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A LEARNING BASED DEPTH ESTIMATION FRAMEWORK FOR 4D DENSELY AND
SPARSELY SAMPLED LIGHT FIELDS

Xiaoran Jiang, Jinglei Shi, Christine Guillemot

INRIA, Rennes, France

ABSTRACT
This paper proposes a learning based solution to disparity (depth)
estimation for either densely or sparsely sampled light fields.
Disparity between stereo pairs among a sparse subset of anchor
views is first estimated by a fine-tuned FlowNet 2.0 network
adapted to disparity prediction task. These coarse estimates are
fused by exploiting the photo-consistency warping error, and re-
fined by a Multi-view Stereo Refinement Network (MSRNet).
The propagation of disparity from anchor viewpoints towards
other viewpoints is performed by an occlusion-aware soft 3D re-
construction method. The experiments show that, both for dense
and sparse light fields, our algorithm outperforms significantly
the state-of-the-art algorithms, especially for subpixel accuracy.

Index Terms— depth estimation, light field, deep learning,
multi-view stereo

1. INTRODUCTION

Unlike traditional cameras, light field (LF) devices capture ray
intensities emitted by a 3D point along different orientations.
Due to this rich description of the 3D scenes, great attention has
been given to efficient and robust algorithms for depth estima-
tion exploiting LFs. According to different kinds of images that
the estimation depends on, existing algorithms can be classified
into several main categories: methods based on Sub-Aperture
Images (SAI) [1–3], on Epipolar Plane Images (EPI) [4–7] or on
refocused images [8,9]. However, most of these methods are de-
signed for dense view sampling. Although some algorithms only
use a subset of views, e.g. horizontal or crosshair viewpoints,
disparity between the exploited views should remain small.

On the contrary, the authors in [10] employ an empirical
Bayesian framework, which adapts parameters according to
scene statistics. This algorithm is free of additional cues ex-
ploiting dense view sampling, e.g. phase shift [2], spinning
parallelogram operator [5], defocus cue [8] and structured ten-
sor [4], thus it is robust and relevant for both dense and sparse
LFs. In [11], densely sampled depth (disparity) information is
inferred from a subset of sparsely sampled light field views.
Disparity between sparse views are first estimated and refined
using optical flow estimator and edge-preserving filtering, then
they are propagated to other viewpoints by exploiting angular
correlation.

This work has been funded by the EU H2020 Research and Innovation
Programme under grant agreement No 694122 (ERC advanced grant CLIM).

Meanwhile, deep learning has met great success in binocular
vision, and similarly in optical flow estimation. As one of the pi-
oneers, FlowNet [12] employs an end-to-end encoder-decoder ar-
chitecture with additional skip-connections between contracting
and expanding parts. Being a variant of FlowNet, DispNet [13]
considers 1D correlation instead of 2D correlation to better adapt
to disparity estimation task. By stacking several elementary net-
works, each of them being similar to FlowNet, FlowNet 2.0 [14]
significantly improves the prediction accuracy. A cascade frame-
work is proposed in [15], which corrects the disparity initializa-
tion by learning in a supervised fashion residual signals across
multiple scales. Deep learning has been also successfully ap-
plied to light field depth estimation. Among them, EpiNet [7]
achieves the state-of-the-art performance by using a multi-stream
network, each stream exploiting one angular direction of light
field views: horizontal, vertical, left or right diagonal directions.
But this approach is well suited for dense light fields only.

In this paper, we focus on how to handle either a dense or a
sparse light field for disparity/depth estimation. Similar to [11],
our algorithm only exploits a sparse subset of anchor views (four
corner views), and generates one disparity map for every view-
point of the light field. Multi-view stereo (MVS) is implemented
in a deep learning based cascaded framework. A pre-trained
FlowNet 2.0 is fine-tuned by pairs of stereo images, and the ob-
tained model is used to estimate disparity between pairs of an-
chor views, arranged horizontally or vertically. These coarse es-
timates are then fused at each anchor viewpoint by exploiting
the warping error from other anchor viewpoints, and then re-
fined by a second convolutional neural network (CNN), which
we call Multi-view Stereo Refinement Network (MSRNet). For
better subpixel accuracy of the disparity values, views are up-
sampled before being fed to CNNs. Correspondingly, the output
disparity maps are rescaled. The propagation of disparity from
anchor viewpoints towards other viewpoints is performed by an
occlusion-aware soft 3D reconstruction method.

