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Abstract
Computational fragment-based approaches are widely used in
drug design and drug discovery. One of the limitations of
their application is the lack of performance of docking meth-
ods, mainly the scoring functions. With the emergence of new
fragment-based approaches for single-stranded RNA ligands,
we propose an analysis of an MCSS-based approach evaluated
for its docking power on nucleotide-binding sites. Hybrid sol-
vent models based on some partial explicit representation are
shown to improve docking and screening powers. Clustering of
the n best-ranked poses can also contribute to a lesser extent
to better performance. The results suggest that we can apply
the approach to the fragment-based design of sequence-selective
oligonucleotides.
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FBD
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Introduction
Fragment-based approaches are widely used in ligand design
with several examples of "success stories" when applied to
drug design and drug discovery (1–4) since the middle of the
’90s (5). More than 30 fragment-based drug candidates have
entered the clinic (6). Despite some hindrance related to syn-
thetic accessibility and/or ligand-design strategies, fragment-
based approaches remain very attractive while dealing more
efficiently with chemical space, molecular complexity, prob-
ability of binding, and ligand efficiency (6). After high
throughput screening, fragment-based approaches represent
one of the three major lead generation strategies for clinical
candidates (7).
Both experimental and computational approaches have been
developed based on the same principles that weak-binding
fragments can be converted into highly efficient ligands by
covalent linking. One of the contributions to the gain of
binding affinity with respect to that of the individual frag-
ments comes from the rigid body entropic barrier, which is
supposed to be independent of the molecular size. This gain
is optimal when there is no energy penalty associated with
the linker’s conformation and when the binding mode of each
fragment is preserved in the ligand. Weak-binding fragments
should still have enough favorable contacts to counterbalance
the loss of rigid body entropy upon binding. In practice, the
first step is to design and build a fragment library, the second

* These two authors contributed equally

is to screen the fragments, and the third to assemble them into
ligands as lead compounds (8, 9).
In the experimental approaches, the fragments are validated
by some screening methods, some of which are high through-
put, e.g., by surface plasmon resonance (10). The screen-
ing is a critical step in the process of fragment-based de-
sign (FBD). In the computational approaches, the FBD is
by default a structure-based approach like in the X-ray
crystallography-based screening of fragments or in any other
structural biology assisted FBD (2). However, the hits ob-
tained in silico are not generally validated until the end of the
process leading to the assembled ligands.
Very few published studies compare in silico to experimen-
tal approaches to validate virtual hits like in the screening of
fragment-like inhibitors against the N5-CAIR mutase (11).
A computational screen of fragment libraries is faster and
more cost-effective than in experimental approaches. How-
ever, the performance of such approaches may vary, although
the case of the N5-CAIR mutase shows a good overlap be-
tween the computational and experimental approaches. The
lack of accuracy of the scoring functions is often invoked
for the poor performance, i.e., the difficulty to discriminate
native-like poses from false binding poses (12, 13). In the ab-
sence of validation after the screening step, sub-optimal frag-
ments may be selected that are low-affinity binders. Thus,
there is no guarantee we can identify the optimal fragments
or those with a higher binding specificity by virtual screen-
ing.
Traditionally, the FBD approaches have been applied to the
design of ligands assembled using small chemical groups se-
lected from the fragment library, which is often built based
on drug-like criteria. Since the fragments library should
also cover some chemical space with the diversity of chem-
ical groups and molecular properties, a good strategy is
needed to assemble the fragments. The fragment merging or
linking strategies consist of connecting covalently two non-
competitive fragments by fusing some chemical bonds or cre-
ating some additional chemical bond(s) using a spacer to link
both fragments. The alternative strategy, fragment growing
(or fragment evolution), is less challenging; it can be viewed
as an optimization process where one fragment is modified by
adding some functional group that can make favorable con-
tacts around the primary binding site of the fragment.
In the case of biopolymers, the chemical connectivity is well-
defined, and thus the assembling strategy involves solving
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a distance-constraint problem to join the connecting atoms
of successive residues. In the early days of computational
FBD approaches, different flavors were implemented to de-
sign peptide ligands where the fragments are amino acid
residues or moieties (14–18). Creating biopolymers is an
easier task since the synthetic accessibility of designed lig-
ands by in silico FBD is still very challenging. More recently,
an FBD approach was applied using multi-residues fragments
to avoid the high degrees of freedom to manage for the con-
formational sampling of long peptides (19).
A similar approach was applied to RNA ligands using trin-
ucleotides to predict the binding mode of single-stranded
RNAs to proteins (20, 21). In both cases, peptide or RNA
ligands, the oligomer sequence is used as input for model-
ing the ligand-protein complex to reproduce known protein-
ligand interactions. Thus, some improvements are still re-
quired to progress towards the de novo fragment-based de-
sign of bound oligomers to protein targets.
In the case of RNA binding proteins (RBPs) that recognize
single-stranded RNAs (ssRNAs), the primary binding site of
the RNA binding domains from RBPs generally corresponds
to an interface that can accommodate k-mers with k between
4 and 10 (22–24). However, the RNA motifs making contacts
with the protein span a much shorter stretch of contiguous
residues corresponding to 3-mers up to 5-mers in many struc-
tural families of RBPs (25). Such short RNA motifs, revealed
by structural biology approaches, can be successive separated
by short spacers and form longer bi-partite or tri-partite mo-
tifs that can easily extend to 10-mers (26). Very recent data
obtained by high-throughput binding assays and sequencing
on 78 human RBPs confirm this observation where the RNA
motifs are composed of conserved 3-mers separated by spac-
ers of 0 to 10 residues (27).
A preliminary study was done on the characterization of
nucleotide-binding sites from ssRNAs involving contacts
with the nucleic acid base moiety showing the existence
of binding patterns (RsiteDB (28)). Using a knowledge-
based approach, the study was extended to predict nucleotide
and dinucleotide binding sites but in the perspective of
screening small molecules mimicking the nucleotide-binding
modes (29). Two other studies have been carried out using
FBD approaches to model ssRNA-protein interactions. A
method based on a coarse-grained model (RNA-LIM) was
developed to model the structure of an ssRNA at the pro-
tein surface (30). However, its application is restricted to
the RNA binding region surface, and the simplified repre-
sentation of the nucleotides makes it impossible to distin-
guish between different nucleotide orientations and confor-
mations. The more recent and advanced method was tested
on a set of RBPs with RRM or Pumilio domains and could
generate near-native models of RNA-protein complexes with
good precision (RMSD ≤ 2Å) in most cases for chains up to
12-mers (20, 21). However, the scoring function still lacks
the necessary accuracy to discriminate near-native poses ro-
bustly.
MCSS is a computational method that maps chemical func-
tional groups at the surface of a protein target, making possi-

ble to perform virtual screening using pre-defined (15, 31, 32)
or customized fragment libraries (33). Although MCSS
does not include any fragment-assembly strategy, it has
been widely used in FBD approaches in conjunction with
fragment-linking/merging methods such as: HOOK (34),
DLD (35), or CAVEAT (36) for chemical groups, and
OLIGO (18) for oligopeptides or SiteMap for peptidomimet-
ics (37). Specific applications of MCSS-based virtual screen-
ing were also reported for the identification of epitopes (38),
the prediction of the displacement of water molecules upon
binding (39). As with all computational FBD approaches,
MCSS is generally applied using implicit solvent models, al-
though the method also allows the docking of solvated frag-
ments. The role of solvent is critical in the sampling and
scoring of chemical fragments, but its implementation and
evaluation in docking approaches remain challenging (40).
The MCSS scoring function is based on the CHARMM en-
ergy function; different strategies have been applied to im-
prove its performance using more accurate methods or sol-
vent models. The first strategy includes post-processing of
the MCSS generated fragment poses recalculating the score
function by adding solvation terms (41), or by rescoring
(single-point energy) using a new scheme (39, 42). The sec-
ond strategy is a modification of the energy function dur-
ing the MCSS calculations using, for example, a distance-
dependent dielectric model (41), or an alternative charge
model (43). As mentioned above, MCSS-based FBD ap-
proaches were applied repetitively to the design of peptides
or peptidomimetics (15, 16, 18, 37) or to other biomolecules
such as aminoglycosides (43). The CHARMM program’s de-
velopment with its general force field (CGenFF (44, 45)) and
solvent models makes it possible to extend the scope of ap-
plications of MCSS to any kind of chemical groups using the
more appropriate solvent models.
In this study, we use an updated version of MCSS for the
screening of nucleotides. We examine the ability to iden-
tify and score native poses (e.g., docking power) on an ex-
tended and representative benchmark of protein-nucleotide
complexes. A clustering of the MCSS-generated poses is
also proposed as a filtering process to select fewer relevant
poses. We also evaluate the ability of the scoring function
to identify the "true binders" (e.g., screening power) corre-
sponding to the native nucleotide ligands as opposed to the
"false binders" associated with the three other non-native nu-
cleotide ligands. Finally, we determine the performance of
various solvent models, using an implicit versus a hybrid
representation (based on the initial distribution of the crys-
tallographic water molecules) and its impact on the docking
and screening powers. By using models with explicit water
molecules, we can also evaluate their role and contribution in
nucleotide-binding.

