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ABSTRACT

Light fields are 4D signals capturing rich information
from a scene. The availability of multiple views enables
scene depth estimation, that can be used to generate 3D point
clouds. The constructed 3D point clouds, however, generally
contain distortions and artefacts primarily caused by inac-
curacies in the depth maps. This paper describes a method
for noise removal in 3D point clouds constructed from light
fields. While existing methods discard outliers, the proposed
approach instead attempts to correct the positions of points,
and thus reduce noise without removing any points, by ex-
ploiting the consistency among views in a light-field. The
proposed 3D point cloud construction and denoising method
exploits uncertainty measures on depth values. We also inves-
tigate the possible use of the corrected point cloud to improve
the quality of the depth maps estimated from the light field.

Index Terms— Light fields, point clouds, depth estima-
tion, denoising

1. INTRODUCTION

Light field imaging has recently captivated the interest of both
research and industry due to numerous applications such as
view synthesis, augmented reality, and post-production. A
light field can be seen as capturing an array of viewpoints
(called sub-aperture images in particular in the case of micro-
lens based plenoptic cameras) of the imaged scene with vary-
ing angular coordinates, leading to a 4D representation of the
imaged scene, spanning spatial and angular dimensions [1, 2].
The availability of multiple views enables the computation of
scene depth that can then be used to construct a 3D model, e.g.
in the form of a 3D point cloud, thanks to the light field cam-
era parameters. However, 3D point cloud construction meth-
ods are prone to outliers caused by inaccuracies in the depth
maps arising from deficiencies in the depth estimation method
itself, from matching ambiguities, or from factors such as lens
distortion and sensor noise [3].

Methods proposed in the literature attempt to solve the
problem by either refining the depth maps, or the point clouds
themselves. Notable methods include the anisotropic denois-
ing method in [4] which uses L0 minimisation to recover
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sparse sharp features, assuming that the surface of common
objects is piece-wise smooth almost everywhere except for a
small number of sharp features. Outliers are removed in [5]
by employing a statistical analysis of the points’ geometri-
cal properties, while the approach in [3] employs geometric
and photometric consistency measures. The method in [6]
removes outliers using Robust Principal Component Analysis
(RPCA) and denoises the resulting point cloud with a bilateral
filter [7, 8]. However, these methods are usually designed in
the context of improving a particular task in a 3D reconstruc-
tion pipeline, such as surface reconstruction, or make explicit
assumptions on the input scene.

This paper considers the problem of denoising 3D point
clouds derived from depth maps estimated from light fields.
The method does not remove any points or perform explicit
smoothing as done in existing methods. Instead, the proposed
method attempts to correct the point positions by leverag-
ing the consistency among views and by considering both
geometric and photometric information. To the best of the
authors’ knowledge, the proposed approach: (i) is the first
method that considers point clouds of whole scenes (rather
than single objects only) generated from light field cameras,
and (ii) attempts to improve the position of outlier points,
rather than simply detect and remove them as done by ex-
isting methods. It is also shown that the proposed 3D point
cloud denoising method can be used in turn to improve the
quality of depth maps by re-projecting the ameliorated points
into the set of 2D planes.

The rest of this paper presents a description of the pro-
posed methods in Sections 2 and 3, followed by their eval-
uation in Section 4. Concluding remarks and proposals for
future work are finally given in Section 5.

2. 3D POINT CLOUD CONSTRUCTION USING
DEPTH UNCERTAINTY

The algorithm starts by first estimating disparity between
views using the ProbFlow optical flow estimation algorithm
[9], which also generates uncertainty measures on the es-
timated disparity values. The uncertainty estimation is ex-
ploited to combine the disparity maps obtained for each view
such that a value is extracted from the disparity map having
the highest estimated reliability.

