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EVALUATION OF TEXT CLUSTERING METHODS AND THEIR 
DATASPACE EMBEDDINGS: AN EXPLORATION.

Alain Lelu, rtd, Université de Bourgogne-Franche-Comté1

Martine Cadot, LORIA2

Abstract

Fair evaluation of text clustering methods needs to clarify the relations between 1)pre-processing, resulting in raw  
term occurrence vectors, 2)data transformation, and 3)method in the strict sense. We have tried to empirically compare 
a dozen well-known methods and variants in a protocol crossing three contrasted open-access corpora in a few tens  
transformed dataspaces. We compared the resulting clusterings to their supposed "ground-truth" classes by means of  
four  usual  indices.  The  results  show  both  a  confirmation  of  well-established  implicit  combinations,  and  good 
performances of unexpected ones, mostly in spectral or kernel dataspaces. The rich material resulting from these some  
600 runs includes a wealth of intriguing facts, which needs further research on the specificities of text corpora in 
relation to methods and dataspaces.

1 - Introduction : motivations and goals.

Evaluation of text clustering methods is one of the key issues in the problem of bibliometric delineation of scientific 
fields. As co-authors of [Zitt et al. 2019] we have tried to test seventeen clustering methods with a publicly available  
real-life test set, the Reuters' test bench [Lewis et al. 2004] which adds up several difficulties of text clustering, i.e.  
mainly strongly unbalanced man-made classes (the targeted “ground-truth”), and texts of unbalanced sizes. Our report 
is  accessible  online  [Cadot,  Lelu  2018]  as  a  supplementary  material  to  the  above-mentioned  book  chapter.  An 
unexpected result was that antique agglomerative methods, especially Ward hierarchical clustering, performed better  
than many more recent ones. Was it the case for all types of corpora? Above all we realized that for the sake of fair 
comparisons, as well as conceptual clarity, we should clearly separate the transformations of the raw word-count data  
(for example into Salton tf-idf vector representation, or Laplacian spectral space, etc.) from the algorithms in the strict  
sense, instead of using long-time accepted implicit combinations. For example, no rational reasons forbid using e.g. 
Non-negative Matrix Factorization in a spectral space. This consideration is in line with the conceptual clarifications  
operated in [Van Mechelen et al. 2018]; last,  but not least,  unexpected recommendations may proceed from non-
classic combinations. This clarification is one of our guiding threads in the present research.

Though restricting our scope to text clustering, it is clear that many types of texts need now to be processed: abstracts 
or plain texts of scientific papers, which are our primary scientific interest, or journal, litterary or legal texts, or texts  
originating in the social nature of Internet communications,  such as contributions to forum discussions, or  social 
networks.  We decided  to  base  our  present  survey on  three  typical  and  contrasted  test  sets:  a  full-text  scientific 
database, a wire of press agency, and an Internet discussion forum. It is clear that the complete text preprocessing  
chain is out of the goal of our research, so we have to rest on one same linguistic – or weakly linguistic – term, lemma  
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or stem extraction scheme, and same elimination of infrequent or too frequent words. This point must not keep us 
from  exploring  the  influence  of  truncating  the  remaining  vocabulary  in  chosen  distribution  quantiles.  Usual  
benchmark studies mention an absolute occurrence threshold, period... All these specifications led us to the choices we 
expose in the methodology section.

Of course the options on methods and types of dataspaces to be considered are inevitably somehow arbitrary: we tried 
to  take  account  of  the  most  usual  algorithms,  or  method families,  such  as  K-means,  hierarchical  agglomerative 
clustering, spectral clustering, graph clustering, kernel clustering, and we added two more specific methods, i.e. Non-
negative Matrix Factorization (NMF) and Latent Dirichlet Allocation (LDA), which amounts to a dozen methods and 
variants.

