).

We note that the above weak convergences of
√
Rℓ,

√
RℓUℓ and TN,ℓ are sufficient to pass to

the limit in the continuity equation (4.1a). Reproducing the arguments for the limits η1, η2 → 0
in the previous section (see also the proof of Lemma 5.1 in [19]), we obtain that

√
Rℓ →

√
R in C([0,∞);L2

loc(R
d)).

We note that, since we control the second momentum of
√
Rℓ, the convergence actually holds in

C([0, T ];L2(Rd)). When ǫ > 0, by interpolation, we have also that
√
Rℓ →

√
R in L4

loc((0,∞);H1
loc(R

d)).

We can then combine the strong convergence of
√
Rℓ and the weak convergence of ∇2

√
Rℓ to pass

to the limit in the compatibility condition for SK .
It remains to pass to the limit in the renormalized momentum equation and the compatibility

condition for TN . For this, we can again reproduce the arguments of [19] with the only integrability
of

√
Rℓ. We obtain that RℓUℓ → RU in L2

loc((0,∞);Lp
loc(R

d)) for arbitrary p < 3/2. Introducing
U = RU/R1R>0, we conclude that Rℓ → R and Uℓ → U a.e., and consequently that Rα

ℓ φ(Uℓ) →
Rαφ(U) in Lp

loc((0,∞) × Rd) for any bounded φ : Rd → Rd, α < 6 and p < 6/α. Given ϕ ∈
W 2,∞(Rd), we remark that the remainder fℓ,ϕ is a bounded sequence of measures, so that we can
extract a weakly converging sequence. The above convergences are then sufficient to pass to the
limit in the renormalized momentum equations with ϕ satisfied by (

√
Rℓ, Uℓ) and obtain (4.1b).

We proceed similarly to pass to the limit in the renormalized compatibility condition for TN,ℓ and
obtain the renormalized compatibility condition for TN . This ends the proof.

5. Global weak solutions to isothermal Korteweg equation

In this section, we explain how to prove Proposition 1.7. The idea is the same as in [2, Propo-
sition 15] in the barotropic case, and we present the specificities of the isothermal case.

Formally, Proposition 1.7 stems from Madelung transform: consider the solution ψ ∈ L∞
loc(R;H1(Rd))

to the logarithmic Schrödinger equation

(5.1) iǫ∂tψ +
ǫ2

2
∆ψ = ψ log |ψ|2; ψ|t=0 = ψ0.

Then (̺, j) =
(

|ψ|2, ǫ Im(ψ̄∇ψ)
)

is a natural candidate for the conclusions of Proposition 1.7.
Indeed, we compute

∂t̺ = 2 Re ψ̄∂tψ = −ǫ Im
(

ψ̄∆ψ
)

= − div
(

ǫ Im
(

ψ̄∇ψ
))

,

and, in view of the identity

∂t∇ψ =
iǫ

2
∆∇ψ − i

ǫ
∇
(

ψ log |ψ|2
)

,
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∂tj = ǫ Im

(

∇ψ
(

− iǫ

2
∆ψ̄ +

i

ǫ
ψ̄ log |ψ|2

))

+ ǫ Im

(

ψ̄

(

iǫ

2
∆∇ψ̄ − i

ǫ
∇
(

ψ log |ψ|2
)

))

=
ǫ2

4
∇∆|ψ|2 − ǫ2 div

(

Re
(

∇ψ̄ ⊗ ∇ψ
))

− ∇|ψ|2.
The above computations require ψ to be sufficiently smooth. In view of [2, Lemma 3], for ψ ∈
H1(Rd), there exists φ ∈ L∞(Rd) such that ψ =

√
̺φ a.e. in Rd,

√
̺ ∈ H1(Rd), ∇√

̺ = Re(φ̄∇ψ),

so that if we set
√
̺u := ǫ Im(φ̄∇ψ), then

√
̺u ∈ L2(Rd), j =

√
̺× √

̺u and

ǫ2 Re
(

∇ψ̄ ⊗ ∇ψ
)

= ǫ2∇√
̺⊗ ∇√

̺+ (
√
̺u) ⊗ (

√
̺u).

