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ABSTRACT

Water spectral indices can enhance the difference between water bodies and background features. Thus, they
have been widely used to extract and map surface water bodies based on multispectral satellite imagery. The
urban scene is very heterogeneous since the surface is composed of a vast diversity of man-made objects, often of
mixed distribution. Urban surface water mapping faces an extreme overestimation phenomenon because certain
types of objects such as shadow, dark roads and some artificial features may return similar values to water bodies
after an index computation. This study proposes a noise-prediction strategy to eliminate such misclassified
nonwater areas in an automated way. Constrained energy minimization (CEM), a typical sparse target detection
algorithm that does not need any background information, is utilized to draw the possible distribution of noise
based on prior noise samples. The initial noise samples are automatically extracted by calculating the difference
between two water indices widely accepted in urban scenes, namely, the modified normalized difference water
index (MNDWI) and the automated water extraction index (AWEI). Recently freely available Sentinel-2 multi-
spectral satellite imagery, with high spatial resolution (up to 10 m) and high repeated global coverage (every
5 days), was adopted, considering its potential on urban land cover mapping. Compared with the AWEI based
approach, the results show that the proposed noise-prediction approach obtained an improved overall accuracy
(increased Kappa coefficient by 0.07 on average), dramatically enhanced user accuracy (by 12.47% on average)
with reduced noise, and simultaneously slightly decreased producer accuracy (by —1.19% on average). That is,
the proposed method possesses an improvement of the misclassification of nonwater bodies to water bodies and
a suppression of the missing of water body extraction at the same time. Finally, the comparative results, with the
varying water index segmentation thresholds (—0.2 to 0.3) and an automatic Otsu threshold, indicate the ro-
bustness to the threshold of the proposed approach.

1. Introduction

2 (Du et al., 2016; Yang et al., 2017) multispectral imagery.
A high extraction accuracy has been achieved in the mapping of

Urban surface water bodies, which significantly influence public
health, living environments, regional climate, and the urban heat island
effect, are important components of an urban environment (Brazel
et al., 2009). Rapid urbanization increasingly results in the damage and
decline of urban surface water bodies (Du et al., 2010). The measuring
and monitoring of urban surface water using remote sensing technology
is therefore an essential topic. In particular, the use of freely available
high-spatial resolution optical satellite data is relevant (Pekel et al.,
2016). Such data include the images obtained by the Landsat series
(Tulbure and Broich, 2013; Singh et al., 2015; Acharya et al., 2016),
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (Sivanpillai and Miller, 2010; Zhou et al., 2014), and Sentinel-

surface water bodies, including lakes (Bhardwaj et al., 2015), rivers
(Jiang et al., 2014), coastlines (Li and Gong, 2016) and water bodies in
rural areas (McFeeters, 1996), under a relative homogeneous back-
ground from remote sensing imagery with high spatial resolution.
However, urban surface water mapping still faces the dramatic over-
estimation phenomenon (Zhou et al., 2014) because of the hetero-
geneous and mixed background scenes. The commission errors derive
from the vast diversity of built-up areas, especially the low-albedo ob-
jects that are typically presented as shadow areas and bituminous
streets.

The use of the water index is currently accepted to enhance the
differences between water and nonwater bodies based on combinations
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Comparison of typical water indices in the urban environment and applicable satellite imagery.

Water indices Equation Merits Noise source in urban Applicable multispectral
scene sensors
NDWI G —NIR Common bands necessary Built-up land features Landsat 8
G+NIR Sentinel-2
ASTER
WorldView-2/3
SPOT 6/7
Pleiades-1
MNDWI G — SWIRL Improved contrast value between the built-up land and water ~ Shadow, roads, and other =~ Landsat 8
G+ SWIRL dark objects Sentinel-2
ASTER
WorldView-3
AWEI, ¢, 4% (G — SWIR1) — (0.25 X NIR + 2.75 X SWIR2) Enhanced separability between water, dark surfaces and Some shadow and low Landsat 8
G+ NIR + SWIRL + SWIR2 other nonwater surfaces albedo surfaces Sentinel-2
ASTER
WorldView-3
AWEIg, B+2.5x G~ 15X (NIR + SWIR1) -025x SWIR2  Further improvement of accuracy by removing shadow pixels ~Snow, ice and high albedo  Landsat 8
B+ G+ NIR + SWIRL + SWIR2 that AWEL,y, may not effectively eliminate built surfaces Sentinel-2

WorldView-3

Nodes: In the equations, B, G, NIR, SWIR1 and SWIR2 indicate the reflectance value of spectral bands of Sentinel-2: band 2, band 3, band 8, band 11 and band 12.