2. LEARNING-BASED DISPARITY ESTIMATION

2.1. Finetuned FlowNet 2.0 for stereo
We take the four corner views I1,1, I1,V , IU,1 and IU,V (c.f.
Fig. 1) as the set of anchor light field views. Arguably, these
distinct views on the extreme corners of a densely sampled light
field contain all color and geometric information, from which
the whole light field can be reconstructed [16].
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Fig. 1: Disparity estimation for LF anchor views by using the fine-
tuned FlowNet 2.0. Vertical pairs are rotated 90 degrees to become
horizontal pairs. An example is given on the right for the view I1,1.

Disparity is estimated between pairs of anchor views. To
work within the stereo vision framework, we assume that the
light field is well rectified, i.e., a scene point moves only hori-
zontally from position (1, 1) to (U, 1), and only vertically from
position (1, 1) to (1, V ). In order to apply a single network to
deal with both horizontal and vertical image pairs, vertical pairs
are rotated 90 degrees. During the training process, their corre-
sponding ground truth disparity maps are also rotated 90 degrees.
For each anchor view Ir , two coarse estimates d′r and d′′r are ob-
tained, respectively using horizontal and vertical pairs.

2.2. Multi-view disparity refinement
In low-level vision tasks, such as segmentation, denoising and
optical flow estimation, results can be generally improved with
post-facto refinement. Similar to [15], our Multi-view Stereo Re-
finement Network (MSRNet) takes as input the coarse disparity
estimates from a first stage network (finetuned FlowNet 2.0), and
the refinement of these maps is implemented by a multi-scale
encoder-decoder structure. Differently, our scheme generalizes
the binocular vision refinement task to MVS scenario, and our
network is flexible for any number of initialized disparity maps.

2.2.1. Disparity fusion
In order to fuse multiple coarse disparity estimates to a single
one, we propose to leverage photo-consistency warping errors.
Iir(d

′
r) denotes the warped image from position i to r (both i

and r are corner positions) by using disparity d′r . Traditionally,
warping errors from different corner viewpoints are aggregated
by computing the sum or average of them:

Enocc(d
′
r) = meani

(
E(Ir, Iir(d′r))

)
, (1)

with E(I, I ′) the pixel-wise sum of square errors for the three
color components between image I and I ′:

E(I, I ′) =
∑

C∈{R,G,B}

(IC − I ′C)2. (2)

The term Enocc measures accurately the pixel warping error in
occlusion-free areas, and therefore reflects well the disparity ac-
curacy at these pixels, but fails in occlusion zones. In fact, a high
error in occlusion zones is due to interpolation in large holes,
rather than to disparity inaccuracy.

Compared to stereo vision, multi-view stereo should provide
a better modeling for occlusion, since a pixel occluded from one
viewpoint may be viewed from another viewpoint. Therefore, we
define a second error map Eocc:
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Fig. 2: Network structure for light field multi-view disparity refine-
ment. Given the coarse disparity maps d′r and d′′r computed using
image pairs, the fusion of these maps is performed by exploiting the
warping errors Eocc and Enocc. The refinement of the fused disparity
map Dr is learned with multi-scale residual learning.

Eocc(d
′
r) = mini

(
E(Ir, Iir(d′r))

)
. (3)

In general, error due to interpolation is smaller for non-occluded
pixels than occluded ones. At a pixel p that can be seen in the
warped view Ii

′
r , but not in Iir for any other corner viewpoint

i, the error Eocc(d
′
r, p) may equals to the value E(Ir, Ii

′
r (d′r)) at

pixel p, which more faithfully reflects the disparity accuracy for
this pixel.