Results & Discussion
Most of the docking methods and their scoring functions
have been tested on different benchmarks. These benchmarks
have been designed for some specific families of ligands in-
cluding RNA ligands (46–51). However, the RNA-protein
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benchmarks include large RNAs (tRNA, rRNA, ribozyme,
etc.) where single-stranded RNAs are poorly represented and
mostly present in the context of single-stranded regions con-
nected to double-stranded regions. Building the benchmark
from a subset of RBPs binding ssRNAs would select opti-
mal and sub-optimal binding sites corresponding to spacer
regions. To avoid such bias, we built a benchmark based on
the protein-nucleotide complexes currently available in the
Protein Data Bank (RCSB PDB (52)).
A previous protein-nucleotide benchmark with 62 complexes
was used to evaluate the docking power of three methods:
AutoDock (4.2.3), GOLD (5.1), and MOLSDOCK (53).
However, the benchmark is mostly outdated with only 40% of
complexes with an atomic resolution less than 2.0Å and thus
not representative of the currently available structural data.
On the other hand, it was tested under biased conditions: the
docked region was restricted to the native ligand pose (5Å3)
and the high-occupancy water molecules of the binding site
were preserved within a rigid receptor.
In this study, we use an updated and representative dataset
of high-resolution protein-nucleotide complexes in which
only nucleotide monophosphate are included (see "Protein-
nucleotide Benchmark" & Methods A). The nucleotides are
docked in an extended region (17Å3) around the binding
site where all the inorganic compounds (e.g. metal ions)
or organic ligands were removed. Water molecules were
present in all the protein-nucleotide complexes, in particu-
lar in the binding site. Water molecules were either removed
or included before energy minimization (see "MCSS Calcu-
lations" and Methods Section B). The resulting optimized
proteins are then used as targets in the MCSS calculations.
Two charge models (full or scaled charges), two dielectric
models (constant or distance-dependent), and explicit repre-
sentation of solvent or not are used. Four different solvent
models were tested, excluding already tested models or ir-
relevant ones (implicit solvent with constant dielectric (43)).
The results are first analyzed in terms of docking power, i.e.,
whether the method can reproduce the binding mode of the
native nucleotide ligand. Then, the analysis is focused on the
screening power, i.e., whether the method can discriminate
the native nucleotide ligand from the other three non-native
nucleotides.

Protein-nucleotide Benchmark. The protein-nucleotide
benchmark includes a non-redundant set of 121 complexes
associated with 14 different known molecular functions. De-
spite the over-representation of proteins binding AMP in the
3D structures available in PDB (72%), all the four ribonu-
cleotides are represented; the three other ribonucleotides are
distributed almost equally (Sup. Note 1, Fig. S1). The se-
lection criteria retained to build the benchmark are detailed
in Methods A. A series of molecular and energy descriptors
compose the features used to characterize the 121 nucleotide-
binding sites. The benchmark covers a broad diversity of fea-
tures that reflect that of the binding modes.
As shown in Fig. 1, the three nucleotide moieties: phos-
phate, ribose, and nucleic acid base, establish contacts. Al-
though the base contacts are slightly more represented, they

are slightly less frequent than those established by the other
nucleotide moieties, especially for close contacts (Fig. 1A-
B). Thus, the binding specificity dependent on the nucleic
acid base’s identity might be weak in some cases (15 protein-
nucleotide complexes exhibit no base contact). A similar pro-
file applies to hydrogen bonds (Fig. 1C). The ribose moiety
makes fewer contacts (H-bonds or C-C contacts), but they are
present in almost all protein-nucleotide complexes (Fig. 1C-
D). The stacking contacts (π-π, π-cation, and T stackings)
are common in nucleic acid interactions; they are present in
half of the benchmark with a variable number of contacts
and stacking types (Fig. 1E). Similarly, salt-bridges stabilize
the protein-nucleotide complexes; they are present in a bit
more than half of the benchmark (Fig. 1F). The distribution
of the buried fraction of nucleotide ligands indicates that a
major proportion of the benchmark includes above 70% of
buried atoms, meaning it corresponds to rather "closed" bind-
ing sites (Fig. 1G). On the other hand, nucleotides with a low
fraction of buried atoms are more "open" binding sites. A
detailed 2D representation of the contacts within the bind-
ing site (54) is provided for each protein-nucleotide complex
(Sup. Note 1). Some molecular features based on those con-
tacts’ enumeration are further used in the qualitative analysis
of the method’s performance (docking and screening pow-
ers). Looking more in details at the nucleotide breakdown of
the atomic contacts, it appears that A nucleotides exhibit an
average number of contacts way higher than the other three
nucleotides, suggesting that A binding is stronger (Fig. S2).

The MCSS score is used as a criterion to identify peculiar
cases where the interaction between the ligand and the pro-
tein is unfavorable (see Methods Section B, Equations 1-4).
The score is calculated after minimization by re-inserting the
nucleotide within the optimized binding site. A positive score
indicates either clashes or a drift of the nucleotide from its
position in the X-ray 3D structure. Three nucleotide-protein
complexes do exhibit a positive score (Fig. 1H). The penalty
term of the score (see Methods Section B, Equation 1) might
be more than 10 kcal/mol in some cases, indicating a sig-
nificant deformation of the nucleotide’s conformation. With
the implicit solvent model for nucleic acids (43), the van der
Waals energy contributes more to the score than the electro-
static energy (Fig. 1H).

All the high-resolution protein-nucleotide complexes of the
benchmark include water molecules around the protein sur-
face and the binding region. When these crystallized water
molecules are conserved during the minimization, the protein
coordinates deviate from the experimental ones by around
0.5Å on average. It is close to 1.0Å when the water molecules
are removed (Fig. 2A), indicating that the presence of wa-
ter molecules preserves slightly more the original coordinates
from the X-ray structures. Nevertheless, the number of wa-
ter molecules around the ligand does vary from one complex
to another: from 1 to 18 (Fig. 2B). Base and phosphate con-
tacts with water molecules are more frequent in the bench-
mark, but the ribose moiety cumulates more contacts when
they are present. The minimization does induce displace-
ments in the position of the water molecules in the binding
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Fig. 1. Molecular and energy features of the nucleotide-binding sites from the benchmark of 121 complexes. A-1.: Histogram of the number of contacts; A-2: Smooth
histogram with decomposition per nucleotide moiety (base, ribose, phosphate); B-1.: Histogram of the number of close contacts; B-2.: Same as A-2 for close contacts; C-1.:
Histogram of the number of H-bonds; C-2.: Same as A-2 for H-bonds; D-1.: Histogram of the number of C-C contacts; D-2.: Same as A-2 for C-C contacts; (to be continued).
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Fig. 1. Molecular and energy features of the nucleotide-binding sites from the benchmark of 121 complexes (continued). E-1.: Histogram of the number of stacking contacts;
E-2.: Smooth histogram with decomposition per stacking types; F.: Histogram of the number of salt-bridges; G.: Histogram of the buried fraction of ligand (calculated from the
solvent accessible surface); H-1.: Histogram of the MCSS scores calculated for the ligands optimized in their binding site; H-2.: Smooth histogram with decomposition per
contribution types (electrostatics, van der Waals, conformational). The molecular descriptors associated with the atomic contacts are calculated by BINANA (55); the stacking
contributions are calculated from OpenEye (54); the MCSS score is calculated by the scoring function derived previously (43).

region mostly due to the removal of the ligand; the number of
water molecules within the binding region may then slightly
vary after minimization (Fig. 2C-1). Because of their small
molecular weight, the water molecules may also deviate sig-
nificantly from their initial positions (Fig. 2C-2).
The benchmark consists of a representative set of protein-
nucleotide complexes in terms of atomic contacts and bind-
ing modes with variable contributions from each nucleotide
moiety. However, it includes two identified biases associated
with the nucleotide type: A is overrepresented and expected

to bind more strongly to the protein.

Nonbonded Models. Several phosphate group models are
used in the MCSS calculations to determine the optimal pa-
rameters for mapping nucleotides at the protein surface. We
used five different phosphate models corresponding to 5’
patches (R010, R110, R210, R310, and R410) that differ
by the valence and charge of the phosphate group (Fig. 3).
The R010 patched nucleotide corresponds to the standard
nucleotide residue defined in CHARMM, and it is the only
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fragment with an unfilled valence shell at the 5’ end (Fig. 3).
All the partial charges on the phosphate groups are derived
from the CHARMM parameters. They correspond to the
original CHARMM charges or derived from them based on
Manning’s theory of counterion condensation to account for
the partial neutralization of the negative charges of polyelec-
trolytes solution (56). In this latter case, the net charge on the
phosphate group is scaled down according to the implicit sol-
vent model previously used in MCSS calculations performed
on nucleic acids (43).

The "SCAL" charges model (Fig. 3 - left) is combined with
a distance-dependent dielectric (Equation 4) with or with-
out water molecules: SCAL and SCALW, respectively. The
default charges model "STD" or "FULL" (Fig. 3 - right) is
combined with explicit solvent representation and a distance-
dependent dielectric (Equation 4): STDW, or with a constant
dielectric (Equation 3): FULLW.

Poses and hits. The protein target is prepared by defining
a binding region centered around the ligand and subjected
to the mapping of the nucleotide fragments described above
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(Fig. 4). Final poses generated by MCSS (e.g. minima) are
ranked by their score (Equations 1-4) in ascending order.
Although a clustering step is performed iteratively during
the MCSS calculation, the default RMSD cutoff value is low
(0.5Å) to guarantee a fully extended search at each iteration
before re-ranking the intermediate poses and the minima. As
a consequence, some minima may still exhibit some degree of
geometrical redundancy. Poses coming from different initial
positions may converge to similar minima while still being
above the RMSD cutoff value. These minima may exhibit
large discrepancies in terms of score, especially when using
implicit solvent models where small deviations in coordinates
may significantly alter the interaction energy with the protein
target. This redundancy may negatively impact further sta-
tistical analysis as very similar poses can have a drastically
different score. Such a bias can be avoided through cluster-
ing analysis based on an approach similar to that already used
by MCSS (see Methods C).