Specifically, the disparity map for a given view can be es-
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Fig. 1: Framework: for each image, disparity maps are extracted from four views in the horizontal and vertical directions along
with uncertainty measures. The disparity maps are fused into a single map using uncertainty. The fused maps from all views
are then projected into 3D to yield the 3D point cloud, which is denoised. Detected outliers are represented in orange, which
are shown in green after the proposed method is applied.

timated from its 4 vertical and horizontal neighbours (see Fig-
ure 1), yielding four candidate maps. For each pixel with co-
ordinates c = (x, y), its final disparity value is taken from the
ProbFlow-generated map having the most reliable estimates
in a patch of size pr × pc centred on c. From this disparity
estimate sc, the depth value Zc may be computed as follows:

Zc =
b · f · fd ·max(H,W )

sc · fd · ss+ b · f ·max(H,W )
(1)

where W and H are the width and height of the captured im-
age, respectively, b is the baseline (in millimetres, mm), f is
the focal length (mm), fd is the focus distance (mm), and ss
is the sensor size [10]. The Xc- and Yc-coordinates may then
be obtained as follows:

Xc =
( x
W−1 − 1

2 ) · ss · Zc

f
, Yc =

( y
H−1 − 1

2 ) · ss · Zc

f
(2)

3. 3D POINT-CLOUD DENOISING

The fused disparity maps still contain several discrepancies
with respect to ground truth maps as a consequence of inac-
curacies in both the original disparity maps and the uncer-
tainty estimation. For instance, edges around objects tend to
be blurred, corresponding to a smooth transition from fore-
ground to background. This manifests in the point cloud as
sparse points which do not belong to any object in the 3D
space. To denoise the point clouds, the proposed method ex-
ploits the redundancy due to the fact that several areas of a
scene are captured by multiple cameras. These regions which
are assigned similar disparity values in the majority of views
yield areas of high point densities in the 3D space that can
be termed as inliers. On the other hand, any incorrect values
are likely to be contained within a few disparity maps only,

and are represented by points which lie in sparsely-populated
areas that appear to float in free space, called outliers (see the
orange points in Figure 1). While outliers could be removed,
as done by most works in literature, the re-projection of the
point cloud into 2D image planes would yield missing pixels.
Instead, the proposed method attempts to improve the posi-
tion of points deemed to be outliers, by comparing their geo-
metric and photometric properties with those of inlier points.

3.1. Outlier detection

We first need to classify each point as being either an outlier
or an inlier. This is done by exploiting information on local
densities of points, utilising the Statistical Outlier Removal
(SOR) filter proposed in [5] to exploit the differences in point
densities exhibited by inliers and outliers. While this method
was designed to remove outliers using statistical properties
of the distances among points, in the proposed approach it is
simply used to detect the outliers which need to be corrected.
Formally, a point i is classed as an outlier if the distance di to
its K nearest neighbours satisfies the following condition:

di ≥ µ( ~dK) +m · σ( ~dK) (3)

where ~dK is a vector containing the average distance of each
point to itsK nearest neighbours, µ(~x) and σ(~x) are functions
computing the average and standard deviation, respectively,
of the vector ~x, and m is the standard deviation multiplier.

3.2. Volume segmentation

Each 3D point must lie on specific rays emanating from the
camera viewpoints (i.e. from the pixels in the image planes of
the cameras). The position on this line is given by the depth
value of the 3D point. Hence, the true position of the outlier is
constrained to lie on this line, thereby significantly reducing



Fig. 2: Outliers reside on the red ray, and are located in a
frustum bounded by the yellow rays. Two clusters of inliers
are found within this frustum, depicted in blue.

the number of possibilities in the 3D space. The parametric
equation L(t) of a line in 3D may be given by:

L(t) = ~R+ ~V t (4)

where ~R = ~p1 is a point on the line, ~V = ~p2 − ~p1 is a vec-
tor parallel to the line containing the points ~p1 and ~p2 which
correspond to the end-points, and t is a scalar parameter rep-
resenting the position on the line [11]. Another observation is
that a point is likely to have a similar colour to neighbouring
points. Lastly, points should also be relatively close in terms
of their geometric distance to other visually similar points.

Given the above observations, the proposed method first
determines the ray on which an outlier point must lie, and
then determines nearby inlier points by constructing a frus-
tum around this line as shown in Figure 2. The projection
in the 3D space of the four neighbouring pixels (located at
the corners of the n × n window centred on the considered
pixel) in the disparity map yield four rays corresponding to
the boundary edges of the frustum.

The histogram of the number of points along the depth
axis is then computed, where a peak represents a cluster of
points. Due to the similarity in terms of colour among neigh-
bouring points, the RGB values of an outlier point are com-
pared to those of the inlier points (within each group) using
Euclidean distance, retaining only those points having a dis-
tance in this colour space that is less than an upper limit lc.