Hence, disparity inaccuracy is better modeled by Enocc in
occlusion-free areas, and by Eocc in non-overlapped occlusion
zones. Two fused disparity maps can be obtained: at each pixel p,
one disparity value is selected among the candidate values d′r(p)
and d′′r (p) by minimizing the error term Enocc or Eocc, respec-
tively:

Dnocc
r (p) = argmin

d′
r(p),d

′′
r (p)

(
Enocc(d

′
r, p), Enocc(d

′′
r , p)

)
, (4)

and
Docc

r (p) = argmin
d′
r(p),d

′′
r (p)

(
Eocc(d

′
r, p), Eocc(d

′′
r , p)

)
. (5)

One may also approximate the binary occlusion mask M by
identifying the pixels that correspond to high values of Enocc:

M(p) =

{
1, if min

(
Enocc(d

′
r, p), Enocc(d

′′
r , p)

)
> θ

0, otherwise,
(6)

the threshold θ being chosen as the top 90% Enocc value. Com-
pared to [11] where the occlusion mask is explicitly computed
based on disparity values, Eq. (6) shows to be a good approx-
imation and above all more time efficient, which is compatible
to the learning-based framework. Finally, the unique disparity
value per pixel at corner viewpoint r is computed as:

Dr(p) = Dnocc
r (p)×

(
1−M(p)

)
+Docc

r (p)×M(p). (7)

2.2.2. MSRNet
A cascade residual learning framework is proposed in [15] to
refine disparity for binocular vision: residuals of disparity are
learned explicitly by an encoder-decoder multi-scale network,
which is able to correct the disparity initialized by a first stage
CNN. Residual signals are supervised at each resolution scale.



The input of this refinement network is a set of 5 images: the
left image IL, the right image IR, the initialized disparity map,
warped image ĨL and warping error. In a MVS scenario, it is ob-
vious that this scheme is no longer applicable: the multiplication
of the number of stereo pairs, as well as the number of initial-
ized disparity maps, will rapidly enlarge the size of the network
and make the learning inefficient. Moreover, this scheme cannot
easily adapt to the varying number of input images.

This is why we chose to fuse the horizontal and vertical dis-
parity estimates (c.f. Section 2.2.1) before residual learning. Re-
gardless of potentially different numbers of stereo pairs, only
one fused disparity map Dr will be obtained at corner position
r. Two other images are also fed to MSRNet: the color image
Ir as guidance, and a binary map B indicating unreliable pix-
els. These pixels are supposed to be located near object contours
which are determined using canny edge detectors. We detect the
contours on the disparity map Dr that do not correspond to those
on the color image Ir . The binary mask is therefore computed as
B = |D ◦ C(Dr)−D ◦ C(Dr)�D ◦ C(Ir)|. D and C are respec-
tively dilation and canny edge detection operators. The symbol ◦
denotes function composition and � is for Hadamard product.

The rest of the network structure is similar to the one of [15].
Compared to [15], we add a gradient term L2 in the loss function,
which leads to smoother maps:

L = λ1L1(D,Dgt) + λ2L2(D,Dgt) (8)

where L1 is sum of absolute differences (SAD), and the term L2
is defined as the sum of l2-norm L2(D,Dgt) =

∑
p ‖G(p)‖2

with
G(p) =

(
∇xD(p)−∇xDgt(p),∇yD(p)−∇yDgt(p)

)>
. (9)

3. DISPARITY PROPAGATION

The obtained disparity maps D̃1,1, D̃1,V , D̃U,1 and D̃U,V at the
4 corners should be propagated to other viewpoints where we
assume that the color information is absent. In [11], disparity
values are projected to novel view positions, and low rank as-
sumption of the matrix containing all warped maps is exploited
to inpaint missing disparity values for occluded pixels. However,
for light fields with wide baseline, this low rank assumption can-
not be held anymore.