In this case,

φ(x) =







ψ(x)

|ψ(x)| if ψ(x) 6= 0,

0 if ψ(x) = 0,

so the compatibility condition
√
̺u = 0 a.e. on {√

̺ = 0} is satisfied. Finally, by the definition of
j,

∇ ∧ j = ǫ Im
(

∇ψ̄ ∧ ∇ψ
)

,

and [2, Corollary 13] yields, for ψ ∈ H1(Rd),

∇ ∧ j = 2∇√
̺ ∧ (

√
̺u).

Note that in the barotropic case considered in [2, Proposition 15], p(̺) = ̺γ , γ > 1, instead of
the logarithmic Schrödinger equation (5.1), one faces the more standard nonlinear Schrödinger
equation with a power-like nonlinearity,

(5.2) iǫ∂tψ +
ǫ2

2
∆ψ = cγ |ψ|γ−1ψ; ψ|t=0 = ψ0,

for some constant cγ > 0 whose exact value is irrelevant for the present discussion. To make the
above formal substitution rigorous and get a solution to the Korteweg equation, one relies on two
properties of (5.2):

• If the initial datum ψ0 is smooth, say ψ0 ∈ Hs(Rd) with s ≫ 1, then this regularity is
propagated, ψ ∈ C(R, Hs(Rd)).

• The Cauchy problem (5.2) is well-posed in H1(Rd) in the sense that if ψη
0 → ψ0 in H1(Rd)

as η → 0, then ψη → ψ in L∞
loc(R, H

1(Rd)). Note that H1 seems to be the least regularity
needed to pass to the limit in nonlinear terms in (1.1b).

As a matter of fact, the argument from [2] does not quite use the first property, which is available
for smooth nonlinearities in (5.2), which amounts to considering γ an odd integer. Instead, for
a standard sequence of mollifiers (in time and space) χη, the hydrodynamical quantities formed
from ψη := χη ∗ ψ solve (1.1) up to source terms which converge to zero as η → 0. The latter
property is essentially a consequence of estimates based on Strichartz inequalities (which lead to
the well-posedness of (5.2) in H1).

In the case of (5.1), the above mentioned properties are not known to be available. Typically,
while solutions to (5.2) are now classically constructed by a fixed point argument (on the associated
Duhamel’s formula) based on Strichartz inequalities, solutions to (5.1) are constructed by compact-
ness argument, due to the singularity of the logarithm at the origin (z 7→ z log |z|2 is not locally
Lipschitz continuous). In the same vein, we do not know how to take advantage of Strichartz type
estimates to prove the local in time stability of the flow in H1 for (5.1). Because of these reasons,
the argument from [2] has to be adapted, and this step explains the regularity assumptions made
in Proposition 1.7. The ideas are essentially borrowed from [12].

The Cauchy problem for (5.1) was solved initially in [14] locally in time for ψ0 ∈ L2(Rd), using
the theory of monotone operators. To obtain a solution with an H1 regularity, as well as the
uniqueness of this solution, in [14, 15] (see also [13]) the authors have to change the sign in front
of the nonlinearity in (5.1), so the Hamiltonian structure of the equation directly provides a priori
estimates. In the case of (5.1), the formally conserved energy

(5.3) ElogNLS =
ǫ2

2

∫

Rd

|∇ψ|2 +

∫

Rd

|ψ|2 log |ψ|2,
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is not helpful because the region {|ψ| < 1} yields a negative contribution, and cannot be controlled
in terms of the H1-norm. In order to overcome this issue, the following problem was considered in
[12], for η > 0:

(5.4) iǫ∂tψ
η +

ǫ2

2
∆ψη = ψη log

(

η + |ψη|2
)

; ψη
|t=0 = ψ0.