Concerning dataspaces, we chose to add to the plain term occurrence vector space the transformed spaces by Salton’s  
and Okapi's tf-idf weighting schemes, by chi-square metrics, by Laplacian spectral decomposition, by Correspondence 
Analysis,  and  last  by  order-2  polynomial  kernel  expansion.  These  transformations  are  referenced  and  formally  
presented in the next section.

Given the combinatorics of the three main elements – text types, dataspaces and algorithms – our research study could  
be nothing but an exploration, strongly constrained by available resources. However, some interesting conclusions will  
be drawn out this exploration. In the final conclusion, we will deal with what may be continued and deepened in our  
perspective, given the results.

Let us close this introduction saying that we are indebted to the remarkable initiative of the Brazilian LABIC team 
[Rossi et al. 2013] who homogeneously pre-processed [LABIC stemmer] some forty text collections and made the  
document by term matrices available online on their site [LABIC data].

2 - Methodology

Drawn from our experience of clustering methods, our first claim is that using the supervised learning methodology  
for comparing non-supervised methods is in any case better than relying on unfounded claims or comparisons to be  
suspected of author's bias. In relation to the issue of author's bias, let us state that, though being authors of a few 
clustering algorithms (Axial K-means, Local Component Analysis, Germen), we have excluded these algorithms of  
our survey. This supervised methodology may at least result, in default of a universal ranking of methods, in fruitful  
reflections  on  the  typology  of  texts,  or  the  nature  of  the  human  categorization  and  abstraction  process  and  its  
similarities and differences with methods mostly optimizing an intrinsic objective function.

Another core imperative we have set is transparency and reproducibility: in addition to the direct link to the document-
by-term matrices we have provided above, a complementary material HAL site [HAL CNRS] will gather the data and 
code we used. Though most algorithms are theoretically insensitive to the ordering of input vectors, in practice we  
experienced that tied effects, among others, could affect the results. This is why we have randomly scrambled the data 
vectors, and will drop our scrambled data and label files on the above-cited site.

1.1 - Choice of test corpora

The three "prototype" test corpora mentioned in the introduction are, first, Reuters' "ModApté Split" [Apté et al. 1994] 
limited to the eight most important classes ("Re8" in the present study, 7674 documents,8901 terms), second, the ACM 
collection made of the proceedings of forty conferences in different computer science areas (3493 papers, 60  768 
terms), third, the "20 Newsgroups" collection ("Ng20") composed of 18 808 messages posted in twenty Usenet groups 
(45 434 terms). The size of the man-made reference classes is strongly unbalanced in the case of Re8 (two of them 
constitute 81% of the documents), roughly equal in the case of ACM and Ng20. 
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It is to be noted that the sole Reuters' class labels are issued from a direct manual indexing. The two others origin in  
the concatenation of sub-corpora of comparable size. They could therefore be considered as "semi-real-world data",  
not really representative of real-life non-annotated corpora. Note also that the mean "Silhouette" coefficient [Kogan,  
2007], which measures the inter-class contrasts, is higher (.89) in the case of Re8 than in Ng20 (.80) and ACM (.75) 
ones. 

1.2 - Truncating the vocabularies

As the size of the vocabularies are unbalanced (Re8: about 8900 terms, ACM: 60 800 terms, Ng20: 45 000 terms) but  
extensive (the hapaxes, i.e. terms of total occurrence one, are included in this count), we decided a common scheme  
for  a  vocabulary-independent  truncation  by  thresholds:  in  addition  to  the  basic  option  of  retaining  the  whole 
vocabulary, we built two sub-corpora per test corpus retaining the third quartile of the term distribution (25% of the 
total occurrences), and the seventh "octile" (12.5%). 