The five types of patched nucleotides (R010 to R410) are
mapped at the protein surface around the binding region en-
tered on the position of the ligand in the X-ray structure
(Fig. 4). The raw distributions include up to several thou-
sands of poses. The total number of poses generated depends
on the solvent model and on the phosphate patch to a lesser
extent. The presence of explicit water molecules reduces in
part the molecular volume accessible for nucleotides. Thus,
the number of poses generated with the SCAL model is much
larger than that generated with any of the models with explicit
solvent: SCALW, FULLW, and STDW (Fig. 5).

In the SCAL model, an average of 3000 to 3500 minima is
obtained in the raw distribution (Fig. 5). The more open bind-
ing regions can accommodate 4000 poses and up to 6000-
7000 poses. The clustered distribution is reduced by almost
half for any patched nucleotide. The only exception is for
R110, which corresponds to a nucleoside: the smallest frag-
ment in size (Fig. 4). The more charged the nucleotide (R010
to R210, and R310), the more poses it generates except in
R410, where the higher charge can produce, in several cases,
unfavorable interactions with negative charges at the protein
surface. As a result, more poses fail to pass the energy thresh-
old value of the MCSS score. This trend is valid for both the
raw and clustered distributions. R110 generates a less num-
ber of poses, even if it is the smallest fragment. Since it has
a zero charge, it has a lower electrostatic contribution to the
MCSS score. In this particular solvent model, there is a deli-
cate balance between the charge and the energy threshold. A
zero charge will cancel most of the electrostatic contribution
and eliminates many poses. On the other hand, a high neg-
ative charge will induce unfavorable interactions, also lead-
ing to poses removal. The R210 and R310 are the patched
nucleotides that generate more poses (raw distribution) and
more non-redundant poses (clustered distribution).

In the SCALW model, we see the direct effect of including
explicit water molecules. As expected, the number of poses
is significantly reduced in both the raw and clustered dis-
tributions by 4 to 7 times. The only exception is the R110
patched nucleoside, where the number of generated poses is
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Fig. 3. Nonbonded models used in MCSS calculations. The R group correspond-
ing to the 5’ end of the nucleotide includes five flavors: R010 (standard nucleotide
residue), R110 (5’OH patch), R210 (5’PO4H−), R310 (5’PO4CH−

3 ), and R410
(5’PO2−

4 ). Three solvent models are used: the SCAL model is based on reduced
charges on the phosphate group according to Manning’s Theory (56) and applied
to nucleic acids (43); the "STD" (standard) or "FULL" models are based on stan-
dard charges. The electrostatic contribution to the interaction energy is calculated
based on a constant dielectric formulation for the "FULL model". The SCAL and
"STD" models are based on a distance-dependent dielectric model. The van der
Waals contribution is calculated using the standard CHARMM27 potential energy
function (57).

Leclerc et al. | MCSS-based Predictions of Nucleotide Binding Sites bioRχiv | 7



DRAFT

Fig. 4. Schematic description of the series of MCSS calculations performed on each
protein target. The chemical structure of each 5’ patched nucleotide is indicated:
R010, R110, R210, R310, R410. The phosphate group is circled: the bigger the
sphere the bigger sterically, the darker red the more negative charge (the grey color
indicates a null charge). The protein target is represented in cartoon mode with the
indication of the cubic box corresponding to the explored region.

Fig. 5. Boxplot representation of the number of poses generated for the 121 protein-
nucleotide complexes for each 5’ patched nucleotide (010, 110, 210, 310, 410).
Results for raw (R) and clustered (C) distributions are shown.

almost equivalent in the raw and clustered distributions be-
tween the SCAL and SCALW models (Fig. 5). Although
the presence of water molecules tends to reduce the accessi-
ble volume of the binding region (SCALW/SCAL), the total
number of poses is equivalent between both models. We can
attribute this specificity to the small size of the R110 frag-
ments. As a consequence, it appears that the lower number of
poses for the other patched nucleotides is mostly due to their
size, even though the accessible volume is reduced with re-
spect to the SCAL model. Accordingly, the number of poses
for R010 (the second smallest nucleotide fragment in size)
is slightly higher in both distributions compared to that of
R210, R310, and R410. On the opposite, the biggest patched

nucleotide R310 exhibits a lower number of poses among all
nucleotides. The STDW model shows a very similar profile
for the absolute values in the number of poses and the dif-
ference in the number of poses depending on the nucleotide
patch. Here, the choice of the charge model SCALW/STDW
has no significant impact on the total number of poses. In-
stead, the dielectric model does alter downward the number
of poses in the FULLW model; the profile in the relative num-
ber of poses between the patched nucleotides is very similar
to those of the other models with explicit solvent (SCALW
and STDW) except for R410, which is the patch associated
with the lowest number of poses. The electrostatic contribu-
tion to the interaction energy accounts for this massive de-
crease in the number of poses. The FULLW model is the
only one in which this term is based on a constant dielectric
formulation, meaning that no screening effect is included be-
tween charges. As mentioned above, for the R410 patched
nucleotide, an excessive charge density can make the elec-
trostatic contribution less favorable. It is associated with the
charge in the SCAL model (specifically for R410) while re-
lated to the absence of screening effect in the FULLW model.
Consistently, the lowest number of poses is obtained with the
FULLW model and the R410 patched nucleotide which carry
the higher unscreened charge.

The clustering method applied to the raw distribution of poses
makes it possible to eliminate a geometrical redundancy.
This redundancy varies depending on the choice of the sol-
vent model and patched nucleotide to a lesser extent. It is
much higher in the SCAL model, where the absence of water
molecules multiplies similar poses. Among the other solvent
models that include water molecules (SCALW, STDW, and
FULLW), the redundancy is very alike. However, the dielec-
tric model has a strong impact on the number of poses, which
is reduced by 5 to 35 times in the FULLW model; less than
100 poses are present in the clustered distributions. The clus-
tered distributions in the SCALW and STDW models include
around 500 poses, while the SCAL model retains more than
1000 poses. However, the lone number of poses does not give
any indication about the number of native-like poses.

We define as a native-like pose or hit those poses generated
by MCSS with an RMSD less than 2Å to the ligand’s exper-
imental coordinates in the reference PDB (see Methods Sec-
tion B). The fraction of hits over the entire MCSS distribution
for all solvent models and patches is shown in Figure 6. This
fraction is similar for all patches in each of the four models,
except for R310. The patch R310 carries a methyl group in
one of the phosphate oxygen. This group confers the ability
to establish more hydrophobic contacts than other patches.
The SCAL model shows a significantly lower fraction of hits
than solvated models despite a much larger number of gener-
ated poses (Fig. 5); both the raw and clustered distributions
are more scattered in the absence of water molecules. In the
case of solvated models, SCALW and STDW hit fractions
are very similar. On the other hand, the FULLW model has
more cases where no hits are found for some proteins; it is
revealed by the displacement to zero of the first interquartile
section for the boxplots.
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Fig. 6. Boxplot representation of the fraction of native poses generated for the 121
protein-nucleotide complexes for each 5’ patched nucleotide (010, 110, 210, 310,
410). Results for raw (R) and clustered (C) distributions are shown.

Docking Power. The MCSS predictions are ranked accord-
ing to the success rate for the identification of at least one
native pose obtained on the full benchmark in the Top-i (Top
Native in the best ranked i poses) with i in a range from 1
to 100. The results are shown for the range of Top-1 to Top-
100 with the intermediate ranks: Top-5, Top-10, and Top-50
(Fig. 7). For each patch (from R010 to R410), the number
of protein-nucleotide complexes which are predicted with a
native pose in the Top-i follows a similar trend between the
different models.
The SCAL and FULLW models exhibit a lower success rate
from Top-1 to Top-100 except for the patch R410, where
the SCAL model performs slightly better for a few cases in
the Top-100 but underperforms in all the other Top-n. The
SCALW and STDW models outperform for all the patches;
the FULLW systematically underperforms in almost any Top-
n except in the Top-1 to Top 10 for R010 and R310, where
it slightly outperforms the SCAL model. Among the two
best models, the STDW model slightly outranks the SCALW
model in the Top-1 and Top-10 for all the patches (except for
R310 where the performance is equivalent for the Top 10),
while the performance is pretty similar for the Top-50 and
Top-100. The best performance is obtained for R310 with a
success rate of 45% in the Top 1, a bit more than 60% for the
Top 10, and more than 80% in the Top-100. The clustering
does not change the general trends observed in the raw distri-
butions. It slightly increases the performance in the Top-100
and, to a lesser extent, the lower Top-i . The use of R310 im-
proves a bit the performance of the SCALW model over the
STDW model in the Top-10.
Additional nonbonded and water models (available within
CHARMM) can be tested as well as external scoring func-
tions. External methods (e.g., Vina) are not implemented

into MCSS, but they can be tested through single-point cal-
culations on the MCSS distributions. Some of the tested
scoring functions are specialized on some class of ligands,
e.g. nucleic acids for ITscorePR (58), or ∆vinaRF20 (59)
or more generic for Autodock Vina (60), or Vinardo (61).
The results of the comparison show that the standard MCSS
scoring function corresponding to the SCAL model performs
at the same level than ∆vinaRF20 and Vina and slightly
better in the Top-10 to Top-100 for the clustered distribu-
tion (Sup. Note 3). The Vinardo scoring function performs
slightly better than the three others on both MCSS distribu-
tions (Fig. S4). However, the MCSS scoring function asso-
ciated with the STDW model outperforms all of the exter-
nal scoring functions in the Top-1 to Top-10 in both raw and
clustered distributions (Fig. 7). In the CASF-2016 bench-
mark, the docking power ranges from around 30% to 90%
for a variety of scoring functions (62). The docking power is
around 90% for both Vina and ∆vinaRF20. On the current
benchmark, their performance is only 33%, indicating the
challenging task to score charged ligands such as nucleotides.
Vinardo performs slightly better (42%) and also MCSS-STD
(45%).