of two or more spectral bands using various algebraic operations. The
well-known normalized difference water index (NDWI) (McFeeters,
1996) is sensitive to built-up lands and frequently results in the over-
estimation of water bodies in urban areas (Huang et al., 2015). The
modified NDWI (MNDWI) (Xu, 2006) is mostly used in urban scenes to
improve the separability of the built-up areas. The recently developed
automated water extraction index (AWEI) (Feyisa et al., 2014), high-
lights the water bodies in urban areas over shadow and dark surfaces. It
consists of two separate indices: AWEI,g, for urban areas where shadow
is not an important factor and AWEI, in urban areas with dramatic
shadow areas. Table 1 summarizes the merits and possible noise source
for these water indices in the urban environment. Water indices map
multiband information to a single-band image with bimodal histogram
characteristics. A binary threshold is then normally utilized to segment
the pixels of the water bodies from the background. The pixel-level
cutoff segmentation evidently requires improvement by combining with
other techniques, particularly in the case of involving complex urban
backgrounds. Multiscale object-level segmentation is commonly uti-
lized to improve pixel-level extraction (Zhou et al., 2014). Spectral
mixture analysis of mixed urban land-water pixels is performed in
water abundance estimation (Xie et al., 2016; Halabisky et al., 2016).
Machine learning approaches such as SVM (Sun et al., 2015), boosted
random forest classifier (Ko et al., 2015), and deep learning (Yang et al.,
2015) are also adopted.

Although great progress has been achieved in the area of urban
water extraction, the overestimation of urban surface water bodies re-
mains an issue because of the multicomponent features of urban scenes.
Fisher et al. (2016) compared the popular water indices and concluded
that the combination of highly reflective surfaces, dark surfaces, and
shadows in urban areas could create false positives in all these indices.
Currently, the commission errors from the similarity of shadows to
water have attracted much attention (Pekel et al., 2016; Verpoorter
et al., 2012). Although terrain shadows can be theoretically identified
by simulating hill-shading with a DEM and the solar azimuth and ele-
vation at the time of image acquisition (Feng et al., 2016; Verpoorter
et al., 2012; Yamazaki et al., 2015), the urban shadows were usually
regarded as the commission error for the water extraction (Muller et al.,
2016). For shadow areas, some research combined the shadow detec-
tion approaches, such as the shadow index (Huang et al., 2015) and the
relationship with buildings (Yao et al., 2015) to reduce the false alarms
of urban shadows to some degree. Besides, Pekel et al. (2016) utilized
HSV-based classification and the time dimension to distinguish the
urban permanent water bodies and urban shadows. But seasonal water
detections within urban areas remain problematic, because these pixels
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will move between land and water in multispectral feature-space over
time even in the absence of shadow.

Actually, for the urban surface water mapping, important additional
errors also derive from urban structures, such as dark roads and highly
reflective surfaces (Muller et al., 2016). To the best of our knowledge,
no existing approach for urban surface water mapping utilizes multi-
spectral satellite imagery to extract water information while suppres-
sing the false detection of various types of built-up areas.

In this study, we propose an automated noise elimination strategy
by predicting a possible noise map, whose pixels may possess a similar
response to water bodies according to a water index calculation. Fig. 1
shows the original spectral curves (including the VIS, NIR, and SWIRs
bands) and calculated water indices (including NDWI, MNDWI,
AWEIL,, and AWEIy,) for some typical objects (water bodies, shadows,
roads, high-albedo objects, built-up areas, and vegetation) in an urban
scene. The water index maps multi-dimensional reflectance values to a
single-band spectral-index map and it is easy to misclassify certain
types of objects that possess similar responses to water bodies. The
approach mainly considers the following two factors: (i) No water index
can entirely draw a line with a given cutoff threshold between water
and nonwater bodies (Table 1). Certain types of objects obtain similar
index values to those of water bodies via an algebraic operation of
multispectral bands. This condition is also true for the recently devel-
oped AWEI, which still cannot exclude all the noises in the obtained
water maps even with an optimal threshold. (ii) Different water indices
include various types and varying degrees of noise. A comparison shows
that MNDWI and AWEI can effectively remove the effect of the built-up
areas (Li et al., 2016). The difference obtained by excluding the MNDWI
images with AWEI images can be regarded as noise. Such noise samples
indicate the presence of certain pixels of similar characteristics to those
of water bodies, and can serve as training samples in predicting the
possible distribution of noise in an entire image.

Constrained energy minimization (CEM) (Harsanyi, 1993) is a target
detection approach originally dedicated to hyperspectral remote sen-
sing imagery when a detected target is generally present in a small
number of pixels in a scene. (Gao et al., 2015). This approach is in-
creasingly utilized in multispectral images for extracting small objects,
particularly for sparse mineral occurrence mapping, including iron
mineralization mapping (Mazhari et al., 2017), alteration mineral
mapping (Zhang et al., 2007), and hydrothermal alteration mapping
(Zhang and Zhou, 2017). Under the assumption of a low-probability
distribution for the target in an image, the CEM detector can distinguish
the target of interest from the background using only prior spectral
knowledge of the small target.
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Fig. 1. The original spectral curves and calculated water indices for some typical objects in an urban scene. The value of the Y-axis indicates the BOA values for the
original spectral bands (which is between 0 and 1) and the normalized values for the water indices (which is between —1 and 1).