1.3 - Choice of clustering methods

We have affected a lower priority to algorithms with two parameters (DbScan, Affinity Propagation, Smart Local 
Moving  Algorithm)  or  one  parameter  with  deceptive  results  on  Reuters’  corpus  (Density  Peaks,  Independent 
Component Analysis, Fuzzy c-means, K-Means++). We selected:

- First, plain K-means clustering ("KM"), see [Mac Queen 1967] algorithm (in the adaptive case) and [Forgy 1965] (in 
the usual iterative case), initialized by randomly drawing data vectors - we had an unconvincing experience of K-
means++ initialization in the context of text clustering. We implemented 20 elementary runs, or "passes", per run,  
selecting the "best" one in terms of the local optimum of the K-means objective function (sum of squared intra-cluster  
Euclidean distances).

-  Hierarchical agglomerative clustering with two linkage variants: average link ("HCa"), and Ward ("HCw") [Ward 
1963]. Originally in O(#documents3) time complexity, the more recent contributions [Murtagh 1984] and [Müllner 
2013] have lowered this constraint to O(#documents2).

-  Spectral clustering [Meila, Shi 2000]: we used the "standard" combination K-means/Laplacian spectral dataspace,  
but also explored (with success, see below) many other combinations.

- Graph clustering methods: we chose the two most broadly recognized ones, i.e. Louvain [Blondel et al. 2008] and 
InfoMap [Rosvall, Bergstrom 2007]. Note that these methods, in contrast to all the other tested ones, do not need 
fixing a desired number of clusters, hence a major operational advantage when no idea of the "true number of clusters"  
is known beforehand - hierarchical clustering being in an intermediate position, as in one run it leaves the choice of  
the cluster number to the user.

- Non-negative Matrix Factorization ("NMF") [Lee, Seung 1999]: this decomposition is akin to be used as a clustering 
method, when the label of a document is attributed depending on the axis of its maximum projection. As this method 
converges to local optima of its objective function, we implemented the same "20 runs" strategy as for K-means. Note 
that  the  resulting gradual  representation of  documents  in  the  clusters  is  also interesting in  that  outliers,  or  even  
additional cluster seeds, may be identified - one kind of "possibilistic" clustering.

-  Latent Dirichlet Allocation ("LDA") [Blei et al.  2003] is well-known and much respected as deeply founded in 
theoretic grounds.

- Kernel clustering [Girolami 2002]: thanks to the "kernel trick", a document by document similarity matrix ("Gram 
matrix") is  built  without  explicit  expansion of the raw dataspace by a kernel  function.  Here we used an order-2  
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polynomial kernel, which amounts to take into account the wholeness of the 2-term itemsets in each document when 
comparing one to another (in addition to standard "1-term" itemsets). In this case the raw dataspace is not made of  
numeric occurrence vectors, but of binary existence ones.

1.4 - Choice of dataspaces:

In addition to the plain term-occurrence vector space, we have considered and built:

- Salton's vector space, weighted by the classic tf-idf scheme:

xij = tf idf  

where tf = nij   

idf = log n - log e.j

Notations: N is the document by-term-matrix, nij  is the occurrence number of term j in 
document i, ni. is the total occurrences of terms in document i, n.j is the total occurrences of 
term j, n.. is the grand total of occurrences in the corpus, n is the number of documents.

E is the binary document by term matrix, eij is 1 if term j exists in document i, 0 else, ei. is the 
total number of terms which appear in document i, e.j is the number of documents in which 
term j appears, e.. is the grand total of term appearances in the corpus.

k* is the number of manually attributed classes in each corpus.

- Okapi (also coined BM25)  vector space  [Robertson et al. 1994], with a more cryptic, but statistically grounded, 
weighting scheme [Robertson et al. 1994]:

xij = tf idf

tf = nij (a+1) / (nij + a(1-b+b(ni.n/n..))   ; recommended values:   a=1.2   b=.75

idf = log(n - e.j + .5) - log(ni. + .5)

For enabling idf to be always positive or zero, we have ceiled the value (e .j+ni.) to n.