For fixed η > 0, this equation enters the general framework of nonlinear Schrödinger equations
with a smooth nonlinearity (see e.g. [13]), and since the logarithm grows more slowly than any
power, we have the following properties:

• For any ψ0 ∈ L2(Rd), (5.4) has a unique solution ψη ∈ C(R;L2(Rd))∩L2+4/d
loc (R;L2+4/d(Rd)).

Its L2-norm is independent of time,

‖ψη(t)‖L2(Rd) = ‖ψ0‖L2(Rd), ∀t ∈ R.

• If in addition ψ0 ∈ Hk(Rd) for k ∈ N, then ψη ∈ C(R;Hk(Rd)).

To pass to the limit η → 0, extra a priori estimates are needed, uniformly in η ∈]0, 1]. Taking the
gradient in (5.4), we find

iǫ∂t∇ψη +
ǫ2

2
∆∇ψη = log

(

η + |ψη|2
)

∇ψη +
2ψη

η + |ψη|2 Re
(

ψ̄η∇ψη
)

.

The standard energy estimate for the Schrödinger equation consists in multiplying the equation by
the conjugate of the solution, integrating in space, and taking the imaginary part. In the case of
the above equation, this yields

ǫ2

2

d

dt
‖∇ψη‖2

L2(Rd) = 2 Im

∫

Rd

∇ψ̄η ψη

η + |ψη|2 Re
(

ψ̄η∇ψη
)

≤ 2‖∇ψη‖2
L2(Rd),

hence ‖∇ψη‖L2(Rd) ≤ ‖∇ψ0‖L2(Rd)e
2|t|/ǫ, an estimate which is obviously uniform in η > 0. To get

some compactness in space, we consider the momentum

Aη,α(t) :=

∫

Rd

〈x〉2α |ψη(t, x)|2dx.

By multiplying (5.4) by 〈x〉2α
and using energy estimates, we compute

d

dt
Aη,α = 2α Im

∫

Rd

〈x〉2α−2
ψ̄η(t, x)x · ∇ψη(t, x)dx ≤ 2α‖ 〈x〉α

ψη(t)‖L2‖∇ψη(t)‖L2 ,

where the last estimate stems from Cauchy-Schwarz inequality and the property α ≤ 1. Therefore,
ψη is bounded in L∞

loc(R;H1 ∩ F(Hα)), uniformly in η > 0. To obtain some compactness in time,
note that

∣

∣ψη log
(

η + |ψη|2
)∣

∣

2 ≤ Cβ

(

|ψη|2−β + |ψη|2+β
)

,

for β > 0 arbitrarily small and Cβ independent of η > 0. In view of Sobolev embedding,
∫

Rd

|ψη|2+β ≤ C(β, d)‖ψη‖H1(Rd), 0 ≤ β <
4

(d− 2)+
.

On the other hand,
∫

Rd

|ψη|2−β . ‖ψη‖2−β− dβ
2α

L2 ‖xαψη‖
dβ
2α

L2 , 0 < β <
4α

d+ 2α
,

which can be readily proved by an interpolation method (cutting the integral into |x| < R and |x| >
R, using Hölder inequality and optimizing over R), so (5.4) implies that ∂tψ

η is uniformly bounded
in L∞

loc(R;H−1(Rd)). The Arzelà-Ascoli Theorem implies that, up to extracting a subsequence, ψη

converges to a solution ψ ∈ L∞
loc(R;H1 ∩ F(Hα)) to (5.1),

(5.5) ψη ⇀ ψ in L∞
loc(R;H1 ∩ F(Hα)).