One of the contributions to the MCSS score is the conforma-
tional penalty term (Equation 1) corresponding to the defor-
mation of the fragment from its optimal conformation. Al-
though this term is generally a minor contribution, it may
vary depending on the nonbonded model. We can compare
the torsion angles observed in the MCSS minima with respect
to the known ideal values and values observed in the native
bound conformations of the nucleotides from the benchmark
(Sup. Note 2, Fig. S3). The absence of water molecules
in the SCAL model reveals a few biases where, for exam-
ple, the syn conformation is more populated than expected as
compared with the experimental or the ideal values collected
from the experimental structures of nucleic acids (63, 64).
The SCALW model is also biased, and the STDW but to a
lesser extent; only the FULLW model is exempted. Another
common bias to all models (except for the FULLW model) is
the overrepresentation of the C2’-endo conformation for the
ribose while the initial conformation is always a C3’-endo
conformation. It is partly due to the nonbonded model and
the absence of a full solvation of this nucleotide moiety. In
FULLW, the C3’-endo/C2’-endo representation is more bal-
anced, but the phosphodiester backbone (torsion angles α and
β) deviates from the optimal values because of some distor-
tion of the phosphate group, which is highly charged and tend
to stick closely to the protein surface in the absence of any
screening effect (constant dielectric model).

The performance was then analyzed by nucleotide type.
Since the adenosine is over-represented in the benchmark, it
generally follows the global trend described above (Fig. 8).
However, the performance for guanosine decreases for the
larger patches R210 to R410, whatever the model used. Only
the smaller patches R010 and R110 give a similar perfor-
mance or better in some cases; the success rate with R110 is
even better from Top-1 to Top-50, indicating the existence, as
discussed before, of a size effect that drives down the perfor-
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DRAFTFig. 7. Stacked histogram representation of the Top-i ranked native poses generated for the 121 protein-nucleotide complexes for each nucleotide patch. Result on raw
(upper) and clustered (bottom) distributions are shown.

mance (guanine is slightly more voluminous than adenine).
Consistently, the performance generally improves for pyrim-
idines (C or U), which are smaller than purines. On the other
hand, the performance is degraded in the smaller nucleo-
side fragments (R110) that do not carry any phosphate group.
However, in the case of U nucleosides and only for the STDW
model, the performance is better than that for A nucleosides.
The pyrimidic nucleotides are better predicted, especially for
the two best models SCALW and STDW with R310. The
predictions are equivalent or degraded for the more highly
charged patch R410, especially with U. The analysis of the
clustered distributions confirms the observed trends of the
raw distributions, with improved performances reaching 90%
to 100% for the Top-100 in a larger number of models and
patches (Fig. S5).

Screening Power. In the benchmark, we assume that the
crystallized nucleotide is always the native and more spe-
cific nucleotide, i.e. it is the only nucleotide ligand with
a detectable affinity or the best binder among the four nu-
cleotides. Based on this assumption, we can define a screen-
ing power as the ability to rank the native nucleotide ahead
of the other three nucleotides. In that case, we will refer to
optimal predictions as the native pose is identified and the na-
tive nucleotide is ranked first. Since the scoring function is
still an estimate and raw approximation of the relative bind-
ing energy, we consider as good predictions the cases where
the native nucleotide is predicted within a 2 kcal/mol range

from the best ranked non-native nucleotide. This threshold
value corresponds to a maximum offset of 2 kcal/mol in 90%
of the benchmark (STDW model) where the offset is defined
as the difference between the best-ranked pose whatever the
nucleotide type and the best-ranked pose for the nucleotide
corresponding to the native ligand (Fig. S6).

The other predictions are considered poor predictions even
if native poses are found for the native nucleotide. As an
illustration, we show the results obtained for one protein-
nucleotide complex (PDB ID: 1KTG) for both SCAL and
STDW models (Fig. 9). The best-ranked nucleotide is the
native one (A) in the STDW model; other poses of the native
nucleotide are also identified (Top-5, Top-10, etc.) but only
one is within the 2 kcal/mol score range (good prediction).
Some of the poses corresponding to non-native G nucleotides
are within the MCSS score range of 2 kcal/mol. In the STDW
model, the prediction is optimal since the best-ranked pose
does correspond to the native nucleotide. In the SCAL model,
the pose with the best score corresponds to a non-native G nu-
cleotide, but the Top-1 for the native nucleotide is within the
2 kcal/mol range; it is not considered as an optimal predic-
tion but as a good prediction. The other poses for the native
nucleotide, which lie out of the 2 kcal/mol range (Top-5, Top-
10, etc.), correspond to poor predictions.

We selected the best combination between the nonbonded
model and patch for comparison to the standard SCAL model
(without explicit solvent) to evaluate the impact of includ-
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Fig. 8. Nucleotide breakdown of the success rates obtained for each nonbonded
model and patches combination. The data are shown for the raw distribution (with-
out clustering) and each Top-i.

ing water molecules. The STDW model with the R310
patch gives the best performance, slightly better than the
SCALW model, particularly in the Top-1 predictions (Fig. 7).
The comparison between the SCAL and STDW models
shows a significant gain of performance with explicit solvent
(Fig. 10).
In the optimal predictions, the STDW outperforms by 15
to more than 30% from the Top-1 (Fig. 10A) to Top-100
(Fig. 10E), respectively. In all Top-i , the STDW optimal pre-
dictions always exceed the SCAL total predictions. More-
over, the ratio of optimal/good predictions is always much
higher in STDW. The proportion of poor predictions is tiny
up to Top-10. These results indicate that the STDW model
has a better screening power, i.e., it predicts more protein-
nucleotide complexes and more accurately the native nu-

cleotide than the non-native ones. This better performance
is not only imputable to an unbalanced number of predic-
tions between the two models (cases where the STDW pro-
vides prediction while the SCAL model does not provide any)
but to a more discriminatory power when comparing only the
cases which generate predictions in both models (Fig. S7).
The distributions of scores between the two models show
two different profiles. In the SCAL model, G nucleotides
tend to be slightly better scored, then A and pyrimidines with
lower scores. However, the average score deviation is within
a small range (Fig. S8). In contrast, A nucleotides are better
scored in the STDW model while the other three nucleotides
have similar distributions. Another difference is the much
more extensive range of scores for all four nucleotides. The
more favorable scoring of A is consistent with more tightly
binding modes, a known bias of the benchmark as men-
tioned previously (Fig. S2). The nucleotide breakdown of the
screening power does show there is no significant difference
in performance between A and the other three nucleotides,
although it is slightly better in the Top-100 (Fig. S9). In the
SCAL model, G nucleotides are better scored in all Top-i
than pyrimidines in particular. It suggests that the bias to-
wards a better scoring of G and to a lesser extent A con-
tributes to a degraded screening power of the SCAL model.
The current scoring functions (tested on the CASF-2016
benchmark) do not exhibit high screening powers, which
reach 30% or a bit more than 40% for the highest suc-
cess rates in the Top1% and a bit more than 60% in the
Top10% (62). The comparison with the results of this study
(Fig. 10) is risky because the Top1% or Top10% would repre-
sent a two- or three-fold number of poses (Fig. 5) with respect
to the approximate 1000 poses generated in the CASF-2016
scoring benchmark (62). Furthermore, the molecular diver-
sity of the four nucleotides is limited to the few atoms of the
nucleic acid base, making the discriminatory scoring much
more challenging.

Molecular Features. To better understand the role of
solvent and other molecular properties on the predictions,
we define a series of features that are used to assess the
performance or lack of performance for some specific
associations of nonbonded models and features qualitatively.
We classify the features into three main groups related to:
1. The binding site properties (volume, number of water
molecules, metals, other nucleotidic fragments).
2. The conformational properties (purine/pyrimidine,
syn/anti).
3. The interaction properties (contacts, clashes, stacking, salt
bridges).

The intrinsic properties of the binding site (evaluated from
the experimental structure) make it more prone to get good
or poor predictions or none. Several protein-nucleotide com-
plexes fail to be predicted at all in the Top-100, representing
from 16 to 45% for the raw distributions depending on the
nonbonded model and patch used, and a minimum of 12%
for the clustered distributions (Figs. 7 & 8). However, only
two complexes do not generate any predictions in the Top-
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DRAFTFig. 9. Binding selectivity predictions for 1KTG. Left: SCAL model (R310); right: STDW model (R310); the interval of MCSS scores corresponding to a 2 kcal/mol range is
indicated by the green bar. Each Top-i for i > 1 is represented by a single point that corresponds to the average RMSD and score of all its members.

Fig. 10. Binding Selectivity Predictions. Optimal: native nucleotide as the best ranked; good: native nucleotide ranked within a 2 kcal/mol range from the best ranked
non-native nucleotide; poor: native nucleotide ranked out of the 2 kcal/mol range.
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100 for any model and patch. To have more examples of
negative predictions, we analyze the features based on the
presence/absence of predictions in the Top-10. Without any
distinction from the model and patch, 17 complexes do not
generate any prediction in the Top-10. We consider that a
given feature has a significant impact on the prediction when
it is found associated with the absence of prediction at a
higher frequency than that in the benchmark (Sup. Note 4,
Table S1). The feature that correlates significantly with the
absence of prediction is a low volume of the binding site
(Fig. 11), as calculated by PyVOL (65) (see Methods Sec-
tion E). Metal ions usually stabilize the phosphate group and
occupy some volume in the binding site (it is correlated with
a low volume of the binding site and a low number of water
molecules). Although it is removed from each protein target,
its absence in the calculations is not a negatively impacting
feature.