- Chi-square metrics, which amounts to a Euclidean vector space with vectors transformed as suggested in [Legendre,  
Gallagher 2001]:

xij = n..1/2 nij / (ni. n.j
1/2)

- Laplacian spectral space [Von Luxburg 2007]:

Given Cos, the (truncated or not) cosine matrix between the documents, which defines a non-oriented graph, and s the 
sum vector of its rows or columns, the transformed matrix 

Qlapl = diag(s-1/2) Cos  diag(s-1/2)  gives rise to a Singular Value Decomposition (SVD):

Qlapl = Ulapl D Vlapl

The first rank factors concentrate the relevant information. When aiming at k* classes, we chose to take into account  
three configurations of Ulapl, with respectively integer(k*/2), k* and 2k* top-ranking factors.

- Correspondence Analysis spectral space [Benzecri 1973] [Greenacre 1984] [Lebart et al. 1998]:

The transformed matrix Qca =  diag{ni.
-1/2} N diag{n.j

-1/2} gives rise to a SVD decomposition

Qca = Uca L Vca
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resulting in the CA factors:

F = n..1/2 diag{ni.
-1/2} Uca L

As the first factor is trivial, we chose to take into account three configurations, with respectively 1+integer(k*/2), 
1+k* and 1+2k* top-ranking factors.

Note that Euclidean distances in the complete factor space equal chi-square distances [Benzécri 1973]. Therefore, 
truncating this space in this manner amounts to consider "partial chi-square" distances , a priori more relevant than 
chi-square distances. We will check this point below.

These  six  transformations  of  a  document-by-term matrix  are  convenient  for  the  KM,  NMF,  LDA and  Spectral  
Clustering methods. Other methods, such as Hierarchical Clustering, Graph methods and Kernel methods, need a 
document-by-document similarity (or dissimilarity) matrix. We have derived the distance or cosine matrices for all the  
above-mentioned dataspaces.  Depending on each dataspace-method combination, we have used Euclidean distance or  
“cosine” distance (i.e. 1-cosine, which weights half of the squared chord distance [Legendre, Gallagher 2001]). 

- Kernel space [Girolami 2002]:

In matrix notations and in the case of order-2 polynomial kernel, the Gram similarity matrix writes:

Xk2 = (1 + E E').^ 2    where X.^ 2  means squaring each value of matrix X      

Given the much contrasted values in this matrix, the cosine distance is well-fit to this dataspace.

1.5 - Choice of evaluation measures

We  chose  the  four  most  usual  indices  encountered  in  the  evaluation  literature,  i.e.  first,  Normalized  Mutual  
Information  (NMI)  [Cover,  Thomas  1991]  and  Adjusted  Rand  Index  (ARI)  [Rand  1971],  which  compute  
independently from the number and labels of clusters; and second, mean local class-vs.-cluster F-scores (F) [Van  
Rijsbergen 1979] and global Purity score (i.e. 1-global error rate) which need the same number of clusters and classes,  
and same labels. Even when this was not the case (graph methods), we have aligned the k classes and the k most  
"analogue" clusters, in the sense of local F-scores, by means of the ranking issued from the first non-trivial factor in  
the Correspondence Analysis of the classes by clusters F-score matrix.

1.6 - Code implementation and computer efficiency

As  computer  efficiency  is  out  of  our  goals,  we  implemented  the  data  transformations,  method  code,  and  post-
processing code in an Octave environment, on an Intel 6-core I7, 3.33GHz, 48Go RAM computer. Method codes were 
derived from existing Matlab® codes (links to the original pieces of code are available in the supplementary material). 
Their degree of computing time optimization varies considerably: e.g. in the case of the 19 000 documents Ng20 test  
set, from 2 minutes for twenty elementary runs of the standard "litekmeans.m" code, to 6 hours for one run of Louvain  
method.

2 - Evaluation results for each method

We have tried as much as possible to cross-combine corpora × data transformations × methods. This was not always  
possible, due to constraints such as computing time or resources devoted to systematically poor results.
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2.1 - K-means

Altogether  with  hierarchical  agglomerative  clustering,  this  method  is  an  inescapable  classic  of  exploratory  data 
analysis. Our results confirm why it is so widely used till now: good performances (nmi>.60 on ACM and Ng20 
corpora), low computing complexity O(#documents × #terms), fast runs as noted above.