At this stage, the convergence in H1 is weak, which is not enough to construct a solution to the
Korteweg equation by the above arguments, since we eventually want to invoke the property

(̺η, jη) =
(

|ψη|2, ǫ Im(ψ̄η∇ψη)
)

−→
η→0

(̺, j) =
(

|ψ|2, ǫ Im(ψ̄∇ψ)
)

in L1.
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In addition, ψ log |ψ|2 ∈ L∞
loc(R;L2(Rd)) by the same argument as above, and (5.1) yields

∂tψ ∈ L∞
loc(R;H−1(Rd)), hence ψ ∈ C(R;L2). Uniqueness follows from the algebraic identity

noticed in [14, 15]:

Lemma 5.1 (Lemma 9.3.5 from [13]). We have
∣

∣Im
((

z2 log |z2|2 − z1 log |z1|2
)

(z̄2 − z̄1)
)∣

∣ ≤ 4|z2 − z1|2 , ∀z1, z2 ∈ C .

If ψ and ψ̃ are two solutions of (5.1) with the above regularity, then the function w := ψ − ψ̃
satisfies

iǫ∂tw +
ǫ2

2
∆w = ψ log |ψ|2 − ψ̃ log |ψ̃|2,

and the regularity of ψ and ψ̃ enables one to write an energy estimate in L2 on this equation. We
get directly

ǫ

2

d

dt
‖w(t)‖2

L2(Rd) = Im

∫

Rd

w̄
(

ψ log |ψ|2 − ψ̃ log |ψ̃|2
)

≤ 4‖w(t)‖2
L2(Rd),

thanks to Lemma 5.1. Uniqueness (and in fact stability in L2) follows directly.
Even though we can propagate higher regularity in (5.4), the counterpart for (5.1) is unclear.

Indeed, if one differentiates (5.1) twice in space, then the logarithm creates singular terms which
cannot be controlled. To overcome this issue, one can use Kato’s trick for Schrödinger equations,
consisting in differentiating the equation once in time, to prove that ∂tψ ∈ L∞

loc(R;L2(Rd)) provided
that ψ0 ∈ H2(Rd), and using the equation to infer ∆ψ ∈ L∞

loc(R;L2(Rd)). We can therefore propa-
gate H2 regularity, but even propagating H3 regularity is an open question. Similarly, considering
fractional derivatives does not seem obvious.

To adapt the argument of the proof of [2, Proposition 15], we introduce a regularization of the
initial datum, ψδ

0 = χδ ∗ ψ0 ∈ H∞ ∩ F(Hα)(Rd), where χδ is a standard sequence of mollifiers (in
space only), and consider two levels of approximation for (5.1),

(5.6) iǫ∂tψ
η,δ +

ǫ2

2
∆ψη,δ = ψη,δ log

(

η + |ψη,δ|2
)

; ψη,δ
|t=0 = ψδ

0,

(5.7) iǫ∂tψ
0,δ +

ǫ2

2
∆ψ0,δ = ψ0,δ log |ψ0,δ|2; ψ0,δ

|t=0 = ψδ
0.

From the above discussion, ψη,δ ∈ L∞
loc(R;Hk(Rd)) for all k ∈ N. Setting

(̺η,δ, jη,δ) =
(

|ψη,δ|2, ǫ Im(ψ̄η,δ∇ψη,δ)
)

,

we compute directly

∂t̺
η,δ + div jη,δ = 0,

∂tj
η,δ + div

(

(
√
̺u)η,δ ⊗ (

√
̺u)η,δ

)

+
|ψη,δ|2

η + |ψη,δ|2 ∇̺η,δ =
ǫ2

4
∇∆̺η,δ − ǫ2 div

(

∇√
̺

η,δ ⊗ ∇√
̺

η,δ
)

.

To pass to the limit η → 0, the above arguments are not sufficient, since the convergence in H1 is
weak only. We use the fact that ψδ

0 ∈ H2(Rd) to infer a uniform bound in L∞
loc(R;H2(Rd)) which,

along with the strong convergenceψη,δ → ψ0,δ in L∞
loc(R;L2(Rd)) (the embedding H1∩F (Hα) ⊂ L2

is compact), yields

ψη,δ → ψ0,δ in L∞
loc(R;H1(Rd)).