In this paper, noise is defined as an object with similar digital values
(normally positive values) to those of water bodies in an image of a
certain water index. Noise is sparsely distributed in an image of a low-
probability distribution. These characteristics match well with the CEM
technique, which only requires a portion of noise samples obtained by
the difference between two water indices, namely, AWEIL, and MNDWI.

Thus, this work aims to improve urban surface water mapping by
suppressing noise in heterogeneous urban scenes, which consist of
water bodies, vegetation, soil, roads, building roofs, and shadows. The
proposed approach is expected to generate accurate urban surface
water maps in a semi-automated way and regardless of the complexity
of the urban environment. The overall workflow of the proposed
method is shown in Fig. 2. Taking six separate cities in China and
France as study areas, freely available Sentinel-2 top-of-atmosphere
(TOA) reflectance images are preprocessed into the bottom-of-atmo-
sphere (BOA) reflectance data with uniform spatial resolution in the
official SNAP software (Section 2). The proposed method is conducted
in two remote sensing image processing platforms, namely, ENVI for
the pixel-oriented process and eCognition for the object-oriented ap-
plication. (i) The noise region of interest (ROI) is initially obtained by
the differentiation of the MNDWI and AWEI, water maps and classified
into two subclasses by an unsupervised classification, namely, low-al-
bedo objects, which are typically shown as shadows and bituminous
streets, and extremely high-albedo objects (Section 3.1). (ii) The CEM
target detection approach is then employed to build the possible noise
map, which presents the potential to be included in a water map and
should be eliminated (Section 3.2). (iv) The final water map is created
by eliminating the noise from the AWEI, water maps. In addition, two
object-oriented water extraction methods, namely, eCognition com-
mercial software and SVM classification, are adopted to compare and
evaluate the proposed approach by the confusion matrix and Kappa
coefficient (Section 3.3). The comparative results are displayed in
Section 4, and the effect of varying threshold values of water indices on
the proposed approach is discussed in Section 5. Finally, Section 6
presents the conclusions and future works.

2. Study areas and materials

The study areas (Fig. 3) comprise the urban areas of six separate
cities in China and France, namely, Beijing, which is located inland
with a humid continental climate; Yantai, which is a coastal city in

transition between a humid subtropical and humid continental regime;
Changsha, which is located in the river valley plain with a humid
subtropical climate; Yangjiang, which is situated in a coastal area with a
humid subtropical climate; Lyon, which is located at the confluence of
the rivers with a humid subtropical climate; and Strasbourg, whose
position is far inland with an oceanic climate. Table 2 presents the main
water bodies and background features for these study areas. The water
bodies mainly include the river flowing through the cities, urban lakes,
and a few sparsely distributed pools. The extensive occurrence of high-
rise buildings in Beijing, Changsha and Yantai brings an abundance of
shadowed areas, while the shadow effect is insignificant for the other
three cities. For all study areas, there exists a vast diversity of the built-
up areas with different types of spectral features, including the dark
roads and very-high albedo objects.

The Sentinel-2 mission carries a multispectral instrument (MSI) with
13 spectral bands spanning from the visible spectrum (VIS) and near
infrared (NIR) to the short wave infrared (SWIR) at different spatial
resolutions on the ground ranging from 10m to 60m (Drusch et al.,
2012). The mission consists of two satellites, namely, Sentinel-2A,
launched on June 23, 2015, and Sentinel-2B, launched on March 7,
2017. These satellites provide a global coverage of the Earth's land
surface every five days. The Sentinel-2 satellite images (Fig. 3) used in
this study were collected on May 3, 2016 (Beijing); October 10, 2016
(Yantai); December 9, 2016 (Changsha); February 14, 2017 (Yang-
jiang); April 13, 2017 (Lyon); and April 4, 2017 (Strasbourg), under
clear weather conditions. The Sentinel-2 level 1C dataset was the
standard product of the TOA reflectance freely downloaded from the
Sentinels Scientific Data Hub (https://scihub.copernicus.eu/dhus/#/
home) and then was preprocessed by the official software Sentinel
Application Platform (SNAP). The official atmosphere correction
model, Sen2Cor,' was utilized to transfer the TOA reflectance to the
BOA data. In this study, only VIS, NIR, and SWIR bands were utilized.
The two SWIR bands in 20 m were resized to 10 m by the resampling
tool in SNAP, which divided the pixel on 4 pixels with the same values
of gray to maintain the same spatial resolution as the VIS and NIR
bands.

1 Sen2Cor. http://step.esa.int/main/third-party-plugins-2/sen2cor/. Last ac-
cessed 2017/09/05.
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Fig. 2. Workflow of the proposed urban surface mapping approach based on noise prediction strategy. All three thresholds, including the water index segmentation,
low threshold and high threshold for noise mapping, are provided with the default recommendation values.