Figure 1: K-means on ACM corpus

Figure 2: K-means on Re8 corpus
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Figure 3: K-means on Ng20 corpus

A remark about evaluation indices: in the case of the two balance-sized corpora, they both globally go much in the  
same line - a bit more uneven in the case of Re8.

The vocabulary truncation does not seem to be quite influential, except in the case of the Chi-square space. So one  
recommendation may be drawn: a 12,5% vocabulary threshold seems good enough for acceptable K-means results, 
resulting in a lighter processing task.

Examining performances, the results are surprising: Okapi dataspace performs best for ACM, Salton’s space for Ng20,  
and both perform equally for Re8, as well as raw occurrence dataspace. Conclusions would need a specific study of  
the peculiarities of text corpora with regard to these disorientating kinds of observations.

2.2 - NMF

Figure 4: NMF on ACM corpus
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Figure 5: NMF on Re8 corpus

Figure 6: NMF on Ng20 corpus

This more recent method confirms the surprising observation above: ACM and Ng20 yield good performances in 
Okapi space, whereas Re8 does in Salton's space.

2.3 - LDA

Figure 7: LDA on ACM corpus
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Figure 8: LDA on Re8 corpus

The somehow chaotic performances and the unpredictable computing time (10 to 40 minutes) led us to not process the 
3-times bigger Ng20 corpus.

However, it seems that LDA is more fit to the raw Euclidean dataspace, perhaps more in line with its underlying 
statistical hypotheses. Another observation: the more vocabulary is truncated, the better.

2.4 - Linkage methods

Figure 9: Hierarchical Clustering on ACM corpus
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Figure 10: Hierarchical Clustering on Re8 corpus

At first glance, it seems that the average link variant performs correctly with Reuters'8, but not with ACM - another  
intriguing fact. Ward linkage variant seems also a clear winner.

Figure11 - Hierarchical Clustering on Ng20 corpus

Using Okapi dataspace outperforms Salton's and Raw ones for ACM and Ng20 corpora, in line with the observations 
above.
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2.5 - Spectral clustering

ACM corpus

Figure 12: Spectral K-means Clustering on ACM corpus

Note  the  excellent  performance  of  this  method  in  Okapi-transformed dataset  with  Laplacian  spectral  extraction, 
whatever the number of factors and term percentage, and the good performance in Correspondence Analysis factor  
space.

Figure 13: Spectral Non-negative Matrix Factorization clustering on (un-)weighted ACM corpus

NMF is good, but not as competitive as K-Means in the same spectral context.
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Figure 14: Spectral Hierarchical-Ward Clustering on ACM corpus in Correspondence Analysis factor space (cosine 
distance)

Figure 15: Spectral Hierarchical-Ward Clustering on ACM corpus in Okapi/Salton weighted Laplacian factor space 
(quantile-truncated –or not– cosine distances)

An unexpected result is that spectral HC family seems to outperform all other methods tested yet on the ACM corpus. 
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Re8 corpus

Figure 16: Spectral K-means Clustering on Reuters'8 corpus

"Attraction" of Reuters'8 corpus towards Raw and Salton's dataspaces in confirmed, as well as a relative insensitivity  
to term truncation and dimension of the factor space.

Figure 17: Spectral NMF Clustering on Reuters'8 corpus

Not so good, purity is privileged, seemingly due to its good performance in the two major clusters. 
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Figure 18: Spectral Hierarchical Clustering on Re8 corpus in Correspondence Analysis factor space (cosine distance)

HC-average is clearly a bad option in raw CA space, but a very good one using cosine distance in this dataspace.