With obvious notations, we get

∂t̺
0,δ + div j0,δ = 0,

∂tj
0,δ + div

(

(
√
̺u)0,δ ⊗ (

√
̺u)0,δ

)

+ ∇̺0,δ =
ǫ2

4
∇∆̺0,δ − ǫ2 div

(

∇√
̺

0,δ ⊗ ∇√
̺

0,δ
)

.

In particular, (̺0,δ, j0,δ) is a global weak solution to (1.1) with regularized initial data. To pass to
the limit δ → 0, we invoke the same arguments: ψ0,δ is uniformly bounded in L∞

loc(R;H2 ∩F(Hα)),
Lemma 5.1 and an energy estimate yield ψ0,δ → ψ in L∞

loc(R;L2(Rd)), so by interpolation, ψ0,δ → ψ
in L∞

loc(R;H1(Rd)), and (̺, j) is a global weak solution to (1.1).

We recall that the energy (5.3) associated to (5.1) is conserved for H1 ∩ F (Hα) solutions (see
[12]). In view of [2, Lemma 3], this yields the conservation of the energy E at the fluid level, (1.2).
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To conclude and prove the second point of Proposition 1.7, introduce Ψ given by

ψ(t, x) =
1

τ(t)d/2
Ψ

(

t,
x

τ(t)

)(‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

exp

(

i
τ̇(t)

τ(t)

|x|2
2ǫ

− i
θ(t)

ǫ

)

,

where

θ(t) = d

∫ t

0

log τ(s)ds − t log

(‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

)

.

It solves (see [12])

(5.8) iǫ∂tΨ +
ǫ2

2τ(t)2
∆Ψ = Ψ log |Ψ|2 + |y|2Ψ; Ψ(0, y) = ψ0(y)

(‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

.

We check

̺(t, x) = |ψ(t, x)|2 =
1

τ(t)d

∣

∣

∣

∣

Ψ

(

t,
x

τ(t)

)∣

∣

∣

∣

2 ‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

,

so in view of (1.24), R = |Ψ|2, and

√
̺u(t, x) =

j(t, x)
√

̺(t, x)
=
ǫ Im

(

ψ̄∇ψ
)

(t, x)

|ψ(t, x)|

=

(

ǫ

τ(t)1+d/2
Im

(

Ψ

|Ψ|∇Ψ

)(

t,
x

τ(t)

)

+
τ̇ (t)

τ(t)

x

τ(t)d/2

∣

∣

∣

∣

Ψ

(

t,
x

τ(t)

)∣

∣

∣

∣

)(‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

,

=
ǫ

τ(t)1+d/2
Im

(

Ψ

|Ψ|∇Ψ

)(

t,
x

τ(t)

)(‖̺0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

+
τ̇ (t)

τ(t)
x
√

̺(t, x),

hence, in view of (1.24),
√
RU = ǫ Im

(

Ψ̄

|Ψ|∇Ψ

)

.

In view of [12], for ψ0 ∈ H1 ∩ F(H1), (5.8) has a global solution Ψ ∈ L∞
loc(R;H1 ∩ F(H1), which

satisfies

d

dt

(

ǫ2

2τ(t)2
‖∇Ψ(t)‖2

L2 +

∫

Rd

|Ψ(t, y)|2 log |Ψ(t, y)|2dy +

∫

Rd

|y|2|Ψ(t, y)|2dy

)

= − ǫ2(̇τ(t)

τ(t)3
‖∇Ψ(t)‖2

L2 .

Integrating in time and rewriting the quantities involved in this relation in terms of (
√
R,

√
RU),

we recover (1.7).