3.3. Point position improvement

Given the clusters of inliers, three approaches are then used to
correct an outlier’s position. The first approach determines if
the ray intersects an object that can be well represented with
a plane, such as a wall or floor. This is done by attempting to
fit planes to the points in a scene using the Random Sample
Consensus (RANSAC) method as implemented in the Point
Cloud Library [12]. Given a plane P defined as follows:

ax+ by + cz = q (5)

where q is a scalar, and a, b, c are the coefficients of the nor-
mal to the plane, the intersection of the plane P with the ray
L(t) is then found by first computing t:

t =
q − (ax1 + by1 + cz1)

ax2 + by2 + cz2
(6)

Substitution of t in Equation (4) then yields the coordinates
of the point where the ray L(t) and the plane P intersect, cor-
responding to the position of an object on the surface. Other-
wise, if the distance Di between the intersection of the plane
and the inliers is greater than a threshold lD1, the point is de-
termined to be too far away from similar inliers and the outlier
point is kept unchanged. Given points ~p1 and ~p2 defined in
Section 3.2 having coordinates (x1, y1, z1) and (x2, y2, z2),
respectively, the squared (perpendicular) distance between an
inlier ~p0 = (x0, y0, z0) and the ray L(t) is given by [13]:

D2
i = [(x1 − x0) + (x2 − y1)t]

2 + [(y1 − y0) + (y2 − y1)t]
2

+ [(z1 − z0) + (z2 − z1)t]
2

(7)
While the previous approach attempted to determine whether
an outlier belongs to a plane fitted to a large set of points, the
second approach uses a similar methodology but uses a plane
that is locally fitted to the inliers within each group using Sin-
gular Value Decomposition (SVD) [14]. The same threshold
lD1 is used to determine whether the new point coordinates
are too far away from the inliers.

Finally, if the above two approaches fail, the inliers are
not well-represented with a plane and may thus form part of
a curved surface. RPCA is employed to find the new point
coordinates in this scenario, which decomposes a matrix into
low-rank and sparse matrices as follows:

M = L+ S (8)

where M is the matrix representing the point cloud, L is the
low-rank matrix that can be considered to correspond to the
inliers, and S is a sparse matrix corresponding to the outliers
[6]. A threshold lD2 is used to determine whether the new
point coordinates are close enough to the inliers.

If plausible coordinates are found by any above method,
the coordinates which are the closest to the corresponding
cluster is selected and the outlier is set as an inlier. On the
other hand, if no method produces satisfactory coordinates,
the point is checked again in subsequent iterations (where an
iteration spans all the non-corrected outliers). Thus, each it-
eration increases the number of inliers that can be used to
correct the remaining outliers.

4. EVALUATION

Five scenes from the INRIA sparse synthetic light field
database1 are considered, each containing a 9 × 9 grid of
synthetic images at a resolution of 512× 512 pixels.

1Database will soon be made available at http://clim.inria.fr/
DataSoftware.html
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Table 1: Quality evaluation of estimated point clouds with results averaged over all views. The best results are in boldface.

Light fields Accuracy (1.0) Accuracy (5.0) Completeness (1.0) Completeness (5.0)
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Aretheuse 0.107 0.111 0.153 0.423 0.439 0.566 0.056 0.059 0.059 0.270 0.285 0.285
Chair 0.120 0.125 0.137 0.418 0.428 0.465 0.066 0.068 0.068 0.274 0.277 0.278
Lion 0.065 0.059 0.079 0.283 0.261 0.337 0.030 0.036 0.036 0.146 0.180 0.178

Philosophers 0.320 0.262 0.335 0.759 0.729 0.862 0.192 0.155 0.158 0.665 0.649 0.669
Toys cloud 0.202 0.210 0.253 0.613 0.618 0.725 0.133 0.140 0.141 0.549 0.569 0.585

Average 0.163 0.153 0.191 0.499 0.495 0.591 0.095 0.092 0.093 0.381 0.392 0.399

Table 2: Quality evaluation of estimated disparity maps with results averaged over all views. The best results are in boldface.