Figure 19: Spectral Hierarchical-Ward Clustering on Re8 corpus in Okapi/Salton-weighted Laplacian factor space 
(quantile-truncated –or not– cosine distances)
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Ng20 corpus

Figure 20: Spectral K-means Clustering on Ng20 corpus

Excellent performance in k*-factors Correspondence Analysis dataspace, slightly better than in Laplacian ones.

Figure 21: Spectral NMF Clustering on Ng20 corpus

Does not add benefits  to other combinations.  NMF seems more fit  to operate in non-spectral  dataspaces (Okapi,  
Salton, Kernel - see above) than in spectral ones: a major difference with K-Means, "comfortable" in all contexts.
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Figure 22: Spectral Hierarchical Clustering on Ng20 corpus in various factor spaces (cosine distances)

Spectral Hierarchical Clustering with Ward linkage option clearly outperforms average linkage one, all the more so as  
average linkage option is far more time-consuming.

2.6 - Kernel clustering

When using a second-order polynomial kernel, this more recent method is not based on term counts, unlike all other  
methods, but on binary presence/absence vectors, which makes it possible to take into account term 2-itemsets, i.e.  
supersets of term bigrams. As semantic units seem to be embedded in word bigrams or trigrams more than unigrams,  
at least in technical texts, this dataspace should result in another meaningful view of the data.

Figure 23: Kernel Clustering on ACM corpus
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Figure 24: Kernel Clustering on Reuters'8 corpus

It is indeed the case, the surprise being that usual Kernel K-means is clearly outperformed by Ward-linkage clustering  
in the kernel space. We have not heard of this result elsewhere in the literature.

Given the  long computation time on  Ng20 corpus (3  hours),  we  performed only two runs  with  a  disappointing 
outcome: at best, NMI=.404, ARI=.202, Fscore=.313, Purity=.336 on a 25%-truncated vocabulary.

2.7 - Graph clustering

- Louvain

Figure 25: Louvain graph clustering on ACM corpus
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Figure 26: Louvain graph clustering on Reuters'8 corpus

The performance is not so good as using spectral HC-Ward, but shows a slight indifference to thresholds, applied to  
vocabulary as well as cosines. Thus a sparse "graph-like" sparse cosine matrix does not seem to be an advantage,  
contrary to our initial guess.

This  guess  led us  to  test  a  single  run  of  Louvain (6  hours)  on  a  doubly truncated  Ng20 space (25% truncated 
vocabulary, 25% truncated cosines) but the performances were poor: NMI=.302, ARI=.116, Fscore=.114, Purity=.211, 
which seems to confirm the above statement.

- InfoMap

Figure 27: InfoMap graph clustering on ACM corpus
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Figure 28: InfoMap graph clustering on Reuters'8 corpus

The performance is good, especially in the Okapi and Salton's dataspaces, with no sensible influence of the thresholds.

We tested two InfoMap runs on two Ng20 spaces (3 hours each), both 25% cosine-truncated, the first with 100% 
vocabulary,  the  second  with  25%,  resulting  in  deceptive  scores,  at  best:  NMI=.356,  ARI=.162,  Fscore=.213,  
Purity=.290.

3 - Synthesis

Let us focus first on the measurement tools: we can observe that in the case of the two "balanced" corpora, the four 
evaluation indices behave in a much parallel and orderly manner - see fig. 1, 3, 4, 6, 25. In contrast, this parallelism 
and regular ranking deteriorate in the Reuters'8 unbalanced corpus, and to a lesser extent when hierarchical methods 
are used. F-score and Purity indices may (see fig. 17, 28) or may not present (see fig. 16, 20, 21, 25) a somehow 
contradictory  or  non-monotonic  behavior.  A  thorough  investigation  could  perhaps  explain  these  interesting 
discrepancies, but is clearly out of our present goals. We have thus chosen the more stable NMI index as a reference 
measure for ranking each corpus' runs (ACM: 246 runs, Re8: 237 runs, Ng20: 109 runs, summing up to 592 runs). 