3. Methods
3.1. Water indices and noise ROI generation

Two urban water indices, namely, MNDWI and AWEL,, were in-
itially calculated to enhance the difference between water and non-
water bodies and to generate two initial water body maps. Water bodies
tend to positive values in the MNDWI and AWEIL,, whereas soil, ve-
getation, and built-up classes are expected to hold negative values (Xu,
2006; Feyisa et al., 2014). Thus, the normally empirical threshold is
zero, which is adopted in this study. On the basis of the binary
threshold (zero), the initial water map was obtained via object-oriented
multiscale segmentation and classification to replace the direct pixel-
level surface water mapping. Homogeneous blocks were built using
multiresolution segmentation in eCognition software. Some blocks were
categorized as water when their spectral mean value is positive. An
integration can eliminate the dramatic “salt-and-pepper phenomenon”
that consists of sparse pixels and improve the time efficiency of sub-
sequent map analysis processing in vector levels instead of raster image
spaces.

In this study, noise refers to nonwater built-up areas, most likely
dark objects and very high-albedo areas, which possess a positive re-
sponse similar to surface water bodies in the water index image.
Although the water index attempts to enhance the difference between
water bodies and background features, it inevitably mixes some non-
water pixels with water bodies (Fig. 1), which are mapped to a section
under similar values via the combination of several bands. Both
MNDWI and AWEI, map some of the extremely high-albedo built-up
areas into positive values and misclassify them as water bodies to
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different degrees (Fig. 4). MNDWI also easily misclassifies shadow and
dark roads into water bodies, while AWEIL, suppresses this type of noise
to some extent. Considering the overestimation fact of the urban surface
water extraction, the difference between the water map from MNDWI
and that from AWEI, denotes a portion of the noise area. In view of the
typical spectral difference between the two types of noises in the ori-
ginal multispectral image, we utilize an unsupervised ISODATA classi-
fication to obtain two types of noise ROI, namely, low-albedo noise and
extremely high-albedo noise (Fig. 5 left).

3.2. CEM and noise detection

The CEM algorithm (Harsanyi, 1993) can detect certain type of
known targets by maximizing the responses of the target spectra and
suppressing the responses of unknown background signatures (Mazhari
et al.,, 2017). Under the assumption of low-probability targets in an
image, the CEM detector can effectively distinguish the target of in-
terest from the background (Ji et al., 2015; Chang and Heinz, 2000)
using only the prior knowledge of the target (Marwaha et al., 2014).
These characteristics agree with our goal for noise extraction: (i) the
noise are small blocks in sparse distribution, (ii) only the noise ROI is
available for the detection of similar targets in the current work, and
(iii) the categories and samples of heterogeneous background are un-
necessary and unavailable.

Assuming the multispectral image data set is written as X = {xy,Xa,
..., Xn}, where x; = (X, X2, ...,xz) for 1 <i<N is a L-dimensional
vector, N is the total number of pixels, and L is the number of bands
(generally L < N). In the CEM algorithm, only target spectral signature
(noise ROI) is given, denoted as d = (d;,ds, ...,d;)” and is known as a
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Fig. 3. Study areas and imagery materials. The study cases are urban areas of Beijing, Yantai, Changsha and Yangjiang, China, and Lyon and Strasbourg, France. The
images are shown with a pseudocolor composite of bands (8, 4, and 3) of the Sentinel-2 MSI BOA data.

priori, and any prior knowledge is not required, e.g., multiple targets of
interest or background. The CEM is used to design an FIR linear filter
w = (W1, Ws, ...,w;)” that keeps the output energy of the target at unity
and suppresses the output energy of the background at the same time.

The energy of one pixel can be evaluated by a scalar value
Yi= o 1'wpeg = wix; (1 < i < N), and the objective is to find operator
w to satisfy two constraints: one minimizes the total output energy for
all pixels (E = %;—1"y;?); the other is that when the operator is applied
on the target signal (d), the output energy is 1. Correspondingly, an
optimization problem is defined as:

.
i=1

ZIL—1 d,wl =dTw=1

)7 = minwTRw
w

(€8]

where R = %xi x, the solution to this constrained minimization pro-
blem is given by (Harsanyi, 1993):
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Rld

w, = —
CEM T dTR-d

(2)

In practice, the pixel energy of the Sentinel-2 image X is output by
CEM filter as wcga™ X, where wgy is calculated according to the noise
samples d. The larger the pixel output energy achieves, the greater the
probability of the noise is. Otherwise, the pixel has lower probability as
noise. The noise in urban scene may consist of extremely high-albedo
areas and dark areas, two CEM filters are adopted to generate their
noise maps, respectively. The prior knowledge of the two types of initial
samples has been obtained (Fig. 5. Left).