Light fields MSE BadPix (0.01) BadPix (0.03) BadPix (0.07) Q25
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Aretheuse 0.57 0.63 0.59 69.39 68.16 67.59 33.00 32.12 30.88 14.53 13.70 12.55 0.80 0.76 0.75
Chair 5.69 5.58 7.68 66.06 63.93 63.38 32.26 29.61 29.02 14.99 13.33 13.26 0.70 0.66 0.65
Lion 0.51 0.52 0.40 76.12 71.68 71.24 42.67 33.05 32.03 19.96 13.47 12.63 1.06 0.88 0.87

Philosophers 1.63 0.70 0.45 71.63 78.52 77.49 42.57 47.74 45.56 23.97 23.18 20.54 0.87 1.18 1.12
Toys cloud 0.68 0.75 0.60 78.90 78.12 77.70 48.48 46.80 45.60 24.84 23.00 20.96 1.21 1.16 1.13

Average 1.82 1.64 1.94 72.42 72.08 71.48 39.80 37.86 36.62 19.66 17.34 15.99 0.93 0.93 0.90

The ground truth and reconstructed 3D point clouds are
compared using the accuracy and completeness measures
as described in [15, 16]. the results are shown in Table 1,
where method A1 represents the point clouds derived from
the projection of the disparity maps computed by ProbFlow
[9], method A2 represents the point clouds derived from the
projection of the disparity maps fused using uncertainty es-
timation, and method A3 represents the point cloud derived
after the proposed denoising method has been applied.

Each type of disparity map is compared to the corre-
sponding ground-truth disparity map, using the commonly
used Mean Square Error (MSE), Q25, and BadPix(e) mea-
sures, where the latter computes the percentage of pixels
having an error larger than e. The results are shown in Ta-
ble 2, where methods A1 and A2 represent the disparity maps
obtained from ProbFlow and the disparity maps fused us-
ing uncertainty estimation, respectively, while method A3
denotes the re-projected disparity maps from the 3D point
clouds corrected with the proposed method.

All measures are averaged over all views in a scene. Val-
ues of the parameters are set to n = 17, lc = 20, lD1 = 40,
lD2 = 20, pr = pc = 15, K = 50, and m = 1.

As shown in Tables 1 and 2, the fusion of disparity maps
using uncertainty estimation does not always lead to improve-
ment in performance. This is mostly due to the measure of
uncertainty which is not always sufficiently precise. How-
ever, in most cases, it is evident that uncertainty estimation
can indeed improve the quality of both 3D point clouds and
disparity maps, and is thus an effective manner of combining
multiple candidate disparity maps.

Comparing the denoised point clouds and corresponding
disparity maps with the original versions (i.e. methods A3
and A2, respectively), it is also evident that the proposed de-
noising method is effective in improving the quality of the

point clouds and disparity maps. Indeed, the BadPix measures
(which use low error tolerances) indicate that improvements
can be made even at the sub-pixel level, despite the light fields
containing a substantial number of relatively large disparities
(in the range [−26, 12] pixels).

It is interesting to note that the proposed denoising
method is quite robust given that the objects within the scenes
considered are typically quite similar in terms of colour, thus
making it difficult to determine the object to which an outlier
should be assigned. This is also true for the ‘Chair’ light field,
which yields the highest MSEs for all methods. One reason
is that this scene exhibits the largest disparities compared to
the other scenes. Moreover, since even the disparities com-
puted by ProbFlow contain substantial errors, the inliers are
not highly robust and some outliers are undetected by the
SOR filter, which impede the effectiveness of the proposed
approach. Nevertheless, improvements in terms of other
evaluation metrics are still evident.

5. CONCLUSIONS AND FUTURE WORK

A method for noise removal in 3D point clouds acquired
from light fields has been described. The proposed approach
first exploits uncertainty measures to have better estimates of
depth values and then corrects the positions of outlier points
by exploiting geometric and photometric properties together
with known camera parameters. This is in contrast to exist-
ing methods which simply remove outliers. The proposed
pipeline was shown to achieve promising performance in
both 2D and 3D, thus leading the way for future avenues
of research. Future work includes the use of a more ad-
vanced method to detect outliers, and the consideration of
non-Lambertian surfaces.
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