3 - 1 - "Top three" runs (NMI criterion):

ACM corpus:

1) Spectral HC-Ward in k*-dimension (i.e. 40) Laplacian space with 12.5%-truncated cosine measure, Okapi transformed, non-truncated 
vocabulary. NMI: .698, ARI: .483, Fscore: .619, Purity: .623; elapsed time: 77”.

2) Spectral HC-Ward in k*-dimension (i.e. 40) Laplacian space with 37.5%-truncated cosine measure, Okapi transformed, non-truncated 
vocabulary. NMI: .695, ARI: .475, Fscore: .615, Purity: .618; elapsed time: 77”.

3) Spectral HC-Ward in k*-dimension (i.e. 40) Laplacian space with 25%-truncated cosine measure, Okapi transformed, non-truncated 
vocabulary. NMI: .695, ARI: .475, Fscore: .615, Purity: .618; elapsed time: 77”.

Reuters'8 corpus:

1) Kernel HC-Ward on 12.5%-truncated vocabulary, kernel raw dataspace (no Okapi, etc. transformation); NMI:.625, ARI:.547, Fscore:.451, 
Purity: .699; elapsed time: 767"

2) Spectral HC-average on 25%-truncated vocabulary, in 2k* (i.e. 16 dimensions) CA space with cosine measure; NMI: 622, ARI:.516, 
Fscore:.449, Purity: .691; elapsed time: 85073"
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3) Spectral HC-average on 25%-truncated vocabulary, in k* (i.e. 8 dimensions) CA space with cosine measure; NMI:.615, ARI:.584, 
Fscore:.440, Purity: .724; elapsed time: 85610"

20 NewsGroups corpus:

1) NMF on non-truncated vocabulary, Okapi dataspace; NMI:.625, ARI:.548, Fscore:.469, Purity: .699; elapsed time: 107"

2) Spectral HC Ward in 2k* (i.e. 40 dimensions) CA space with cosine measure; vocabulary is not truncated; NMI:.622, ARI: .456, Fscore: .600, 
Purity: .624; elapsed time: 13 628"

3) K-Means on 12.5%-truncated vocabulary, Salton's dataspace; NMI:.621, ARI:.461, Fscore:.527, Purity: .594; elapsed time: 122"

These optimal runs clearly depend on the corpora. A large variety of dataspace transformations (truncated or not  
vocabulary,  Salton's,  0kapi,  or raw dataspace, kernel  or  Laplacian spectral  space, ...)  and methods (HC-Ward,  K-
Means, NMF) are present. It can be noted that one run only may be considered as "classic", i.e. K-Means on Salton's  
dataspace with a truncated vocabulary, in the sole case of Ng20, the other ones are not.

Two qualitative remarks:

- Good results on ACM corpus distinguish by the overwhelming effect of 1) Okapi weighting, 2) Hierarchical-Ward 
clustering method, 3) Laplacian dataspaces, 4) moderate or null vocabulary thresholding 5) k* dimensions in spectral  
dataspaces, 6) a weak influence of cosine thresholds, where they have to be.

- The results on Re8 and Ng20 corpora are positively impacted by a wide variety of method families (spectral first,  
then standard, and kernel too, to a much lesser extent), of algorithms (K-Means in the case of Ng20,  HC-Ward and  
NMF in the case of Re8, HC-average also to a much lesser extent).

Now let  us  investigate  what  the  maximum index values  mean in  the  real  world,  coming back to  the  data.  The 
correspondence table between classes and best cluster partition for Ng20 corpus (see figure 29) shows off a "snake"  
structure, more than a diagonal one: some clusters totally or partially correspond to several classes, and conversely.  
The #3 and #9 classes are dispersed through many clusters. The global 0.62 NMI and 0.57 Purity are not so good, after  
all, and this is confirmed by the 0.53 mean F-score. The reasons of the divergence between man-made categories and 
clusters should be thoroughly investigated in relation to experts of the application field, by examining for example the  
case of classes 3 and 9. This process may perhaps converge to a consensual "ground truth", or diverge, showing off the  
limits of the sole textual information - or the limits of a weakly linguistic term extraction, in the present case ?