The extremely high-albedo noise shows different spectral informa-
tion from that of water bodies in the original multispectral image. The
minimum noise fraction transform of the original multispectral bands is
utilized to obtain the irrelevant bands for CEM calculation, because
adding linearly irrelevant data to multidimensional data can improve
the performance of CEM (Geng et al., 2014). A loose CEM detection
threshold is recommended and defined (default value of 0.4).

The low-albedo built-up areas may show similar spectral curve to
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Table 2
The compositions and statistics of the main land cover of the study areas.
Study area Water Background
Objects Area (km?)  Objects Area (km?)
Beijing Sparsely distributed man-made lakes, aqueduct and moats 3.9 Built-up areas including many high-rises and dark roads 109.2
Like Kunming Lake, Yuyuan Pond, Houhai Lake Urban green spaces
Extreme shadows
Yantai Jiahe River and Taozi Bay 18.2 Mountainous and hilly areas 117.6
Built-up areas including some high-rise buildings
Vacant land
Some shadows
Changsha Xiang River and Liuyang River 15.0 Built-up areas including high-rise buildings 127.5
Some urban lakes, such as Houhu Lake, Xianjia Lake, and Yuejin Lake Vacant land
Extreme shadows
Yangjiang Moyang River 3.3 Low-rise buildings 41.1
Yuanliang Lake, Dutian Reservoir A small amount of shadows
Lyon Sadne and Rhone rivers 9.3 Low-rise buildings 151.0
Golden Head Park Cropland
Grand Parc Miribel Jonage A small amount of shadows
Strasbourg Rhine River 7.0 Low-rise buildings 132.5
11l River flowing through the city Cropland
Baggersee Lake A small amount of shadows
AWEIsh with an empirical threshold of zero MNDWI with an empirical threshold of zero
116°18'E 116°19'E 116°18'E 116°19'E
39°56'N 39°56'N

Background image: ture-color composition Blue blocks: water areas

Location: Beijing, China Red edges: noise areas

1km

Fig. 4. The overestimation phenomenon utilizing water index-based approaches. The noises consist of highly reflective surfaces, dark surfaces, and shadows in urban

areas, yet their distributions are different for the two water indices.

water bodies in the original bands. To improve the performance of CEM
on dark areas, we expand the dimensionality of the multispectral image
with useful spectral index data (Ji et al., 2015). Three widely accepted
shadow indices (Egs. (3)-(5)) in three different color spaces are adopted
to enhance the difference between water and shadow-like low-albedo
areas: (i) A shadow index (SI)? considers the low reflectance of shadows
in the blue, red, and green spectral bands. (ii) The C3* index is used in
shadow detection in the nonlinear C1, C2, C3, and C4 color spaces
(Besheer and Abdelhafiz, 2015). (iii) A normalized saturation value
difference index is constructed to identify shadows (Ma et al., 2008),
which exhibit high saturation (S) and low value (V) in the case of the
HSV color space. A high CEM detection threshold is recommended and
defined (default value of 1.2).

2Shadow index (SI). http://www.spaceanalyzer.com/index.php/shadow-
index-si. Last accessed 2017/6/14.

SI =30 - R)*(1 — G)x(1 — B); &)

. B
Cy = arctan| ———— |;
(max(R, G,NIR)) 4

5— % V= max(R,G.B), S = max(R, G, B) — min(R, G, B)

+V 14

NDVDI =

(5)

The obtained noise map (Fig. 5. Right) indicates the possible dis-
tribution of noise in the water maps that utilize the water index-based
approaches. That is, the corresponding areas should be eliminated in
the original water maps, where may possibly show a similar digital
value to those of water bodies according to the water index calculation.

3.3. Water surface mapping and accuracy assessment

Water surface mapping can finally be obtained by erasing the noise
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Fig. 5. The image in the left shows the noise samples obtained by considering the difference between the AWEIy, and MNDWI water maps. The green and purple
edges contain two types of noises determined by an unsupervised classification, namely, low-albedo and extremely high-albedo built-up areas. The image in the right
presents the possible noise map via CEM prediction. The green and purple areas show the possible noise areas from low-albedo and extremely high-albedo objects,
respectively, which may achieve positive values via the water index calculation. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 6. Workflow of comparative approaches: one is the classic cutoff threshold segmentation based on AWEI, and the other is the SVM classification by the manual
drawing of training samples. Both approaches are also conducted in the object-oriented level.

areas from the AWEI, water map. The proposed method is compared
with two typical water mapping approaches, that is, the initial object-
level AWEI, without improvement by the proposed noise elimination
procedure and the object-level SVM-based water mapping with the
manual selection of training sets (Fig. 6). The comparison between the
proposed approach and AWEIy, method is conducted in artificial
thresholds varying between —0.2 and 0.3 and in automated binary
segmentation threshold. “True” water bodies of the six cities are
manually digitized in ArcMap through the visual interpretation process
of the experimental Sentinel-2 images in the scale of 1:4000, which is
accurate enough to measure the mapping results in the pixel level.
Four unit rates, namely, producer's accuracy (PA), user's accuracy
(UA), overall accuracy (OA), and kappa coefficient (Kappa; Egs. (6)—(9),
respectively) are used to assess the accuracy and evaluate the final
water maps produced by the different approaches. PA represents how
well the reference pixels of the surface water body are classified. That
is, for the water body in the reference plots, accuracy relates to the
number of pixels on the map that are correctly labeled. UA represents
the probability of a pixel being classified into the water category. That
is, for the detected water body, accuracy relates to the number of pixels

on the map that are actually water bodies in the object space. OA and
Kappa present the general accuracy for a certain approach.