Among the conformational features, none is an impacting
feature. Only the pyrimidines have a very tiny overrepre-
sentation in the non-predicted cases (Sup. Note 4, Table S1).
Even if the pyrimidic nucleotides are generally better pre-
dicted than purinic ones (Top-1, Top-5, Top-50, and Top-
100), the non-predicted cases in the Top-10 are slightly more
represented. The predictions in the Top-10, in particular for
C nucleotides are more sparse in a number of model-patch
combinations (Fig. 8). Three interaction features are nega-
tively impacting the performance: the absence of salt bridges,
the presence of clashes with water molecules, and to a lesser
extent, the absence of stacking contact (Fig. 11). Among
these latter contacts, the π-π interactions are those which
more contribute to the negative impact on the predictions
(Fig. S10). The presence of clashes with water molecules
might induce some deviations of water molecules in the bind-
ing site during the protein target’s preparation (minimiza-
tion).

If we focus on the non-predicted cases specific to the STDW
model with the R310 patch, the observations described above
remain valid with very similar trends for all the molecular
features (Sup. Note 4, Table S2). In the case of the non-
optimal predictions which fail to score the native nucleotide
as the best ranked (i.e., good predictions, Fig. 10), similar
trends are again observed but with two specificities associ-
ated with the metals and stacking contacts (Sup. Note 4, Ta-
ble S3). First, metals’ presence does impact negatively the
performance suggesting that metals contribute directly or in-
directly to the nucleotide selectivity. Second, the absence of
stacking contacts makes it more challenging to score the na-
tive nucleotide properly; the binding selectivity of purines
versus pyrimidines, in particular, can be easier to identify in
the presence of stacking contacts.

As described above, a low volume of the binding site is detri-
mental per se to the prediction performance. Once the experi-
mental structure is optimized after removal of the ligand (and
the water molecules in the SCAL model), the volume can be
modulated in a decreasing or increasing way (Sup. Note 4,
Fig. S11). The average variation shrinks the binding site by
27 to 30Å3 for the SCAL and STDW models, respectively.

In two-thirds of the benchmark, the binding site shrinks by
an average of 87 (SCAL) to 92Å3 (STDW). In one-third of
the benchmark, the binding site expands by an average of 92
(STDW) to 95Å3 (SCAL). Thus, a similar trend of variations
is observed for both SCAL and STDW models. However,
only the STDW is significantly impacted in the performance
for the prediction of the Top-10 (Sup. Note 4, Table S4); the
shrinking of the binding site combined with the presence of
water molecules prevents the identification of any hit in the
Top-10 in the concerned cases. This is confirmed by the fact
that 9 of the 17 proteins in the subset with no predictions in
the Top-10 exhibit recovered predictions in the upper Top-i
with a smaller patch such as R110 ( Sup. Note 4, Table S5).
In 6 other cases, the absence of predictions with the STDW
model can be imputed to the presence of water molecules (Ta-
ble S5). Finally, only two cases do not provide any prediction
in the Top-i .

Case Studies. The analysis of the molecular features that
impact the docking and screening powers shows that different
factors are responsible for the general lack of performance of
all the nonbonded models and, more specifically, that of the
purely implicit model (SCAL). We illustrate the impacting
features through a series of case studies, looking particularly
at those contributing to the improved performance of the hy-
brid models, including explicit water molecules. Since all
protein-nucleotide complexes in the benchmark include crys-
tallized water molecules, we should expect that the water-
mediated contacts will be detrimental to the SCAL model.
The presence of water contacts involving the base or the
phosphate group has a powerful impact (Fig. S12). We re-
fer to each case using the PDB ID.
In the 1S68 case where the native nucleotide is A, a single
water molecule and only one is involved in two close con-
tacts with the nucleotide (Fig. 12). These two water-mediated
contacts involve the Watson-Crick face of the adenine. The
SCAL model does not provide any prediction within the Top-
100 for any nucleotide (Fig. 12A). A few native-like poses
exist, but they are not ranked within the Top-100, i.e., their
MCSS score is higher than any of the first 100 non-native
poses (Fig. 12B,D-E). On the contrary, the STDW model
generates several native-like poses within the Top-1, Top-
5, and Top-50 corresponding to optimal and good predic-
tions for the native nucleotide (Fig. 12A,C,E-F). Excluding
the water-mediated contact with the base, all the other na-
tive contacts are found in the native-like poses for both mod-
els (Fig. 12D-F). Both water molecules and the nonbonded
model used are responsible for the differential scoring be-
tween the two models even if the water molecules are not
considered in the scoring (Methods B). In all the native-like
poses in both SCAL and STDW models, the syn conforma-
tion of the nucleotide is preferred (or a high-syn conforma-
tion), although the starting conformation in the initial dis-
tributions is C3’-endo anti. It is indicative that the ligand’s
flexibility allows to switch from anti to syn during the MCSS
calculations without any hindrance.
In the SCAL model, the best-ranked poses for the native nu-
cleotide (Top-1 to Top-10) exhibit alternative positionings of
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Fig. 11. UpsetR diagram of features for the Top-10 predictions. A. binding site features. B. conformational features. C. interaction features. others: presence of additional
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pur: purine; no.base.contacts: absence of contacts with the nucleic acid base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules;
no.salt.bridges: absence of salt-bridge; no.stacking: absence of stacking. Only the intersections with more than one member are shown.
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Fig. 12. Case Study 1S68. A. Schematic representation of the nucleotide selectivity in the SCAL (left) and STDW (right) models; B. 3D representation of the native-like pose
for the SCAL model (128th scored pose); C. 3D representation of the native-like pose for the STDW model (Top-1); D. Diagram of the binding site and nucleotide contacts for
the SCAL model (see B); E. Diagram of the binding site and nucleotide contacts for the native binding mode; F. Diagram of the binding site and nucleotide contacts for the
STDW model (see C); G. 3D representation of the native-like pose for the SCAL model (Top-1); H. Diagram of the binding site and nucleotide contacts for the SCAL model
(see G);
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the phosphate groups; it interact closely on the opposite side
of the binding site with residues Lys35, Asn40, and Arg55 in-
stead of Lys35, Lys225, and Lys227 (Fig. 12G-H). Although
the net charge is reduced by two-thirds in the SCAL model
(but not in the STDW model), the absence of explicit solva-
tion around the phosphate group leads to an alternate posi-
tioning of the nucleotide (Fig. 12H), which is incompatible
with the native binding mode. 1S68 is associated with a low
volume of the binding site, a feature that impacts the perfor-
mance negatively (Fig. 11A). Furthermore, the binding site is
shrunk for both models and slightly more pronounced for the
SCAL model ( Sup. Note 4, Fig. S11).

The 3EWY case is specific with a pyrimidic ligand: U,
which adopts a syn conformation. Both models exhibit a
similar performance with predicting the U native nucleotide
(Fig. 13). However, the native contacts are better reproduced
by the SCAL model (Fig. 13A-B,E-F) and only the 10th
pose reproduces all the native contacts with the residues of
the binding site in the STDW model (Fig. 13A,D,F-G). Be-
sides, several non-native nucleotides have very similar MCSS
scores: A in the case of the SCAL model, G in the case of the
STDW model. There is no global shrinking of the binding
site in the protein structures optimized with or without water
molecules in the case of 3EWY (Sup. Note 4, Fig. S11).
However, there is a local contraction in some parts of the
binding site, which is not equivalent between the two models.
It is more pronounced on the Hoogsteen and Watson-Crick
faces of the base in STDW, making it more challenging to re-
produce the native contacts with the base (Fig. 13C). On the
other hand, non-native nucleotides can fit into the remodeled
binding site with scores which are within the 2 kcal/mol range
from the native one (Fig. 14). The native contacts which are
specific to the base are lost in the case of A with the SCAL
model (Fig. 14A-B,D), but native-like and isosteric contacts
are found in the case of G with the STDW model (Fig. 14C,E-
F).

In the 2XBU case, the cavity of the binding site is well con-
served in the SCAL model but slightly shrunk in the STDW
model (Sup. Note 4 and Fig. S11). The binding site’s vol-
ume is low because it is quite open with only the base moiety
within a well-defined cavity. Only the STDW model pro-
vides a good prediction (Top-5) while the native poses gen-
erated by the SCAL model are all over the Top-100 scores
(Fig. 15A). The first poses in the STDW model (Top-1 to
Top-4) are all located in the binding site. However, their
RMSD is over 2Å and are thus excluded from the native
poses. Independent of the scores, the native poses reproduce
the native contacts with the base in both models (Fig. 15B-
G). The phosphate group establishes very close contacts with
hydrogen-bond donors from the peptide backbone, but those
contacts are not retrieved in the native poses except for one
residue (Thr115). The presence of a terminal methyl group in
the phosphate patch used: R310 (Fig. 4 and Fig. 3) prevents
a native positioning of the phosphate group. In the SCAL
model, its positioning is more in agreement with the experi-
mental structure (Fig. 15E-F). However, the Top-1 pose and
the other best-scored poses are completely off-site (Fig. 16).

Combined with the shrinking of the binding site, the large
phosphate group largely deviates from the expected position
in the STDW model, and the only contact with Thr115 is
weaker. This deviation on the phosphate group increases the
global RMSD of the pose to the native coordinates and leads
to exclude the Top-1 to Top-4 G poses from the list of na-
tive poses (Fig. 16). However, the Top-4 G pose reproduces
almost all the native contacts (Fig. 16C,E-F).