Authors in [17] have proposed a soft 3D reconstruction
method for light field view synthesis. We apply this idea to
disparity propagation. For each corner view, a consensus volume
is constructed, each voxel encoding the consensus score of all
voters (4 corner view disparity estimates) for the existence of a
surface with a certain discretized disparity/depth value at a pixel
p. To compute the consensus volume, a vote volume and a confi-
dence volume are previously constructed, half of the voters with
low confidence values abstain to vote. Occlusion/visibility is
modeled by the soft visibility function: a pixel can be viewed at
a depth z only if the consensus for a surface existing at any depth
z′ < z is low (note that the disparity is inversely proportional to
the depth). These soft visibility values at corner viewpoints are
then used as weights for merging warped disparity maps in other
viewpoints.

4. EXPERIMENTS

4.1. Datasets
In order to train our deep neural networks, two synthetic LF
datasets with different disparity ranges have been created using
Blender software [18]. 3D models, available under CC0 or CC
license, have been downloaded from Chocofur [19] and Sketch-
fab websites [20]. The sparse light field (SLF) dataset contains
scenes with disparity range [−20, 20] between adjacent views,
whereas the disparity range is [−4, 4] for the dense light field
(DLF) dataset. Each LF has the same resolution 512×512×9×9.
We provide for each view of the LFs, a color view, a ground truth
depth map and its corresponding disparity map.

Among the 53 scenes in the SLF dataset, 44 scenes are served
as training data, and 9 others as valid data. For the DLF dataset,
the training set contains 38 scenes and the valid set contains 5
scenes. To our knowledge, they are among the first synthetic
light field datasets providing depth information for every view-
point of the light fields (HCI 4D light field dataset [21] is only
available with light fields with narrow baseline), and the size of
the datasets is sufficient for training a deep neural network for
light field disparity/depth estimation. Our datasets will be avail-
able online upon paper acceptance.

4.2. Training
Training stereo pairs are randomly selected among pairs of LF
views in the same row or the same column. For dense LFs, the
angular distance between these two stereo views is between 2 and
8 view indices. The same distance is chosen between 1 and 3 for
sparse light fields. In order to avoid imbalanced data distribu-
tion, we have managed to keep equal the occurrence of training
examples for each different distance. The model is first trained
with data in SLF dataset. Then, for dense light fields, the model
is further finetuned using the DLF dataset. We also include the
16 additional scenes (different from those evaluated in Table 1)
from the HCI 4D light field dataset to enrich our DLF training
set. Due to limited GPU memory, a batch size of 4 is adopted.
Data augmentation. Chromatic augmentation (variation of con-
trast, color and brightness) is applied with the same parameters
as suggested in [12]. However, we do not apply any geometri-
cal transformation, e.g., translation, rotation and scaling. In our
experiments, it is observed that geometrical transformation im-
plies interpolation errors in the transformed ground truth dispar-
ity maps, which harms the learning convergence.
Learning rate schedule. To finetune FlowNet 2.0, the initial
learning rate is set to 0.0001 for the first 500 epochs, whereas
this learning rate is applied for the first 1200 epochs to train the
MSRNet. Then, for both training tasks, the learning rate is de-
creased by half after every 200 epochs for better convergence.

4.3. Dense light fields
We assess our algorithm against several state-of-the-art meth-
ods [2, 5, 10, 11] with 8 test dense LFs in the HCI dataset. The
methods [2] and [5] make use of the full 4D LF. The method [10]
considers a sparse subset of 3×3 views including the center view,
whereas [11] and our method only exploit the 4 corner views.
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Fig. 3: Visual comparison of the estimated disparity maps on center view.

Table 1: Quality evaluation of the estimated disparity maps on center view for dense LFs. The best results are marked in bold.
MSE*100 BadPix(0.01) BadPix(0.03) Q25

Light fields [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours [2] [5] [11] [10] Ours
StillLife 2.02 1.72 2.56 1.16 1.14 81.2 76.2 71.3 74.4 71.5 51.0 32.1 25.0 37.1 24.5 1.36 1.02 0.87 0.86 0.88
Buddha 1.13 0.97 0.82 0.40 0.46 57.7 41.2 34.9 51.3 25.8 24.4 14.8 12.3 13.4 6.6 0.51 0.34 0.31 0.52 0.28