TP
A = ————
TP + FN (6)
TP
A= ———
TP + FP @
TP + TN
OA=—"—"""
T (€)]
Kappa = T X (TP + TN) — (TP + FP) x (TP + EN) + (FN + TN) x (FP + TN)

T X T — (TP + FP) X (TP + FN) + (FN + TN) x (FP + TN)
(C)]

In Egs. (6)-(9), TP (true positives), FN (false negatives), FP (false
positives), and TN (true negatives) are the four different types of pixels
determined by comparing the extracted water body with the reference
map. The TP, FN, FP, and TN indicate the number of correct extractions,
undetected water pixels, incorrect extractions, and pixels of nonwater
bodies that are correctly rejected, respectively. T is the total number of
pixels in the experimental Sentinel-2 images.
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Fig. 7. The final water maps utilizing the proposed method and two classic approaches. The blue shows the accurate detected water bodies (TP), green shows the
missing water bodies (FN), and red shows the error detection (FP). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

4. Results
4.1. Water mapping results

The experiments were conducted using the Sentinel-2 MSI images
(Fig. 3) to comparatively evaluate the performance of the proposed
approach for water body extraction in urban environments. The images
for the four study areas were processed by object-oriented AWEI,-
based binary segmentation in eCognition, object-oriented SVM water
mapping in ENVI, and the proposed noise prediction approach (Fig. 7).

Generally, all of the methods can extract typical and clear water
areas, including coastal areas, lakes, and wide rivers. The SVM-based
approach can extract most of the water areas even for the small rivers in
Beijing and Strasbourg, sparse pools in Yangjiang, and existing phyto-
plankton in Yantai. In comparison with the classic AWEI, extraction,
the proposed noise elimination approach reserves most of the water
areas after the post-processing in the noise elimination. That is, the
obtained noise candidate map can effectively avoid true water areas
and improve the noise elimination process. The only evident error ex-
clusion is observed in some lakes in Changsha.

For the classic AWEIL;, and SVM approaches, the sources and degrees
of noise are considerably different, and they change in different study
areas due to the complexity of the surface environment. The SVM and
AWEI;, work best in Yantai and Yangjiang, respectively. Extreme noise
exists in the most complex scenes of Beijing and Changsha, which in-
clude extremely high-albedo building roofs and the widely existing
shadow areas of high-rise buildings. For the proposed approach, the
over-detection phenomenon is dramatically improved in all six study
areas. Most of the sparse noises are eliminated, including the low-al-
bedo and extremely high-albedo built-up areas with similar values to
those of the water index.

4.2. Accuracy assessment

Table 3 summarizes the extraction accuracy of the water mapping
with the classic AWEI,, SVM, and the proposed approach. The detailed
confusion matrixes of the proposed approach are included in the Sup-
plement. A. The high OA indicates the feasibility of the two classic

Table 3
Water mapping accuracy assessment results on the Sentinel-2 image.
Study area Approach PA UA OA Kappa
Beijing Proposed 90.30% 95.66% 99.53% 0.927
AWEIg, 90.72% 67.93% 98.21% 0.768
SVM 95.61% 52.32% 96.86% 0.661
Yantai Proposed 92.43% 97.46% 98.66% 0.941
AWEI, 93.13% 90.92% 97.83% 0.908
SVM 96.28% 96.66% 99.05%  0.959
Changsha Proposed 93.87% 97.01% 99.05% 0.949
AWEI, 98.77% 71.92% 95.79%  0.809
SVM 96.06% 92.75% 98.79%  0.937
Yangjiang Proposed 93.44% 99.70% 99.50% 0.962
AWEI, 93.47% 97.33% 99.33%  0.950
SVM 96.14% 84.15% 98.38%  0.889
Lyon Proposed 96.23% 88.05% 99.01% 0.914
AWEI, 96.96% 81.12% 98.50% 0.875
SVM 98.21% 80.40% 98.49% 0.876
Strasbourg Proposed 89.62% 90.88% 99.01% 0.897
AWEI, 89.66% 84.80% 98.66% 0.865
SVM 97.71% 75.58% 98.28%  0.843
Average of the six study areas Proposed  92.65% 94.79% 99.13% 0.932
AWEI, 93.79% 82.34% 98.05% 0.863
SVM 96.67% 80.31% 98.31% 0.861