Conclusions
MCSS was evaluated for the docking of nucleotides on a
benchmark of 121 protein complexes. Different solvent and
phosphate models were tested to optimize the success rate for
identifying native poses (docking power) and the true native
nucleotide (screening power). As a result, the STDW model,
which is a hybrid implicit and explicit solvent model, appears
to give the best performance slightly ahead of the SCALW
model based on partially reduced charges on the phosphate
group. A clustering procedure was set up that allows a slight
increase of the success rates, especially in the high Top-i
(Top-50 and Top-100). Among the different phosphate mod-
els, the more voluminous one that carries a terminal methyl
group: R310, is slightly better in the Top-1 predictions. It
is also the phosphate model that facilitates the linking of nu-
cleotide fragments in the perspective of fragment-based de-
sign of oligonucleotides (unpublished data). The combined
STDW-R310 model outperforms despite the few cases where
the lack of predictions in the Top-10 could be correlated to a
size effect that prevents the phosphate group from fitting cor-
rectly in the binding site. The presence of water molecules
in the preparation and optimization of the protein structure
allows the minimized structure to deviate less from the ex-
perimental structure. On the other hand, the water molecules
generally induce a more pronounced shrinking of the bind-
ing site with respect to the experimental structure, which is
responsible for some degradation of the performance. The
inclusion of water molecules gives a more realistic descrip-
tion of the binding site, whether they are involved in water-
mediated contacts with the ligand or just solvating the phos-
phate group or ribose.
We have identified some pitfalls that contribute to degrade
the performance of prediction in all models. From the intrin-
sic features of the binding site, a low binding volume is the
more impacting factor. It can be seen as a low accessible vol-
ume for close contacts that typically occurs when the binding
site is open with few contacts with the ligand or when the
close contacts are just present in some part of the nucleotide
(small binding cavities). Among the conformational features,
the syn conformation does not have any negative impact al-
though the docking is performed using an initial C3’-endo
anti conformation. This confirms that the flexibility of the lig-
and during the docking allows a proper conformational sam-
pling. Among the interaction features, the presence of salt
bridges makes it a bit easier to get good predictions. On the
other hand, the presence of clashes with water molecules in
the experimental structure has a slight negative impact. More
specific to the STDW-R310 model, the negative effect of the

16 | bioRχiv Leclerc et al. | MCSS-based Predictions of Nucleotide Binding Sites



DRAFT
URA

P
O

O-O

O

O

N

O

NH

O
OH

OH

SER
257

ASP
259

LYS
281

HSD
283

ASP
312

ASP
317

ILE
318

THR
321

MET
371

SER
372

ILE
401

PRO
417

GLY
418

VAL
419

GLN
430

TYR
432

ILE
448

VAL
449

GLY
450

ARG
451

backbone

side-chain

backbone & side-chain

ligand acceptor

non-ideal ligand acceptor

non-ideal ligand donor

contact only

salt-bridge ligand(-)

Residue Styles

Interaction Styles

E

DB

URA

P
O-

OO

O

O

N

O

NH

O
OH

OH

SER
257P

ASP
259P

LYS
281PHSD

283P

ASP
312P

ASP
317P

ILE
318P

THR
321P

MET
371P SER

372P

PRO
417P

GLY
418P

VAL
419P

GLN
430P

TYR
432P

ILE
448P

VAL
449P

GLY
450P

ARG
451P

backbone

side-chain

backbone & side-chain

ligand acceptor

non-ideal ligand acceptor

ligand donor

non-ideal ligand donor

contact only

Residue Styles

Interaction Styles

G

A

F
U5P

N

N
H

O

O

OH

OH

O

O
P

O

O-

O-

SER
257A

ASP
259A

LYS
281A

HIS
283A

ASP
312A

MET
371A

SER
372A

PRO
417A

GLN
430A

TYR
432A

GLY
450A

ARG
451A

HOH
484A

HOH
487A

HOH
494A

HOH
572A

HOH
783A

HOH
784A

HOH
785A

HOH
790A

backbone

side-chain

backbone & side-chain

water

ligand acceptor

non-ideal ligand acceptor

ligand donor

contact only

salt-bridge ligand(-)

Residue Styles

Interaction Styles

C

Fig. 13. Case Study 3EWY. A. Schematic representation of the nucleotide selectivity in the SCAL (left) and STDW (right) models; B. 3D representation of the Top-1 native
pose for the SCAL model; C. 3D representation of the native ligand in the binding site as seen: in the experimental structure (grey), in the optimized structure without water
molecules (magenta), in the optimized structure with water molecules (blue); D. 3D representation of the Top-10 native pose for the STDW model; E. Diagram of the binding
site and nucleotide contacts for the SCAL model (see B); F. Diagram of the binding site and nucleotide contacts for the native binding mode; G. Diagram of the binding site
and nucleotide contacts for the STDW model (see D).
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Fig. 14. Case Study 3EWY. A. Schematic representation of the nucleotide selectivity in the SCAL (left) and STDW (right) models; B. 3D representation of the Top-1 native-like
pose for A (syn conformation) in the SCAL model; C. 3D representation of the Top-1 native-like pose for G (anti conformation) in the STDW model; D. Diagram of the binding
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and nucleotide contacts for the STDW model (see C).
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Fig. 15. Case Study 2XBU. A. Schematic representation of the nucleotide selectivity in the SCAL (left) and STDW (right) models; B. 3D representation of a native-like pose for
G in the SCAL model (169th scored pose); C. 3D representation of the native ligand in the binding site as seen: in the experimental structure (grey), in the optimized structure
without water molecules (magenta), in the optimized structure with water molecules (blue); D. 3D representation of a native-like pose for G in the STDW model (Top-50, 12th
scored pose); E. Diagram of the binding site and nucleotide contacts for the SCAL model (see B); F. Diagram of the binding site and nucleotide contacts for the native binding
mode; G. Diagram of the binding site and nucleotide contacts for the STDW model (see D).
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Fig. 16. Case Study 2XBU. A. Schematic representation of the nucleotide selectivity in the SCAL (left) and STDW (right) models; B. 3D representation of Top-1 pose for G in
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C).

20 | bioRχiv Leclerc et al. | MCSS-based Predictions of Nucleotide Binding Sites



DRAFT

low binding volume is smoothed.
The quality of the scoring explains, to some extent, the bet-
ter performance of the hybrid model STDW over the im-
plicit model SCAL. First of all, the SCAL includes a slight
bias in the scoring, favoring G over A and the other nu-
cleotides, while A is the nucleotide that generally establishes
the stronger contacts in the binding site. Furthermore, the
STDW model based on the original parameters from the
CHARMM forcefield describes better, in the presence of
water molecules, the bonded contributions associated with
the nucleotides’ torsion angles. Thus, the penalty term of
the MCSS score from the conformational distortions of the
bound ligand is more accurate. The STDW model outper-
forms not only in docking power with more predictions but
also in screening power even if we just consider the common
predictions for both models. The STDW model has a much
stronger discriminatory power between very similar ligands.
It is also consistent with the broader range of score distribu-
tions for each type of nucleotide. The native poses scored
as optimal reproduce most (if not all) of the native contacts
as well as the good predictions, although they are not ranked
first among the four nucleotides.
Both free and bound conformations for the same protein are
not available on a large set of 3D structures with nucleotide
ligands. Thus, the protein targets correspond to some un-
bound forms where the ligands were extracted from the bind-
ing site. Consequently, the optimized binding site is usually
shrunk, making the identification of native poses and native
binders more challenging. The method’s performance is then
degraded both in terms of docking and screening powers be-
cause of missing native contacts in the shrunk areas of the
binding sites. The four standard nucleotides are very simi-
lar from the chemical viewpoint and thus harder to discrimi-
nate in terms of binding selectivity. Chemical modifications
would increase the dissimilarity between nucleotidic frag-
ments, which would likely be easier to discriminate. Many
modified nucleotides are already used experimentally in the
synthesis of oligonucleotides (66) or modified aptamers (67)
for medical or biotechnological applications to improve spe-
cific properties such as the therapeutic index (68).
From the perspective of designing oligonucleotides, MCSS
provides a reasonable performance to predict native poses
and identify the binding preference(s) of nucleotidic frag-
ments. More accurate or complete descriptions of the sol-
vent open the possibility to improve its performance. Other
improvements may come from using more relevant and more
diverse conformations of the protein targets and increasing
the chemical diversity of the nucleotidic fragments.
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Methods

A. Protein-nucleotide Benchmark. The PDB was filtered
out to select a set of protein-nucleotide complexes based on
different structural criteria associated with the atomic resolu-
tion and the structural similarity. A first query was carried out
to find protein complexes with each of the four nucleotides
as ligands and annotated in the PDB by the following labels:
AMP, C5P, 5GP, U5P. An additional criterion based on a cut-
off value of 2Å resolution was also used to select only high-
resolution X-ray structures. The resulting complexes were
then clustered according to their sequence similarities in or-
der to remove the redundancy. If any chain in the protein of
a complex has at least 30% sequence identity with a chain in
the protein from another complex, the two complexes were
grouped into the same cluster. The crystal structure with the
best resolution in each cluster was selected as the cluster’s
representative. The 188 complexes thus selected by pulling
down the results from the four queries (AMP-bound: 123,
C5P-bound: 18, 5GP-bound: 21, U5P-bound: 27) were then
manually curated to retain those that exhibit a known binding
preference for the crystallized ligand. This feature was estab-
lished based on the literature and/or the annotation of the pro-
tein, e.g., a C nucleotide for CMP-kinase, etc. After curation,
the dataset was reduced to 132 complexes. An additional cu-
ration was performed to eliminate some potential redundancy
associated with the presence of identical binding sites for dif-
ferent types of nucleotides. The followed procedure consists
of superimposing all the protein structures using the program
TM-align (69) and review all the structures that are similar
based on the TM-score (TM-score ≥ 0,8). Two binding sites
were considered non-redundant if they differ by only one
amino acid residue in direct contact with the ligand. Accord-
ing to this criterion, only one complex was removed from the
dataset in the case of the proteins corresponding to the PDB
IDs: 3DXG (U5P ligand) and 3DJX (C5P ligand); the latter
complex was conserved in the dataset to compensate for the
minor under-representation of C5P. The full procedure ends
up with a dataset of 131 protein-nucleotide complexes.
After a review of the MCSS calculations, ten protein-
nucleotide complexes resulted in non-productive (see below)
and were then removed from further analyses. The result-
ing benchmark is thus composed of 121 protein-nucleotide
complexes (Sup. Note 1). Their binding features were char-
acterized by the number of contacts between the protein and
its ligand, the fraction of buried surface area, the number of
H-bonds in the binding site, and the energy of interaction as
calculated by the MCSS scoring function (Sup. Note 2). The
contacts are calculated using the program BINANA (55). The
full tables, including the molecular features of the protein-
nucleotide complexes, are provided in the supplementary ma-
terials (Sup. Note 4).