Figure 29 - Cross tabulation of clusters vs. classes on best-NMI run of 20 NewsGroups corpus. At left hand: classes; at 
right: clusters
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To come back to figures 1 to 28, the evenness of many visually eye-catching weird observations shows that non-
clearly elucidated phenomena and interactions are at work: e.g. the role that could be played by the size unevenness 
and number of the clusters, by the size of the vocabulary, by the type and style of texts, when matched against multiple  
potential classificatory points of view, by density contrasts in dataspaces, and so on. This opens up a whole unexplored 
research field.

Aside from that, let us search for commonalities. Examining the "Top" runs of each corpus (ranked by decreasing  
NMI values), a few common behaviors emerge.

- Partial commonalities: Kernel HC Ward is a clear winner in Re8 context. It ranks in the honorable 60 th/246 in the 
ACM one, but in the “last-10” for Ng20. The combination NMF in Okapi dataspace with non-truncated vocabulary 
overwhelmingly dominates in Ng20 context, ranks high for ACM (in the 30 th positions upon 246) but not so high for 
Re8 (in the 120th upon 237).

In our present state of knowledge, the variability of these results across corpora is such that it seems too early for  
issuing refined recommendations on the optimal use of this or that algorithm.

-  Global  commonalities:  the  best  compromise  we  find  is  to  combine  Ward  Hierarchical  Clustering  with  cosine  
measures in the above-mentioned Correspondence Analysis dataspace, with a number of factors possibly exceeding k* 
or 2k*,  which is  an advantage when the "real" number  of clusters  is  unknown, and seemingly with no decisive  
influence of the term threshold. In this case, the mean ratio to the best-performing run in terms of NMI is around 95%. 

Another compromise is to combine Spectral K-Means with cosine measures in Correspondence Analysis dataspace. In 
this case, the mean ratio to the best-performing run in terms of NMI decreases to 87%. This combination is fast (12"  
per 20-pass run for the 19 000 Ng20 documents) and it costs O(#documents, #variables) computation time; it saves  
storage resources, as 25% of the original vocabulary gives the best results. 

Another acceptable option is to use spectral HC-Ward in Laplacian Okapi-weighted space, which ranks first for Re8  
corpus and performs correctly otherwise – its mean ratio to the best-performing run amounts to 91%. 

The main problem for one to follow these recommendations is to build the spectral space(s) for real-life data. In many 
computer languages indeed, efficient sparse Singular Value Decomposition procedures exist, appropriate when the  
problem is to draw a limited number of main eigenvalues and eigenvectors from huge datatables, which is the case in 
the present study. Otherwise parallel graphics co-processors may be dedicated to this task. 

We are  not  aware of  any use of  CA factor space for  spectral  K-means yet,  not  to mention spectral  hierarchical  
clustering, and these original combinations will be the only cautious recommendations we could issue by now. 

4 - Conclusions and perspectives

We hope we have brought some clarification to the problem of evaluating text clustering procedures, by considering  
separately the algorithms and the dataspaces in which they operate. We have achieved some 600 runs of a dozen 
algorithms and variants, in a few tens various dataspaces, on three prototypical and public access test corpora. We  
have brought to light an unexpected variety of optimal combinations of methods and dataspaces, from which we have  
derived  three  cautious  recommendations.  The  variety  of  possible  transformations  and  parameters  requires  a  
considerable continuation effort for improving our understanding and mastery of artificial vs. human categorization 
processes. We hope that this empirical survey will contribute to such an issue. In a modest first step, we will explore 
the influence of linguistic pre-processing: choice or elimination of word categories, comparison between taking into 
account multi-word expressions and kernel expansion of uniterms. 
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