approaches and the newly proposed approach. By comparing the water
index-based methods with or without the proposed noise elimination,
Kappa improves after noise elimination and achieves robust results,
especially for the study area of Beijing and Changsha with the more
complex surface scene. The PA slightly decreases by approximately 1%
in most cases, thereby indicating that water and noise pixels are well
distinguished, and by 5% in the worst cases (Changsha) because of the
error elimination of the ponds. The UA dramatically improves to ap-
proximately 90% or more for all the study areas, especially for Beijing
(from 67.93%) and Changsha (from 71.92%), where there are extreme
high-rise building shadows. These results agree with our aim, that is, to
eliminate noise (improved UA with 8.45% on average) and reserve
water bodies (slightly decreased PA with 1.14% on average) simulta-
neously. Generally, the SVM obtains the highest PA, and the UA is re-
lated to surface complexity. The SVM shows extreme overestimation
phenomenon in Beijing and Strasbourg with low UA accuracy, although
it achieves acceptable results for the other study areas. The perfor-
mance of the SVM also depends on the manual interaction of training
samples.

In addition, we also evaluated the study area of Strasbourg with the
official topographic and thematic data.® The reference data with two
different precisions (10m and 0.5m) are adopted: (i) thematic map
with the precision of 10 m, which is accordant with the utilized Sen-
tinel-2 image, and (ii) the topographic map with the precision of 0.5 m,
which includes the detailed urban streams. Table 4 displays the accu-
racy of the proposed method on the reference of the official data. The
high accuracy is obtained in the scale of 10 m, which reaffirms that the
urban surface thematic maps are of high quality with our efforts.
However, in the scale of 0.5 m, the PA accuracy is low, because of lots
of urban streams are invisible in the Sentinel-2 image.

5. Threshold discussion

The comparative results show that mapping of the urban surface
water bodies based on the proposed noise detection approach achieves
improved accuracy. The proposed approach can be conducted in an
automated way with several default thresholds in the water indices
mapping and CEM noise prediction.

In the workflow, the empirical threshold (zero) segments the ima-
ging of water indices. Threshold selection is a key step in extracting
water pixels from water index images. The effects of the different
thresholds of water indices must be addressed.

In this study, we adopt changing thresholds (such as, —0.2, —0.1,
—0.05, 0.05, 0.1, 0.2, and 0.3) and an automated Otsu threshold to
compare the results. For the Otsu adapting threshold, two different
thresholds of AWEI, and MNDWI (Table 5) were obtained and used to
calculate the noise.

Fig. 8 shows the changes of PA, UA, and Kappa in the six study areas
before and after the implementation of the proposed noise elimination
approach. The threshold 0 + 0.05 is robust for the proposed method
because it constantly achieves nearly optimal results. Thus, a high PA
should be maintained, and UA and Kappa should be improved to above
0.8. For the rigid thresholds larger than 0.05, water mapping can obtain
clear water areas and eliminate noise, thereby leading to insufficient
noise candidates for CEM detection. The rigid threshold excludes noise
directly but extremely limits the accuracy of PA. The typical examples
are Yantai and Beijing, in which PA and Kappa decrease with the

3 Eurometropole of Strasbourg. http://www.sig.strasbourg.eu/index.php?
page =opendata (Accessed on 08/25/2018).
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Table 4

Assessment of Strasbourg study area with the official data.
Reference data PA UA OA Kappa
10m 80.83% 94.15% 98.79% 0.864
0.5m 64.04% 97.08% 97.50% 0.760

Table 5

Autothreshold of two water index images by Otsu algorithm to calculate the
initial noise samples.

Beijing Yantai Changsha Yangjiang Lyon Strasbourg
AWEI, 0.166 0.452 0.405 0.202 0.154  0.289
MNDWI  0.148 0.195 0.234 0.079 0.021 0.092

increase in the cutoff threshold. For the thresholds smaller than —0.05,
the noise cannot be suppressed. In the cases of Beijing and Changsha,
these thresholds can eliminate noise to a certain extent. By contrast, the
thresholds fail to exclude noise in the cases of Yantai. Loose thresholds
can provide sufficient candidates, although extensive noise should be
eliminated. Besides, for the conventional index-based mapping, the
automated threshold can lead to good results. For the proposed ap-
proach, the adjusted Otsu threshold can improve the results to a certain
extent because it constantly shows an improved inflection point (black

AWEIsh = 0.166
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line in Fig. 8) in the accuracy curve. But the optimal Otsu threshold is
rigid for the proposed approach and cannot obtain sufficient samples
for CEM noise detection. That is, when a high segmentation threshold is
utilized, the water body recognition rate is relative low and the noise
samples obtained may be insufficient. Moreover, when a small
threshold is utilized, the water body recognition rate is high and ex-
treme noise needs to be eliminated.