B. MCSS. All the proteins are prepared using the
CHARMM-GUI interface (70) to convert the PDB files
into CRD and PSF formats. After removal of all het-
eroatoms, hydrogens are added to the protein using the
HBUILD command from CHARMM. Histidine residues

are considered as neutral. The protein targets are then
submitted to an energy minimization (tolerance gradient
of 0.1 kcal/mol/Å2). The average deviation between the
experimental structure and the minimized structure is around
1.0Å for the structures optimized without water molecules
and 0.5Å for the structures optimized with the crystallized
water molecules (Fig. 2).
The nucleotide library of fragments include multiple
conformations, 5’ and 3’ patches (see MCSS documen-
tation: https://www.mcss.cnrs.fr/MCSSDOC/
Welcome.html. The initial default conformation used in
the calculations is a C3’-endo/anti ribonucleotide. A set of
five different patches on the 5’ end is used in the current
study with this nucleotide conformation: R010, R110, R210,
R310, R410. Each binding region is defined by a 17Å3 cubic
box centered on the ligand centroid (Fig. 4). MCSS sample
files are provided for the input and nonbonded parameters
(Sup. Note 2).
Ten protein-nucleotide complexes (PDB IDs: 1HXP, 2CFM,
2Q4H, 3L9W, 3REX 4OKE, 4XBA, 5ERS, 5M45, and
5DJH) resulted as non-productive because of a significant
conformational change of the binding site after minimiza-
tion (see protocol for energy minimization above) that pre-
vented the identification of native-like poses. They are ex-
cluded from post-docking analyses due to 3 main reasons: (1)
no native pose (RMSD ≤ 2.0Å) could be generated because
of a nucleotide-binding site too buried to be accessible af-
ter minimization (PDB ID: 5M45, 5DJH); (2) no native pose
could be identified consistent with a huge deviation (RMSD
> 2.0Å) of the crystallized ligand minimized within the opti-
mized protein binding site (PDB IDs: 1HXP, 2CFM, 4OKE,
4XBA, 5ERS); (3) the native poses identified showed highly
unfavorable energies indicating the presence of steric clashes
between the nucleotide and the minimized binding site (PDB
IDs: 2CFM, 2Q4H, 3L9W, 3REX, 4XBA, 5ERS). After the
removal of those ten non-productive protein-nucleotide com-
plexes, the resulting benchmark includes 121 protein struc-
tures. The reference coordinates of the ligand used to evalu-
ate the poses correspond to those of the experimental X-ray
structure.
The initial distributions of fragments are generated using
2000 groups distributed randomly and repeatedly among 25
iterations. These parameters guarantee that fragments fully
saturate the binding region of all the protein-nucleotide com-
plexes in the benchmark, i.e., the atomic density of the frag-
ments mapped into the box is at least twice that of the maxi-
mum carbon density.
In the models that include explicit solvent (SCALW, STDW,
and FULLW), the water molecules are treated independently
from the fragments, which are replicated from their initial
distribution during each iteration. The number of water
molecules is conserved during the calculations, and they are
free to move around without any constraint. However, they
are not considered in the scoring as described below.
The MCSS score is defined by the electrostatic and van der
Waals contributions to the interaction energy plus a penalty
term corresponding to the deviation of the fragment’s confor-
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mation from its energy minimum:

∆EbindingMCSS = ∆Efragmentconf + ∆Eintervdw + ∆Einterel (1)

The van der Waals contribution to the score is calculated in
the same way for all models:

Evdw =
∑

excl(i,j)=1

(
Aij
r12
ij

−
Bij
r6
ij

)
sw(r2

ij , r
2
on, r

2
off ) (2)

while the electrostatic contribution depends on the solvent
model used. In the case of the "FULL" model, it is calculated
using the standard charges as follows:

Eel =
ε=1∑

excl(i,j)=1

qiqj
4πε0rij

(3)

In the case of the other models using either scaled charges
(i.e. "SCAL") or standard charges (i.e. "STD") (Fig. 3), it is
calculated this way:

Eel =
ε=3∑

excl(i,j)=1

qiqj
4πε0r2

ij

sw(r2
ij , r

2
on, r

2
off ) (4)

where the dielectric constant is set up according to some pre-
vious work (43).
The MCSS software may be obtained after signing
a license agreement upon request to Martin Karplus
(marci@tammy.harvard.edu). The source code can be ob-
tained from a Git repository on the I2BC software forge
https://forge.i2bc.paris-saclay.fr).

C. Clustering. A fast and straightforward clustering proce-
dure (orthogonal clustering from now on) is performed on
the MCSS distributions; the first pose (best ranked) is taken
as the seed of the first cluster, and all other poses in the ex-
ploration with an RMSD less equal than 1Å to the seed (re-
dundant poses) are removed from the dataset. The seed is
preserved, and the process resumes taking as seed the next
available pose and performing the same comparison against
remaining poses. At the end, a set of geometrically non-
redundant seeds is obtained. The MCSS results presented
include the distributions’ analysis: the raw (R) and clustered
(C) distributions.

D. Screening power. To evaluate the screening power, the
MCSS distributions from the four nucleotides are merged and
sorted according to their score in increasing order as in the
nucleotide-specific distributions (from the more negative to
the less negative or positive). In each Top-i , a prediction is
considered as optimal if both conditions are met: (1) it cor-
responds to a native pose (RMSD ≤ 2.0Å), (2) the native
nucleotide is ranked ahead of the three other non-native nu-
cleotides. For example, an optimal prediction in the Top-
1 means a native pose is found with the best score from
the merged distributions. In the cases where a non-native is
ranked ahead of the native nucleotide in the native-like poses,
a prediction is considered as good if the score difference does
not exceed 2 kcal/mol. On the contrary, the prediction is con-
sidered as poor.

E. Molecular Features. The volume calculation of the
binding site is performed using the PyVOL python pack-
age (65). PyVOL is used with the pocket corresponding to
the nucleotide-binding site as input (coordinates of the nu-
cleotide ligand of interest). The threshold value to discrimi-
nate between high or low binding volume is set to 635Å3.
The other molecular features include the number of water
molecules around the nucleotidic ligand, the presence of met-
als, and the presence of other nucleotidic ligands (nucleic
acid or cofactor) in close vicinity to the binding site. The
threshold value for the number of water molecules between
nwat high and low is set to: 6 (nwat.low ≤ 6 & nwat.high >
6).
The interaction features (base contacts, clashes, salt bridge,
stacking) are extracted from the analysis of the binding
site (54) (Sup. Note 1).

24 | bioRχiv Leclerc et al. | MCSS-based Predictions of Nucleotide Binding Sites

https://forge.i2bc.paris-saclay.fr


DRAFT

Supplementary Note 1: Benchmark of 121 protein-nucleotide complexes

Attached Supplementary Data 1 (Data-S1.csv): a list of PDB IDs including the ligand ID, the atomic resolution, functional
classification, and EC number.
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Fig. S1. Distribution of molecular functions and nucleotide types in the protein-nucleotide benchmark. Top: General distribution of
molecular functions (left) and nucleotide type (right). Middle-Bottom: Nucleotide-specifc distributions (AMP, GMP, CMP, UMP).