MonasRoom 0.76 0.58 0.53 0.56 0.38 46.0 42.5 38.6 45.5 25.2 22.1 17.8 18.6 17.8 11.4 0.38 0.34 0.33 0.35 0.24
Butterfly 4.79 0.74 1.84 0.70 0.54 82.5 78.9 70.8 82.4 62.9 49.1 48.5 36.0 50.8 28.7 1.47 1.22 0.85 1.28 0.66

Boxes 14.15 8.23 12.71 10.05 12.48 72.7 62.3 65.8 83.6 60.5 45.5 28.1 37.7 57.1 32.8 0.89 0.62 0.68 1.54 0.55
Cotton 9.98 1.44 1.18 1.23 0.67 60.5 41.7 42.6 72.1 29.6 23.3 11.1 10.7 33.7 8.0 0.59 0.36 0.42 0.89 0.25
Dino 1.23 0.29 0.88 0.53 0.50 76.6 57.5 49.1 80.9 35.9 48.4 17.9 20.0 48.0 12.6 1.08 0.55 1.32 0.42 0.29

Sideboard 4.16 0.92 10.31 1.31 1.60 67.8 64.3 61.7 79.8 48.8 39.3 31.0 37.5 46.4 23.2 0.74 0.66 1.26 0.51 0.37
Average 4.78 1.86 3.85 1.99 2.22 68.1 58.1 54.4 71.2 45.0 37.9 25.2 24.7 38.0 18.5 0.88 0.64 0.62 0.80 0.44

Table 2: Quality evaluation of the estimated disparity maps
on center view for sparse LFs.

MSE BadPix(0.1) Q25
Light fields [11] [10] Ours [11] [10] Ours [11] [10] Ours
Furniture 1.94 0.38 0.78 41.3 61.3 22.0 2.52 6.17 1.10

Lion 0.87 0.08 0.15 59.5 21.4 8.0 4.47 2.51 0.61
Toy bricks 1.10 0.18 0.44 44.6 36.0 16.6 3.61 2.72 0.94

Electro devices 0.63 0.18 0.23 43.4 55.5 24.5 2.71 4.93 1.35
Average 1.14 0.21 0.40 47.2 43.6 17.8 3.33 4.08 1.00

We use the same evaluation metrics defined in [21, 22]. MSE is
mean-square-error, which penalizes large disparity errors on the
object boundary, whereas BadPix(α) (the percentage of pixels
having an error superior to α, α being set to small values) and
Q25 (the error value *100 at the 25th percentile of the disparity
estimates) measure the sub-pixel accuracy. Table 1 shows that
in terms of MSE, our method is on par with [5] and [10], and
better than other reference methods. In terms of BadPix(0.01),
BadPix(0.03) and Q25, our method outperforms all the reference
methods by a large margin. Moreover, unlike [2, 5, 10], the fact
that our algorithm generates one disparity map per viewpoint,
without exploiting the color information of the views other than
the four corner views, is especially interesting for applications

such as light field view synthesis.

4.4. Sparse light fields
Our algorithm has been also evaluated on 4 sparse LFs in our
SLF dataset. An angular resolution of 3×3 is considered. In this
case, methods [2] and [5] are no longer relevant for comparison,
since they only rely on densely sampled views, and their perfor-
mance drops drastically when the baseline increases. In Table 2,
our algorithm performs significantly better than [11] and [10] in
subpixel accuracy (BadPix and Q25), whereas the method [10]
excels in MSE. Note that the loss function (Eq. (8)) computes
SAD instead of MSE. For the test LFs, our algorithm obtains
better SAD measures against [10].

5. CONCLUSIONS
In this paper, we have proposed a learning-based depth estima-
tion solution both for densely and sparsely sampled light field
data. The experiments show that our algorithm outperforms
state-of-the-art algorithms by a large margin in most of the met-
rics. Our algorithm can be also naturally integrated into a light
field view synthesis pipeline, since it is able to infer disparity
information for a view that the color information is unknown.
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