Thus, the proposed noise suppression approach shows a relative
robustness against changing thresholds for water mapping and achieves
stable results with the empirical threshold (zero). If the traditional
AWEI is adopted, then the optimal threshold for different areas
changes. However, the effect of the threshold is relatively stable after
the proposed noise elimination post-processing, which can mostly bal-
ance PA and UA simultaneously.

The robustness to the thresholds of the proposed approach makes it
promising to be accomplished on large scales. We also conducted the
proposed method on some other cities (Melbourne, Ottawa and New
York) with the empirical threshold of zero (Supplement B). The current
global and national water maps have obtained good results in the non-
urban areas yet the results on urban areas still need improvement
(Verpoorter et al., 2012; Mueller et al., 2016; Pekel et al., 2016). To
apply our proposed strategy to improve the urban surface water map-
ping using the recently developed Google Earth Engine Development
platform (Gorelick et al., 2017), we are working on the combination
with the urban extent extraction approach (Trianni et al., 2015) and the
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Fig. 8. Accuracy assessment with different thresholds to water mapping by conventional AWEI and the proposed method. The proposed approach achieves the
optimal status generally in the default threshold of zero, while the conventional index-based approach tends to have different optimal thresholds according to the
different study areas. The vertical black lines indicate the results using automated segmentation thresholds, in which the conventional index-based approach reaches
a relatively high Kappa coefficient. But such optimal segmentation thresholds only bring improvement compared with the values nearby and cannot reach to the

optimal water mapping results for the proposed approach.
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Table 6
The thresholds for CEM noise prediction of the extremely high albedo and low-
albedo built-up areas.

Threshold Beijing Yantai Changsha Yangjiang Lyon Strasbourg
Very-high albedo 0.4 0.3 0.4 0.4 0.3 0.4
Low albedo 1.2 1.0 1.2 1.1 1.5 1.4

replacement of eCognition object-oriented segmentation with open-
source methodology (typically the SLIC superpixel approach (Achanta
et al., 2012)).

The other two thresholds in the paper are utilized to draw the
possible noise maps by CEM target detection. We recommend a low
threshold (default value of 0.4) for the extremely high-albedo objects
and a high threshold (default value of 1.2) for the low-albedo areas. The
specific thresholds adopted in the experiment for each study area are
displayed in Table 6.

6. Conclusions

This study aims to solve the overestimation phenomenon on the
urban surface water mapping in an automated way. The proposed ap-
proach obtained the initial noise samples by calculating the difference
between two typical water index maps and predicted the noise dis-
tribution by CEM sparse target detection algorithm. The noise samples
considered the different noise sources of the two typical water indices
and the misclassification of nonwater bodies because of the hetero-
geneous features in an urban scene. In addition, the CEM target de-
tection algorithm can distinguish the target of interest from the back-
ground using only prior spectral knowledge of the small target. Such
noise prediction strategy can be utilized for other object extraction
applications in which the overestimation is the main error source.

The results show the possibility of improving the misclassification of
nonwater bodies to water bodies, and suppressing the missing water
body extraction at the same time. Traditionally, overestimating or un-
derestimating water areas with a cutoff threshold setting is unavoid-
able. High PA accuracy generally indicates the loss of UA accuracy, and
vice versa. The proposed noise suppression approach is utilized in this
work to maintain a relatively high PA and to dramatically improve UA
to a certain extent. Taking several urban areas in China and France as
examples, the proposed noise prediction strategy improved the UA and
Kappa coefficient, on average, of 12.47% and 0.07, with a slight de-
crease of PA, on average, of 1.19%, compared to the conventional
method.

To achieve automation, we introduce an empirical threshold (zero)
for water mapping and noise sample selection. Through a comparative
assessment with varying thresholds (i.e., —0.2 to 0.3) and an auto-
mated threshold, the empirical threshold (zero) presents theoretically
and experimentally stable results. The high threshold (possible larger
than 0.2) cannot generate enough noise samples for the CEM detection,
while the loose threshold (possible lower than —0.1) may bring too
much noise that cannot be effectively eliminated.

This paper took Sentinel-2 image as dataset to explore its potential
on urban surface water bodies mapping. Sentinel-2 multispectral ima-
gery has advantages on spatial resolution and repeated coverage com-
pared to conventional freely available Landsat series imagery. Although
the spatial resolution has been improved to 10 m, the resolution is still
not fine enough to extract the small pools and brooks. The proposed
approach reduces the commission errors in the urban surface water
mapping using single data image, which benefits for the change de-
tection, seasonal water body extraction and flooding mapping. The high
repeated coverage of Sentinel-2 also provides the potential for time-
series analysis in the monthly scale. Moreover, our current work focuses
on the automated extraction of urban extent and the introducing of
open-source superpixel segmentation approach, which are the bases of
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applying the proposed method in the open-source Google Earth Engine
Development platform to realize large-scale and dynamic analysis.
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