Attached Supplementary Data 2 (Data-S2.csv): calculations of the BINANA features (number of contacts, number of H-bonds,
the buried fraction of ligand, etc)

Attached Supplementary Data 3 (Data-S3.csv): calculations of the NACCESS surface terms for the fraction of buried surface
of the ligand

Attached Supplementary Data 4 (Data-S4.tar.gz): 2D diagrams of the contacts within the binding sites (SVG format).
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Fig. S2. Nucleotide breakdown of atomic contacts. Top-left: all contacts; top-right: specific contacts (C-C contacts, close contacts,
Hbonds, stacking contacts, salt-bridges); bottom: ratio of each type of specific contacts. The number of contacts correspond to the
average value over the full benchmark.
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Supplementary Note 2: MCSS

Attached Supplementary Data 5: MCSS input sample (Data-S5.txt)
Attached Supplementary Data 6: MCSS nonbonded parameters sample (Data-S6.txt)
Attached Supplementary Data 7 (Data-S7.csv): MCSS score (including its VdW and elec terms) and RMSD values for each
protein-nucleotide complex

A

B

C

D

Fig. S3. Torsions angles. Nonbonded models and associated patches (R010 to R410): A. SCAL, B. FULLW, C. SCALW, D. STDW. In
blue: the distribution of the torsions angles observed in the MCSS minima; In red: the distribution of the torsions angles observed in
the bound ligands.
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Supplementary Note 3: Scoring

Autodock Vina is a well-known docking method used for virtual screening; the associated scoring function is pretty ro-
bust, having regularly been used in the comparative assessment of scoring functions (CASF) challenges (71). Vinardo and
∆vinaRF20 were both derived from Vina and tested in the CASF-2013 challenge. Vinardo was optimized and validated on
large datasets (61). It was tested in particular on the DUD library that contains, among other proteins, kinases with nucleotide
ligands or nucleotide analogs (72). ∆vinaRF20 was derived more recently from Vina with a new parametrization based on
random forest. The performance of ∆vinaRF20 was superior to that of Vina when tested on the CASF-2007 and CASF-2013
challenges benchmarks. Finally, ITscorePR was included since it has been specifically developed for protein-RNA interac-
tions. The scores calculated with all the scoring functions: ITscorePR (58), ∆vinaRF20 (59), Autodock Vina score (60), and
Vinardo (61), except MCSS (43) correspond to single-point calculations on the MCSS-generated poses.

Attached Supplementary Data 8 (Data-S8.tar.gz): selectivity diagrams SCAL/STDW for the native poses for each protein-
nucleotide complex of the benchmark.

Fig. S4. Stacked histogram representation of the native poses in the top1 to top100 as scored by Vinardo, MCSS, ∆vinaRF20, Vina,
and ITscorePR. A. no clustering; B. clustering.
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Fig. S5. Nucleotide breakdown of the success rates obtained for each nonbonded model and patches combination. The data are
shown for the clustered distribution and each Top-i.
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Fig. S6. Scoring differences (offset) between the best-ranked pose whatever the nucleotide type and the best-ranked pose for the
nucleotide corresponding to the native ligand. Top: STDW model; bottom: SCAL model. The color code indicates the nucleotide type.
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Fig. S7. Binding Selectivity Predictions. Optimal: native nucleotide as the best ranked; good: native nucleotide in the ranked within a
2 kcal/mol range from the best ranked non-native nucleotide; poor: native nucleotide ranked out of the 2 kcal/mol range. Only a subset
of the benchmark is considered where both SCAL and STDW models do provide predictions.
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Fig. S8. Boxplots for the nucleotide breakdown of the MCSS score. The distributions correspond to the full benchmark with the SCAL
or STDW model (R310).
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Fig. S9. Nucleotide breakdown of the Binding Selectivity Predictions. Optimal: native nucleotide as the best ranked; good: native
nucleotide in the ranked within a 2 kcal/mol range from the best ranked non-native nucleotide; poor: native nucleotide ranked out of the
2 kcal/mol range.
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Supplementary Note 4: Molecular features
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Fig. S10. UpsetR diagram of stacking contributions for the Top-10 predictions. no.pp_satcking: no π-π stacking; no.pi.cat_stacking: no
π-cation stacking; no.t_stacking: no t stacking.

Features Freq. Benchmark Freq. no.pred

binding site

nwat.low 62 59
vol.low 69 82
others 12 6
metals 36 24

conformational
syn 12 0
pur 79 71
pyr 21 23

interaction

no.base.contacts 12 12
no.salt.bridges 44 59

no.stacking 49 53
clash aa 22 18
clash w 33 41

Table S1. Frequencies of occurences for molecular features in the Top-10 non-predicted cases versus benchmark. Others: presence
of additional nucleotidic (nucleic acid) fragment in the binsing site; metals: presence of metal(s) in the binding site; nwat.low: presence
of number of water molecules below the threshold value; vol.low: volume of the binding site below the threshold value; syn: syn
conformation of the nucleic acid base; pyr: pyrimidine; pur: purine; no.base.contacts: absence of contacts with the nucleic acid
base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules; no.salt.bridges: absence of salt-bridge;
no.stacking: absence of stacking.
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Features Freq. Benchmark Freq. STDW(R310)

binding site

nwat.low 62 51
vol.low 69 72
others 12 6
metals 36 30

conformational
syn 12 17
pur 79 83
pyr 21 17

interaction

no.base.contacts 12 11
no.salt.bridges 44 62

no.stacking 49 49
clash aa 22 21
clash w 33 40

Table S2. Frequencies of occurences for molecular features in the Top-10 for non-predicted cases of STDW-310 versus benchmark.
Others: presence of additional nucleotidic (nucleic acid) fragment in the binsing site; metals: presence of metal(s) in the binding site;
nwat.low: presence of number of water molecules below the threshold value; vol.low: volume of the binding site below the threshold
value; syn: syn conformation of the nucleic acid base; pyr: pyrimidine; pur: purine; no.base.contacts: absence of contacts with the
nucleic acid base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules; no.salt.bridges: absence of
salt-bridge; no.stacking: absence of stacking.

Features Freq. Benchmark Freq. good

binding site

nwat.low 62 60
vol.low 69 70
others 12 10
metals 36 60

conformational
syn 12 0
pur 79 80
pyr 21 0

interaction

no.base.contacts 12 30
no.salt.bridges 44 30

no.stacking 49 70
clash aa 22 20
clash w 33 40

Table S3. Frequencies of occurences for molecular features in the Top-10 for non-optimal (good) predictions. Others: presence of
additional nucleotidic (nucleic acid) fragment in the binsing site; metals: presence of metal(s) in the binding site; nwat.low: presence
of number of water molecules below the threshold value; vol.low: volume of the binding site below the threshold value; syn: syn
conformation of the nucleic acid base; pyr: pyrimidine; pur: purine; no.base.contacts: absence of contacts with the nucleic acid
base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules; no.salt.bridges: absence of salt-bridge;
no.stacking: absence of stacking.

Attached Supplementary Data 9 (Data-S9.txt): raw data corresponding to the number of water molecules around the ligand at
a distance up to 4Å.
Attached Supplementary Data 10 (Data-S10.csv): raw data corresponding to the variations of the binding site’s volume for each
protein of the benchmark in three conditions: experimental, SCAL, and STDW models.

Volumes Freq. Benchmark Freq. nopred.

SCAL UP 12 0
DOWN 19 18

STDW UP 13 0
DOWN 21 35

Table S4. Variations in the binding site’s volume for the subset of protein-nucleotides complexes with no prediction in the Top-10. The
volume of reference corresponds to that of the experimental structure; the modified volumes are calculated for both the SCAL and
STDW models. Only the cases where the variation equals or exceeds 100Å3 are considered. UP: increase of the binding site’s volume.
DOWN: decrease of the binding site’s volume.

Leclerc et al. | MCSS-based Predictions of Nucleotide Binding Sites bioRχiv | 35



DRAFT

Vo
lu

m
e 

(A
3 )

−800

−600

−400

−200

0

200

400

600

800

1000

1200

1400

PDB ID

1ex7
1hdi
1iyb
1jp4
1ktg
1nh8
1qf9
1qgx
1rao
1s68
1ua4
1ucd
1uj2
1uuy
1w

xi
1xtt
1y1p
1z4m
2a7x
2cnq
2eqa
2ffc
2fjb
2g1u
2gxq
2ii6
2j91
2jb7
2jbh
2oun
2qrk
2r85
2uv4
2vfk
2xbu
2xw

m
2yab
2yrx
2yvo
3ake
3c4z
3c85
3cj9
3cls
3ddj
3djx
3dlz
3ew

y
3feg
3fw

z
3g1z
3glv
3gru
3ib8
3kd6
3kgd
3lfr
3lkm
3m

84
3n1s
3nua
3nyq
3o0m
3om

f
3pln
3rl4
3rpz
3sf0
3ttf
3uq8
3uw

q
3w

07
4blw
4brq
4co4
4cs3
4d05
4d7a
4eei
4em

d
4eql
4eum
4fbc
4fe3
4g0p
4h2w
4he2
4ig1
4ijn
4ike
4jem
4kbf
4m

0k
4m

9d
4m

a0
4m

po
4m

x2
4ndf
4o6m
4ozl
4p86
4pno
4r78
4uuw
4w

w
7

4x9d
4zcp
4zfn
5b6d
5b8f
5bph
5cot
5d4n
5ed3
5gm

d
5jda
5k1d
5t8s
5v0i
5v1m
5x0j

Fig. S11. Variations in the volume of the binding site. Black line: experimental structure; Blue line: optimized structure for the SCAL
model; Red line: optimized structure for the STDW model. The histograms indicate a decreasing of the volume for the negative values
and an increasing for the positive values. The calculation of volume does not take into account the water molecules.

stdw-R110 scal-R310 scal-R110
1rao Y
1wxi Y
1xtt Y
2g1u Y
2xbu Y
2xwm N Y
3gru N N N
3m84 Y
3nua N N Y
3omf Y
3sf0 N Y
4eei N Y
4ijn N Y
4zfn Y
5ed3 Y
5jda N Y
5v0i N N N

Table S5. Impact of the nonbonded model and phosphate patch on the recovery effect of the Top-10 no-prediction subset. Y: recovered
prediction using a different model and patch; N: no recovered prediction with the given model and patch.
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Fig. S12. UpsetR diagram of water-mediated contacts for the Top-10 predictions. not.scal: no prediction with the SCAL model; stdw:
predictions with STDW model; water.base: presence of water-mediated contacts with the nucleic acid base; water.ribose: presence of
water-mediated contacts with the ribose; water.p presence of water-mediated contacts with the phosphate group.

Attached Supplementary Data 11 (Data-S11.csv): raw data corresponding to the molecular features associated with the Top-10
predictions.
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