Appendix A. Proof of identity (2.19)

We recall that, the first step in the computation of (2.19) is to set Φ = χν∇ logR/τ2 in (2.5).
This yields:

∫ ∞

0

∫

Td
ℓ

RU · ∂tΦ +

∫ ∞

0

∫

Td
ℓ

1

τ2
RU ⊗ U : ∇Φ

=

∫ ∞

0

∫

Td
ℓ

R(2y · Φ − div Φ) + r0

∫ ∞

0

∫

Td
ℓ

1

τ2
U · Φ + r1

∫ ∞

0

∫

Td
ℓ

1

τ2
R|U |2U · Φ

+ ǫ2

∫ ∞

0

∫

Td
ℓ

1

τ2

[

∆
√
R√
R

div(RΦ)

]

+ ν

∫ ∞

0

∫

Td
ℓ

1

τ2
RDU : ∇Φ + ν

∫ ∞

0

∫

Td
ℓ

τ̇

τ
R div Φ

+ δ1

∫ ∞

0

∫

Td
ℓ

1

τ2
∇U : ∇R⊗ Φ + δ2

∫ ∞

0

∫

Td
ℓ

1

τ2
∆U · ∆Φ

+ η1

∫ ∞

0

∫

Td
ℓ

R−α div Φ + η2

∫ ∞

0

∫

Td
ℓ

1

τ2
∆s+1R∆s [∇R · Φ +R div Φ] .
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We number the integrals on the right-hand side I1 to I9 successively:

I1 =

∫ ∞

0

χν

τ2

∫

Td
ℓ

(

4|∇
√
R|2 − 2dR

)

, I2 = r0

∫ ∞

0

χν

τ4

∫

Td
ℓ

U · ∇ logR,

I3 = r1

∫ ∞

0

χν

τ4

∫

Td
ℓ

|U |2U · ∇R, I4 = ǫ2

∫ ∞

0

χν

τ4

∫

Td
ℓ

R|∇2 logR|2,

I5 =

∫ ∞

0

χν2

τ4

∫

Td
ℓ

RDU : ∇2 logR, I6 = −
∫ ∞

0

χν2τ̇

τ3

∫

Td
ℓ

4|∇
√
R|2,

I7 = δ1

∫ ∞

0

χν

τ4

∫

Td
ℓ

∇U : ∇R⊗ ∇ logR, I8 = δ2

∫ ∞

0

χν

τ4

∫

Td
ℓ

∆U · ∇∆ logR,

I9 = η1

∫ ∞

0

4χν

ατ2

∫

Td
ℓ

∣

∣

∣
∇

√
R−α

∣

∣

∣

2

, I10 = η2

∫ ∞

0

χν

τ4

∫

Td
ℓ

|∆s+1R|2.

While, we rewrite the left-hand side:

LHS = −
〈

d

dt

[

ν

τ2

∫

Td
ℓ

RU · ∇ logR

]

, χ

〉

−
∫ ∞

0

2χντ̇

τ3

∫

Td
ℓ

RU · ∇ logR

+

∫ ∞

0

χν

τ2

∫

Td
ℓ

RU · ∇∂t logR+

∫ ∞

0

χν

τ4

∫

Td
ℓ

RU ⊗ U : ∇2 logR,

where we denote with brackets the duality in the sense of distributions. We proceed by computing
the third term (denoted L1) in the right-hand side of this identity. For this, we remark that
differentiating the continuity equation (1.20a), we obtain (in L2

loc(R
+;L2(Td

ℓ ))):

∂t(R∇ logR) = − 1

τ2
div(R∇ logR⊗ U) − 1

τ2
div(R∇U) +

δ1

τ2
∆∇R,

splitting the left-hand side of this identity and calling again the continuity equation, we conclude
that:

R∂t∇ logR =
1

τ2
div(RU)∇ logR − δ1

τ2
∆R∇ logR

− 1

τ2
div(R∇ logR⊗ U) − 1

τ2
div(R∇⊤U) +

δ1

τ2
∆∇R.

We infer then that, a.e. (in (0,∞)), we have:

∫

Td
ℓ

RU · ∂t∇ logR = − 1

τ2

∫

Td
ℓ

RU ⊗ U : ∇2 logR+
1

τ2

∫

Td
ℓ

R∇U⊤ : ∇U

− δ1

τ2

∫

Td
ℓ

∆R

R
div(RU).

Plugging this identity into LHS, we obtain:

LHS = −
〈

d

dt

[

ν

τ2

∫

Td
ℓ

RU · ∇ logR

]

, χ

〉

−
∫ ∞

0

2χντ̇

τ3

∫

Td
ℓ

RU · ∇ logR

+

∫ ∞

0

χν

τ4

∫

Td
ℓ

R∇U : ∇⊤U − δ1

∫ ∞

0

χν

τ4

∫

Td
ℓ

∆R

R
div(RU).
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Finally, combining the computations of the right-hand side and left-hand side, we re-interpret our
identity as:

d

dt

[

ν

τ2

∫

Td
ℓ

RU · ∇ logR

]

+
2ντ̇

τ3

∫

Td
ℓ

RU · ∇ logR

+
ǫ2ν

τ4

∫

Td
ℓ

R|∇2 log(R)|2 +

(

ν

τ2
− ν2τ̇

τ3

)∫

Td
ℓ

4|∇
√
R|2

+
4η1ν

α

∫

Td
ℓ

∣

∣

∣∇
√
R−α

∣

∣

∣

2

+
η2ν

τ4

∫

Td
ℓ

|∆s+1R|2

=
2dν

τ2

∫

Td
ℓ

R− r0ν

τ4

∫

Td
ℓ

U · ∇ logR− r1ν

τ4

∫

Td
ℓ

|U |2U · ∇R

− ν2

τ4

∫

Td
ℓ

RDU : ∇2 logR

− δ1ν

τ4

∫

Td
ℓ

∇U : ∇R⊗ ∇ logR− δ2ν

τ4

∫

Td
ℓ

∆U · ∇∆ logR

− δ1ν

τ4

∫

Td
ℓ

∆R

R
div(RU) +

ν

τ4

∫

Td
ℓ

∇U : ∇⊤U.

This completes the proof.
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Mécanique, 332(11):881–886, 2004.

[5] D. Bresch and B. Desjardins. On the construction of approximate solutions for the 2D viscous shallow water
model and for compressible Navier-Stokes models. J. Math. Pures Appl. (9), 86(4):362–368, 2006.

[6] D. Bresch and B. Desjardins. On the existence of global weak solutions to the Navier-Stokes equations for
viscous compressible and heat conducting fluids. J. Math. Pures Appl. (9), 87(1):57–90, 2007.

[7] D. Bresch, B. Desjardins, and C.-K. Lin. On some compressible fluid models: Korteweg, lubrication, and shallow
water systems. Comm. Partial Differential Equations, 28(3-4):843–868, 2003.

[8] D. Bresch, M. Gisclon, and I. Lacroix-Violet. On Navier-Stokes-Korteweg and Euler-Korteweg sys-
tems: application to quantum fluid models. Arch. Rational Mech. Anal., 2019. To appear. Available at
http://doi.org/10.1007/s00205-019-01373-w .

[9] D. Bresch, P. Noble, and J.-P. Vila. Relative entropy for compressible Navier-Stokes equations with density
dependent viscosities and various applications. In LMLFN 2015—low velocity flows—application to low Mach
and low Froude regimes, volume 58 of ESAIM Proc. Surveys, pages 40–57. EDP Sci., Les Ulis, 2017.

[10] S. Brull and F. Méhats. Derivation of viscous correction terms for the isothermal quantum Euler model. ZAMM
Z. Angew. Math. Mech., 90(3):219–230, 2010.

[11] R. Carles, K. Carrapatoso, and M. Hillairet. Rigidity results in generalized isothermal fluids. Annales Henri
Lebesgue, 1:47–85, 2018.

[12] R. Carles and I. Gallagher. Universal dynamics for the defocusing logarithmic Schrödinger equation. Duke Math.
J., 167(9):1761–1801, 2018.

[13] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New
York University Courant Institute of Mathematical Sciences, New York, 2003.
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